1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, enter pingpong mode. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_enter_pingpong_mode(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = rounddown(space, mss); 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = min_t(u32, space, U16_MAX); 233 234 if (init_rcv_wnd) 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 237 *rcv_wscale = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window */ 240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 242 space = min_t(u32, space, *window_clamp); 243 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 244 0, TCP_MAX_WSCALE); 245 } 246 /* Set the clamp no higher than max representable value */ 247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 248 } 249 EXPORT_SYMBOL(tcp_select_initial_window); 250 251 /* Chose a new window to advertise, update state in tcp_sock for the 252 * socket, and return result with RFC1323 scaling applied. The return 253 * value can be stuffed directly into th->window for an outgoing 254 * frame. 255 */ 256 static u16 tcp_select_window(struct sock *sk) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 struct net *net = sock_net(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win, new_win; 262 263 /* Make the window 0 if we failed to queue the data because we 264 * are out of memory. The window is temporary, so we don't store 265 * it on the socket. 266 */ 267 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 268 return 0; 269 270 cur_win = tcp_receive_window(tp); 271 new_win = __tcp_select_window(sk); 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 281 /* Never shrink the offered window */ 282 if (new_win == 0) 283 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 } 287 288 tp->rcv_wnd = new_win; 289 tp->rcv_wup = tp->rcv_nxt; 290 291 /* Make sure we do not exceed the maximum possible 292 * scaled window. 293 */ 294 if (!tp->rx_opt.rcv_wscale && 295 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 296 new_win = min(new_win, MAX_TCP_WINDOW); 297 else 298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 299 300 /* RFC1323 scaling applied */ 301 new_win >>= tp->rx_opt.rcv_wscale; 302 303 /* If we advertise zero window, disable fast path. */ 304 if (new_win == 0) { 305 tp->pred_flags = 0; 306 if (old_win) 307 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 308 } else if (old_win == 0) { 309 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 310 } 311 312 return new_win; 313 } 314 315 /* Packet ECN state for a SYN-ACK */ 316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 317 { 318 const struct tcp_sock *tp = tcp_sk(sk); 319 320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 321 if (!(tp->ecn_flags & TCP_ECN_OK)) 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 323 else if (tcp_ca_needs_ecn(sk) || 324 tcp_bpf_ca_needs_ecn(sk)) 325 INET_ECN_xmit(sk); 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 333 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 354 { 355 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 356 /* tp->ecn_flags are cleared at a later point in time when 357 * SYN ACK is ultimatively being received. 358 */ 359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 360 } 361 362 static void 363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 364 { 365 if (inet_rsk(req)->ecn_ok) 366 th->ece = 1; 367 } 368 369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 370 * be sent. 371 */ 372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 373 struct tcphdr *th, int tcp_header_len) 374 { 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 if (tp->ecn_flags & TCP_ECN_OK) { 378 /* Not-retransmitted data segment: set ECT and inject CWR. */ 379 if (skb->len != tcp_header_len && 380 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 381 INET_ECN_xmit(sk); 382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 384 th->cwr = 1; 385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 386 } 387 } else if (!tcp_ca_needs_ecn(sk)) { 388 /* ACK or retransmitted segment: clear ECT|CE */ 389 INET_ECN_dontxmit(sk); 390 } 391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 392 th->ece = 1; 393 } 394 } 395 396 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 397 * auto increment end seqno. 398 */ 399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 400 { 401 skb->ip_summed = CHECKSUM_PARTIAL; 402 403 TCP_SKB_CB(skb)->tcp_flags = flags; 404 405 tcp_skb_pcount_set(skb, 1); 406 407 TCP_SKB_CB(skb)->seq = seq; 408 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 409 seq++; 410 TCP_SKB_CB(skb)->end_seq = seq; 411 } 412 413 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 414 { 415 return tp->snd_una != tp->snd_up; 416 } 417 418 #define OPTION_SACK_ADVERTISE BIT(0) 419 #define OPTION_TS BIT(1) 420 #define OPTION_MD5 BIT(2) 421 #define OPTION_WSCALE BIT(3) 422 #define OPTION_FAST_OPEN_COOKIE BIT(8) 423 #define OPTION_SMC BIT(9) 424 #define OPTION_MPTCP BIT(10) 425 426 static void smc_options_write(__be32 *ptr, u16 *options) 427 { 428 #if IS_ENABLED(CONFIG_SMC) 429 if (static_branch_unlikely(&tcp_have_smc)) { 430 if (unlikely(OPTION_SMC & *options)) { 431 *ptr++ = htonl((TCPOPT_NOP << 24) | 432 (TCPOPT_NOP << 16) | 433 (TCPOPT_EXP << 8) | 434 (TCPOLEN_EXP_SMC_BASE)); 435 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 436 } 437 } 438 #endif 439 } 440 441 struct tcp_out_options { 442 u16 options; /* bit field of OPTION_* */ 443 u16 mss; /* 0 to disable */ 444 u8 ws; /* window scale, 0 to disable */ 445 u8 num_sack_blocks; /* number of SACK blocks to include */ 446 u8 hash_size; /* bytes in hash_location */ 447 u8 bpf_opt_len; /* length of BPF hdr option */ 448 __u8 *hash_location; /* temporary pointer, overloaded */ 449 __u32 tsval, tsecr; /* need to include OPTION_TS */ 450 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 451 struct mptcp_out_options mptcp; 452 }; 453 454 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 455 struct tcp_sock *tp, 456 struct tcp_out_options *opts) 457 { 458 #if IS_ENABLED(CONFIG_MPTCP) 459 if (unlikely(OPTION_MPTCP & opts->options)) 460 mptcp_write_options(th, ptr, tp, &opts->mptcp); 461 #endif 462 } 463 464 #ifdef CONFIG_CGROUP_BPF 465 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 466 enum tcp_synack_type synack_type) 467 { 468 if (unlikely(!skb)) 469 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 470 471 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 472 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 473 474 return 0; 475 } 476 477 /* req, syn_skb and synack_type are used when writing synack */ 478 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 479 struct request_sock *req, 480 struct sk_buff *syn_skb, 481 enum tcp_synack_type synack_type, 482 struct tcp_out_options *opts, 483 unsigned int *remaining) 484 { 485 struct bpf_sock_ops_kern sock_ops; 486 int err; 487 488 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 489 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 490 !*remaining) 491 return; 492 493 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 494 495 /* init sock_ops */ 496 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 497 498 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 499 500 if (req) { 501 /* The listen "sk" cannot be passed here because 502 * it is not locked. It would not make too much 503 * sense to do bpf_setsockopt(listen_sk) based 504 * on individual connection request also. 505 * 506 * Thus, "req" is passed here and the cgroup-bpf-progs 507 * of the listen "sk" will be run. 508 * 509 * "req" is also used here for fastopen even the "sk" here is 510 * a fullsock "child" sk. It is to keep the behavior 511 * consistent between fastopen and non-fastopen on 512 * the bpf programming side. 513 */ 514 sock_ops.sk = (struct sock *)req; 515 sock_ops.syn_skb = syn_skb; 516 } else { 517 sock_owned_by_me(sk); 518 519 sock_ops.is_fullsock = 1; 520 sock_ops.sk = sk; 521 } 522 523 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 524 sock_ops.remaining_opt_len = *remaining; 525 /* tcp_current_mss() does not pass a skb */ 526 if (skb) 527 bpf_skops_init_skb(&sock_ops, skb, 0); 528 529 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 530 531 if (err || sock_ops.remaining_opt_len == *remaining) 532 return; 533 534 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 535 /* round up to 4 bytes */ 536 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 537 538 *remaining -= opts->bpf_opt_len; 539 } 540 541 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 542 struct request_sock *req, 543 struct sk_buff *syn_skb, 544 enum tcp_synack_type synack_type, 545 struct tcp_out_options *opts) 546 { 547 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 548 struct bpf_sock_ops_kern sock_ops; 549 int err; 550 551 if (likely(!max_opt_len)) 552 return; 553 554 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 555 556 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 557 558 if (req) { 559 sock_ops.sk = (struct sock *)req; 560 sock_ops.syn_skb = syn_skb; 561 } else { 562 sock_owned_by_me(sk); 563 564 sock_ops.is_fullsock = 1; 565 sock_ops.sk = sk; 566 } 567 568 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 569 sock_ops.remaining_opt_len = max_opt_len; 570 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 571 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 572 573 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 574 575 if (err) 576 nr_written = 0; 577 else 578 nr_written = max_opt_len - sock_ops.remaining_opt_len; 579 580 if (nr_written < max_opt_len) 581 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 582 max_opt_len - nr_written); 583 } 584 #else 585 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 586 struct request_sock *req, 587 struct sk_buff *syn_skb, 588 enum tcp_synack_type synack_type, 589 struct tcp_out_options *opts, 590 unsigned int *remaining) 591 { 592 } 593 594 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 595 struct request_sock *req, 596 struct sk_buff *syn_skb, 597 enum tcp_synack_type synack_type, 598 struct tcp_out_options *opts) 599 { 600 } 601 #endif 602 603 /* Write previously computed TCP options to the packet. 604 * 605 * Beware: Something in the Internet is very sensitive to the ordering of 606 * TCP options, we learned this through the hard way, so be careful here. 607 * Luckily we can at least blame others for their non-compliance but from 608 * inter-operability perspective it seems that we're somewhat stuck with 609 * the ordering which we have been using if we want to keep working with 610 * those broken things (not that it currently hurts anybody as there isn't 611 * particular reason why the ordering would need to be changed). 612 * 613 * At least SACK_PERM as the first option is known to lead to a disaster 614 * (but it may well be that other scenarios fail similarly). 615 */ 616 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 617 struct tcp_out_options *opts) 618 { 619 __be32 *ptr = (__be32 *)(th + 1); 620 u16 options = opts->options; /* mungable copy */ 621 622 if (unlikely(OPTION_MD5 & options)) { 623 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 624 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 625 /* overload cookie hash location */ 626 opts->hash_location = (__u8 *)ptr; 627 ptr += 4; 628 } 629 630 if (unlikely(opts->mss)) { 631 *ptr++ = htonl((TCPOPT_MSS << 24) | 632 (TCPOLEN_MSS << 16) | 633 opts->mss); 634 } 635 636 if (likely(OPTION_TS & options)) { 637 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 638 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 639 (TCPOLEN_SACK_PERM << 16) | 640 (TCPOPT_TIMESTAMP << 8) | 641 TCPOLEN_TIMESTAMP); 642 options &= ~OPTION_SACK_ADVERTISE; 643 } else { 644 *ptr++ = htonl((TCPOPT_NOP << 24) | 645 (TCPOPT_NOP << 16) | 646 (TCPOPT_TIMESTAMP << 8) | 647 TCPOLEN_TIMESTAMP); 648 } 649 *ptr++ = htonl(opts->tsval); 650 *ptr++ = htonl(opts->tsecr); 651 } 652 653 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 654 *ptr++ = htonl((TCPOPT_NOP << 24) | 655 (TCPOPT_NOP << 16) | 656 (TCPOPT_SACK_PERM << 8) | 657 TCPOLEN_SACK_PERM); 658 } 659 660 if (unlikely(OPTION_WSCALE & options)) { 661 *ptr++ = htonl((TCPOPT_NOP << 24) | 662 (TCPOPT_WINDOW << 16) | 663 (TCPOLEN_WINDOW << 8) | 664 opts->ws); 665 } 666 667 if (unlikely(opts->num_sack_blocks)) { 668 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 669 tp->duplicate_sack : tp->selective_acks; 670 int this_sack; 671 672 *ptr++ = htonl((TCPOPT_NOP << 24) | 673 (TCPOPT_NOP << 16) | 674 (TCPOPT_SACK << 8) | 675 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 676 TCPOLEN_SACK_PERBLOCK))); 677 678 for (this_sack = 0; this_sack < opts->num_sack_blocks; 679 ++this_sack) { 680 *ptr++ = htonl(sp[this_sack].start_seq); 681 *ptr++ = htonl(sp[this_sack].end_seq); 682 } 683 684 tp->rx_opt.dsack = 0; 685 } 686 687 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 688 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 689 u8 *p = (u8 *)ptr; 690 u32 len; /* Fast Open option length */ 691 692 if (foc->exp) { 693 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 694 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 695 TCPOPT_FASTOPEN_MAGIC); 696 p += TCPOLEN_EXP_FASTOPEN_BASE; 697 } else { 698 len = TCPOLEN_FASTOPEN_BASE + foc->len; 699 *p++ = TCPOPT_FASTOPEN; 700 *p++ = len; 701 } 702 703 memcpy(p, foc->val, foc->len); 704 if ((len & 3) == 2) { 705 p[foc->len] = TCPOPT_NOP; 706 p[foc->len + 1] = TCPOPT_NOP; 707 } 708 ptr += (len + 3) >> 2; 709 } 710 711 smc_options_write(ptr, &options); 712 713 mptcp_options_write(th, ptr, tp, opts); 714 } 715 716 static void smc_set_option(const struct tcp_sock *tp, 717 struct tcp_out_options *opts, 718 unsigned int *remaining) 719 { 720 #if IS_ENABLED(CONFIG_SMC) 721 if (static_branch_unlikely(&tcp_have_smc)) { 722 if (tp->syn_smc) { 723 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 724 opts->options |= OPTION_SMC; 725 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 726 } 727 } 728 } 729 #endif 730 } 731 732 static void smc_set_option_cond(const struct tcp_sock *tp, 733 const struct inet_request_sock *ireq, 734 struct tcp_out_options *opts, 735 unsigned int *remaining) 736 { 737 #if IS_ENABLED(CONFIG_SMC) 738 if (static_branch_unlikely(&tcp_have_smc)) { 739 if (tp->syn_smc && ireq->smc_ok) { 740 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 741 opts->options |= OPTION_SMC; 742 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 743 } 744 } 745 } 746 #endif 747 } 748 749 static void mptcp_set_option_cond(const struct request_sock *req, 750 struct tcp_out_options *opts, 751 unsigned int *remaining) 752 { 753 if (rsk_is_mptcp(req)) { 754 unsigned int size; 755 756 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 757 if (*remaining >= size) { 758 opts->options |= OPTION_MPTCP; 759 *remaining -= size; 760 } 761 } 762 } 763 } 764 765 /* Compute TCP options for SYN packets. This is not the final 766 * network wire format yet. 767 */ 768 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 769 struct tcp_out_options *opts, 770 struct tcp_md5sig_key **md5) 771 { 772 struct tcp_sock *tp = tcp_sk(sk); 773 unsigned int remaining = MAX_TCP_OPTION_SPACE; 774 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 775 776 *md5 = NULL; 777 #ifdef CONFIG_TCP_MD5SIG 778 if (static_branch_unlikely(&tcp_md5_needed.key) && 779 rcu_access_pointer(tp->md5sig_info)) { 780 *md5 = tp->af_specific->md5_lookup(sk, sk); 781 if (*md5) { 782 opts->options |= OPTION_MD5; 783 remaining -= TCPOLEN_MD5SIG_ALIGNED; 784 } 785 } 786 #endif 787 788 /* We always get an MSS option. The option bytes which will be seen in 789 * normal data packets should timestamps be used, must be in the MSS 790 * advertised. But we subtract them from tp->mss_cache so that 791 * calculations in tcp_sendmsg are simpler etc. So account for this 792 * fact here if necessary. If we don't do this correctly, as a 793 * receiver we won't recognize data packets as being full sized when we 794 * should, and thus we won't abide by the delayed ACK rules correctly. 795 * SACKs don't matter, we never delay an ACK when we have any of those 796 * going out. */ 797 opts->mss = tcp_advertise_mss(sk); 798 remaining -= TCPOLEN_MSS_ALIGNED; 799 800 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 801 opts->options |= OPTION_TS; 802 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 803 opts->tsecr = tp->rx_opt.ts_recent; 804 remaining -= TCPOLEN_TSTAMP_ALIGNED; 805 } 806 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 807 opts->ws = tp->rx_opt.rcv_wscale; 808 opts->options |= OPTION_WSCALE; 809 remaining -= TCPOLEN_WSCALE_ALIGNED; 810 } 811 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 812 opts->options |= OPTION_SACK_ADVERTISE; 813 if (unlikely(!(OPTION_TS & opts->options))) 814 remaining -= TCPOLEN_SACKPERM_ALIGNED; 815 } 816 817 if (fastopen && fastopen->cookie.len >= 0) { 818 u32 need = fastopen->cookie.len; 819 820 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 821 TCPOLEN_FASTOPEN_BASE; 822 need = (need + 3) & ~3U; /* Align to 32 bits */ 823 if (remaining >= need) { 824 opts->options |= OPTION_FAST_OPEN_COOKIE; 825 opts->fastopen_cookie = &fastopen->cookie; 826 remaining -= need; 827 tp->syn_fastopen = 1; 828 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 829 } 830 } 831 832 smc_set_option(tp, opts, &remaining); 833 834 if (sk_is_mptcp(sk)) { 835 unsigned int size; 836 837 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 838 opts->options |= OPTION_MPTCP; 839 remaining -= size; 840 } 841 } 842 843 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 844 845 return MAX_TCP_OPTION_SPACE - remaining; 846 } 847 848 /* Set up TCP options for SYN-ACKs. */ 849 static unsigned int tcp_synack_options(const struct sock *sk, 850 struct request_sock *req, 851 unsigned int mss, struct sk_buff *skb, 852 struct tcp_out_options *opts, 853 const struct tcp_md5sig_key *md5, 854 struct tcp_fastopen_cookie *foc, 855 enum tcp_synack_type synack_type, 856 struct sk_buff *syn_skb) 857 { 858 struct inet_request_sock *ireq = inet_rsk(req); 859 unsigned int remaining = MAX_TCP_OPTION_SPACE; 860 861 #ifdef CONFIG_TCP_MD5SIG 862 if (md5) { 863 opts->options |= OPTION_MD5; 864 remaining -= TCPOLEN_MD5SIG_ALIGNED; 865 866 /* We can't fit any SACK blocks in a packet with MD5 + TS 867 * options. There was discussion about disabling SACK 868 * rather than TS in order to fit in better with old, 869 * buggy kernels, but that was deemed to be unnecessary. 870 */ 871 if (synack_type != TCP_SYNACK_COOKIE) 872 ireq->tstamp_ok &= !ireq->sack_ok; 873 } 874 #endif 875 876 /* We always send an MSS option. */ 877 opts->mss = mss; 878 remaining -= TCPOLEN_MSS_ALIGNED; 879 880 if (likely(ireq->wscale_ok)) { 881 opts->ws = ireq->rcv_wscale; 882 opts->options |= OPTION_WSCALE; 883 remaining -= TCPOLEN_WSCALE_ALIGNED; 884 } 885 if (likely(ireq->tstamp_ok)) { 886 opts->options |= OPTION_TS; 887 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 888 opts->tsecr = READ_ONCE(req->ts_recent); 889 remaining -= TCPOLEN_TSTAMP_ALIGNED; 890 } 891 if (likely(ireq->sack_ok)) { 892 opts->options |= OPTION_SACK_ADVERTISE; 893 if (unlikely(!ireq->tstamp_ok)) 894 remaining -= TCPOLEN_SACKPERM_ALIGNED; 895 } 896 if (foc != NULL && foc->len >= 0) { 897 u32 need = foc->len; 898 899 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 900 TCPOLEN_FASTOPEN_BASE; 901 need = (need + 3) & ~3U; /* Align to 32 bits */ 902 if (remaining >= need) { 903 opts->options |= OPTION_FAST_OPEN_COOKIE; 904 opts->fastopen_cookie = foc; 905 remaining -= need; 906 } 907 } 908 909 mptcp_set_option_cond(req, opts, &remaining); 910 911 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 912 913 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 914 synack_type, opts, &remaining); 915 916 return MAX_TCP_OPTION_SPACE - remaining; 917 } 918 919 /* Compute TCP options for ESTABLISHED sockets. This is not the 920 * final wire format yet. 921 */ 922 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 923 struct tcp_out_options *opts, 924 struct tcp_md5sig_key **md5) 925 { 926 struct tcp_sock *tp = tcp_sk(sk); 927 unsigned int size = 0; 928 unsigned int eff_sacks; 929 930 opts->options = 0; 931 932 *md5 = NULL; 933 #ifdef CONFIG_TCP_MD5SIG 934 if (static_branch_unlikely(&tcp_md5_needed.key) && 935 rcu_access_pointer(tp->md5sig_info)) { 936 *md5 = tp->af_specific->md5_lookup(sk, sk); 937 if (*md5) { 938 opts->options |= OPTION_MD5; 939 size += TCPOLEN_MD5SIG_ALIGNED; 940 } 941 } 942 #endif 943 944 if (likely(tp->rx_opt.tstamp_ok)) { 945 opts->options |= OPTION_TS; 946 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 947 opts->tsecr = tp->rx_opt.ts_recent; 948 size += TCPOLEN_TSTAMP_ALIGNED; 949 } 950 951 /* MPTCP options have precedence over SACK for the limited TCP 952 * option space because a MPTCP connection would be forced to 953 * fall back to regular TCP if a required multipath option is 954 * missing. SACK still gets a chance to use whatever space is 955 * left. 956 */ 957 if (sk_is_mptcp(sk)) { 958 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 959 unsigned int opt_size = 0; 960 961 if (mptcp_established_options(sk, skb, &opt_size, remaining, 962 &opts->mptcp)) { 963 opts->options |= OPTION_MPTCP; 964 size += opt_size; 965 } 966 } 967 968 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 969 if (unlikely(eff_sacks)) { 970 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 971 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 972 TCPOLEN_SACK_PERBLOCK)) 973 return size; 974 975 opts->num_sack_blocks = 976 min_t(unsigned int, eff_sacks, 977 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 978 TCPOLEN_SACK_PERBLOCK); 979 980 size += TCPOLEN_SACK_BASE_ALIGNED + 981 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 982 } 983 984 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 985 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 986 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 987 988 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 989 990 size = MAX_TCP_OPTION_SPACE - remaining; 991 } 992 993 return size; 994 } 995 996 997 /* TCP SMALL QUEUES (TSQ) 998 * 999 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1000 * to reduce RTT and bufferbloat. 1001 * We do this using a special skb destructor (tcp_wfree). 1002 * 1003 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1004 * needs to be reallocated in a driver. 1005 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1006 * 1007 * Since transmit from skb destructor is forbidden, we use a tasklet 1008 * to process all sockets that eventually need to send more skbs. 1009 * We use one tasklet per cpu, with its own queue of sockets. 1010 */ 1011 struct tsq_tasklet { 1012 struct tasklet_struct tasklet; 1013 struct list_head head; /* queue of tcp sockets */ 1014 }; 1015 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1016 1017 static void tcp_tsq_write(struct sock *sk) 1018 { 1019 if ((1 << sk->sk_state) & 1020 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1021 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1022 struct tcp_sock *tp = tcp_sk(sk); 1023 1024 if (tp->lost_out > tp->retrans_out && 1025 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1026 tcp_mstamp_refresh(tp); 1027 tcp_xmit_retransmit_queue(sk); 1028 } 1029 1030 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1031 0, GFP_ATOMIC); 1032 } 1033 } 1034 1035 static void tcp_tsq_handler(struct sock *sk) 1036 { 1037 bh_lock_sock(sk); 1038 if (!sock_owned_by_user(sk)) 1039 tcp_tsq_write(sk); 1040 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1041 sock_hold(sk); 1042 bh_unlock_sock(sk); 1043 } 1044 /* 1045 * One tasklet per cpu tries to send more skbs. 1046 * We run in tasklet context but need to disable irqs when 1047 * transferring tsq->head because tcp_wfree() might 1048 * interrupt us (non NAPI drivers) 1049 */ 1050 static void tcp_tasklet_func(struct tasklet_struct *t) 1051 { 1052 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1053 LIST_HEAD(list); 1054 unsigned long flags; 1055 struct list_head *q, *n; 1056 struct tcp_sock *tp; 1057 struct sock *sk; 1058 1059 local_irq_save(flags); 1060 list_splice_init(&tsq->head, &list); 1061 local_irq_restore(flags); 1062 1063 list_for_each_safe(q, n, &list) { 1064 tp = list_entry(q, struct tcp_sock, tsq_node); 1065 list_del(&tp->tsq_node); 1066 1067 sk = (struct sock *)tp; 1068 smp_mb__before_atomic(); 1069 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1070 1071 tcp_tsq_handler(sk); 1072 sk_free(sk); 1073 } 1074 } 1075 1076 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1077 TCPF_WRITE_TIMER_DEFERRED | \ 1078 TCPF_DELACK_TIMER_DEFERRED | \ 1079 TCPF_MTU_REDUCED_DEFERRED) 1080 /** 1081 * tcp_release_cb - tcp release_sock() callback 1082 * @sk: socket 1083 * 1084 * called from release_sock() to perform protocol dependent 1085 * actions before socket release. 1086 */ 1087 void tcp_release_cb(struct sock *sk) 1088 { 1089 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1090 unsigned long nflags; 1091 1092 /* perform an atomic operation only if at least one flag is set */ 1093 do { 1094 if (!(flags & TCP_DEFERRED_ALL)) 1095 return; 1096 nflags = flags & ~TCP_DEFERRED_ALL; 1097 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1098 1099 if (flags & TCPF_TSQ_DEFERRED) { 1100 tcp_tsq_write(sk); 1101 __sock_put(sk); 1102 } 1103 /* Here begins the tricky part : 1104 * We are called from release_sock() with : 1105 * 1) BH disabled 1106 * 2) sk_lock.slock spinlock held 1107 * 3) socket owned by us (sk->sk_lock.owned == 1) 1108 * 1109 * But following code is meant to be called from BH handlers, 1110 * so we should keep BH disabled, but early release socket ownership 1111 */ 1112 sock_release_ownership(sk); 1113 1114 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1115 tcp_write_timer_handler(sk); 1116 __sock_put(sk); 1117 } 1118 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1119 tcp_delack_timer_handler(sk); 1120 __sock_put(sk); 1121 } 1122 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1123 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1124 __sock_put(sk); 1125 } 1126 } 1127 EXPORT_SYMBOL(tcp_release_cb); 1128 1129 void __init tcp_tasklet_init(void) 1130 { 1131 int i; 1132 1133 for_each_possible_cpu(i) { 1134 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1135 1136 INIT_LIST_HEAD(&tsq->head); 1137 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1138 } 1139 } 1140 1141 /* 1142 * Write buffer destructor automatically called from kfree_skb. 1143 * We can't xmit new skbs from this context, as we might already 1144 * hold qdisc lock. 1145 */ 1146 void tcp_wfree(struct sk_buff *skb) 1147 { 1148 struct sock *sk = skb->sk; 1149 struct tcp_sock *tp = tcp_sk(sk); 1150 unsigned long flags, nval, oval; 1151 struct tsq_tasklet *tsq; 1152 bool empty; 1153 1154 /* Keep one reference on sk_wmem_alloc. 1155 * Will be released by sk_free() from here or tcp_tasklet_func() 1156 */ 1157 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1158 1159 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1160 * Wait until our queues (qdisc + devices) are drained. 1161 * This gives : 1162 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1163 * - chance for incoming ACK (processed by another cpu maybe) 1164 * to migrate this flow (skb->ooo_okay will be eventually set) 1165 */ 1166 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1167 goto out; 1168 1169 oval = smp_load_acquire(&sk->sk_tsq_flags); 1170 do { 1171 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1172 goto out; 1173 1174 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1175 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1176 1177 /* queue this socket to tasklet queue */ 1178 local_irq_save(flags); 1179 tsq = this_cpu_ptr(&tsq_tasklet); 1180 empty = list_empty(&tsq->head); 1181 list_add(&tp->tsq_node, &tsq->head); 1182 if (empty) 1183 tasklet_schedule(&tsq->tasklet); 1184 local_irq_restore(flags); 1185 return; 1186 out: 1187 sk_free(sk); 1188 } 1189 1190 /* Note: Called under soft irq. 1191 * We can call TCP stack right away, unless socket is owned by user. 1192 */ 1193 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1194 { 1195 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1196 struct sock *sk = (struct sock *)tp; 1197 1198 tcp_tsq_handler(sk); 1199 sock_put(sk); 1200 1201 return HRTIMER_NORESTART; 1202 } 1203 1204 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1205 u64 prior_wstamp) 1206 { 1207 struct tcp_sock *tp = tcp_sk(sk); 1208 1209 if (sk->sk_pacing_status != SK_PACING_NONE) { 1210 unsigned long rate = sk->sk_pacing_rate; 1211 1212 /* Original sch_fq does not pace first 10 MSS 1213 * Note that tp->data_segs_out overflows after 2^32 packets, 1214 * this is a minor annoyance. 1215 */ 1216 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1217 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1218 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1219 1220 /* take into account OS jitter */ 1221 len_ns -= min_t(u64, len_ns / 2, credit); 1222 tp->tcp_wstamp_ns += len_ns; 1223 } 1224 } 1225 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1226 } 1227 1228 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1229 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1230 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1231 1232 /* This routine actually transmits TCP packets queued in by 1233 * tcp_do_sendmsg(). This is used by both the initial 1234 * transmission and possible later retransmissions. 1235 * All SKB's seen here are completely headerless. It is our 1236 * job to build the TCP header, and pass the packet down to 1237 * IP so it can do the same plus pass the packet off to the 1238 * device. 1239 * 1240 * We are working here with either a clone of the original 1241 * SKB, or a fresh unique copy made by the retransmit engine. 1242 */ 1243 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1244 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1245 { 1246 const struct inet_connection_sock *icsk = inet_csk(sk); 1247 struct inet_sock *inet; 1248 struct tcp_sock *tp; 1249 struct tcp_skb_cb *tcb; 1250 struct tcp_out_options opts; 1251 unsigned int tcp_options_size, tcp_header_size; 1252 struct sk_buff *oskb = NULL; 1253 struct tcp_md5sig_key *md5; 1254 struct tcphdr *th; 1255 u64 prior_wstamp; 1256 int err; 1257 1258 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1259 tp = tcp_sk(sk); 1260 prior_wstamp = tp->tcp_wstamp_ns; 1261 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1262 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1263 if (clone_it) { 1264 oskb = skb; 1265 1266 tcp_skb_tsorted_save(oskb) { 1267 if (unlikely(skb_cloned(oskb))) 1268 skb = pskb_copy(oskb, gfp_mask); 1269 else 1270 skb = skb_clone(oskb, gfp_mask); 1271 } tcp_skb_tsorted_restore(oskb); 1272 1273 if (unlikely(!skb)) 1274 return -ENOBUFS; 1275 /* retransmit skbs might have a non zero value in skb->dev 1276 * because skb->dev is aliased with skb->rbnode.rb_left 1277 */ 1278 skb->dev = NULL; 1279 } 1280 1281 inet = inet_sk(sk); 1282 tcb = TCP_SKB_CB(skb); 1283 memset(&opts, 0, sizeof(opts)); 1284 1285 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1286 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1287 } else { 1288 tcp_options_size = tcp_established_options(sk, skb, &opts, 1289 &md5); 1290 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1291 * at receiver : This slightly improve GRO performance. 1292 * Note that we do not force the PSH flag for non GSO packets, 1293 * because they might be sent under high congestion events, 1294 * and in this case it is better to delay the delivery of 1-MSS 1295 * packets and thus the corresponding ACK packet that would 1296 * release the following packet. 1297 */ 1298 if (tcp_skb_pcount(skb) > 1) 1299 tcb->tcp_flags |= TCPHDR_PSH; 1300 } 1301 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1302 1303 /* We set skb->ooo_okay to one if this packet can select 1304 * a different TX queue than prior packets of this flow, 1305 * to avoid self inflicted reorders. 1306 * The 'other' queue decision is based on current cpu number 1307 * if XPS is enabled, or sk->sk_txhash otherwise. 1308 * We can switch to another (and better) queue if: 1309 * 1) No packet with payload is in qdisc/device queues. 1310 * Delays in TX completion can defeat the test 1311 * even if packets were already sent. 1312 * 2) Or rtx queue is empty. 1313 * This mitigates above case if ACK packets for 1314 * all prior packets were already processed. 1315 */ 1316 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1317 tcp_rtx_queue_empty(sk); 1318 1319 /* If we had to use memory reserve to allocate this skb, 1320 * this might cause drops if packet is looped back : 1321 * Other socket might not have SOCK_MEMALLOC. 1322 * Packets not looped back do not care about pfmemalloc. 1323 */ 1324 skb->pfmemalloc = 0; 1325 1326 skb_push(skb, tcp_header_size); 1327 skb_reset_transport_header(skb); 1328 1329 skb_orphan(skb); 1330 skb->sk = sk; 1331 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1332 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1333 1334 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1335 1336 /* Build TCP header and checksum it. */ 1337 th = (struct tcphdr *)skb->data; 1338 th->source = inet->inet_sport; 1339 th->dest = inet->inet_dport; 1340 th->seq = htonl(tcb->seq); 1341 th->ack_seq = htonl(rcv_nxt); 1342 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1343 tcb->tcp_flags); 1344 1345 th->check = 0; 1346 th->urg_ptr = 0; 1347 1348 /* The urg_mode check is necessary during a below snd_una win probe */ 1349 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1350 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1351 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1352 th->urg = 1; 1353 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1354 th->urg_ptr = htons(0xFFFF); 1355 th->urg = 1; 1356 } 1357 } 1358 1359 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1360 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1361 th->window = htons(tcp_select_window(sk)); 1362 tcp_ecn_send(sk, skb, th, tcp_header_size); 1363 } else { 1364 /* RFC1323: The window in SYN & SYN/ACK segments 1365 * is never scaled. 1366 */ 1367 th->window = htons(min(tp->rcv_wnd, 65535U)); 1368 } 1369 1370 tcp_options_write(th, tp, &opts); 1371 1372 #ifdef CONFIG_TCP_MD5SIG 1373 /* Calculate the MD5 hash, as we have all we need now */ 1374 if (md5) { 1375 sk_gso_disable(sk); 1376 tp->af_specific->calc_md5_hash(opts.hash_location, 1377 md5, sk, skb); 1378 } 1379 #endif 1380 1381 /* BPF prog is the last one writing header option */ 1382 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1383 1384 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1385 tcp_v6_send_check, tcp_v4_send_check, 1386 sk, skb); 1387 1388 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1389 tcp_event_ack_sent(sk, rcv_nxt); 1390 1391 if (skb->len != tcp_header_size) { 1392 tcp_event_data_sent(tp, sk); 1393 tp->data_segs_out += tcp_skb_pcount(skb); 1394 tp->bytes_sent += skb->len - tcp_header_size; 1395 } 1396 1397 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1398 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1399 tcp_skb_pcount(skb)); 1400 1401 tp->segs_out += tcp_skb_pcount(skb); 1402 skb_set_hash_from_sk(skb, sk); 1403 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1404 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1405 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1406 1407 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1408 1409 /* Cleanup our debris for IP stacks */ 1410 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1411 sizeof(struct inet6_skb_parm))); 1412 1413 tcp_add_tx_delay(skb, tp); 1414 1415 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1416 inet6_csk_xmit, ip_queue_xmit, 1417 sk, skb, &inet->cork.fl); 1418 1419 if (unlikely(err > 0)) { 1420 tcp_enter_cwr(sk); 1421 err = net_xmit_eval(err); 1422 } 1423 if (!err && oskb) { 1424 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1425 tcp_rate_skb_sent(sk, oskb); 1426 } 1427 return err; 1428 } 1429 1430 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1431 gfp_t gfp_mask) 1432 { 1433 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1434 tcp_sk(sk)->rcv_nxt); 1435 } 1436 1437 /* This routine just queues the buffer for sending. 1438 * 1439 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1440 * otherwise socket can stall. 1441 */ 1442 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1443 { 1444 struct tcp_sock *tp = tcp_sk(sk); 1445 1446 /* Advance write_seq and place onto the write_queue. */ 1447 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1448 __skb_header_release(skb); 1449 tcp_add_write_queue_tail(sk, skb); 1450 sk_wmem_queued_add(sk, skb->truesize); 1451 sk_mem_charge(sk, skb->truesize); 1452 } 1453 1454 /* Initialize TSO segments for a packet. */ 1455 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1456 { 1457 if (skb->len <= mss_now) { 1458 /* Avoid the costly divide in the normal 1459 * non-TSO case. 1460 */ 1461 tcp_skb_pcount_set(skb, 1); 1462 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1463 } else { 1464 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1465 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1466 } 1467 } 1468 1469 /* Pcount in the middle of the write queue got changed, we need to do various 1470 * tweaks to fix counters 1471 */ 1472 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1473 { 1474 struct tcp_sock *tp = tcp_sk(sk); 1475 1476 tp->packets_out -= decr; 1477 1478 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1479 tp->sacked_out -= decr; 1480 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1481 tp->retrans_out -= decr; 1482 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1483 tp->lost_out -= decr; 1484 1485 /* Reno case is special. Sigh... */ 1486 if (tcp_is_reno(tp) && decr > 0) 1487 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1488 1489 if (tp->lost_skb_hint && 1490 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1491 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1492 tp->lost_cnt_hint -= decr; 1493 1494 tcp_verify_left_out(tp); 1495 } 1496 1497 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1498 { 1499 return TCP_SKB_CB(skb)->txstamp_ack || 1500 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1501 } 1502 1503 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1504 { 1505 struct skb_shared_info *shinfo = skb_shinfo(skb); 1506 1507 if (unlikely(tcp_has_tx_tstamp(skb)) && 1508 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1509 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1510 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1511 1512 shinfo->tx_flags &= ~tsflags; 1513 shinfo2->tx_flags |= tsflags; 1514 swap(shinfo->tskey, shinfo2->tskey); 1515 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1516 TCP_SKB_CB(skb)->txstamp_ack = 0; 1517 } 1518 } 1519 1520 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1521 { 1522 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1523 TCP_SKB_CB(skb)->eor = 0; 1524 } 1525 1526 /* Insert buff after skb on the write or rtx queue of sk. */ 1527 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1528 struct sk_buff *buff, 1529 struct sock *sk, 1530 enum tcp_queue tcp_queue) 1531 { 1532 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1533 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1534 else 1535 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1536 } 1537 1538 /* Function to create two new TCP segments. Shrinks the given segment 1539 * to the specified size and appends a new segment with the rest of the 1540 * packet to the list. This won't be called frequently, I hope. 1541 * Remember, these are still headerless SKBs at this point. 1542 */ 1543 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1544 struct sk_buff *skb, u32 len, 1545 unsigned int mss_now, gfp_t gfp) 1546 { 1547 struct tcp_sock *tp = tcp_sk(sk); 1548 struct sk_buff *buff; 1549 int old_factor; 1550 long limit; 1551 int nlen; 1552 u8 flags; 1553 1554 if (WARN_ON(len > skb->len)) 1555 return -EINVAL; 1556 1557 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1558 1559 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1560 * We need some allowance to not penalize applications setting small 1561 * SO_SNDBUF values. 1562 * Also allow first and last skb in retransmit queue to be split. 1563 */ 1564 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1565 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1566 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1567 skb != tcp_rtx_queue_head(sk) && 1568 skb != tcp_rtx_queue_tail(sk))) { 1569 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1570 return -ENOMEM; 1571 } 1572 1573 if (skb_unclone_keeptruesize(skb, gfp)) 1574 return -ENOMEM; 1575 1576 /* Get a new skb... force flag on. */ 1577 buff = tcp_stream_alloc_skb(sk, gfp, true); 1578 if (!buff) 1579 return -ENOMEM; /* We'll just try again later. */ 1580 skb_copy_decrypted(buff, skb); 1581 mptcp_skb_ext_copy(buff, skb); 1582 1583 sk_wmem_queued_add(sk, buff->truesize); 1584 sk_mem_charge(sk, buff->truesize); 1585 nlen = skb->len - len; 1586 buff->truesize += nlen; 1587 skb->truesize -= nlen; 1588 1589 /* Correct the sequence numbers. */ 1590 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1591 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1592 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1593 1594 /* PSH and FIN should only be set in the second packet. */ 1595 flags = TCP_SKB_CB(skb)->tcp_flags; 1596 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1597 TCP_SKB_CB(buff)->tcp_flags = flags; 1598 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1599 tcp_skb_fragment_eor(skb, buff); 1600 1601 skb_split(skb, buff, len); 1602 1603 skb_set_delivery_time(buff, skb->tstamp, true); 1604 tcp_fragment_tstamp(skb, buff); 1605 1606 old_factor = tcp_skb_pcount(skb); 1607 1608 /* Fix up tso_factor for both original and new SKB. */ 1609 tcp_set_skb_tso_segs(skb, mss_now); 1610 tcp_set_skb_tso_segs(buff, mss_now); 1611 1612 /* Update delivered info for the new segment */ 1613 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1614 1615 /* If this packet has been sent out already, we must 1616 * adjust the various packet counters. 1617 */ 1618 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1619 int diff = old_factor - tcp_skb_pcount(skb) - 1620 tcp_skb_pcount(buff); 1621 1622 if (diff) 1623 tcp_adjust_pcount(sk, skb, diff); 1624 } 1625 1626 /* Link BUFF into the send queue. */ 1627 __skb_header_release(buff); 1628 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1629 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1630 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1631 1632 return 0; 1633 } 1634 1635 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1636 * data is not copied, but immediately discarded. 1637 */ 1638 static int __pskb_trim_head(struct sk_buff *skb, int len) 1639 { 1640 struct skb_shared_info *shinfo; 1641 int i, k, eat; 1642 1643 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1644 eat = len; 1645 k = 0; 1646 shinfo = skb_shinfo(skb); 1647 for (i = 0; i < shinfo->nr_frags; i++) { 1648 int size = skb_frag_size(&shinfo->frags[i]); 1649 1650 if (size <= eat) { 1651 skb_frag_unref(skb, i); 1652 eat -= size; 1653 } else { 1654 shinfo->frags[k] = shinfo->frags[i]; 1655 if (eat) { 1656 skb_frag_off_add(&shinfo->frags[k], eat); 1657 skb_frag_size_sub(&shinfo->frags[k], eat); 1658 eat = 0; 1659 } 1660 k++; 1661 } 1662 } 1663 shinfo->nr_frags = k; 1664 1665 skb->data_len -= len; 1666 skb->len = skb->data_len; 1667 return len; 1668 } 1669 1670 /* Remove acked data from a packet in the transmit queue. */ 1671 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1672 { 1673 u32 delta_truesize; 1674 1675 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1676 return -ENOMEM; 1677 1678 delta_truesize = __pskb_trim_head(skb, len); 1679 1680 TCP_SKB_CB(skb)->seq += len; 1681 1682 skb->truesize -= delta_truesize; 1683 sk_wmem_queued_add(sk, -delta_truesize); 1684 if (!skb_zcopy_pure(skb)) 1685 sk_mem_uncharge(sk, delta_truesize); 1686 1687 /* Any change of skb->len requires recalculation of tso factor. */ 1688 if (tcp_skb_pcount(skb) > 1) 1689 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1690 1691 return 0; 1692 } 1693 1694 /* Calculate MSS not accounting any TCP options. */ 1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1696 { 1697 const struct tcp_sock *tp = tcp_sk(sk); 1698 const struct inet_connection_sock *icsk = inet_csk(sk); 1699 int mss_now; 1700 1701 /* Calculate base mss without TCP options: 1702 It is MMS_S - sizeof(tcphdr) of rfc1122 1703 */ 1704 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1705 1706 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1707 if (icsk->icsk_af_ops->net_frag_header_len) { 1708 const struct dst_entry *dst = __sk_dst_get(sk); 1709 1710 if (dst && dst_allfrag(dst)) 1711 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1712 } 1713 1714 /* Clamp it (mss_clamp does not include tcp options) */ 1715 if (mss_now > tp->rx_opt.mss_clamp) 1716 mss_now = tp->rx_opt.mss_clamp; 1717 1718 /* Now subtract optional transport overhead */ 1719 mss_now -= icsk->icsk_ext_hdr_len; 1720 1721 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1722 mss_now = max(mss_now, 1723 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1724 return mss_now; 1725 } 1726 1727 /* Calculate MSS. Not accounting for SACKs here. */ 1728 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1729 { 1730 /* Subtract TCP options size, not including SACKs */ 1731 return __tcp_mtu_to_mss(sk, pmtu) - 1732 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1733 } 1734 EXPORT_SYMBOL(tcp_mtu_to_mss); 1735 1736 /* Inverse of above */ 1737 int tcp_mss_to_mtu(struct sock *sk, int mss) 1738 { 1739 const struct tcp_sock *tp = tcp_sk(sk); 1740 const struct inet_connection_sock *icsk = inet_csk(sk); 1741 int mtu; 1742 1743 mtu = mss + 1744 tp->tcp_header_len + 1745 icsk->icsk_ext_hdr_len + 1746 icsk->icsk_af_ops->net_header_len; 1747 1748 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1749 if (icsk->icsk_af_ops->net_frag_header_len) { 1750 const struct dst_entry *dst = __sk_dst_get(sk); 1751 1752 if (dst && dst_allfrag(dst)) 1753 mtu += icsk->icsk_af_ops->net_frag_header_len; 1754 } 1755 return mtu; 1756 } 1757 EXPORT_SYMBOL(tcp_mss_to_mtu); 1758 1759 /* MTU probing init per socket */ 1760 void tcp_mtup_init(struct sock *sk) 1761 { 1762 struct tcp_sock *tp = tcp_sk(sk); 1763 struct inet_connection_sock *icsk = inet_csk(sk); 1764 struct net *net = sock_net(sk); 1765 1766 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1767 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1768 icsk->icsk_af_ops->net_header_len; 1769 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1770 icsk->icsk_mtup.probe_size = 0; 1771 if (icsk->icsk_mtup.enabled) 1772 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1773 } 1774 EXPORT_SYMBOL(tcp_mtup_init); 1775 1776 /* This function synchronize snd mss to current pmtu/exthdr set. 1777 1778 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1779 for TCP options, but includes only bare TCP header. 1780 1781 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1782 It is minimum of user_mss and mss received with SYN. 1783 It also does not include TCP options. 1784 1785 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1786 1787 tp->mss_cache is current effective sending mss, including 1788 all tcp options except for SACKs. It is evaluated, 1789 taking into account current pmtu, but never exceeds 1790 tp->rx_opt.mss_clamp. 1791 1792 NOTE1. rfc1122 clearly states that advertised MSS 1793 DOES NOT include either tcp or ip options. 1794 1795 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1796 are READ ONLY outside this function. --ANK (980731) 1797 */ 1798 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1799 { 1800 struct tcp_sock *tp = tcp_sk(sk); 1801 struct inet_connection_sock *icsk = inet_csk(sk); 1802 int mss_now; 1803 1804 if (icsk->icsk_mtup.search_high > pmtu) 1805 icsk->icsk_mtup.search_high = pmtu; 1806 1807 mss_now = tcp_mtu_to_mss(sk, pmtu); 1808 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1809 1810 /* And store cached results */ 1811 icsk->icsk_pmtu_cookie = pmtu; 1812 if (icsk->icsk_mtup.enabled) 1813 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1814 tp->mss_cache = mss_now; 1815 1816 return mss_now; 1817 } 1818 EXPORT_SYMBOL(tcp_sync_mss); 1819 1820 /* Compute the current effective MSS, taking SACKs and IP options, 1821 * and even PMTU discovery events into account. 1822 */ 1823 unsigned int tcp_current_mss(struct sock *sk) 1824 { 1825 const struct tcp_sock *tp = tcp_sk(sk); 1826 const struct dst_entry *dst = __sk_dst_get(sk); 1827 u32 mss_now; 1828 unsigned int header_len; 1829 struct tcp_out_options opts; 1830 struct tcp_md5sig_key *md5; 1831 1832 mss_now = tp->mss_cache; 1833 1834 if (dst) { 1835 u32 mtu = dst_mtu(dst); 1836 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1837 mss_now = tcp_sync_mss(sk, mtu); 1838 } 1839 1840 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1841 sizeof(struct tcphdr); 1842 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1843 * some common options. If this is an odd packet (because we have SACK 1844 * blocks etc) then our calculated header_len will be different, and 1845 * we have to adjust mss_now correspondingly */ 1846 if (header_len != tp->tcp_header_len) { 1847 int delta = (int) header_len - tp->tcp_header_len; 1848 mss_now -= delta; 1849 } 1850 1851 return mss_now; 1852 } 1853 1854 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1855 * As additional protections, we do not touch cwnd in retransmission phases, 1856 * and if application hit its sndbuf limit recently. 1857 */ 1858 static void tcp_cwnd_application_limited(struct sock *sk) 1859 { 1860 struct tcp_sock *tp = tcp_sk(sk); 1861 1862 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1863 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1864 /* Limited by application or receiver window. */ 1865 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1866 u32 win_used = max(tp->snd_cwnd_used, init_win); 1867 if (win_used < tcp_snd_cwnd(tp)) { 1868 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1869 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1870 } 1871 tp->snd_cwnd_used = 0; 1872 } 1873 tp->snd_cwnd_stamp = tcp_jiffies32; 1874 } 1875 1876 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1877 { 1878 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1879 struct tcp_sock *tp = tcp_sk(sk); 1880 1881 /* Track the strongest available signal of the degree to which the cwnd 1882 * is fully utilized. If cwnd-limited then remember that fact for the 1883 * current window. If not cwnd-limited then track the maximum number of 1884 * outstanding packets in the current window. (If cwnd-limited then we 1885 * chose to not update tp->max_packets_out to avoid an extra else 1886 * clause with no functional impact.) 1887 */ 1888 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1889 is_cwnd_limited || 1890 (!tp->is_cwnd_limited && 1891 tp->packets_out > tp->max_packets_out)) { 1892 tp->is_cwnd_limited = is_cwnd_limited; 1893 tp->max_packets_out = tp->packets_out; 1894 tp->cwnd_usage_seq = tp->snd_nxt; 1895 } 1896 1897 if (tcp_is_cwnd_limited(sk)) { 1898 /* Network is feed fully. */ 1899 tp->snd_cwnd_used = 0; 1900 tp->snd_cwnd_stamp = tcp_jiffies32; 1901 } else { 1902 /* Network starves. */ 1903 if (tp->packets_out > tp->snd_cwnd_used) 1904 tp->snd_cwnd_used = tp->packets_out; 1905 1906 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1907 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1908 !ca_ops->cong_control) 1909 tcp_cwnd_application_limited(sk); 1910 1911 /* The following conditions together indicate the starvation 1912 * is caused by insufficient sender buffer: 1913 * 1) just sent some data (see tcp_write_xmit) 1914 * 2) not cwnd limited (this else condition) 1915 * 3) no more data to send (tcp_write_queue_empty()) 1916 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1917 */ 1918 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1919 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1920 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1921 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1922 } 1923 } 1924 1925 /* Minshall's variant of the Nagle send check. */ 1926 static bool tcp_minshall_check(const struct tcp_sock *tp) 1927 { 1928 return after(tp->snd_sml, tp->snd_una) && 1929 !after(tp->snd_sml, tp->snd_nxt); 1930 } 1931 1932 /* Update snd_sml if this skb is under mss 1933 * Note that a TSO packet might end with a sub-mss segment 1934 * The test is really : 1935 * if ((skb->len % mss) != 0) 1936 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1937 * But we can avoid doing the divide again given we already have 1938 * skb_pcount = skb->len / mss_now 1939 */ 1940 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1941 const struct sk_buff *skb) 1942 { 1943 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1944 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1945 } 1946 1947 /* Return false, if packet can be sent now without violation Nagle's rules: 1948 * 1. It is full sized. (provided by caller in %partial bool) 1949 * 2. Or it contains FIN. (already checked by caller) 1950 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1951 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1952 * With Minshall's modification: all sent small packets are ACKed. 1953 */ 1954 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1955 int nonagle) 1956 { 1957 return partial && 1958 ((nonagle & TCP_NAGLE_CORK) || 1959 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1960 } 1961 1962 /* Return how many segs we'd like on a TSO packet, 1963 * depending on current pacing rate, and how close the peer is. 1964 * 1965 * Rationale is: 1966 * - For close peers, we rather send bigger packets to reduce 1967 * cpu costs, because occasional losses will be repaired fast. 1968 * - For long distance/rtt flows, we would like to get ACK clocking 1969 * with 1 ACK per ms. 1970 * 1971 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1972 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1973 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1974 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1975 */ 1976 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1977 int min_tso_segs) 1978 { 1979 unsigned long bytes; 1980 u32 r; 1981 1982 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift); 1983 1984 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1985 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1986 bytes += sk->sk_gso_max_size >> r; 1987 1988 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1989 1990 return max_t(u32, bytes / mss_now, min_tso_segs); 1991 } 1992 1993 /* Return the number of segments we want in the skb we are transmitting. 1994 * See if congestion control module wants to decide; otherwise, autosize. 1995 */ 1996 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1997 { 1998 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1999 u32 min_tso, tso_segs; 2000 2001 min_tso = ca_ops->min_tso_segs ? 2002 ca_ops->min_tso_segs(sk) : 2003 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2004 2005 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2006 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2007 } 2008 2009 /* Returns the portion of skb which can be sent right away */ 2010 static unsigned int tcp_mss_split_point(const struct sock *sk, 2011 const struct sk_buff *skb, 2012 unsigned int mss_now, 2013 unsigned int max_segs, 2014 int nonagle) 2015 { 2016 const struct tcp_sock *tp = tcp_sk(sk); 2017 u32 partial, needed, window, max_len; 2018 2019 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2020 max_len = mss_now * max_segs; 2021 2022 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2023 return max_len; 2024 2025 needed = min(skb->len, window); 2026 2027 if (max_len <= needed) 2028 return max_len; 2029 2030 partial = needed % mss_now; 2031 /* If last segment is not a full MSS, check if Nagle rules allow us 2032 * to include this last segment in this skb. 2033 * Otherwise, we'll split the skb at last MSS boundary 2034 */ 2035 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2036 return needed - partial; 2037 2038 return needed; 2039 } 2040 2041 /* Can at least one segment of SKB be sent right now, according to the 2042 * congestion window rules? If so, return how many segments are allowed. 2043 */ 2044 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2045 const struct sk_buff *skb) 2046 { 2047 u32 in_flight, cwnd, halfcwnd; 2048 2049 /* Don't be strict about the congestion window for the final FIN. */ 2050 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2051 tcp_skb_pcount(skb) == 1) 2052 return 1; 2053 2054 in_flight = tcp_packets_in_flight(tp); 2055 cwnd = tcp_snd_cwnd(tp); 2056 if (in_flight >= cwnd) 2057 return 0; 2058 2059 /* For better scheduling, ensure we have at least 2060 * 2 GSO packets in flight. 2061 */ 2062 halfcwnd = max(cwnd >> 1, 1U); 2063 return min(halfcwnd, cwnd - in_flight); 2064 } 2065 2066 /* Initialize TSO state of a skb. 2067 * This must be invoked the first time we consider transmitting 2068 * SKB onto the wire. 2069 */ 2070 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2071 { 2072 int tso_segs = tcp_skb_pcount(skb); 2073 2074 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2075 tcp_set_skb_tso_segs(skb, mss_now); 2076 tso_segs = tcp_skb_pcount(skb); 2077 } 2078 return tso_segs; 2079 } 2080 2081 2082 /* Return true if the Nagle test allows this packet to be 2083 * sent now. 2084 */ 2085 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2086 unsigned int cur_mss, int nonagle) 2087 { 2088 /* Nagle rule does not apply to frames, which sit in the middle of the 2089 * write_queue (they have no chances to get new data). 2090 * 2091 * This is implemented in the callers, where they modify the 'nonagle' 2092 * argument based upon the location of SKB in the send queue. 2093 */ 2094 if (nonagle & TCP_NAGLE_PUSH) 2095 return true; 2096 2097 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2098 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2099 return true; 2100 2101 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2102 return true; 2103 2104 return false; 2105 } 2106 2107 /* Does at least the first segment of SKB fit into the send window? */ 2108 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2109 const struct sk_buff *skb, 2110 unsigned int cur_mss) 2111 { 2112 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2113 2114 if (skb->len > cur_mss) 2115 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2116 2117 return !after(end_seq, tcp_wnd_end(tp)); 2118 } 2119 2120 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2121 * which is put after SKB on the list. It is very much like 2122 * tcp_fragment() except that it may make several kinds of assumptions 2123 * in order to speed up the splitting operation. In particular, we 2124 * know that all the data is in scatter-gather pages, and that the 2125 * packet has never been sent out before (and thus is not cloned). 2126 */ 2127 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2128 unsigned int mss_now, gfp_t gfp) 2129 { 2130 int nlen = skb->len - len; 2131 struct sk_buff *buff; 2132 u8 flags; 2133 2134 /* All of a TSO frame must be composed of paged data. */ 2135 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2136 2137 buff = tcp_stream_alloc_skb(sk, gfp, true); 2138 if (unlikely(!buff)) 2139 return -ENOMEM; 2140 skb_copy_decrypted(buff, skb); 2141 mptcp_skb_ext_copy(buff, skb); 2142 2143 sk_wmem_queued_add(sk, buff->truesize); 2144 sk_mem_charge(sk, buff->truesize); 2145 buff->truesize += nlen; 2146 skb->truesize -= nlen; 2147 2148 /* Correct the sequence numbers. */ 2149 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2150 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2151 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2152 2153 /* PSH and FIN should only be set in the second packet. */ 2154 flags = TCP_SKB_CB(skb)->tcp_flags; 2155 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2156 TCP_SKB_CB(buff)->tcp_flags = flags; 2157 2158 tcp_skb_fragment_eor(skb, buff); 2159 2160 skb_split(skb, buff, len); 2161 tcp_fragment_tstamp(skb, buff); 2162 2163 /* Fix up tso_factor for both original and new SKB. */ 2164 tcp_set_skb_tso_segs(skb, mss_now); 2165 tcp_set_skb_tso_segs(buff, mss_now); 2166 2167 /* Link BUFF into the send queue. */ 2168 __skb_header_release(buff); 2169 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2170 2171 return 0; 2172 } 2173 2174 /* Try to defer sending, if possible, in order to minimize the amount 2175 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2176 * 2177 * This algorithm is from John Heffner. 2178 */ 2179 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2180 bool *is_cwnd_limited, 2181 bool *is_rwnd_limited, 2182 u32 max_segs) 2183 { 2184 const struct inet_connection_sock *icsk = inet_csk(sk); 2185 u32 send_win, cong_win, limit, in_flight; 2186 struct tcp_sock *tp = tcp_sk(sk); 2187 struct sk_buff *head; 2188 int win_divisor; 2189 s64 delta; 2190 2191 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2192 goto send_now; 2193 2194 /* Avoid bursty behavior by allowing defer 2195 * only if the last write was recent (1 ms). 2196 * Note that tp->tcp_wstamp_ns can be in the future if we have 2197 * packets waiting in a qdisc or device for EDT delivery. 2198 */ 2199 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2200 if (delta > 0) 2201 goto send_now; 2202 2203 in_flight = tcp_packets_in_flight(tp); 2204 2205 BUG_ON(tcp_skb_pcount(skb) <= 1); 2206 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2207 2208 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2209 2210 /* From in_flight test above, we know that cwnd > in_flight. */ 2211 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2212 2213 limit = min(send_win, cong_win); 2214 2215 /* If a full-sized TSO skb can be sent, do it. */ 2216 if (limit >= max_segs * tp->mss_cache) 2217 goto send_now; 2218 2219 /* Middle in queue won't get any more data, full sendable already? */ 2220 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2221 goto send_now; 2222 2223 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2224 if (win_divisor) { 2225 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2226 2227 /* If at least some fraction of a window is available, 2228 * just use it. 2229 */ 2230 chunk /= win_divisor; 2231 if (limit >= chunk) 2232 goto send_now; 2233 } else { 2234 /* Different approach, try not to defer past a single 2235 * ACK. Receiver should ACK every other full sized 2236 * frame, so if we have space for more than 3 frames 2237 * then send now. 2238 */ 2239 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2240 goto send_now; 2241 } 2242 2243 /* TODO : use tsorted_sent_queue ? */ 2244 head = tcp_rtx_queue_head(sk); 2245 if (!head) 2246 goto send_now; 2247 delta = tp->tcp_clock_cache - head->tstamp; 2248 /* If next ACK is likely to come too late (half srtt), do not defer */ 2249 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2250 goto send_now; 2251 2252 /* Ok, it looks like it is advisable to defer. 2253 * Three cases are tracked : 2254 * 1) We are cwnd-limited 2255 * 2) We are rwnd-limited 2256 * 3) We are application limited. 2257 */ 2258 if (cong_win < send_win) { 2259 if (cong_win <= skb->len) { 2260 *is_cwnd_limited = true; 2261 return true; 2262 } 2263 } else { 2264 if (send_win <= skb->len) { 2265 *is_rwnd_limited = true; 2266 return true; 2267 } 2268 } 2269 2270 /* If this packet won't get more data, do not wait. */ 2271 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2272 TCP_SKB_CB(skb)->eor) 2273 goto send_now; 2274 2275 return true; 2276 2277 send_now: 2278 return false; 2279 } 2280 2281 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2282 { 2283 struct inet_connection_sock *icsk = inet_csk(sk); 2284 struct tcp_sock *tp = tcp_sk(sk); 2285 struct net *net = sock_net(sk); 2286 u32 interval; 2287 s32 delta; 2288 2289 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2290 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2291 if (unlikely(delta >= interval * HZ)) { 2292 int mss = tcp_current_mss(sk); 2293 2294 /* Update current search range */ 2295 icsk->icsk_mtup.probe_size = 0; 2296 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2297 sizeof(struct tcphdr) + 2298 icsk->icsk_af_ops->net_header_len; 2299 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2300 2301 /* Update probe time stamp */ 2302 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2303 } 2304 } 2305 2306 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2307 { 2308 struct sk_buff *skb, *next; 2309 2310 skb = tcp_send_head(sk); 2311 tcp_for_write_queue_from_safe(skb, next, sk) { 2312 if (len <= skb->len) 2313 break; 2314 2315 if (unlikely(TCP_SKB_CB(skb)->eor) || 2316 tcp_has_tx_tstamp(skb) || 2317 !skb_pure_zcopy_same(skb, next)) 2318 return false; 2319 2320 len -= skb->len; 2321 } 2322 2323 return true; 2324 } 2325 2326 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2327 int probe_size) 2328 { 2329 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2330 int i, todo, len = 0, nr_frags = 0; 2331 const struct sk_buff *skb; 2332 2333 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2334 return -ENOMEM; 2335 2336 skb_queue_walk(&sk->sk_write_queue, skb) { 2337 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2338 2339 if (skb_headlen(skb)) 2340 return -EINVAL; 2341 2342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2343 if (len >= probe_size) 2344 goto commit; 2345 todo = min_t(int, skb_frag_size(fragfrom), 2346 probe_size - len); 2347 len += todo; 2348 if (lastfrag && 2349 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2350 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2351 skb_frag_size(lastfrag)) { 2352 skb_frag_size_add(lastfrag, todo); 2353 continue; 2354 } 2355 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2356 return -E2BIG; 2357 skb_frag_page_copy(fragto, fragfrom); 2358 skb_frag_off_copy(fragto, fragfrom); 2359 skb_frag_size_set(fragto, todo); 2360 nr_frags++; 2361 lastfrag = fragto++; 2362 } 2363 } 2364 commit: 2365 WARN_ON_ONCE(len != probe_size); 2366 for (i = 0; i < nr_frags; i++) 2367 skb_frag_ref(to, i); 2368 2369 skb_shinfo(to)->nr_frags = nr_frags; 2370 to->truesize += probe_size; 2371 to->len += probe_size; 2372 to->data_len += probe_size; 2373 __skb_header_release(to); 2374 return 0; 2375 } 2376 2377 /* Create a new MTU probe if we are ready. 2378 * MTU probe is regularly attempting to increase the path MTU by 2379 * deliberately sending larger packets. This discovers routing 2380 * changes resulting in larger path MTUs. 2381 * 2382 * Returns 0 if we should wait to probe (no cwnd available), 2383 * 1 if a probe was sent, 2384 * -1 otherwise 2385 */ 2386 static int tcp_mtu_probe(struct sock *sk) 2387 { 2388 struct inet_connection_sock *icsk = inet_csk(sk); 2389 struct tcp_sock *tp = tcp_sk(sk); 2390 struct sk_buff *skb, *nskb, *next; 2391 struct net *net = sock_net(sk); 2392 int probe_size; 2393 int size_needed; 2394 int copy, len; 2395 int mss_now; 2396 int interval; 2397 2398 /* Not currently probing/verifying, 2399 * not in recovery, 2400 * have enough cwnd, and 2401 * not SACKing (the variable headers throw things off) 2402 */ 2403 if (likely(!icsk->icsk_mtup.enabled || 2404 icsk->icsk_mtup.probe_size || 2405 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2406 tcp_snd_cwnd(tp) < 11 || 2407 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2408 return -1; 2409 2410 /* Use binary search for probe_size between tcp_mss_base, 2411 * and current mss_clamp. if (search_high - search_low) 2412 * smaller than a threshold, backoff from probing. 2413 */ 2414 mss_now = tcp_current_mss(sk); 2415 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2416 icsk->icsk_mtup.search_low) >> 1); 2417 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2418 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2419 /* When misfortune happens, we are reprobing actively, 2420 * and then reprobe timer has expired. We stick with current 2421 * probing process by not resetting search range to its orignal. 2422 */ 2423 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2424 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2425 /* Check whether enough time has elaplased for 2426 * another round of probing. 2427 */ 2428 tcp_mtu_check_reprobe(sk); 2429 return -1; 2430 } 2431 2432 /* Have enough data in the send queue to probe? */ 2433 if (tp->write_seq - tp->snd_nxt < size_needed) 2434 return -1; 2435 2436 if (tp->snd_wnd < size_needed) 2437 return -1; 2438 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2439 return 0; 2440 2441 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2442 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2443 if (!tcp_packets_in_flight(tp)) 2444 return -1; 2445 else 2446 return 0; 2447 } 2448 2449 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2450 return -1; 2451 2452 /* We're allowed to probe. Build it now. */ 2453 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2454 if (!nskb) 2455 return -1; 2456 2457 /* build the payload, and be prepared to abort if this fails. */ 2458 if (tcp_clone_payload(sk, nskb, probe_size)) { 2459 tcp_skb_tsorted_anchor_cleanup(nskb); 2460 consume_skb(nskb); 2461 return -1; 2462 } 2463 sk_wmem_queued_add(sk, nskb->truesize); 2464 sk_mem_charge(sk, nskb->truesize); 2465 2466 skb = tcp_send_head(sk); 2467 skb_copy_decrypted(nskb, skb); 2468 mptcp_skb_ext_copy(nskb, skb); 2469 2470 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2471 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2472 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2473 2474 tcp_insert_write_queue_before(nskb, skb, sk); 2475 tcp_highest_sack_replace(sk, skb, nskb); 2476 2477 len = 0; 2478 tcp_for_write_queue_from_safe(skb, next, sk) { 2479 copy = min_t(int, skb->len, probe_size - len); 2480 2481 if (skb->len <= copy) { 2482 /* We've eaten all the data from this skb. 2483 * Throw it away. */ 2484 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2485 /* If this is the last SKB we copy and eor is set 2486 * we need to propagate it to the new skb. 2487 */ 2488 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2489 tcp_skb_collapse_tstamp(nskb, skb); 2490 tcp_unlink_write_queue(skb, sk); 2491 tcp_wmem_free_skb(sk, skb); 2492 } else { 2493 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2494 ~(TCPHDR_FIN|TCPHDR_PSH); 2495 __pskb_trim_head(skb, copy); 2496 tcp_set_skb_tso_segs(skb, mss_now); 2497 TCP_SKB_CB(skb)->seq += copy; 2498 } 2499 2500 len += copy; 2501 2502 if (len >= probe_size) 2503 break; 2504 } 2505 tcp_init_tso_segs(nskb, nskb->len); 2506 2507 /* We're ready to send. If this fails, the probe will 2508 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2509 */ 2510 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2511 /* Decrement cwnd here because we are sending 2512 * effectively two packets. */ 2513 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2514 tcp_event_new_data_sent(sk, nskb); 2515 2516 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2517 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2518 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2519 2520 return 1; 2521 } 2522 2523 return -1; 2524 } 2525 2526 static bool tcp_pacing_check(struct sock *sk) 2527 { 2528 struct tcp_sock *tp = tcp_sk(sk); 2529 2530 if (!tcp_needs_internal_pacing(sk)) 2531 return false; 2532 2533 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2534 return false; 2535 2536 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2537 hrtimer_start(&tp->pacing_timer, 2538 ns_to_ktime(tp->tcp_wstamp_ns), 2539 HRTIMER_MODE_ABS_PINNED_SOFT); 2540 sock_hold(sk); 2541 } 2542 return true; 2543 } 2544 2545 /* TCP Small Queues : 2546 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2547 * (These limits are doubled for retransmits) 2548 * This allows for : 2549 * - better RTT estimation and ACK scheduling 2550 * - faster recovery 2551 * - high rates 2552 * Alas, some drivers / subsystems require a fair amount 2553 * of queued bytes to ensure line rate. 2554 * One example is wifi aggregation (802.11 AMPDU) 2555 */ 2556 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2557 unsigned int factor) 2558 { 2559 unsigned long limit; 2560 2561 limit = max_t(unsigned long, 2562 2 * skb->truesize, 2563 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2564 if (sk->sk_pacing_status == SK_PACING_NONE) 2565 limit = min_t(unsigned long, limit, 2566 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2567 limit <<= factor; 2568 2569 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2570 tcp_sk(sk)->tcp_tx_delay) { 2571 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2572 2573 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2574 * approximate our needs assuming an ~100% skb->truesize overhead. 2575 * USEC_PER_SEC is approximated by 2^20. 2576 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2577 */ 2578 extra_bytes >>= (20 - 1); 2579 limit += extra_bytes; 2580 } 2581 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2582 /* Always send skb if rtx queue is empty. 2583 * No need to wait for TX completion to call us back, 2584 * after softirq/tasklet schedule. 2585 * This helps when TX completions are delayed too much. 2586 */ 2587 if (tcp_rtx_queue_empty(sk)) 2588 return false; 2589 2590 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2591 /* It is possible TX completion already happened 2592 * before we set TSQ_THROTTLED, so we must 2593 * test again the condition. 2594 */ 2595 smp_mb__after_atomic(); 2596 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2597 return true; 2598 } 2599 return false; 2600 } 2601 2602 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2603 { 2604 const u32 now = tcp_jiffies32; 2605 enum tcp_chrono old = tp->chrono_type; 2606 2607 if (old > TCP_CHRONO_UNSPEC) 2608 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2609 tp->chrono_start = now; 2610 tp->chrono_type = new; 2611 } 2612 2613 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2614 { 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 2617 /* If there are multiple conditions worthy of tracking in a 2618 * chronograph then the highest priority enum takes precedence 2619 * over the other conditions. So that if something "more interesting" 2620 * starts happening, stop the previous chrono and start a new one. 2621 */ 2622 if (type > tp->chrono_type) 2623 tcp_chrono_set(tp, type); 2624 } 2625 2626 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2627 { 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 2630 2631 /* There are multiple conditions worthy of tracking in a 2632 * chronograph, so that the highest priority enum takes 2633 * precedence over the other conditions (see tcp_chrono_start). 2634 * If a condition stops, we only stop chrono tracking if 2635 * it's the "most interesting" or current chrono we are 2636 * tracking and starts busy chrono if we have pending data. 2637 */ 2638 if (tcp_rtx_and_write_queues_empty(sk)) 2639 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2640 else if (type == tp->chrono_type) 2641 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2642 } 2643 2644 /* This routine writes packets to the network. It advances the 2645 * send_head. This happens as incoming acks open up the remote 2646 * window for us. 2647 * 2648 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2649 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2650 * account rare use of URG, this is not a big flaw. 2651 * 2652 * Send at most one packet when push_one > 0. Temporarily ignore 2653 * cwnd limit to force at most one packet out when push_one == 2. 2654 2655 * Returns true, if no segments are in flight and we have queued segments, 2656 * but cannot send anything now because of SWS or another problem. 2657 */ 2658 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2659 int push_one, gfp_t gfp) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 struct sk_buff *skb; 2663 unsigned int tso_segs, sent_pkts; 2664 int cwnd_quota; 2665 int result; 2666 bool is_cwnd_limited = false, is_rwnd_limited = false; 2667 u32 max_segs; 2668 2669 sent_pkts = 0; 2670 2671 tcp_mstamp_refresh(tp); 2672 if (!push_one) { 2673 /* Do MTU probing. */ 2674 result = tcp_mtu_probe(sk); 2675 if (!result) { 2676 return false; 2677 } else if (result > 0) { 2678 sent_pkts = 1; 2679 } 2680 } 2681 2682 max_segs = tcp_tso_segs(sk, mss_now); 2683 while ((skb = tcp_send_head(sk))) { 2684 unsigned int limit; 2685 2686 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2687 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2688 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2689 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2690 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2691 tcp_init_tso_segs(skb, mss_now); 2692 goto repair; /* Skip network transmission */ 2693 } 2694 2695 if (tcp_pacing_check(sk)) 2696 break; 2697 2698 tso_segs = tcp_init_tso_segs(skb, mss_now); 2699 BUG_ON(!tso_segs); 2700 2701 cwnd_quota = tcp_cwnd_test(tp, skb); 2702 if (!cwnd_quota) { 2703 if (push_one == 2) 2704 /* Force out a loss probe pkt. */ 2705 cwnd_quota = 1; 2706 else 2707 break; 2708 } 2709 2710 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2711 is_rwnd_limited = true; 2712 break; 2713 } 2714 2715 if (tso_segs == 1) { 2716 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2717 (tcp_skb_is_last(sk, skb) ? 2718 nonagle : TCP_NAGLE_PUSH)))) 2719 break; 2720 } else { 2721 if (!push_one && 2722 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2723 &is_rwnd_limited, max_segs)) 2724 break; 2725 } 2726 2727 limit = mss_now; 2728 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2729 limit = tcp_mss_split_point(sk, skb, mss_now, 2730 min_t(unsigned int, 2731 cwnd_quota, 2732 max_segs), 2733 nonagle); 2734 2735 if (skb->len > limit && 2736 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2737 break; 2738 2739 if (tcp_small_queue_check(sk, skb, 0)) 2740 break; 2741 2742 /* Argh, we hit an empty skb(), presumably a thread 2743 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2744 * We do not want to send a pure-ack packet and have 2745 * a strange looking rtx queue with empty packet(s). 2746 */ 2747 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2748 break; 2749 2750 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2751 break; 2752 2753 repair: 2754 /* Advance the send_head. This one is sent out. 2755 * This call will increment packets_out. 2756 */ 2757 tcp_event_new_data_sent(sk, skb); 2758 2759 tcp_minshall_update(tp, mss_now, skb); 2760 sent_pkts += tcp_skb_pcount(skb); 2761 2762 if (push_one) 2763 break; 2764 } 2765 2766 if (is_rwnd_limited) 2767 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2768 else 2769 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2770 2771 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2772 if (likely(sent_pkts || is_cwnd_limited)) 2773 tcp_cwnd_validate(sk, is_cwnd_limited); 2774 2775 if (likely(sent_pkts)) { 2776 if (tcp_in_cwnd_reduction(sk)) 2777 tp->prr_out += sent_pkts; 2778 2779 /* Send one loss probe per tail loss episode. */ 2780 if (push_one != 2) 2781 tcp_schedule_loss_probe(sk, false); 2782 return false; 2783 } 2784 return !tp->packets_out && !tcp_write_queue_empty(sk); 2785 } 2786 2787 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2788 { 2789 struct inet_connection_sock *icsk = inet_csk(sk); 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 u32 timeout, rto_delta_us; 2792 int early_retrans; 2793 2794 /* Don't do any loss probe on a Fast Open connection before 3WHS 2795 * finishes. 2796 */ 2797 if (rcu_access_pointer(tp->fastopen_rsk)) 2798 return false; 2799 2800 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2801 /* Schedule a loss probe in 2*RTT for SACK capable connections 2802 * not in loss recovery, that are either limited by cwnd or application. 2803 */ 2804 if ((early_retrans != 3 && early_retrans != 4) || 2805 !tp->packets_out || !tcp_is_sack(tp) || 2806 (icsk->icsk_ca_state != TCP_CA_Open && 2807 icsk->icsk_ca_state != TCP_CA_CWR)) 2808 return false; 2809 2810 /* Probe timeout is 2*rtt. Add minimum RTO to account 2811 * for delayed ack when there's one outstanding packet. If no RTT 2812 * sample is available then probe after TCP_TIMEOUT_INIT. 2813 */ 2814 if (tp->srtt_us) { 2815 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2816 if (tp->packets_out == 1) 2817 timeout += TCP_RTO_MIN; 2818 else 2819 timeout += TCP_TIMEOUT_MIN; 2820 } else { 2821 timeout = TCP_TIMEOUT_INIT; 2822 } 2823 2824 /* If the RTO formula yields an earlier time, then use that time. */ 2825 rto_delta_us = advancing_rto ? 2826 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2827 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2828 if (rto_delta_us > 0) 2829 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2830 2831 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2832 return true; 2833 } 2834 2835 /* Thanks to skb fast clones, we can detect if a prior transmit of 2836 * a packet is still in a qdisc or driver queue. 2837 * In this case, there is very little point doing a retransmit ! 2838 */ 2839 static bool skb_still_in_host_queue(struct sock *sk, 2840 const struct sk_buff *skb) 2841 { 2842 if (unlikely(skb_fclone_busy(sk, skb))) { 2843 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2844 smp_mb__after_atomic(); 2845 if (skb_fclone_busy(sk, skb)) { 2846 NET_INC_STATS(sock_net(sk), 2847 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2848 return true; 2849 } 2850 } 2851 return false; 2852 } 2853 2854 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2855 * retransmit the last segment. 2856 */ 2857 void tcp_send_loss_probe(struct sock *sk) 2858 { 2859 struct tcp_sock *tp = tcp_sk(sk); 2860 struct sk_buff *skb; 2861 int pcount; 2862 int mss = tcp_current_mss(sk); 2863 2864 /* At most one outstanding TLP */ 2865 if (tp->tlp_high_seq) 2866 goto rearm_timer; 2867 2868 tp->tlp_retrans = 0; 2869 skb = tcp_send_head(sk); 2870 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2871 pcount = tp->packets_out; 2872 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2873 if (tp->packets_out > pcount) 2874 goto probe_sent; 2875 goto rearm_timer; 2876 } 2877 skb = skb_rb_last(&sk->tcp_rtx_queue); 2878 if (unlikely(!skb)) { 2879 WARN_ONCE(tp->packets_out, 2880 "invalid inflight: %u state %u cwnd %u mss %d\n", 2881 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2882 inet_csk(sk)->icsk_pending = 0; 2883 return; 2884 } 2885 2886 if (skb_still_in_host_queue(sk, skb)) 2887 goto rearm_timer; 2888 2889 pcount = tcp_skb_pcount(skb); 2890 if (WARN_ON(!pcount)) 2891 goto rearm_timer; 2892 2893 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2894 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2895 (pcount - 1) * mss, mss, 2896 GFP_ATOMIC))) 2897 goto rearm_timer; 2898 skb = skb_rb_next(skb); 2899 } 2900 2901 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2902 goto rearm_timer; 2903 2904 if (__tcp_retransmit_skb(sk, skb, 1)) 2905 goto rearm_timer; 2906 2907 tp->tlp_retrans = 1; 2908 2909 probe_sent: 2910 /* Record snd_nxt for loss detection. */ 2911 tp->tlp_high_seq = tp->snd_nxt; 2912 2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2914 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2915 inet_csk(sk)->icsk_pending = 0; 2916 rearm_timer: 2917 tcp_rearm_rto(sk); 2918 } 2919 2920 /* Push out any pending frames which were held back due to 2921 * TCP_CORK or attempt at coalescing tiny packets. 2922 * The socket must be locked by the caller. 2923 */ 2924 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2925 int nonagle) 2926 { 2927 /* If we are closed, the bytes will have to remain here. 2928 * In time closedown will finish, we empty the write queue and 2929 * all will be happy. 2930 */ 2931 if (unlikely(sk->sk_state == TCP_CLOSE)) 2932 return; 2933 2934 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2935 sk_gfp_mask(sk, GFP_ATOMIC))) 2936 tcp_check_probe_timer(sk); 2937 } 2938 2939 /* Send _single_ skb sitting at the send head. This function requires 2940 * true push pending frames to setup probe timer etc. 2941 */ 2942 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2943 { 2944 struct sk_buff *skb = tcp_send_head(sk); 2945 2946 BUG_ON(!skb || skb->len < mss_now); 2947 2948 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2949 } 2950 2951 /* This function returns the amount that we can raise the 2952 * usable window based on the following constraints 2953 * 2954 * 1. The window can never be shrunk once it is offered (RFC 793) 2955 * 2. We limit memory per socket 2956 * 2957 * RFC 1122: 2958 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2959 * RECV.NEXT + RCV.WIN fixed until: 2960 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2961 * 2962 * i.e. don't raise the right edge of the window until you can raise 2963 * it at least MSS bytes. 2964 * 2965 * Unfortunately, the recommended algorithm breaks header prediction, 2966 * since header prediction assumes th->window stays fixed. 2967 * 2968 * Strictly speaking, keeping th->window fixed violates the receiver 2969 * side SWS prevention criteria. The problem is that under this rule 2970 * a stream of single byte packets will cause the right side of the 2971 * window to always advance by a single byte. 2972 * 2973 * Of course, if the sender implements sender side SWS prevention 2974 * then this will not be a problem. 2975 * 2976 * BSD seems to make the following compromise: 2977 * 2978 * If the free space is less than the 1/4 of the maximum 2979 * space available and the free space is less than 1/2 mss, 2980 * then set the window to 0. 2981 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2982 * Otherwise, just prevent the window from shrinking 2983 * and from being larger than the largest representable value. 2984 * 2985 * This prevents incremental opening of the window in the regime 2986 * where TCP is limited by the speed of the reader side taking 2987 * data out of the TCP receive queue. It does nothing about 2988 * those cases where the window is constrained on the sender side 2989 * because the pipeline is full. 2990 * 2991 * BSD also seems to "accidentally" limit itself to windows that are a 2992 * multiple of MSS, at least until the free space gets quite small. 2993 * This would appear to be a side effect of the mbuf implementation. 2994 * Combining these two algorithms results in the observed behavior 2995 * of having a fixed window size at almost all times. 2996 * 2997 * Below we obtain similar behavior by forcing the offered window to 2998 * a multiple of the mss when it is feasible to do so. 2999 * 3000 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3001 * Regular options like TIMESTAMP are taken into account. 3002 */ 3003 u32 __tcp_select_window(struct sock *sk) 3004 { 3005 struct inet_connection_sock *icsk = inet_csk(sk); 3006 struct tcp_sock *tp = tcp_sk(sk); 3007 struct net *net = sock_net(sk); 3008 /* MSS for the peer's data. Previous versions used mss_clamp 3009 * here. I don't know if the value based on our guesses 3010 * of peer's MSS is better for the performance. It's more correct 3011 * but may be worse for the performance because of rcv_mss 3012 * fluctuations. --SAW 1998/11/1 3013 */ 3014 int mss = icsk->icsk_ack.rcv_mss; 3015 int free_space = tcp_space(sk); 3016 int allowed_space = tcp_full_space(sk); 3017 int full_space, window; 3018 3019 if (sk_is_mptcp(sk)) 3020 mptcp_space(sk, &free_space, &allowed_space); 3021 3022 full_space = min_t(int, tp->window_clamp, allowed_space); 3023 3024 if (unlikely(mss > full_space)) { 3025 mss = full_space; 3026 if (mss <= 0) 3027 return 0; 3028 } 3029 3030 /* Only allow window shrink if the sysctl is enabled and we have 3031 * a non-zero scaling factor in effect. 3032 */ 3033 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3034 goto shrink_window_allowed; 3035 3036 /* do not allow window to shrink */ 3037 3038 if (free_space < (full_space >> 1)) { 3039 icsk->icsk_ack.quick = 0; 3040 3041 if (tcp_under_memory_pressure(sk)) 3042 tcp_adjust_rcv_ssthresh(sk); 3043 3044 /* free_space might become our new window, make sure we don't 3045 * increase it due to wscale. 3046 */ 3047 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3048 3049 /* if free space is less than mss estimate, or is below 1/16th 3050 * of the maximum allowed, try to move to zero-window, else 3051 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3052 * new incoming data is dropped due to memory limits. 3053 * With large window, mss test triggers way too late in order 3054 * to announce zero window in time before rmem limit kicks in. 3055 */ 3056 if (free_space < (allowed_space >> 4) || free_space < mss) 3057 return 0; 3058 } 3059 3060 if (free_space > tp->rcv_ssthresh) 3061 free_space = tp->rcv_ssthresh; 3062 3063 /* Don't do rounding if we are using window scaling, since the 3064 * scaled window will not line up with the MSS boundary anyway. 3065 */ 3066 if (tp->rx_opt.rcv_wscale) { 3067 window = free_space; 3068 3069 /* Advertise enough space so that it won't get scaled away. 3070 * Import case: prevent zero window announcement if 3071 * 1<<rcv_wscale > mss. 3072 */ 3073 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3074 } else { 3075 window = tp->rcv_wnd; 3076 /* Get the largest window that is a nice multiple of mss. 3077 * Window clamp already applied above. 3078 * If our current window offering is within 1 mss of the 3079 * free space we just keep it. This prevents the divide 3080 * and multiply from happening most of the time. 3081 * We also don't do any window rounding when the free space 3082 * is too small. 3083 */ 3084 if (window <= free_space - mss || window > free_space) 3085 window = rounddown(free_space, mss); 3086 else if (mss == full_space && 3087 free_space > window + (full_space >> 1)) 3088 window = free_space; 3089 } 3090 3091 return window; 3092 3093 shrink_window_allowed: 3094 /* new window should always be an exact multiple of scaling factor */ 3095 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3096 3097 if (free_space < (full_space >> 1)) { 3098 icsk->icsk_ack.quick = 0; 3099 3100 if (tcp_under_memory_pressure(sk)) 3101 tcp_adjust_rcv_ssthresh(sk); 3102 3103 /* if free space is too low, return a zero window */ 3104 if (free_space < (allowed_space >> 4) || free_space < mss || 3105 free_space < (1 << tp->rx_opt.rcv_wscale)) 3106 return 0; 3107 } 3108 3109 if (free_space > tp->rcv_ssthresh) { 3110 free_space = tp->rcv_ssthresh; 3111 /* new window should always be an exact multiple of scaling factor 3112 * 3113 * For this case, we ALIGN "up" (increase free_space) because 3114 * we know free_space is not zero here, it has been reduced from 3115 * the memory-based limit, and rcv_ssthresh is not a hard limit 3116 * (unlike sk_rcvbuf). 3117 */ 3118 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3119 } 3120 3121 return free_space; 3122 } 3123 3124 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3125 const struct sk_buff *next_skb) 3126 { 3127 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3128 const struct skb_shared_info *next_shinfo = 3129 skb_shinfo(next_skb); 3130 struct skb_shared_info *shinfo = skb_shinfo(skb); 3131 3132 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3133 shinfo->tskey = next_shinfo->tskey; 3134 TCP_SKB_CB(skb)->txstamp_ack |= 3135 TCP_SKB_CB(next_skb)->txstamp_ack; 3136 } 3137 } 3138 3139 /* Collapses two adjacent SKB's during retransmission. */ 3140 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3141 { 3142 struct tcp_sock *tp = tcp_sk(sk); 3143 struct sk_buff *next_skb = skb_rb_next(skb); 3144 int next_skb_size; 3145 3146 next_skb_size = next_skb->len; 3147 3148 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3149 3150 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3151 return false; 3152 3153 tcp_highest_sack_replace(sk, next_skb, skb); 3154 3155 /* Update sequence range on original skb. */ 3156 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3157 3158 /* Merge over control information. This moves PSH/FIN etc. over */ 3159 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3160 3161 /* All done, get rid of second SKB and account for it so 3162 * packet counting does not break. 3163 */ 3164 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3165 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3166 3167 /* changed transmit queue under us so clear hints */ 3168 tcp_clear_retrans_hints_partial(tp); 3169 if (next_skb == tp->retransmit_skb_hint) 3170 tp->retransmit_skb_hint = skb; 3171 3172 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3173 3174 tcp_skb_collapse_tstamp(skb, next_skb); 3175 3176 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3177 return true; 3178 } 3179 3180 /* Check if coalescing SKBs is legal. */ 3181 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3182 { 3183 if (tcp_skb_pcount(skb) > 1) 3184 return false; 3185 if (skb_cloned(skb)) 3186 return false; 3187 /* Some heuristics for collapsing over SACK'd could be invented */ 3188 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3189 return false; 3190 3191 return true; 3192 } 3193 3194 /* Collapse packets in the retransmit queue to make to create 3195 * less packets on the wire. This is only done on retransmission. 3196 */ 3197 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3198 int space) 3199 { 3200 struct tcp_sock *tp = tcp_sk(sk); 3201 struct sk_buff *skb = to, *tmp; 3202 bool first = true; 3203 3204 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3205 return; 3206 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3207 return; 3208 3209 skb_rbtree_walk_from_safe(skb, tmp) { 3210 if (!tcp_can_collapse(sk, skb)) 3211 break; 3212 3213 if (!tcp_skb_can_collapse(to, skb)) 3214 break; 3215 3216 space -= skb->len; 3217 3218 if (first) { 3219 first = false; 3220 continue; 3221 } 3222 3223 if (space < 0) 3224 break; 3225 3226 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3227 break; 3228 3229 if (!tcp_collapse_retrans(sk, to)) 3230 break; 3231 } 3232 } 3233 3234 /* This retransmits one SKB. Policy decisions and retransmit queue 3235 * state updates are done by the caller. Returns non-zero if an 3236 * error occurred which prevented the send. 3237 */ 3238 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3239 { 3240 struct inet_connection_sock *icsk = inet_csk(sk); 3241 struct tcp_sock *tp = tcp_sk(sk); 3242 unsigned int cur_mss; 3243 int diff, len, err; 3244 int avail_wnd; 3245 3246 /* Inconclusive MTU probe */ 3247 if (icsk->icsk_mtup.probe_size) 3248 icsk->icsk_mtup.probe_size = 0; 3249 3250 if (skb_still_in_host_queue(sk, skb)) 3251 return -EBUSY; 3252 3253 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3254 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3255 WARN_ON_ONCE(1); 3256 return -EINVAL; 3257 } 3258 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3259 return -ENOMEM; 3260 } 3261 3262 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3263 return -EHOSTUNREACH; /* Routing failure or similar. */ 3264 3265 cur_mss = tcp_current_mss(sk); 3266 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3267 3268 /* If receiver has shrunk his window, and skb is out of 3269 * new window, do not retransmit it. The exception is the 3270 * case, when window is shrunk to zero. In this case 3271 * our retransmit of one segment serves as a zero window probe. 3272 */ 3273 if (avail_wnd <= 0) { 3274 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3275 return -EAGAIN; 3276 avail_wnd = cur_mss; 3277 } 3278 3279 len = cur_mss * segs; 3280 if (len > avail_wnd) { 3281 len = rounddown(avail_wnd, cur_mss); 3282 if (!len) 3283 len = avail_wnd; 3284 } 3285 if (skb->len > len) { 3286 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3287 cur_mss, GFP_ATOMIC)) 3288 return -ENOMEM; /* We'll try again later. */ 3289 } else { 3290 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3291 return -ENOMEM; 3292 3293 diff = tcp_skb_pcount(skb); 3294 tcp_set_skb_tso_segs(skb, cur_mss); 3295 diff -= tcp_skb_pcount(skb); 3296 if (diff) 3297 tcp_adjust_pcount(sk, skb, diff); 3298 avail_wnd = min_t(int, avail_wnd, cur_mss); 3299 if (skb->len < avail_wnd) 3300 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3301 } 3302 3303 /* RFC3168, section 6.1.1.1. ECN fallback */ 3304 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3305 tcp_ecn_clear_syn(sk, skb); 3306 3307 /* Update global and local TCP statistics. */ 3308 segs = tcp_skb_pcount(skb); 3309 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3310 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3311 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3312 tp->total_retrans += segs; 3313 tp->bytes_retrans += skb->len; 3314 3315 /* make sure skb->data is aligned on arches that require it 3316 * and check if ack-trimming & collapsing extended the headroom 3317 * beyond what csum_start can cover. 3318 */ 3319 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3320 skb_headroom(skb) >= 0xFFFF)) { 3321 struct sk_buff *nskb; 3322 3323 tcp_skb_tsorted_save(skb) { 3324 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3325 if (nskb) { 3326 nskb->dev = NULL; 3327 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3328 } else { 3329 err = -ENOBUFS; 3330 } 3331 } tcp_skb_tsorted_restore(skb); 3332 3333 if (!err) { 3334 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3335 tcp_rate_skb_sent(sk, skb); 3336 } 3337 } else { 3338 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3339 } 3340 3341 /* To avoid taking spuriously low RTT samples based on a timestamp 3342 * for a transmit that never happened, always mark EVER_RETRANS 3343 */ 3344 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3345 3346 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3347 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3348 TCP_SKB_CB(skb)->seq, segs, err); 3349 3350 if (likely(!err)) { 3351 trace_tcp_retransmit_skb(sk, skb); 3352 } else if (err != -EBUSY) { 3353 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3354 } 3355 return err; 3356 } 3357 3358 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3359 { 3360 struct tcp_sock *tp = tcp_sk(sk); 3361 int err = __tcp_retransmit_skb(sk, skb, segs); 3362 3363 if (err == 0) { 3364 #if FASTRETRANS_DEBUG > 0 3365 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3366 net_dbg_ratelimited("retrans_out leaked\n"); 3367 } 3368 #endif 3369 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3370 tp->retrans_out += tcp_skb_pcount(skb); 3371 } 3372 3373 /* Save stamp of the first (attempted) retransmit. */ 3374 if (!tp->retrans_stamp) 3375 tp->retrans_stamp = tcp_skb_timestamp(skb); 3376 3377 if (tp->undo_retrans < 0) 3378 tp->undo_retrans = 0; 3379 tp->undo_retrans += tcp_skb_pcount(skb); 3380 return err; 3381 } 3382 3383 /* This gets called after a retransmit timeout, and the initially 3384 * retransmitted data is acknowledged. It tries to continue 3385 * resending the rest of the retransmit queue, until either 3386 * we've sent it all or the congestion window limit is reached. 3387 */ 3388 void tcp_xmit_retransmit_queue(struct sock *sk) 3389 { 3390 const struct inet_connection_sock *icsk = inet_csk(sk); 3391 struct sk_buff *skb, *rtx_head, *hole = NULL; 3392 struct tcp_sock *tp = tcp_sk(sk); 3393 bool rearm_timer = false; 3394 u32 max_segs; 3395 int mib_idx; 3396 3397 if (!tp->packets_out) 3398 return; 3399 3400 rtx_head = tcp_rtx_queue_head(sk); 3401 skb = tp->retransmit_skb_hint ?: rtx_head; 3402 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3403 skb_rbtree_walk_from(skb) { 3404 __u8 sacked; 3405 int segs; 3406 3407 if (tcp_pacing_check(sk)) 3408 break; 3409 3410 /* we could do better than to assign each time */ 3411 if (!hole) 3412 tp->retransmit_skb_hint = skb; 3413 3414 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3415 if (segs <= 0) 3416 break; 3417 sacked = TCP_SKB_CB(skb)->sacked; 3418 /* In case tcp_shift_skb_data() have aggregated large skbs, 3419 * we need to make sure not sending too bigs TSO packets 3420 */ 3421 segs = min_t(int, segs, max_segs); 3422 3423 if (tp->retrans_out >= tp->lost_out) { 3424 break; 3425 } else if (!(sacked & TCPCB_LOST)) { 3426 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3427 hole = skb; 3428 continue; 3429 3430 } else { 3431 if (icsk->icsk_ca_state != TCP_CA_Loss) 3432 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3433 else 3434 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3435 } 3436 3437 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3438 continue; 3439 3440 if (tcp_small_queue_check(sk, skb, 1)) 3441 break; 3442 3443 if (tcp_retransmit_skb(sk, skb, segs)) 3444 break; 3445 3446 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3447 3448 if (tcp_in_cwnd_reduction(sk)) 3449 tp->prr_out += tcp_skb_pcount(skb); 3450 3451 if (skb == rtx_head && 3452 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3453 rearm_timer = true; 3454 3455 } 3456 if (rearm_timer) 3457 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3458 inet_csk(sk)->icsk_rto, 3459 TCP_RTO_MAX); 3460 } 3461 3462 /* We allow to exceed memory limits for FIN packets to expedite 3463 * connection tear down and (memory) recovery. 3464 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3465 * or even be forced to close flow without any FIN. 3466 * In general, we want to allow one skb per socket to avoid hangs 3467 * with edge trigger epoll() 3468 */ 3469 void sk_forced_mem_schedule(struct sock *sk, int size) 3470 { 3471 int delta, amt; 3472 3473 delta = size - sk->sk_forward_alloc; 3474 if (delta <= 0) 3475 return; 3476 amt = sk_mem_pages(delta); 3477 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3478 sk_memory_allocated_add(sk, amt); 3479 3480 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3481 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3482 gfp_memcg_charge() | __GFP_NOFAIL); 3483 } 3484 3485 /* Send a FIN. The caller locks the socket for us. 3486 * We should try to send a FIN packet really hard, but eventually give up. 3487 */ 3488 void tcp_send_fin(struct sock *sk) 3489 { 3490 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3491 struct tcp_sock *tp = tcp_sk(sk); 3492 3493 /* Optimization, tack on the FIN if we have one skb in write queue and 3494 * this skb was not yet sent, or we are under memory pressure. 3495 * Note: in the latter case, FIN packet will be sent after a timeout, 3496 * as TCP stack thinks it has already been transmitted. 3497 */ 3498 tskb = tail; 3499 if (!tskb && tcp_under_memory_pressure(sk)) 3500 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3501 3502 if (tskb) { 3503 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3504 TCP_SKB_CB(tskb)->end_seq++; 3505 tp->write_seq++; 3506 if (!tail) { 3507 /* This means tskb was already sent. 3508 * Pretend we included the FIN on previous transmit. 3509 * We need to set tp->snd_nxt to the value it would have 3510 * if FIN had been sent. This is because retransmit path 3511 * does not change tp->snd_nxt. 3512 */ 3513 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3514 return; 3515 } 3516 } else { 3517 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3518 if (unlikely(!skb)) 3519 return; 3520 3521 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3522 skb_reserve(skb, MAX_TCP_HEADER); 3523 sk_forced_mem_schedule(sk, skb->truesize); 3524 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3525 tcp_init_nondata_skb(skb, tp->write_seq, 3526 TCPHDR_ACK | TCPHDR_FIN); 3527 tcp_queue_skb(sk, skb); 3528 } 3529 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3530 } 3531 3532 /* We get here when a process closes a file descriptor (either due to 3533 * an explicit close() or as a byproduct of exit()'ing) and there 3534 * was unread data in the receive queue. This behavior is recommended 3535 * by RFC 2525, section 2.17. -DaveM 3536 */ 3537 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3538 { 3539 struct sk_buff *skb; 3540 3541 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3542 3543 /* NOTE: No TCP options attached and we never retransmit this. */ 3544 skb = alloc_skb(MAX_TCP_HEADER, priority); 3545 if (!skb) { 3546 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3547 return; 3548 } 3549 3550 /* Reserve space for headers and prepare control bits. */ 3551 skb_reserve(skb, MAX_TCP_HEADER); 3552 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3553 TCPHDR_ACK | TCPHDR_RST); 3554 tcp_mstamp_refresh(tcp_sk(sk)); 3555 /* Send it off. */ 3556 if (tcp_transmit_skb(sk, skb, 0, priority)) 3557 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3558 3559 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3560 * skb here is different to the troublesome skb, so use NULL 3561 */ 3562 trace_tcp_send_reset(sk, NULL); 3563 } 3564 3565 /* Send a crossed SYN-ACK during socket establishment. 3566 * WARNING: This routine must only be called when we have already sent 3567 * a SYN packet that crossed the incoming SYN that caused this routine 3568 * to get called. If this assumption fails then the initial rcv_wnd 3569 * and rcv_wscale values will not be correct. 3570 */ 3571 int tcp_send_synack(struct sock *sk) 3572 { 3573 struct sk_buff *skb; 3574 3575 skb = tcp_rtx_queue_head(sk); 3576 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3577 pr_err("%s: wrong queue state\n", __func__); 3578 return -EFAULT; 3579 } 3580 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3581 if (skb_cloned(skb)) { 3582 struct sk_buff *nskb; 3583 3584 tcp_skb_tsorted_save(skb) { 3585 nskb = skb_copy(skb, GFP_ATOMIC); 3586 } tcp_skb_tsorted_restore(skb); 3587 if (!nskb) 3588 return -ENOMEM; 3589 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3590 tcp_highest_sack_replace(sk, skb, nskb); 3591 tcp_rtx_queue_unlink_and_free(skb, sk); 3592 __skb_header_release(nskb); 3593 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3594 sk_wmem_queued_add(sk, nskb->truesize); 3595 sk_mem_charge(sk, nskb->truesize); 3596 skb = nskb; 3597 } 3598 3599 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3600 tcp_ecn_send_synack(sk, skb); 3601 } 3602 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3603 } 3604 3605 /** 3606 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3607 * @sk: listener socket 3608 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3609 * should not use it again. 3610 * @req: request_sock pointer 3611 * @foc: cookie for tcp fast open 3612 * @synack_type: Type of synack to prepare 3613 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3614 */ 3615 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3616 struct request_sock *req, 3617 struct tcp_fastopen_cookie *foc, 3618 enum tcp_synack_type synack_type, 3619 struct sk_buff *syn_skb) 3620 { 3621 struct inet_request_sock *ireq = inet_rsk(req); 3622 const struct tcp_sock *tp = tcp_sk(sk); 3623 struct tcp_md5sig_key *md5 = NULL; 3624 struct tcp_out_options opts; 3625 struct sk_buff *skb; 3626 int tcp_header_size; 3627 struct tcphdr *th; 3628 int mss; 3629 u64 now; 3630 3631 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3632 if (unlikely(!skb)) { 3633 dst_release(dst); 3634 return NULL; 3635 } 3636 /* Reserve space for headers. */ 3637 skb_reserve(skb, MAX_TCP_HEADER); 3638 3639 switch (synack_type) { 3640 case TCP_SYNACK_NORMAL: 3641 skb_set_owner_w(skb, req_to_sk(req)); 3642 break; 3643 case TCP_SYNACK_COOKIE: 3644 /* Under synflood, we do not attach skb to a socket, 3645 * to avoid false sharing. 3646 */ 3647 break; 3648 case TCP_SYNACK_FASTOPEN: 3649 /* sk is a const pointer, because we want to express multiple 3650 * cpu might call us concurrently. 3651 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3652 */ 3653 skb_set_owner_w(skb, (struct sock *)sk); 3654 break; 3655 } 3656 skb_dst_set(skb, dst); 3657 3658 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3659 3660 memset(&opts, 0, sizeof(opts)); 3661 now = tcp_clock_ns(); 3662 #ifdef CONFIG_SYN_COOKIES 3663 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3664 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3665 true); 3666 else 3667 #endif 3668 { 3669 skb_set_delivery_time(skb, now, true); 3670 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3671 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3672 } 3673 3674 #ifdef CONFIG_TCP_MD5SIG 3675 rcu_read_lock(); 3676 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3677 #endif 3678 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3679 /* bpf program will be interested in the tcp_flags */ 3680 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3681 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3682 foc, synack_type, 3683 syn_skb) + sizeof(*th); 3684 3685 skb_push(skb, tcp_header_size); 3686 skb_reset_transport_header(skb); 3687 3688 th = (struct tcphdr *)skb->data; 3689 memset(th, 0, sizeof(struct tcphdr)); 3690 th->syn = 1; 3691 th->ack = 1; 3692 tcp_ecn_make_synack(req, th); 3693 th->source = htons(ireq->ir_num); 3694 th->dest = ireq->ir_rmt_port; 3695 skb->mark = ireq->ir_mark; 3696 skb->ip_summed = CHECKSUM_PARTIAL; 3697 th->seq = htonl(tcp_rsk(req)->snt_isn); 3698 /* XXX data is queued and acked as is. No buffer/window check */ 3699 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3700 3701 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3702 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3703 tcp_options_write(th, NULL, &opts); 3704 th->doff = (tcp_header_size >> 2); 3705 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3706 3707 #ifdef CONFIG_TCP_MD5SIG 3708 /* Okay, we have all we need - do the md5 hash if needed */ 3709 if (md5) 3710 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3711 md5, req_to_sk(req), skb); 3712 rcu_read_unlock(); 3713 #endif 3714 3715 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3716 synack_type, &opts); 3717 3718 skb_set_delivery_time(skb, now, true); 3719 tcp_add_tx_delay(skb, tp); 3720 3721 return skb; 3722 } 3723 EXPORT_SYMBOL(tcp_make_synack); 3724 3725 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3726 { 3727 struct inet_connection_sock *icsk = inet_csk(sk); 3728 const struct tcp_congestion_ops *ca; 3729 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3730 3731 if (ca_key == TCP_CA_UNSPEC) 3732 return; 3733 3734 rcu_read_lock(); 3735 ca = tcp_ca_find_key(ca_key); 3736 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3737 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3738 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3739 icsk->icsk_ca_ops = ca; 3740 } 3741 rcu_read_unlock(); 3742 } 3743 3744 /* Do all connect socket setups that can be done AF independent. */ 3745 static void tcp_connect_init(struct sock *sk) 3746 { 3747 const struct dst_entry *dst = __sk_dst_get(sk); 3748 struct tcp_sock *tp = tcp_sk(sk); 3749 __u8 rcv_wscale; 3750 u32 rcv_wnd; 3751 3752 /* We'll fix this up when we get a response from the other end. 3753 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3754 */ 3755 tp->tcp_header_len = sizeof(struct tcphdr); 3756 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3757 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3758 3759 /* If user gave his TCP_MAXSEG, record it to clamp */ 3760 if (tp->rx_opt.user_mss) 3761 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3762 tp->max_window = 0; 3763 tcp_mtup_init(sk); 3764 tcp_sync_mss(sk, dst_mtu(dst)); 3765 3766 tcp_ca_dst_init(sk, dst); 3767 3768 if (!tp->window_clamp) 3769 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3770 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3771 3772 tcp_initialize_rcv_mss(sk); 3773 3774 /* limit the window selection if the user enforce a smaller rx buffer */ 3775 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3776 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3777 tp->window_clamp = tcp_full_space(sk); 3778 3779 rcv_wnd = tcp_rwnd_init_bpf(sk); 3780 if (rcv_wnd == 0) 3781 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3782 3783 tcp_select_initial_window(sk, tcp_full_space(sk), 3784 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3785 &tp->rcv_wnd, 3786 &tp->window_clamp, 3787 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3788 &rcv_wscale, 3789 rcv_wnd); 3790 3791 tp->rx_opt.rcv_wscale = rcv_wscale; 3792 tp->rcv_ssthresh = tp->rcv_wnd; 3793 3794 WRITE_ONCE(sk->sk_err, 0); 3795 sock_reset_flag(sk, SOCK_DONE); 3796 tp->snd_wnd = 0; 3797 tcp_init_wl(tp, 0); 3798 tcp_write_queue_purge(sk); 3799 tp->snd_una = tp->write_seq; 3800 tp->snd_sml = tp->write_seq; 3801 tp->snd_up = tp->write_seq; 3802 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3803 3804 if (likely(!tp->repair)) 3805 tp->rcv_nxt = 0; 3806 else 3807 tp->rcv_tstamp = tcp_jiffies32; 3808 tp->rcv_wup = tp->rcv_nxt; 3809 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3810 3811 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3812 inet_csk(sk)->icsk_retransmits = 0; 3813 tcp_clear_retrans(tp); 3814 } 3815 3816 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3817 { 3818 struct tcp_sock *tp = tcp_sk(sk); 3819 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3820 3821 tcb->end_seq += skb->len; 3822 __skb_header_release(skb); 3823 sk_wmem_queued_add(sk, skb->truesize); 3824 sk_mem_charge(sk, skb->truesize); 3825 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3826 tp->packets_out += tcp_skb_pcount(skb); 3827 } 3828 3829 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3830 * queue a data-only packet after the regular SYN, such that regular SYNs 3831 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3832 * only the SYN sequence, the data are retransmitted in the first ACK. 3833 * If cookie is not cached or other error occurs, falls back to send a 3834 * regular SYN with Fast Open cookie request option. 3835 */ 3836 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3837 { 3838 struct inet_connection_sock *icsk = inet_csk(sk); 3839 struct tcp_sock *tp = tcp_sk(sk); 3840 struct tcp_fastopen_request *fo = tp->fastopen_req; 3841 struct page_frag *pfrag = sk_page_frag(sk); 3842 struct sk_buff *syn_data; 3843 int space, err = 0; 3844 3845 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3846 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3847 goto fallback; 3848 3849 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3850 * user-MSS. Reserve maximum option space for middleboxes that add 3851 * private TCP options. The cost is reduced data space in SYN :( 3852 */ 3853 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3854 /* Sync mss_cache after updating the mss_clamp */ 3855 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3856 3857 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3858 MAX_TCP_OPTION_SPACE; 3859 3860 space = min_t(size_t, space, fo->size); 3861 3862 if (space && 3863 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3864 pfrag, sk->sk_allocation)) 3865 goto fallback; 3866 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3867 if (!syn_data) 3868 goto fallback; 3869 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3870 if (space) { 3871 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3872 space = tcp_wmem_schedule(sk, space); 3873 } 3874 if (space) { 3875 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3876 space, &fo->data->msg_iter); 3877 if (unlikely(!space)) { 3878 tcp_skb_tsorted_anchor_cleanup(syn_data); 3879 kfree_skb(syn_data); 3880 goto fallback; 3881 } 3882 skb_fill_page_desc(syn_data, 0, pfrag->page, 3883 pfrag->offset, space); 3884 page_ref_inc(pfrag->page); 3885 pfrag->offset += space; 3886 skb_len_add(syn_data, space); 3887 skb_zcopy_set(syn_data, fo->uarg, NULL); 3888 } 3889 /* No more data pending in inet_wait_for_connect() */ 3890 if (space == fo->size) 3891 fo->data = NULL; 3892 fo->copied = space; 3893 3894 tcp_connect_queue_skb(sk, syn_data); 3895 if (syn_data->len) 3896 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3897 3898 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3899 3900 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3901 3902 /* Now full SYN+DATA was cloned and sent (or not), 3903 * remove the SYN from the original skb (syn_data) 3904 * we keep in write queue in case of a retransmit, as we 3905 * also have the SYN packet (with no data) in the same queue. 3906 */ 3907 TCP_SKB_CB(syn_data)->seq++; 3908 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3909 if (!err) { 3910 tp->syn_data = (fo->copied > 0); 3911 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3913 goto done; 3914 } 3915 3916 /* data was not sent, put it in write_queue */ 3917 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3918 tp->packets_out -= tcp_skb_pcount(syn_data); 3919 3920 fallback: 3921 /* Send a regular SYN with Fast Open cookie request option */ 3922 if (fo->cookie.len > 0) 3923 fo->cookie.len = 0; 3924 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3925 if (err) 3926 tp->syn_fastopen = 0; 3927 done: 3928 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3929 return err; 3930 } 3931 3932 /* Build a SYN and send it off. */ 3933 int tcp_connect(struct sock *sk) 3934 { 3935 struct tcp_sock *tp = tcp_sk(sk); 3936 struct sk_buff *buff; 3937 int err; 3938 3939 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3940 3941 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3942 return -EHOSTUNREACH; /* Routing failure or similar. */ 3943 3944 tcp_connect_init(sk); 3945 3946 if (unlikely(tp->repair)) { 3947 tcp_finish_connect(sk, NULL); 3948 return 0; 3949 } 3950 3951 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 3952 if (unlikely(!buff)) 3953 return -ENOBUFS; 3954 3955 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3956 tcp_mstamp_refresh(tp); 3957 tp->retrans_stamp = tcp_time_stamp(tp); 3958 tcp_connect_queue_skb(sk, buff); 3959 tcp_ecn_send_syn(sk, buff); 3960 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3961 3962 /* Send off SYN; include data in Fast Open. */ 3963 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3964 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3965 if (err == -ECONNREFUSED) 3966 return err; 3967 3968 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3969 * in order to make this packet get counted in tcpOutSegs. 3970 */ 3971 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3972 tp->pushed_seq = tp->write_seq; 3973 buff = tcp_send_head(sk); 3974 if (unlikely(buff)) { 3975 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3976 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3977 } 3978 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3979 3980 /* Timer for repeating the SYN until an answer. */ 3981 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3982 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3983 return 0; 3984 } 3985 EXPORT_SYMBOL(tcp_connect); 3986 3987 /* Send out a delayed ack, the caller does the policy checking 3988 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3989 * for details. 3990 */ 3991 void tcp_send_delayed_ack(struct sock *sk) 3992 { 3993 struct inet_connection_sock *icsk = inet_csk(sk); 3994 int ato = icsk->icsk_ack.ato; 3995 unsigned long timeout; 3996 3997 if (ato > TCP_DELACK_MIN) { 3998 const struct tcp_sock *tp = tcp_sk(sk); 3999 int max_ato = HZ / 2; 4000 4001 if (inet_csk_in_pingpong_mode(sk) || 4002 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4003 max_ato = TCP_DELACK_MAX; 4004 4005 /* Slow path, intersegment interval is "high". */ 4006 4007 /* If some rtt estimate is known, use it to bound delayed ack. 4008 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4009 * directly. 4010 */ 4011 if (tp->srtt_us) { 4012 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4013 TCP_DELACK_MIN); 4014 4015 if (rtt < max_ato) 4016 max_ato = rtt; 4017 } 4018 4019 ato = min(ato, max_ato); 4020 } 4021 4022 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); 4023 4024 /* Stay within the limit we were given */ 4025 timeout = jiffies + ato; 4026 4027 /* Use new timeout only if there wasn't a older one earlier. */ 4028 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4029 /* If delack timer is about to expire, send ACK now. */ 4030 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4031 tcp_send_ack(sk); 4032 return; 4033 } 4034 4035 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4036 timeout = icsk->icsk_ack.timeout; 4037 } 4038 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4039 icsk->icsk_ack.timeout = timeout; 4040 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4041 } 4042 4043 /* This routine sends an ack and also updates the window. */ 4044 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4045 { 4046 struct sk_buff *buff; 4047 4048 /* If we have been reset, we may not send again. */ 4049 if (sk->sk_state == TCP_CLOSE) 4050 return; 4051 4052 /* We are not putting this on the write queue, so 4053 * tcp_transmit_skb() will set the ownership to this 4054 * sock. 4055 */ 4056 buff = alloc_skb(MAX_TCP_HEADER, 4057 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4058 if (unlikely(!buff)) { 4059 struct inet_connection_sock *icsk = inet_csk(sk); 4060 unsigned long delay; 4061 4062 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4063 if (delay < TCP_RTO_MAX) 4064 icsk->icsk_ack.retry++; 4065 inet_csk_schedule_ack(sk); 4066 icsk->icsk_ack.ato = TCP_ATO_MIN; 4067 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4068 return; 4069 } 4070 4071 /* Reserve space for headers and prepare control bits. */ 4072 skb_reserve(buff, MAX_TCP_HEADER); 4073 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4074 4075 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4076 * too much. 4077 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4078 */ 4079 skb_set_tcp_pure_ack(buff); 4080 4081 /* Send it off, this clears delayed acks for us. */ 4082 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4083 } 4084 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4085 4086 void tcp_send_ack(struct sock *sk) 4087 { 4088 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4089 } 4090 4091 /* This routine sends a packet with an out of date sequence 4092 * number. It assumes the other end will try to ack it. 4093 * 4094 * Question: what should we make while urgent mode? 4095 * 4.4BSD forces sending single byte of data. We cannot send 4096 * out of window data, because we have SND.NXT==SND.MAX... 4097 * 4098 * Current solution: to send TWO zero-length segments in urgent mode: 4099 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4100 * out-of-date with SND.UNA-1 to probe window. 4101 */ 4102 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4103 { 4104 struct tcp_sock *tp = tcp_sk(sk); 4105 struct sk_buff *skb; 4106 4107 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4108 skb = alloc_skb(MAX_TCP_HEADER, 4109 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4110 if (!skb) 4111 return -1; 4112 4113 /* Reserve space for headers and set control bits. */ 4114 skb_reserve(skb, MAX_TCP_HEADER); 4115 /* Use a previous sequence. This should cause the other 4116 * end to send an ack. Don't queue or clone SKB, just 4117 * send it. 4118 */ 4119 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4120 NET_INC_STATS(sock_net(sk), mib); 4121 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4122 } 4123 4124 /* Called from setsockopt( ... TCP_REPAIR ) */ 4125 void tcp_send_window_probe(struct sock *sk) 4126 { 4127 if (sk->sk_state == TCP_ESTABLISHED) { 4128 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4129 tcp_mstamp_refresh(tcp_sk(sk)); 4130 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4131 } 4132 } 4133 4134 /* Initiate keepalive or window probe from timer. */ 4135 int tcp_write_wakeup(struct sock *sk, int mib) 4136 { 4137 struct tcp_sock *tp = tcp_sk(sk); 4138 struct sk_buff *skb; 4139 4140 if (sk->sk_state == TCP_CLOSE) 4141 return -1; 4142 4143 skb = tcp_send_head(sk); 4144 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4145 int err; 4146 unsigned int mss = tcp_current_mss(sk); 4147 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4148 4149 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4150 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4151 4152 /* We are probing the opening of a window 4153 * but the window size is != 0 4154 * must have been a result SWS avoidance ( sender ) 4155 */ 4156 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4157 skb->len > mss) { 4158 seg_size = min(seg_size, mss); 4159 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4160 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4161 skb, seg_size, mss, GFP_ATOMIC)) 4162 return -1; 4163 } else if (!tcp_skb_pcount(skb)) 4164 tcp_set_skb_tso_segs(skb, mss); 4165 4166 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4167 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4168 if (!err) 4169 tcp_event_new_data_sent(sk, skb); 4170 return err; 4171 } else { 4172 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4173 tcp_xmit_probe_skb(sk, 1, mib); 4174 return tcp_xmit_probe_skb(sk, 0, mib); 4175 } 4176 } 4177 4178 /* A window probe timeout has occurred. If window is not closed send 4179 * a partial packet else a zero probe. 4180 */ 4181 void tcp_send_probe0(struct sock *sk) 4182 { 4183 struct inet_connection_sock *icsk = inet_csk(sk); 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 struct net *net = sock_net(sk); 4186 unsigned long timeout; 4187 int err; 4188 4189 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4190 4191 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4192 /* Cancel probe timer, if it is not required. */ 4193 icsk->icsk_probes_out = 0; 4194 icsk->icsk_backoff = 0; 4195 icsk->icsk_probes_tstamp = 0; 4196 return; 4197 } 4198 4199 icsk->icsk_probes_out++; 4200 if (err <= 0) { 4201 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4202 icsk->icsk_backoff++; 4203 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4204 } else { 4205 /* If packet was not sent due to local congestion, 4206 * Let senders fight for local resources conservatively. 4207 */ 4208 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4209 } 4210 4211 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4212 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4213 } 4214 4215 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4216 { 4217 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4218 struct flowi fl; 4219 int res; 4220 4221 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4222 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4223 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4224 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4225 NULL); 4226 if (!res) { 4227 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4228 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4229 if (unlikely(tcp_passive_fastopen(sk))) { 4230 /* sk has const attribute because listeners are lockless. 4231 * However in this case, we are dealing with a passive fastopen 4232 * socket thus we can change total_retrans value. 4233 */ 4234 tcp_sk_rw(sk)->total_retrans++; 4235 } 4236 trace_tcp_retransmit_synack(sk, req); 4237 } 4238 return res; 4239 } 4240 EXPORT_SYMBOL(tcp_rtx_synack); 4241