xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 26b8f996)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67 
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 			   int push_one, gfp_t gfp);
70 
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 	struct inet_connection_sock *icsk = inet_csk(sk);
75 	struct tcp_sock *tp = tcp_sk(sk);
76 	unsigned int prior_packets = tp->packets_out;
77 
78 	tcp_advance_send_head(sk, skb);
79 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 		tcp_rearm_rto(sk);
85 	}
86 
87 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 		      tcp_skb_pcount(skb));
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		icsk->icsk_ack.pingpong = 1;
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
181 {
182 	tcp_dec_quickack_mode(sk, pkts);
183 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
184 }
185 
186 
187 u32 tcp_default_init_rwnd(u32 mss)
188 {
189 	/* Initial receive window should be twice of TCP_INIT_CWND to
190 	 * enable proper sending of new unsent data during fast recovery
191 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
192 	 * limit when mss is larger than 1460.
193 	 */
194 	u32 init_rwnd = TCP_INIT_CWND * 2;
195 
196 	if (mss > 1460)
197 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
198 	return init_rwnd;
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
208 void tcp_select_initial_window(int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (*window_clamp == 0)
217 		(*window_clamp) = (65535 << 14);
218 	space = min(*window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = (space / mss) * mss;
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (sysctl_tcp_workaround_signed_windows)
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = space;
236 
237 	(*rcv_wscale) = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window
240 		 * See RFC1323 for an explanation of the limit to 14
241 		 */
242 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
243 		space = min_t(u32, space, *window_clamp);
244 		while (space > 65535 && (*rcv_wscale) < 14) {
245 			space >>= 1;
246 			(*rcv_wscale)++;
247 		}
248 	}
249 
250 	if (mss > (1 << *rcv_wscale)) {
251 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
252 			init_rcv_wnd = tcp_default_init_rwnd(mss);
253 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
254 	}
255 
256 	/* Set the clamp no higher than max representable value */
257 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
258 }
259 EXPORT_SYMBOL(tcp_select_initial_window);
260 
261 /* Chose a new window to advertise, update state in tcp_sock for the
262  * socket, and return result with RFC1323 scaling applied.  The return
263  * value can be stuffed directly into th->window for an outgoing
264  * frame.
265  */
266 static u16 tcp_select_window(struct sock *sk)
267 {
268 	struct tcp_sock *tp = tcp_sk(sk);
269 	u32 old_win = tp->rcv_wnd;
270 	u32 cur_win = tcp_receive_window(tp);
271 	u32 new_win = __tcp_select_window(sk);
272 
273 	/* Never shrink the offered window */
274 	if (new_win < cur_win) {
275 		/* Danger Will Robinson!
276 		 * Don't update rcv_wup/rcv_wnd here or else
277 		 * we will not be able to advertise a zero
278 		 * window in time.  --DaveM
279 		 *
280 		 * Relax Will Robinson.
281 		 */
282 		if (new_win == 0)
283 			NET_INC_STATS(sock_net(sk),
284 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
285 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
286 	}
287 	tp->rcv_wnd = new_win;
288 	tp->rcv_wup = tp->rcv_nxt;
289 
290 	/* Make sure we do not exceed the maximum possible
291 	 * scaled window.
292 	 */
293 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
294 		new_win = min(new_win, MAX_TCP_WINDOW);
295 	else
296 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
297 
298 	/* RFC1323 scaling applied */
299 	new_win >>= tp->rx_opt.rcv_wscale;
300 
301 	/* If we advertise zero window, disable fast path. */
302 	if (new_win == 0) {
303 		tp->pred_flags = 0;
304 		if (old_win)
305 			NET_INC_STATS(sock_net(sk),
306 				      LINUX_MIB_TCPTOZEROWINDOWADV);
307 	} else if (old_win == 0) {
308 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
309 	}
310 
311 	return new_win;
312 }
313 
314 /* Packet ECN state for a SYN-ACK */
315 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
316 {
317 	const struct tcp_sock *tp = tcp_sk(sk);
318 
319 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
320 	if (!(tp->ecn_flags & TCP_ECN_OK))
321 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
322 	else if (tcp_ca_needs_ecn(sk))
323 		INET_ECN_xmit(sk);
324 }
325 
326 /* Packet ECN state for a SYN.  */
327 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
328 {
329 	struct tcp_sock *tp = tcp_sk(sk);
330 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
331 		       tcp_ca_needs_ecn(sk);
332 
333 	if (!use_ecn) {
334 		const struct dst_entry *dst = __sk_dst_get(sk);
335 
336 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
337 			use_ecn = true;
338 	}
339 
340 	tp->ecn_flags = 0;
341 
342 	if (use_ecn) {
343 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
344 		tp->ecn_flags = TCP_ECN_OK;
345 		if (tcp_ca_needs_ecn(sk))
346 			INET_ECN_xmit(sk);
347 	}
348 }
349 
350 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
351 {
352 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
353 		/* tp->ecn_flags are cleared at a later point in time when
354 		 * SYN ACK is ultimatively being received.
355 		 */
356 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
357 }
358 
359 static void
360 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
361 		    struct sock *sk)
362 {
363 	if (inet_rsk(req)->ecn_ok) {
364 		th->ece = 1;
365 		if (tcp_ca_needs_ecn(sk))
366 			INET_ECN_xmit(sk);
367 	}
368 }
369 
370 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
371  * be sent.
372  */
373 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
374 				int tcp_header_len)
375 {
376 	struct tcp_sock *tp = tcp_sk(sk);
377 
378 	if (tp->ecn_flags & TCP_ECN_OK) {
379 		/* Not-retransmitted data segment: set ECT and inject CWR. */
380 		if (skb->len != tcp_header_len &&
381 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
382 			INET_ECN_xmit(sk);
383 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
384 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
385 				tcp_hdr(skb)->cwr = 1;
386 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
387 			}
388 		} else if (!tcp_ca_needs_ecn(sk)) {
389 			/* ACK or retransmitted segment: clear ECT|CE */
390 			INET_ECN_dontxmit(sk);
391 		}
392 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
393 			tcp_hdr(skb)->ece = 1;
394 	}
395 }
396 
397 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
398  * auto increment end seqno.
399  */
400 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
401 {
402 	skb->ip_summed = CHECKSUM_PARTIAL;
403 	skb->csum = 0;
404 
405 	TCP_SKB_CB(skb)->tcp_flags = flags;
406 	TCP_SKB_CB(skb)->sacked = 0;
407 
408 	tcp_skb_pcount_set(skb, 1);
409 
410 	TCP_SKB_CB(skb)->seq = seq;
411 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
412 		seq++;
413 	TCP_SKB_CB(skb)->end_seq = seq;
414 }
415 
416 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
417 {
418 	return tp->snd_una != tp->snd_up;
419 }
420 
421 #define OPTION_SACK_ADVERTISE	(1 << 0)
422 #define OPTION_TS		(1 << 1)
423 #define OPTION_MD5		(1 << 2)
424 #define OPTION_WSCALE		(1 << 3)
425 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
426 
427 struct tcp_out_options {
428 	u16 options;		/* bit field of OPTION_* */
429 	u16 mss;		/* 0 to disable */
430 	u8 ws;			/* window scale, 0 to disable */
431 	u8 num_sack_blocks;	/* number of SACK blocks to include */
432 	u8 hash_size;		/* bytes in hash_location */
433 	__u8 *hash_location;	/* temporary pointer, overloaded */
434 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
435 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
436 };
437 
438 /* Write previously computed TCP options to the packet.
439  *
440  * Beware: Something in the Internet is very sensitive to the ordering of
441  * TCP options, we learned this through the hard way, so be careful here.
442  * Luckily we can at least blame others for their non-compliance but from
443  * inter-operability perspective it seems that we're somewhat stuck with
444  * the ordering which we have been using if we want to keep working with
445  * those broken things (not that it currently hurts anybody as there isn't
446  * particular reason why the ordering would need to be changed).
447  *
448  * At least SACK_PERM as the first option is known to lead to a disaster
449  * (but it may well be that other scenarios fail similarly).
450  */
451 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
452 			      struct tcp_out_options *opts)
453 {
454 	u16 options = opts->options;	/* mungable copy */
455 
456 	if (unlikely(OPTION_MD5 & options)) {
457 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
458 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
459 		/* overload cookie hash location */
460 		opts->hash_location = (__u8 *)ptr;
461 		ptr += 4;
462 	}
463 
464 	if (unlikely(opts->mss)) {
465 		*ptr++ = htonl((TCPOPT_MSS << 24) |
466 			       (TCPOLEN_MSS << 16) |
467 			       opts->mss);
468 	}
469 
470 	if (likely(OPTION_TS & options)) {
471 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
472 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
473 				       (TCPOLEN_SACK_PERM << 16) |
474 				       (TCPOPT_TIMESTAMP << 8) |
475 				       TCPOLEN_TIMESTAMP);
476 			options &= ~OPTION_SACK_ADVERTISE;
477 		} else {
478 			*ptr++ = htonl((TCPOPT_NOP << 24) |
479 				       (TCPOPT_NOP << 16) |
480 				       (TCPOPT_TIMESTAMP << 8) |
481 				       TCPOLEN_TIMESTAMP);
482 		}
483 		*ptr++ = htonl(opts->tsval);
484 		*ptr++ = htonl(opts->tsecr);
485 	}
486 
487 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_NOP << 16) |
490 			       (TCPOPT_SACK_PERM << 8) |
491 			       TCPOLEN_SACK_PERM);
492 	}
493 
494 	if (unlikely(OPTION_WSCALE & options)) {
495 		*ptr++ = htonl((TCPOPT_NOP << 24) |
496 			       (TCPOPT_WINDOW << 16) |
497 			       (TCPOLEN_WINDOW << 8) |
498 			       opts->ws);
499 	}
500 
501 	if (unlikely(opts->num_sack_blocks)) {
502 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
503 			tp->duplicate_sack : tp->selective_acks;
504 		int this_sack;
505 
506 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
507 			       (TCPOPT_NOP  << 16) |
508 			       (TCPOPT_SACK <<  8) |
509 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
510 						     TCPOLEN_SACK_PERBLOCK)));
511 
512 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
513 		     ++this_sack) {
514 			*ptr++ = htonl(sp[this_sack].start_seq);
515 			*ptr++ = htonl(sp[this_sack].end_seq);
516 		}
517 
518 		tp->rx_opt.dsack = 0;
519 	}
520 
521 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
522 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
523 		u8 *p = (u8 *)ptr;
524 		u32 len; /* Fast Open option length */
525 
526 		if (foc->exp) {
527 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
528 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
529 				     TCPOPT_FASTOPEN_MAGIC);
530 			p += TCPOLEN_EXP_FASTOPEN_BASE;
531 		} else {
532 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
533 			*p++ = TCPOPT_FASTOPEN;
534 			*p++ = len;
535 		}
536 
537 		memcpy(p, foc->val, foc->len);
538 		if ((len & 3) == 2) {
539 			p[foc->len] = TCPOPT_NOP;
540 			p[foc->len + 1] = TCPOPT_NOP;
541 		}
542 		ptr += (len + 3) >> 2;
543 	}
544 }
545 
546 /* Compute TCP options for SYN packets. This is not the final
547  * network wire format yet.
548  */
549 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
550 				struct tcp_out_options *opts,
551 				struct tcp_md5sig_key **md5)
552 {
553 	struct tcp_sock *tp = tcp_sk(sk);
554 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
555 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
556 
557 #ifdef CONFIG_TCP_MD5SIG
558 	*md5 = tp->af_specific->md5_lookup(sk, sk);
559 	if (*md5) {
560 		opts->options |= OPTION_MD5;
561 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
562 	}
563 #else
564 	*md5 = NULL;
565 #endif
566 
567 	/* We always get an MSS option.  The option bytes which will be seen in
568 	 * normal data packets should timestamps be used, must be in the MSS
569 	 * advertised.  But we subtract them from tp->mss_cache so that
570 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
571 	 * fact here if necessary.  If we don't do this correctly, as a
572 	 * receiver we won't recognize data packets as being full sized when we
573 	 * should, and thus we won't abide by the delayed ACK rules correctly.
574 	 * SACKs don't matter, we never delay an ACK when we have any of those
575 	 * going out.  */
576 	opts->mss = tcp_advertise_mss(sk);
577 	remaining -= TCPOLEN_MSS_ALIGNED;
578 
579 	if (likely(sysctl_tcp_timestamps && !*md5)) {
580 		opts->options |= OPTION_TS;
581 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
582 		opts->tsecr = tp->rx_opt.ts_recent;
583 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
584 	}
585 	if (likely(sysctl_tcp_window_scaling)) {
586 		opts->ws = tp->rx_opt.rcv_wscale;
587 		opts->options |= OPTION_WSCALE;
588 		remaining -= TCPOLEN_WSCALE_ALIGNED;
589 	}
590 	if (likely(sysctl_tcp_sack)) {
591 		opts->options |= OPTION_SACK_ADVERTISE;
592 		if (unlikely(!(OPTION_TS & opts->options)))
593 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
594 	}
595 
596 	if (fastopen && fastopen->cookie.len >= 0) {
597 		u32 need = fastopen->cookie.len;
598 
599 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
600 					       TCPOLEN_FASTOPEN_BASE;
601 		need = (need + 3) & ~3U;  /* Align to 32 bits */
602 		if (remaining >= need) {
603 			opts->options |= OPTION_FAST_OPEN_COOKIE;
604 			opts->fastopen_cookie = &fastopen->cookie;
605 			remaining -= need;
606 			tp->syn_fastopen = 1;
607 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
608 		}
609 	}
610 
611 	return MAX_TCP_OPTION_SPACE - remaining;
612 }
613 
614 /* Set up TCP options for SYN-ACKs. */
615 static unsigned int tcp_synack_options(struct sock *sk,
616 				   struct request_sock *req,
617 				   unsigned int mss, struct sk_buff *skb,
618 				   struct tcp_out_options *opts,
619 				   const struct tcp_md5sig_key *md5,
620 				   struct tcp_fastopen_cookie *foc)
621 {
622 	struct inet_request_sock *ireq = inet_rsk(req);
623 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
624 
625 #ifdef CONFIG_TCP_MD5SIG
626 	if (md5) {
627 		opts->options |= OPTION_MD5;
628 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
629 
630 		/* We can't fit any SACK blocks in a packet with MD5 + TS
631 		 * options. There was discussion about disabling SACK
632 		 * rather than TS in order to fit in better with old,
633 		 * buggy kernels, but that was deemed to be unnecessary.
634 		 */
635 		ireq->tstamp_ok &= !ireq->sack_ok;
636 	}
637 #endif
638 
639 	/* We always send an MSS option. */
640 	opts->mss = mss;
641 	remaining -= TCPOLEN_MSS_ALIGNED;
642 
643 	if (likely(ireq->wscale_ok)) {
644 		opts->ws = ireq->rcv_wscale;
645 		opts->options |= OPTION_WSCALE;
646 		remaining -= TCPOLEN_WSCALE_ALIGNED;
647 	}
648 	if (likely(ireq->tstamp_ok)) {
649 		opts->options |= OPTION_TS;
650 		opts->tsval = tcp_skb_timestamp(skb);
651 		opts->tsecr = req->ts_recent;
652 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
653 	}
654 	if (likely(ireq->sack_ok)) {
655 		opts->options |= OPTION_SACK_ADVERTISE;
656 		if (unlikely(!ireq->tstamp_ok))
657 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
658 	}
659 	if (foc != NULL && foc->len >= 0) {
660 		u32 need = foc->len;
661 
662 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
663 				   TCPOLEN_FASTOPEN_BASE;
664 		need = (need + 3) & ~3U;  /* Align to 32 bits */
665 		if (remaining >= need) {
666 			opts->options |= OPTION_FAST_OPEN_COOKIE;
667 			opts->fastopen_cookie = foc;
668 			remaining -= need;
669 		}
670 	}
671 
672 	return MAX_TCP_OPTION_SPACE - remaining;
673 }
674 
675 /* Compute TCP options for ESTABLISHED sockets. This is not the
676  * final wire format yet.
677  */
678 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
679 					struct tcp_out_options *opts,
680 					struct tcp_md5sig_key **md5)
681 {
682 	struct tcp_sock *tp = tcp_sk(sk);
683 	unsigned int size = 0;
684 	unsigned int eff_sacks;
685 
686 	opts->options = 0;
687 
688 #ifdef CONFIG_TCP_MD5SIG
689 	*md5 = tp->af_specific->md5_lookup(sk, sk);
690 	if (unlikely(*md5)) {
691 		opts->options |= OPTION_MD5;
692 		size += TCPOLEN_MD5SIG_ALIGNED;
693 	}
694 #else
695 	*md5 = NULL;
696 #endif
697 
698 	if (likely(tp->rx_opt.tstamp_ok)) {
699 		opts->options |= OPTION_TS;
700 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
701 		opts->tsecr = tp->rx_opt.ts_recent;
702 		size += TCPOLEN_TSTAMP_ALIGNED;
703 	}
704 
705 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
706 	if (unlikely(eff_sacks)) {
707 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
708 		opts->num_sack_blocks =
709 			min_t(unsigned int, eff_sacks,
710 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
711 			      TCPOLEN_SACK_PERBLOCK);
712 		size += TCPOLEN_SACK_BASE_ALIGNED +
713 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
714 	}
715 
716 	return size;
717 }
718 
719 
720 /* TCP SMALL QUEUES (TSQ)
721  *
722  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
723  * to reduce RTT and bufferbloat.
724  * We do this using a special skb destructor (tcp_wfree).
725  *
726  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
727  * needs to be reallocated in a driver.
728  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
729  *
730  * Since transmit from skb destructor is forbidden, we use a tasklet
731  * to process all sockets that eventually need to send more skbs.
732  * We use one tasklet per cpu, with its own queue of sockets.
733  */
734 struct tsq_tasklet {
735 	struct tasklet_struct	tasklet;
736 	struct list_head	head; /* queue of tcp sockets */
737 };
738 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
739 
740 static void tcp_tsq_handler(struct sock *sk)
741 {
742 	if ((1 << sk->sk_state) &
743 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
744 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
745 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
746 			       0, GFP_ATOMIC);
747 }
748 /*
749  * One tasklet per cpu tries to send more skbs.
750  * We run in tasklet context but need to disable irqs when
751  * transferring tsq->head because tcp_wfree() might
752  * interrupt us (non NAPI drivers)
753  */
754 static void tcp_tasklet_func(unsigned long data)
755 {
756 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
757 	LIST_HEAD(list);
758 	unsigned long flags;
759 	struct list_head *q, *n;
760 	struct tcp_sock *tp;
761 	struct sock *sk;
762 
763 	local_irq_save(flags);
764 	list_splice_init(&tsq->head, &list);
765 	local_irq_restore(flags);
766 
767 	list_for_each_safe(q, n, &list) {
768 		tp = list_entry(q, struct tcp_sock, tsq_node);
769 		list_del(&tp->tsq_node);
770 
771 		sk = (struct sock *)tp;
772 		bh_lock_sock(sk);
773 
774 		if (!sock_owned_by_user(sk)) {
775 			tcp_tsq_handler(sk);
776 		} else {
777 			/* defer the work to tcp_release_cb() */
778 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
779 		}
780 		bh_unlock_sock(sk);
781 
782 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
783 		sk_free(sk);
784 	}
785 }
786 
787 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
788 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
789 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
790 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
791 /**
792  * tcp_release_cb - tcp release_sock() callback
793  * @sk: socket
794  *
795  * called from release_sock() to perform protocol dependent
796  * actions before socket release.
797  */
798 void tcp_release_cb(struct sock *sk)
799 {
800 	struct tcp_sock *tp = tcp_sk(sk);
801 	unsigned long flags, nflags;
802 
803 	/* perform an atomic operation only if at least one flag is set */
804 	do {
805 		flags = tp->tsq_flags;
806 		if (!(flags & TCP_DEFERRED_ALL))
807 			return;
808 		nflags = flags & ~TCP_DEFERRED_ALL;
809 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
810 
811 	if (flags & (1UL << TCP_TSQ_DEFERRED))
812 		tcp_tsq_handler(sk);
813 
814 	/* Here begins the tricky part :
815 	 * We are called from release_sock() with :
816 	 * 1) BH disabled
817 	 * 2) sk_lock.slock spinlock held
818 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 	 *
820 	 * But following code is meant to be called from BH handlers,
821 	 * so we should keep BH disabled, but early release socket ownership
822 	 */
823 	sock_release_ownership(sk);
824 
825 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
826 		tcp_write_timer_handler(sk);
827 		__sock_put(sk);
828 	}
829 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
830 		tcp_delack_timer_handler(sk);
831 		__sock_put(sk);
832 	}
833 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
834 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 		__sock_put(sk);
836 	}
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839 
840 void __init tcp_tasklet_init(void)
841 {
842 	int i;
843 
844 	for_each_possible_cpu(i) {
845 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846 
847 		INIT_LIST_HEAD(&tsq->head);
848 		tasklet_init(&tsq->tasklet,
849 			     tcp_tasklet_func,
850 			     (unsigned long)tsq);
851 	}
852 }
853 
854 /*
855  * Write buffer destructor automatically called from kfree_skb.
856  * We can't xmit new skbs from this context, as we might already
857  * hold qdisc lock.
858  */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 	struct sock *sk = skb->sk;
862 	struct tcp_sock *tp = tcp_sk(sk);
863 	int wmem;
864 
865 	/* Keep one reference on sk_wmem_alloc.
866 	 * Will be released by sk_free() from here or tcp_tasklet_func()
867 	 */
868 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
869 
870 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
871 	 * Wait until our queues (qdisc + devices) are drained.
872 	 * This gives :
873 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
874 	 * - chance for incoming ACK (processed by another cpu maybe)
875 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
876 	 */
877 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
878 		goto out;
879 
880 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
881 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
882 		unsigned long flags;
883 		struct tsq_tasklet *tsq;
884 
885 		/* queue this socket to tasklet queue */
886 		local_irq_save(flags);
887 		tsq = this_cpu_ptr(&tsq_tasklet);
888 		list_add(&tp->tsq_node, &tsq->head);
889 		tasklet_schedule(&tsq->tasklet);
890 		local_irq_restore(flags);
891 		return;
892 	}
893 out:
894 	sk_free(sk);
895 }
896 
897 /* This routine actually transmits TCP packets queued in by
898  * tcp_do_sendmsg().  This is used by both the initial
899  * transmission and possible later retransmissions.
900  * All SKB's seen here are completely headerless.  It is our
901  * job to build the TCP header, and pass the packet down to
902  * IP so it can do the same plus pass the packet off to the
903  * device.
904  *
905  * We are working here with either a clone of the original
906  * SKB, or a fresh unique copy made by the retransmit engine.
907  */
908 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
909 			    gfp_t gfp_mask)
910 {
911 	const struct inet_connection_sock *icsk = inet_csk(sk);
912 	struct inet_sock *inet;
913 	struct tcp_sock *tp;
914 	struct tcp_skb_cb *tcb;
915 	struct tcp_out_options opts;
916 	unsigned int tcp_options_size, tcp_header_size;
917 	struct tcp_md5sig_key *md5;
918 	struct tcphdr *th;
919 	int err;
920 
921 	BUG_ON(!skb || !tcp_skb_pcount(skb));
922 
923 	if (clone_it) {
924 		skb_mstamp_get(&skb->skb_mstamp);
925 
926 		if (unlikely(skb_cloned(skb)))
927 			skb = pskb_copy(skb, gfp_mask);
928 		else
929 			skb = skb_clone(skb, gfp_mask);
930 		if (unlikely(!skb))
931 			return -ENOBUFS;
932 	}
933 
934 	inet = inet_sk(sk);
935 	tp = tcp_sk(sk);
936 	tcb = TCP_SKB_CB(skb);
937 	memset(&opts, 0, sizeof(opts));
938 
939 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
940 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
941 	else
942 		tcp_options_size = tcp_established_options(sk, skb, &opts,
943 							   &md5);
944 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
945 
946 	/* if no packet is in qdisc/device queue, then allow XPS to select
947 	 * another queue. We can be called from tcp_tsq_handler()
948 	 * which holds one reference to sk_wmem_alloc.
949 	 *
950 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
951 	 * One way to get this would be to set skb->truesize = 2 on them.
952 	 */
953 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
954 
955 	skb_push(skb, tcp_header_size);
956 	skb_reset_transport_header(skb);
957 
958 	skb_orphan(skb);
959 	skb->sk = sk;
960 	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
961 	skb_set_hash_from_sk(skb, sk);
962 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
963 
964 	/* Build TCP header and checksum it. */
965 	th = tcp_hdr(skb);
966 	th->source		= inet->inet_sport;
967 	th->dest		= inet->inet_dport;
968 	th->seq			= htonl(tcb->seq);
969 	th->ack_seq		= htonl(tp->rcv_nxt);
970 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
971 					tcb->tcp_flags);
972 
973 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
974 		/* RFC1323: The window in SYN & SYN/ACK segments
975 		 * is never scaled.
976 		 */
977 		th->window	= htons(min(tp->rcv_wnd, 65535U));
978 	} else {
979 		th->window	= htons(tcp_select_window(sk));
980 	}
981 	th->check		= 0;
982 	th->urg_ptr		= 0;
983 
984 	/* The urg_mode check is necessary during a below snd_una win probe */
985 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
986 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
987 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
988 			th->urg = 1;
989 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
990 			th->urg_ptr = htons(0xFFFF);
991 			th->urg = 1;
992 		}
993 	}
994 
995 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
996 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
997 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
998 		tcp_ecn_send(sk, skb, tcp_header_size);
999 
1000 #ifdef CONFIG_TCP_MD5SIG
1001 	/* Calculate the MD5 hash, as we have all we need now */
1002 	if (md5) {
1003 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1004 		tp->af_specific->calc_md5_hash(opts.hash_location,
1005 					       md5, sk, skb);
1006 	}
1007 #endif
1008 
1009 	icsk->icsk_af_ops->send_check(sk, skb);
1010 
1011 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1012 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1013 
1014 	if (skb->len != tcp_header_size)
1015 		tcp_event_data_sent(tp, sk);
1016 
1017 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1018 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1019 			      tcp_skb_pcount(skb));
1020 
1021 	tp->segs_out += tcp_skb_pcount(skb);
1022 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1023 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1024 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1025 
1026 	/* Our usage of tstamp should remain private */
1027 	skb->tstamp.tv64 = 0;
1028 
1029 	/* Cleanup our debris for IP stacks */
1030 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1031 			       sizeof(struct inet6_skb_parm)));
1032 
1033 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1034 
1035 	if (likely(err <= 0))
1036 		return err;
1037 
1038 	tcp_enter_cwr(sk);
1039 
1040 	return net_xmit_eval(err);
1041 }
1042 
1043 /* This routine just queues the buffer for sending.
1044  *
1045  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1046  * otherwise socket can stall.
1047  */
1048 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1049 {
1050 	struct tcp_sock *tp = tcp_sk(sk);
1051 
1052 	/* Advance write_seq and place onto the write_queue. */
1053 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1054 	__skb_header_release(skb);
1055 	tcp_add_write_queue_tail(sk, skb);
1056 	sk->sk_wmem_queued += skb->truesize;
1057 	sk_mem_charge(sk, skb->truesize);
1058 }
1059 
1060 /* Initialize TSO segments for a packet. */
1061 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1062 {
1063 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1064 		/* Avoid the costly divide in the normal
1065 		 * non-TSO case.
1066 		 */
1067 		tcp_skb_pcount_set(skb, 1);
1068 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1069 	} else {
1070 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1071 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1072 	}
1073 }
1074 
1075 /* When a modification to fackets out becomes necessary, we need to check
1076  * skb is counted to fackets_out or not.
1077  */
1078 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1079 				   int decr)
1080 {
1081 	struct tcp_sock *tp = tcp_sk(sk);
1082 
1083 	if (!tp->sacked_out || tcp_is_reno(tp))
1084 		return;
1085 
1086 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1087 		tp->fackets_out -= decr;
1088 }
1089 
1090 /* Pcount in the middle of the write queue got changed, we need to do various
1091  * tweaks to fix counters
1092  */
1093 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1094 {
1095 	struct tcp_sock *tp = tcp_sk(sk);
1096 
1097 	tp->packets_out -= decr;
1098 
1099 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1100 		tp->sacked_out -= decr;
1101 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1102 		tp->retrans_out -= decr;
1103 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1104 		tp->lost_out -= decr;
1105 
1106 	/* Reno case is special. Sigh... */
1107 	if (tcp_is_reno(tp) && decr > 0)
1108 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1109 
1110 	tcp_adjust_fackets_out(sk, skb, decr);
1111 
1112 	if (tp->lost_skb_hint &&
1113 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1114 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1115 		tp->lost_cnt_hint -= decr;
1116 
1117 	tcp_verify_left_out(tp);
1118 }
1119 
1120 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1121 {
1122 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1123 
1124 	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1125 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1126 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1127 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1128 
1129 		shinfo->tx_flags &= ~tsflags;
1130 		shinfo2->tx_flags |= tsflags;
1131 		swap(shinfo->tskey, shinfo2->tskey);
1132 	}
1133 }
1134 
1135 /* Function to create two new TCP segments.  Shrinks the given segment
1136  * to the specified size and appends a new segment with the rest of the
1137  * packet to the list.  This won't be called frequently, I hope.
1138  * Remember, these are still headerless SKBs at this point.
1139  */
1140 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1141 		 unsigned int mss_now, gfp_t gfp)
1142 {
1143 	struct tcp_sock *tp = tcp_sk(sk);
1144 	struct sk_buff *buff;
1145 	int nsize, old_factor;
1146 	int nlen;
1147 	u8 flags;
1148 
1149 	if (WARN_ON(len > skb->len))
1150 		return -EINVAL;
1151 
1152 	nsize = skb_headlen(skb) - len;
1153 	if (nsize < 0)
1154 		nsize = 0;
1155 
1156 	if (skb_unclone(skb, gfp))
1157 		return -ENOMEM;
1158 
1159 	/* Get a new skb... force flag on. */
1160 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1161 	if (!buff)
1162 		return -ENOMEM; /* We'll just try again later. */
1163 
1164 	sk->sk_wmem_queued += buff->truesize;
1165 	sk_mem_charge(sk, buff->truesize);
1166 	nlen = skb->len - len - nsize;
1167 	buff->truesize += nlen;
1168 	skb->truesize -= nlen;
1169 
1170 	/* Correct the sequence numbers. */
1171 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1172 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1173 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1174 
1175 	/* PSH and FIN should only be set in the second packet. */
1176 	flags = TCP_SKB_CB(skb)->tcp_flags;
1177 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1178 	TCP_SKB_CB(buff)->tcp_flags = flags;
1179 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1180 
1181 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1182 		/* Copy and checksum data tail into the new buffer. */
1183 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1184 						       skb_put(buff, nsize),
1185 						       nsize, 0);
1186 
1187 		skb_trim(skb, len);
1188 
1189 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1190 	} else {
1191 		skb->ip_summed = CHECKSUM_PARTIAL;
1192 		skb_split(skb, buff, len);
1193 	}
1194 
1195 	buff->ip_summed = skb->ip_summed;
1196 
1197 	buff->tstamp = skb->tstamp;
1198 	tcp_fragment_tstamp(skb, buff);
1199 
1200 	old_factor = tcp_skb_pcount(skb);
1201 
1202 	/* Fix up tso_factor for both original and new SKB.  */
1203 	tcp_set_skb_tso_segs(skb, mss_now);
1204 	tcp_set_skb_tso_segs(buff, mss_now);
1205 
1206 	/* If this packet has been sent out already, we must
1207 	 * adjust the various packet counters.
1208 	 */
1209 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1210 		int diff = old_factor - tcp_skb_pcount(skb) -
1211 			tcp_skb_pcount(buff);
1212 
1213 		if (diff)
1214 			tcp_adjust_pcount(sk, skb, diff);
1215 	}
1216 
1217 	/* Link BUFF into the send queue. */
1218 	__skb_header_release(buff);
1219 	tcp_insert_write_queue_after(skb, buff, sk);
1220 
1221 	return 0;
1222 }
1223 
1224 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1225  * eventually). The difference is that pulled data not copied, but
1226  * immediately discarded.
1227  */
1228 static void __pskb_trim_head(struct sk_buff *skb, int len)
1229 {
1230 	struct skb_shared_info *shinfo;
1231 	int i, k, eat;
1232 
1233 	eat = min_t(int, len, skb_headlen(skb));
1234 	if (eat) {
1235 		__skb_pull(skb, eat);
1236 		len -= eat;
1237 		if (!len)
1238 			return;
1239 	}
1240 	eat = len;
1241 	k = 0;
1242 	shinfo = skb_shinfo(skb);
1243 	for (i = 0; i < shinfo->nr_frags; i++) {
1244 		int size = skb_frag_size(&shinfo->frags[i]);
1245 
1246 		if (size <= eat) {
1247 			skb_frag_unref(skb, i);
1248 			eat -= size;
1249 		} else {
1250 			shinfo->frags[k] = shinfo->frags[i];
1251 			if (eat) {
1252 				shinfo->frags[k].page_offset += eat;
1253 				skb_frag_size_sub(&shinfo->frags[k], eat);
1254 				eat = 0;
1255 			}
1256 			k++;
1257 		}
1258 	}
1259 	shinfo->nr_frags = k;
1260 
1261 	skb_reset_tail_pointer(skb);
1262 	skb->data_len -= len;
1263 	skb->len = skb->data_len;
1264 }
1265 
1266 /* Remove acked data from a packet in the transmit queue. */
1267 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1268 {
1269 	if (skb_unclone(skb, GFP_ATOMIC))
1270 		return -ENOMEM;
1271 
1272 	__pskb_trim_head(skb, len);
1273 
1274 	TCP_SKB_CB(skb)->seq += len;
1275 	skb->ip_summed = CHECKSUM_PARTIAL;
1276 
1277 	skb->truesize	     -= len;
1278 	sk->sk_wmem_queued   -= len;
1279 	sk_mem_uncharge(sk, len);
1280 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1281 
1282 	/* Any change of skb->len requires recalculation of tso factor. */
1283 	if (tcp_skb_pcount(skb) > 1)
1284 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1285 
1286 	return 0;
1287 }
1288 
1289 /* Calculate MSS not accounting any TCP options.  */
1290 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1291 {
1292 	const struct tcp_sock *tp = tcp_sk(sk);
1293 	const struct inet_connection_sock *icsk = inet_csk(sk);
1294 	int mss_now;
1295 
1296 	/* Calculate base mss without TCP options:
1297 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1298 	 */
1299 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1300 
1301 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1302 	if (icsk->icsk_af_ops->net_frag_header_len) {
1303 		const struct dst_entry *dst = __sk_dst_get(sk);
1304 
1305 		if (dst && dst_allfrag(dst))
1306 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1307 	}
1308 
1309 	/* Clamp it (mss_clamp does not include tcp options) */
1310 	if (mss_now > tp->rx_opt.mss_clamp)
1311 		mss_now = tp->rx_opt.mss_clamp;
1312 
1313 	/* Now subtract optional transport overhead */
1314 	mss_now -= icsk->icsk_ext_hdr_len;
1315 
1316 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1317 	if (mss_now < 48)
1318 		mss_now = 48;
1319 	return mss_now;
1320 }
1321 
1322 /* Calculate MSS. Not accounting for SACKs here.  */
1323 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1324 {
1325 	/* Subtract TCP options size, not including SACKs */
1326 	return __tcp_mtu_to_mss(sk, pmtu) -
1327 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1328 }
1329 
1330 /* Inverse of above */
1331 int tcp_mss_to_mtu(struct sock *sk, int mss)
1332 {
1333 	const struct tcp_sock *tp = tcp_sk(sk);
1334 	const struct inet_connection_sock *icsk = inet_csk(sk);
1335 	int mtu;
1336 
1337 	mtu = mss +
1338 	      tp->tcp_header_len +
1339 	      icsk->icsk_ext_hdr_len +
1340 	      icsk->icsk_af_ops->net_header_len;
1341 
1342 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1343 	if (icsk->icsk_af_ops->net_frag_header_len) {
1344 		const struct dst_entry *dst = __sk_dst_get(sk);
1345 
1346 		if (dst && dst_allfrag(dst))
1347 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1348 	}
1349 	return mtu;
1350 }
1351 
1352 /* MTU probing init per socket */
1353 void tcp_mtup_init(struct sock *sk)
1354 {
1355 	struct tcp_sock *tp = tcp_sk(sk);
1356 	struct inet_connection_sock *icsk = inet_csk(sk);
1357 	struct net *net = sock_net(sk);
1358 
1359 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1360 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1361 			       icsk->icsk_af_ops->net_header_len;
1362 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1363 	icsk->icsk_mtup.probe_size = 0;
1364 	if (icsk->icsk_mtup.enabled)
1365 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1366 }
1367 EXPORT_SYMBOL(tcp_mtup_init);
1368 
1369 /* This function synchronize snd mss to current pmtu/exthdr set.
1370 
1371    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1372    for TCP options, but includes only bare TCP header.
1373 
1374    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1375    It is minimum of user_mss and mss received with SYN.
1376    It also does not include TCP options.
1377 
1378    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1379 
1380    tp->mss_cache is current effective sending mss, including
1381    all tcp options except for SACKs. It is evaluated,
1382    taking into account current pmtu, but never exceeds
1383    tp->rx_opt.mss_clamp.
1384 
1385    NOTE1. rfc1122 clearly states that advertised MSS
1386    DOES NOT include either tcp or ip options.
1387 
1388    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1389    are READ ONLY outside this function.		--ANK (980731)
1390  */
1391 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1392 {
1393 	struct tcp_sock *tp = tcp_sk(sk);
1394 	struct inet_connection_sock *icsk = inet_csk(sk);
1395 	int mss_now;
1396 
1397 	if (icsk->icsk_mtup.search_high > pmtu)
1398 		icsk->icsk_mtup.search_high = pmtu;
1399 
1400 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1401 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1402 
1403 	/* And store cached results */
1404 	icsk->icsk_pmtu_cookie = pmtu;
1405 	if (icsk->icsk_mtup.enabled)
1406 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1407 	tp->mss_cache = mss_now;
1408 
1409 	return mss_now;
1410 }
1411 EXPORT_SYMBOL(tcp_sync_mss);
1412 
1413 /* Compute the current effective MSS, taking SACKs and IP options,
1414  * and even PMTU discovery events into account.
1415  */
1416 unsigned int tcp_current_mss(struct sock *sk)
1417 {
1418 	const struct tcp_sock *tp = tcp_sk(sk);
1419 	const struct dst_entry *dst = __sk_dst_get(sk);
1420 	u32 mss_now;
1421 	unsigned int header_len;
1422 	struct tcp_out_options opts;
1423 	struct tcp_md5sig_key *md5;
1424 
1425 	mss_now = tp->mss_cache;
1426 
1427 	if (dst) {
1428 		u32 mtu = dst_mtu(dst);
1429 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1430 			mss_now = tcp_sync_mss(sk, mtu);
1431 	}
1432 
1433 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1434 		     sizeof(struct tcphdr);
1435 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1436 	 * some common options. If this is an odd packet (because we have SACK
1437 	 * blocks etc) then our calculated header_len will be different, and
1438 	 * we have to adjust mss_now correspondingly */
1439 	if (header_len != tp->tcp_header_len) {
1440 		int delta = (int) header_len - tp->tcp_header_len;
1441 		mss_now -= delta;
1442 	}
1443 
1444 	return mss_now;
1445 }
1446 
1447 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1448  * As additional protections, we do not touch cwnd in retransmission phases,
1449  * and if application hit its sndbuf limit recently.
1450  */
1451 static void tcp_cwnd_application_limited(struct sock *sk)
1452 {
1453 	struct tcp_sock *tp = tcp_sk(sk);
1454 
1455 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1456 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1457 		/* Limited by application or receiver window. */
1458 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1459 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1460 		if (win_used < tp->snd_cwnd) {
1461 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1462 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1463 		}
1464 		tp->snd_cwnd_used = 0;
1465 	}
1466 	tp->snd_cwnd_stamp = tcp_time_stamp;
1467 }
1468 
1469 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 
1473 	/* Track the maximum number of outstanding packets in each
1474 	 * window, and remember whether we were cwnd-limited then.
1475 	 */
1476 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1477 	    tp->packets_out > tp->max_packets_out) {
1478 		tp->max_packets_out = tp->packets_out;
1479 		tp->max_packets_seq = tp->snd_nxt;
1480 		tp->is_cwnd_limited = is_cwnd_limited;
1481 	}
1482 
1483 	if (tcp_is_cwnd_limited(sk)) {
1484 		/* Network is feed fully. */
1485 		tp->snd_cwnd_used = 0;
1486 		tp->snd_cwnd_stamp = tcp_time_stamp;
1487 	} else {
1488 		/* Network starves. */
1489 		if (tp->packets_out > tp->snd_cwnd_used)
1490 			tp->snd_cwnd_used = tp->packets_out;
1491 
1492 		if (sysctl_tcp_slow_start_after_idle &&
1493 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1494 			tcp_cwnd_application_limited(sk);
1495 	}
1496 }
1497 
1498 /* Minshall's variant of the Nagle send check. */
1499 static bool tcp_minshall_check(const struct tcp_sock *tp)
1500 {
1501 	return after(tp->snd_sml, tp->snd_una) &&
1502 		!after(tp->snd_sml, tp->snd_nxt);
1503 }
1504 
1505 /* Update snd_sml if this skb is under mss
1506  * Note that a TSO packet might end with a sub-mss segment
1507  * The test is really :
1508  * if ((skb->len % mss) != 0)
1509  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1510  * But we can avoid doing the divide again given we already have
1511  *  skb_pcount = skb->len / mss_now
1512  */
1513 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1514 				const struct sk_buff *skb)
1515 {
1516 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1517 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1518 }
1519 
1520 /* Return false, if packet can be sent now without violation Nagle's rules:
1521  * 1. It is full sized. (provided by caller in %partial bool)
1522  * 2. Or it contains FIN. (already checked by caller)
1523  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1524  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1525  *    With Minshall's modification: all sent small packets are ACKed.
1526  */
1527 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1528 			    int nonagle)
1529 {
1530 	return partial &&
1531 		((nonagle & TCP_NAGLE_CORK) ||
1532 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1533 }
1534 
1535 /* Return how many segs we'd like on a TSO packet,
1536  * to send one TSO packet per ms
1537  */
1538 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1539 {
1540 	u32 bytes, segs;
1541 
1542 	bytes = min(sk->sk_pacing_rate >> 10,
1543 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1544 
1545 	/* Goal is to send at least one packet per ms,
1546 	 * not one big TSO packet every 100 ms.
1547 	 * This preserves ACK clocking and is consistent
1548 	 * with tcp_tso_should_defer() heuristic.
1549 	 */
1550 	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1551 
1552 	return min_t(u32, segs, sk->sk_gso_max_segs);
1553 }
1554 
1555 /* Returns the portion of skb which can be sent right away */
1556 static unsigned int tcp_mss_split_point(const struct sock *sk,
1557 					const struct sk_buff *skb,
1558 					unsigned int mss_now,
1559 					unsigned int max_segs,
1560 					int nonagle)
1561 {
1562 	const struct tcp_sock *tp = tcp_sk(sk);
1563 	u32 partial, needed, window, max_len;
1564 
1565 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1566 	max_len = mss_now * max_segs;
1567 
1568 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1569 		return max_len;
1570 
1571 	needed = min(skb->len, window);
1572 
1573 	if (max_len <= needed)
1574 		return max_len;
1575 
1576 	partial = needed % mss_now;
1577 	/* If last segment is not a full MSS, check if Nagle rules allow us
1578 	 * to include this last segment in this skb.
1579 	 * Otherwise, we'll split the skb at last MSS boundary
1580 	 */
1581 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1582 		return needed - partial;
1583 
1584 	return needed;
1585 }
1586 
1587 /* Can at least one segment of SKB be sent right now, according to the
1588  * congestion window rules?  If so, return how many segments are allowed.
1589  */
1590 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1591 					 const struct sk_buff *skb)
1592 {
1593 	u32 in_flight, cwnd, halfcwnd;
1594 
1595 	/* Don't be strict about the congestion window for the final FIN.  */
1596 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1597 	    tcp_skb_pcount(skb) == 1)
1598 		return 1;
1599 
1600 	in_flight = tcp_packets_in_flight(tp);
1601 	cwnd = tp->snd_cwnd;
1602 	if (in_flight >= cwnd)
1603 		return 0;
1604 
1605 	/* For better scheduling, ensure we have at least
1606 	 * 2 GSO packets in flight.
1607 	 */
1608 	halfcwnd = max(cwnd >> 1, 1U);
1609 	return min(halfcwnd, cwnd - in_flight);
1610 }
1611 
1612 /* Initialize TSO state of a skb.
1613  * This must be invoked the first time we consider transmitting
1614  * SKB onto the wire.
1615  */
1616 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1617 {
1618 	int tso_segs = tcp_skb_pcount(skb);
1619 
1620 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1621 		tcp_set_skb_tso_segs(skb, mss_now);
1622 		tso_segs = tcp_skb_pcount(skb);
1623 	}
1624 	return tso_segs;
1625 }
1626 
1627 
1628 /* Return true if the Nagle test allows this packet to be
1629  * sent now.
1630  */
1631 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1632 				  unsigned int cur_mss, int nonagle)
1633 {
1634 	/* Nagle rule does not apply to frames, which sit in the middle of the
1635 	 * write_queue (they have no chances to get new data).
1636 	 *
1637 	 * This is implemented in the callers, where they modify the 'nonagle'
1638 	 * argument based upon the location of SKB in the send queue.
1639 	 */
1640 	if (nonagle & TCP_NAGLE_PUSH)
1641 		return true;
1642 
1643 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1644 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1645 		return true;
1646 
1647 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1648 		return true;
1649 
1650 	return false;
1651 }
1652 
1653 /* Does at least the first segment of SKB fit into the send window? */
1654 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1655 			     const struct sk_buff *skb,
1656 			     unsigned int cur_mss)
1657 {
1658 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1659 
1660 	if (skb->len > cur_mss)
1661 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1662 
1663 	return !after(end_seq, tcp_wnd_end(tp));
1664 }
1665 
1666 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1667  * should be put on the wire right now.  If so, it returns the number of
1668  * packets allowed by the congestion window.
1669  */
1670 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1671 				 unsigned int cur_mss, int nonagle)
1672 {
1673 	const struct tcp_sock *tp = tcp_sk(sk);
1674 	unsigned int cwnd_quota;
1675 
1676 	tcp_init_tso_segs(skb, cur_mss);
1677 
1678 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1679 		return 0;
1680 
1681 	cwnd_quota = tcp_cwnd_test(tp, skb);
1682 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1683 		cwnd_quota = 0;
1684 
1685 	return cwnd_quota;
1686 }
1687 
1688 /* Test if sending is allowed right now. */
1689 bool tcp_may_send_now(struct sock *sk)
1690 {
1691 	const struct tcp_sock *tp = tcp_sk(sk);
1692 	struct sk_buff *skb = tcp_send_head(sk);
1693 
1694 	return skb &&
1695 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1696 			     (tcp_skb_is_last(sk, skb) ?
1697 			      tp->nonagle : TCP_NAGLE_PUSH));
1698 }
1699 
1700 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1701  * which is put after SKB on the list.  It is very much like
1702  * tcp_fragment() except that it may make several kinds of assumptions
1703  * in order to speed up the splitting operation.  In particular, we
1704  * know that all the data is in scatter-gather pages, and that the
1705  * packet has never been sent out before (and thus is not cloned).
1706  */
1707 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1708 			unsigned int mss_now, gfp_t gfp)
1709 {
1710 	struct sk_buff *buff;
1711 	int nlen = skb->len - len;
1712 	u8 flags;
1713 
1714 	/* All of a TSO frame must be composed of paged data.  */
1715 	if (skb->len != skb->data_len)
1716 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1717 
1718 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1719 	if (unlikely(!buff))
1720 		return -ENOMEM;
1721 
1722 	sk->sk_wmem_queued += buff->truesize;
1723 	sk_mem_charge(sk, buff->truesize);
1724 	buff->truesize += nlen;
1725 	skb->truesize -= nlen;
1726 
1727 	/* Correct the sequence numbers. */
1728 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1729 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1730 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1731 
1732 	/* PSH and FIN should only be set in the second packet. */
1733 	flags = TCP_SKB_CB(skb)->tcp_flags;
1734 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1735 	TCP_SKB_CB(buff)->tcp_flags = flags;
1736 
1737 	/* This packet was never sent out yet, so no SACK bits. */
1738 	TCP_SKB_CB(buff)->sacked = 0;
1739 
1740 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1741 	skb_split(skb, buff, len);
1742 	tcp_fragment_tstamp(skb, buff);
1743 
1744 	/* Fix up tso_factor for both original and new SKB.  */
1745 	tcp_set_skb_tso_segs(skb, mss_now);
1746 	tcp_set_skb_tso_segs(buff, mss_now);
1747 
1748 	/* Link BUFF into the send queue. */
1749 	__skb_header_release(buff);
1750 	tcp_insert_write_queue_after(skb, buff, sk);
1751 
1752 	return 0;
1753 }
1754 
1755 /* Try to defer sending, if possible, in order to minimize the amount
1756  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1757  *
1758  * This algorithm is from John Heffner.
1759  */
1760 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1761 				 bool *is_cwnd_limited, u32 max_segs)
1762 {
1763 	const struct inet_connection_sock *icsk = inet_csk(sk);
1764 	u32 age, send_win, cong_win, limit, in_flight;
1765 	struct tcp_sock *tp = tcp_sk(sk);
1766 	struct skb_mstamp now;
1767 	struct sk_buff *head;
1768 	int win_divisor;
1769 
1770 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1771 		goto send_now;
1772 
1773 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1774 		goto send_now;
1775 
1776 	/* Avoid bursty behavior by allowing defer
1777 	 * only if the last write was recent.
1778 	 */
1779 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1780 		goto send_now;
1781 
1782 	in_flight = tcp_packets_in_flight(tp);
1783 
1784 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1785 
1786 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1787 
1788 	/* From in_flight test above, we know that cwnd > in_flight.  */
1789 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1790 
1791 	limit = min(send_win, cong_win);
1792 
1793 	/* If a full-sized TSO skb can be sent, do it. */
1794 	if (limit >= max_segs * tp->mss_cache)
1795 		goto send_now;
1796 
1797 	/* Middle in queue won't get any more data, full sendable already? */
1798 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1799 		goto send_now;
1800 
1801 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1802 	if (win_divisor) {
1803 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1804 
1805 		/* If at least some fraction of a window is available,
1806 		 * just use it.
1807 		 */
1808 		chunk /= win_divisor;
1809 		if (limit >= chunk)
1810 			goto send_now;
1811 	} else {
1812 		/* Different approach, try not to defer past a single
1813 		 * ACK.  Receiver should ACK every other full sized
1814 		 * frame, so if we have space for more than 3 frames
1815 		 * then send now.
1816 		 */
1817 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1818 			goto send_now;
1819 	}
1820 
1821 	head = tcp_write_queue_head(sk);
1822 	skb_mstamp_get(&now);
1823 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1824 	/* If next ACK is likely to come too late (half srtt), do not defer */
1825 	if (age < (tp->srtt_us >> 4))
1826 		goto send_now;
1827 
1828 	/* Ok, it looks like it is advisable to defer. */
1829 
1830 	if (cong_win < send_win && cong_win < skb->len)
1831 		*is_cwnd_limited = true;
1832 
1833 	return true;
1834 
1835 send_now:
1836 	return false;
1837 }
1838 
1839 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1840 {
1841 	struct inet_connection_sock *icsk = inet_csk(sk);
1842 	struct tcp_sock *tp = tcp_sk(sk);
1843 	struct net *net = sock_net(sk);
1844 	u32 interval;
1845 	s32 delta;
1846 
1847 	interval = net->ipv4.sysctl_tcp_probe_interval;
1848 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1849 	if (unlikely(delta >= interval * HZ)) {
1850 		int mss = tcp_current_mss(sk);
1851 
1852 		/* Update current search range */
1853 		icsk->icsk_mtup.probe_size = 0;
1854 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1855 			sizeof(struct tcphdr) +
1856 			icsk->icsk_af_ops->net_header_len;
1857 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1858 
1859 		/* Update probe time stamp */
1860 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1861 	}
1862 }
1863 
1864 /* Create a new MTU probe if we are ready.
1865  * MTU probe is regularly attempting to increase the path MTU by
1866  * deliberately sending larger packets.  This discovers routing
1867  * changes resulting in larger path MTUs.
1868  *
1869  * Returns 0 if we should wait to probe (no cwnd available),
1870  *         1 if a probe was sent,
1871  *         -1 otherwise
1872  */
1873 static int tcp_mtu_probe(struct sock *sk)
1874 {
1875 	struct tcp_sock *tp = tcp_sk(sk);
1876 	struct inet_connection_sock *icsk = inet_csk(sk);
1877 	struct sk_buff *skb, *nskb, *next;
1878 	struct net *net = sock_net(sk);
1879 	int len;
1880 	int probe_size;
1881 	int size_needed;
1882 	int copy;
1883 	int mss_now;
1884 	int interval;
1885 
1886 	/* Not currently probing/verifying,
1887 	 * not in recovery,
1888 	 * have enough cwnd, and
1889 	 * not SACKing (the variable headers throw things off) */
1890 	if (!icsk->icsk_mtup.enabled ||
1891 	    icsk->icsk_mtup.probe_size ||
1892 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1893 	    tp->snd_cwnd < 11 ||
1894 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1895 		return -1;
1896 
1897 	/* Use binary search for probe_size between tcp_mss_base,
1898 	 * and current mss_clamp. if (search_high - search_low)
1899 	 * smaller than a threshold, backoff from probing.
1900 	 */
1901 	mss_now = tcp_current_mss(sk);
1902 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1903 				    icsk->icsk_mtup.search_low) >> 1);
1904 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1905 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1906 	/* When misfortune happens, we are reprobing actively,
1907 	 * and then reprobe timer has expired. We stick with current
1908 	 * probing process by not resetting search range to its orignal.
1909 	 */
1910 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1911 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1912 		/* Check whether enough time has elaplased for
1913 		 * another round of probing.
1914 		 */
1915 		tcp_mtu_check_reprobe(sk);
1916 		return -1;
1917 	}
1918 
1919 	/* Have enough data in the send queue to probe? */
1920 	if (tp->write_seq - tp->snd_nxt < size_needed)
1921 		return -1;
1922 
1923 	if (tp->snd_wnd < size_needed)
1924 		return -1;
1925 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1926 		return 0;
1927 
1928 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1929 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1930 		if (!tcp_packets_in_flight(tp))
1931 			return -1;
1932 		else
1933 			return 0;
1934 	}
1935 
1936 	/* We're allowed to probe.  Build it now. */
1937 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1938 	if (!nskb)
1939 		return -1;
1940 	sk->sk_wmem_queued += nskb->truesize;
1941 	sk_mem_charge(sk, nskb->truesize);
1942 
1943 	skb = tcp_send_head(sk);
1944 
1945 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1946 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1947 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1948 	TCP_SKB_CB(nskb)->sacked = 0;
1949 	nskb->csum = 0;
1950 	nskb->ip_summed = skb->ip_summed;
1951 
1952 	tcp_insert_write_queue_before(nskb, skb, sk);
1953 
1954 	len = 0;
1955 	tcp_for_write_queue_from_safe(skb, next, sk) {
1956 		copy = min_t(int, skb->len, probe_size - len);
1957 		if (nskb->ip_summed)
1958 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1959 		else
1960 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1961 							    skb_put(nskb, copy),
1962 							    copy, nskb->csum);
1963 
1964 		if (skb->len <= copy) {
1965 			/* We've eaten all the data from this skb.
1966 			 * Throw it away. */
1967 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1968 			tcp_unlink_write_queue(skb, sk);
1969 			sk_wmem_free_skb(sk, skb);
1970 		} else {
1971 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1972 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1973 			if (!skb_shinfo(skb)->nr_frags) {
1974 				skb_pull(skb, copy);
1975 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1976 					skb->csum = csum_partial(skb->data,
1977 								 skb->len, 0);
1978 			} else {
1979 				__pskb_trim_head(skb, copy);
1980 				tcp_set_skb_tso_segs(skb, mss_now);
1981 			}
1982 			TCP_SKB_CB(skb)->seq += copy;
1983 		}
1984 
1985 		len += copy;
1986 
1987 		if (len >= probe_size)
1988 			break;
1989 	}
1990 	tcp_init_tso_segs(nskb, nskb->len);
1991 
1992 	/* We're ready to send.  If this fails, the probe will
1993 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1994 	 */
1995 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1996 		/* Decrement cwnd here because we are sending
1997 		 * effectively two packets. */
1998 		tp->snd_cwnd--;
1999 		tcp_event_new_data_sent(sk, nskb);
2000 
2001 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2002 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2003 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2004 
2005 		return 1;
2006 	}
2007 
2008 	return -1;
2009 }
2010 
2011 /* This routine writes packets to the network.  It advances the
2012  * send_head.  This happens as incoming acks open up the remote
2013  * window for us.
2014  *
2015  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2016  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2017  * account rare use of URG, this is not a big flaw.
2018  *
2019  * Send at most one packet when push_one > 0. Temporarily ignore
2020  * cwnd limit to force at most one packet out when push_one == 2.
2021 
2022  * Returns true, if no segments are in flight and we have queued segments,
2023  * but cannot send anything now because of SWS or another problem.
2024  */
2025 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2026 			   int push_one, gfp_t gfp)
2027 {
2028 	struct tcp_sock *tp = tcp_sk(sk);
2029 	struct sk_buff *skb;
2030 	unsigned int tso_segs, sent_pkts;
2031 	int cwnd_quota;
2032 	int result;
2033 	bool is_cwnd_limited = false;
2034 	u32 max_segs;
2035 
2036 	sent_pkts = 0;
2037 
2038 	if (!push_one) {
2039 		/* Do MTU probing. */
2040 		result = tcp_mtu_probe(sk);
2041 		if (!result) {
2042 			return false;
2043 		} else if (result > 0) {
2044 			sent_pkts = 1;
2045 		}
2046 	}
2047 
2048 	max_segs = tcp_tso_autosize(sk, mss_now);
2049 	while ((skb = tcp_send_head(sk))) {
2050 		unsigned int limit;
2051 
2052 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2053 		BUG_ON(!tso_segs);
2054 
2055 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2056 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2057 			skb_mstamp_get(&skb->skb_mstamp);
2058 			goto repair; /* Skip network transmission */
2059 		}
2060 
2061 		cwnd_quota = tcp_cwnd_test(tp, skb);
2062 		if (!cwnd_quota) {
2063 			is_cwnd_limited = true;
2064 			if (push_one == 2)
2065 				/* Force out a loss probe pkt. */
2066 				cwnd_quota = 1;
2067 			else
2068 				break;
2069 		}
2070 
2071 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2072 			break;
2073 
2074 		if (tso_segs == 1) {
2075 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2076 						     (tcp_skb_is_last(sk, skb) ?
2077 						      nonagle : TCP_NAGLE_PUSH))))
2078 				break;
2079 		} else {
2080 			if (!push_one &&
2081 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2082 						 max_segs))
2083 				break;
2084 		}
2085 
2086 		limit = mss_now;
2087 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2088 			limit = tcp_mss_split_point(sk, skb, mss_now,
2089 						    min_t(unsigned int,
2090 							  cwnd_quota,
2091 							  max_segs),
2092 						    nonagle);
2093 
2094 		if (skb->len > limit &&
2095 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2096 			break;
2097 
2098 		/* TCP Small Queues :
2099 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2100 		 * This allows for :
2101 		 *  - better RTT estimation and ACK scheduling
2102 		 *  - faster recovery
2103 		 *  - high rates
2104 		 * Alas, some drivers / subsystems require a fair amount
2105 		 * of queued bytes to ensure line rate.
2106 		 * One example is wifi aggregation (802.11 AMPDU)
2107 		 */
2108 		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2109 		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2110 
2111 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2112 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2113 			/* It is possible TX completion already happened
2114 			 * before we set TSQ_THROTTLED, so we must
2115 			 * test again the condition.
2116 			 */
2117 			smp_mb__after_atomic();
2118 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2119 				break;
2120 		}
2121 
2122 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2123 			break;
2124 
2125 repair:
2126 		/* Advance the send_head.  This one is sent out.
2127 		 * This call will increment packets_out.
2128 		 */
2129 		tcp_event_new_data_sent(sk, skb);
2130 
2131 		tcp_minshall_update(tp, mss_now, skb);
2132 		sent_pkts += tcp_skb_pcount(skb);
2133 
2134 		if (push_one)
2135 			break;
2136 	}
2137 
2138 	if (likely(sent_pkts)) {
2139 		if (tcp_in_cwnd_reduction(sk))
2140 			tp->prr_out += sent_pkts;
2141 
2142 		/* Send one loss probe per tail loss episode. */
2143 		if (push_one != 2)
2144 			tcp_schedule_loss_probe(sk);
2145 		tcp_cwnd_validate(sk, is_cwnd_limited);
2146 		return false;
2147 	}
2148 	return !tp->packets_out && tcp_send_head(sk);
2149 }
2150 
2151 bool tcp_schedule_loss_probe(struct sock *sk)
2152 {
2153 	struct inet_connection_sock *icsk = inet_csk(sk);
2154 	struct tcp_sock *tp = tcp_sk(sk);
2155 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2156 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2157 
2158 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2159 		return false;
2160 	/* No consecutive loss probes. */
2161 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2162 		tcp_rearm_rto(sk);
2163 		return false;
2164 	}
2165 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2166 	 * finishes.
2167 	 */
2168 	if (sk->sk_state == TCP_SYN_RECV)
2169 		return false;
2170 
2171 	/* TLP is only scheduled when next timer event is RTO. */
2172 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2173 		return false;
2174 
2175 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2176 	 * in Open state, that are either limited by cwnd or application.
2177 	 */
2178 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2179 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2180 		return false;
2181 
2182 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2183 	     tcp_send_head(sk))
2184 		return false;
2185 
2186 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2187 	 * for delayed ack when there's one outstanding packet.
2188 	 */
2189 	timeout = rtt << 1;
2190 	if (tp->packets_out == 1)
2191 		timeout = max_t(u32, timeout,
2192 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2193 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2194 
2195 	/* If RTO is shorter, just schedule TLP in its place. */
2196 	tlp_time_stamp = tcp_time_stamp + timeout;
2197 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2198 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2199 		s32 delta = rto_time_stamp - tcp_time_stamp;
2200 		if (delta > 0)
2201 			timeout = delta;
2202 	}
2203 
2204 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2205 				  TCP_RTO_MAX);
2206 	return true;
2207 }
2208 
2209 /* Thanks to skb fast clones, we can detect if a prior transmit of
2210  * a packet is still in a qdisc or driver queue.
2211  * In this case, there is very little point doing a retransmit !
2212  * Note: This is called from BH context only.
2213  */
2214 static bool skb_still_in_host_queue(const struct sock *sk,
2215 				    const struct sk_buff *skb)
2216 {
2217 	if (unlikely(skb_fclone_busy(sk, skb))) {
2218 		NET_INC_STATS_BH(sock_net(sk),
2219 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2220 		return true;
2221 	}
2222 	return false;
2223 }
2224 
2225 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2226  * retransmit the last segment.
2227  */
2228 void tcp_send_loss_probe(struct sock *sk)
2229 {
2230 	struct tcp_sock *tp = tcp_sk(sk);
2231 	struct sk_buff *skb;
2232 	int pcount;
2233 	int mss = tcp_current_mss(sk);
2234 
2235 	skb = tcp_send_head(sk);
2236 	if (skb) {
2237 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2238 			pcount = tp->packets_out;
2239 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2240 			if (tp->packets_out > pcount)
2241 				goto probe_sent;
2242 			goto rearm_timer;
2243 		}
2244 		skb = tcp_write_queue_prev(sk, skb);
2245 	} else {
2246 		skb = tcp_write_queue_tail(sk);
2247 	}
2248 
2249 	/* At most one outstanding TLP retransmission. */
2250 	if (tp->tlp_high_seq)
2251 		goto rearm_timer;
2252 
2253 	/* Retransmit last segment. */
2254 	if (WARN_ON(!skb))
2255 		goto rearm_timer;
2256 
2257 	if (skb_still_in_host_queue(sk, skb))
2258 		goto rearm_timer;
2259 
2260 	pcount = tcp_skb_pcount(skb);
2261 	if (WARN_ON(!pcount))
2262 		goto rearm_timer;
2263 
2264 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2265 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2266 					  GFP_ATOMIC)))
2267 			goto rearm_timer;
2268 		skb = tcp_write_queue_next(sk, skb);
2269 	}
2270 
2271 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2272 		goto rearm_timer;
2273 
2274 	if (__tcp_retransmit_skb(sk, skb))
2275 		goto rearm_timer;
2276 
2277 	/* Record snd_nxt for loss detection. */
2278 	tp->tlp_high_seq = tp->snd_nxt;
2279 
2280 probe_sent:
2281 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2282 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2283 	inet_csk(sk)->icsk_pending = 0;
2284 rearm_timer:
2285 	tcp_rearm_rto(sk);
2286 }
2287 
2288 /* Push out any pending frames which were held back due to
2289  * TCP_CORK or attempt at coalescing tiny packets.
2290  * The socket must be locked by the caller.
2291  */
2292 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2293 			       int nonagle)
2294 {
2295 	/* If we are closed, the bytes will have to remain here.
2296 	 * In time closedown will finish, we empty the write queue and
2297 	 * all will be happy.
2298 	 */
2299 	if (unlikely(sk->sk_state == TCP_CLOSE))
2300 		return;
2301 
2302 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2303 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2304 		tcp_check_probe_timer(sk);
2305 }
2306 
2307 /* Send _single_ skb sitting at the send head. This function requires
2308  * true push pending frames to setup probe timer etc.
2309  */
2310 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2311 {
2312 	struct sk_buff *skb = tcp_send_head(sk);
2313 
2314 	BUG_ON(!skb || skb->len < mss_now);
2315 
2316 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2317 }
2318 
2319 /* This function returns the amount that we can raise the
2320  * usable window based on the following constraints
2321  *
2322  * 1. The window can never be shrunk once it is offered (RFC 793)
2323  * 2. We limit memory per socket
2324  *
2325  * RFC 1122:
2326  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2327  *  RECV.NEXT + RCV.WIN fixed until:
2328  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2329  *
2330  * i.e. don't raise the right edge of the window until you can raise
2331  * it at least MSS bytes.
2332  *
2333  * Unfortunately, the recommended algorithm breaks header prediction,
2334  * since header prediction assumes th->window stays fixed.
2335  *
2336  * Strictly speaking, keeping th->window fixed violates the receiver
2337  * side SWS prevention criteria. The problem is that under this rule
2338  * a stream of single byte packets will cause the right side of the
2339  * window to always advance by a single byte.
2340  *
2341  * Of course, if the sender implements sender side SWS prevention
2342  * then this will not be a problem.
2343  *
2344  * BSD seems to make the following compromise:
2345  *
2346  *	If the free space is less than the 1/4 of the maximum
2347  *	space available and the free space is less than 1/2 mss,
2348  *	then set the window to 0.
2349  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2350  *	Otherwise, just prevent the window from shrinking
2351  *	and from being larger than the largest representable value.
2352  *
2353  * This prevents incremental opening of the window in the regime
2354  * where TCP is limited by the speed of the reader side taking
2355  * data out of the TCP receive queue. It does nothing about
2356  * those cases where the window is constrained on the sender side
2357  * because the pipeline is full.
2358  *
2359  * BSD also seems to "accidentally" limit itself to windows that are a
2360  * multiple of MSS, at least until the free space gets quite small.
2361  * This would appear to be a side effect of the mbuf implementation.
2362  * Combining these two algorithms results in the observed behavior
2363  * of having a fixed window size at almost all times.
2364  *
2365  * Below we obtain similar behavior by forcing the offered window to
2366  * a multiple of the mss when it is feasible to do so.
2367  *
2368  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2369  * Regular options like TIMESTAMP are taken into account.
2370  */
2371 u32 __tcp_select_window(struct sock *sk)
2372 {
2373 	struct inet_connection_sock *icsk = inet_csk(sk);
2374 	struct tcp_sock *tp = tcp_sk(sk);
2375 	/* MSS for the peer's data.  Previous versions used mss_clamp
2376 	 * here.  I don't know if the value based on our guesses
2377 	 * of peer's MSS is better for the performance.  It's more correct
2378 	 * but may be worse for the performance because of rcv_mss
2379 	 * fluctuations.  --SAW  1998/11/1
2380 	 */
2381 	int mss = icsk->icsk_ack.rcv_mss;
2382 	int free_space = tcp_space(sk);
2383 	int allowed_space = tcp_full_space(sk);
2384 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2385 	int window;
2386 
2387 	if (mss > full_space)
2388 		mss = full_space;
2389 
2390 	if (free_space < (full_space >> 1)) {
2391 		icsk->icsk_ack.quick = 0;
2392 
2393 		if (tcp_under_memory_pressure(sk))
2394 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2395 					       4U * tp->advmss);
2396 
2397 		/* free_space might become our new window, make sure we don't
2398 		 * increase it due to wscale.
2399 		 */
2400 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2401 
2402 		/* if free space is less than mss estimate, or is below 1/16th
2403 		 * of the maximum allowed, try to move to zero-window, else
2404 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2405 		 * new incoming data is dropped due to memory limits.
2406 		 * With large window, mss test triggers way too late in order
2407 		 * to announce zero window in time before rmem limit kicks in.
2408 		 */
2409 		if (free_space < (allowed_space >> 4) || free_space < mss)
2410 			return 0;
2411 	}
2412 
2413 	if (free_space > tp->rcv_ssthresh)
2414 		free_space = tp->rcv_ssthresh;
2415 
2416 	/* Don't do rounding if we are using window scaling, since the
2417 	 * scaled window will not line up with the MSS boundary anyway.
2418 	 */
2419 	window = tp->rcv_wnd;
2420 	if (tp->rx_opt.rcv_wscale) {
2421 		window = free_space;
2422 
2423 		/* Advertise enough space so that it won't get scaled away.
2424 		 * Import case: prevent zero window announcement if
2425 		 * 1<<rcv_wscale > mss.
2426 		 */
2427 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2428 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2429 				  << tp->rx_opt.rcv_wscale);
2430 	} else {
2431 		/* Get the largest window that is a nice multiple of mss.
2432 		 * Window clamp already applied above.
2433 		 * If our current window offering is within 1 mss of the
2434 		 * free space we just keep it. This prevents the divide
2435 		 * and multiply from happening most of the time.
2436 		 * We also don't do any window rounding when the free space
2437 		 * is too small.
2438 		 */
2439 		if (window <= free_space - mss || window > free_space)
2440 			window = (free_space / mss) * mss;
2441 		else if (mss == full_space &&
2442 			 free_space > window + (full_space >> 1))
2443 			window = free_space;
2444 	}
2445 
2446 	return window;
2447 }
2448 
2449 /* Collapses two adjacent SKB's during retransmission. */
2450 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2451 {
2452 	struct tcp_sock *tp = tcp_sk(sk);
2453 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2454 	int skb_size, next_skb_size;
2455 
2456 	skb_size = skb->len;
2457 	next_skb_size = next_skb->len;
2458 
2459 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2460 
2461 	tcp_highest_sack_combine(sk, next_skb, skb);
2462 
2463 	tcp_unlink_write_queue(next_skb, sk);
2464 
2465 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2466 				  next_skb_size);
2467 
2468 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2469 		skb->ip_summed = CHECKSUM_PARTIAL;
2470 
2471 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2472 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2473 
2474 	/* Update sequence range on original skb. */
2475 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2476 
2477 	/* Merge over control information. This moves PSH/FIN etc. over */
2478 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2479 
2480 	/* All done, get rid of second SKB and account for it so
2481 	 * packet counting does not break.
2482 	 */
2483 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2484 
2485 	/* changed transmit queue under us so clear hints */
2486 	tcp_clear_retrans_hints_partial(tp);
2487 	if (next_skb == tp->retransmit_skb_hint)
2488 		tp->retransmit_skb_hint = skb;
2489 
2490 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2491 
2492 	sk_wmem_free_skb(sk, next_skb);
2493 }
2494 
2495 /* Check if coalescing SKBs is legal. */
2496 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2497 {
2498 	if (tcp_skb_pcount(skb) > 1)
2499 		return false;
2500 	/* TODO: SACK collapsing could be used to remove this condition */
2501 	if (skb_shinfo(skb)->nr_frags != 0)
2502 		return false;
2503 	if (skb_cloned(skb))
2504 		return false;
2505 	if (skb == tcp_send_head(sk))
2506 		return false;
2507 	/* Some heurestics for collapsing over SACK'd could be invented */
2508 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2509 		return false;
2510 
2511 	return true;
2512 }
2513 
2514 /* Collapse packets in the retransmit queue to make to create
2515  * less packets on the wire. This is only done on retransmission.
2516  */
2517 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2518 				     int space)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 	struct sk_buff *skb = to, *tmp;
2522 	bool first = true;
2523 
2524 	if (!sysctl_tcp_retrans_collapse)
2525 		return;
2526 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2527 		return;
2528 
2529 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2530 		if (!tcp_can_collapse(sk, skb))
2531 			break;
2532 
2533 		space -= skb->len;
2534 
2535 		if (first) {
2536 			first = false;
2537 			continue;
2538 		}
2539 
2540 		if (space < 0)
2541 			break;
2542 		/* Punt if not enough space exists in the first SKB for
2543 		 * the data in the second
2544 		 */
2545 		if (skb->len > skb_availroom(to))
2546 			break;
2547 
2548 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2549 			break;
2550 
2551 		tcp_collapse_retrans(sk, to);
2552 	}
2553 }
2554 
2555 /* This retransmits one SKB.  Policy decisions and retransmit queue
2556  * state updates are done by the caller.  Returns non-zero if an
2557  * error occurred which prevented the send.
2558  */
2559 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2560 {
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 	struct inet_connection_sock *icsk = inet_csk(sk);
2563 	unsigned int cur_mss;
2564 	int err;
2565 
2566 	/* Inconslusive MTU probe */
2567 	if (icsk->icsk_mtup.probe_size) {
2568 		icsk->icsk_mtup.probe_size = 0;
2569 	}
2570 
2571 	/* Do not sent more than we queued. 1/4 is reserved for possible
2572 	 * copying overhead: fragmentation, tunneling, mangling etc.
2573 	 */
2574 	if (atomic_read(&sk->sk_wmem_alloc) >
2575 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2576 		return -EAGAIN;
2577 
2578 	if (skb_still_in_host_queue(sk, skb))
2579 		return -EBUSY;
2580 
2581 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2582 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2583 			BUG();
2584 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2585 			return -ENOMEM;
2586 	}
2587 
2588 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2589 		return -EHOSTUNREACH; /* Routing failure or similar. */
2590 
2591 	cur_mss = tcp_current_mss(sk);
2592 
2593 	/* If receiver has shrunk his window, and skb is out of
2594 	 * new window, do not retransmit it. The exception is the
2595 	 * case, when window is shrunk to zero. In this case
2596 	 * our retransmit serves as a zero window probe.
2597 	 */
2598 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2599 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2600 		return -EAGAIN;
2601 
2602 	if (skb->len > cur_mss) {
2603 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2604 			return -ENOMEM; /* We'll try again later. */
2605 	} else {
2606 		int oldpcount = tcp_skb_pcount(skb);
2607 
2608 		if (unlikely(oldpcount > 1)) {
2609 			if (skb_unclone(skb, GFP_ATOMIC))
2610 				return -ENOMEM;
2611 			tcp_init_tso_segs(skb, cur_mss);
2612 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2613 		}
2614 	}
2615 
2616 	/* RFC3168, section 6.1.1.1. ECN fallback */
2617 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2618 		tcp_ecn_clear_syn(sk, skb);
2619 
2620 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2621 
2622 	/* Make a copy, if the first transmission SKB clone we made
2623 	 * is still in somebody's hands, else make a clone.
2624 	 */
2625 
2626 	/* make sure skb->data is aligned on arches that require it
2627 	 * and check if ack-trimming & collapsing extended the headroom
2628 	 * beyond what csum_start can cover.
2629 	 */
2630 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2631 		     skb_headroom(skb) >= 0xFFFF)) {
2632 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2633 						   GFP_ATOMIC);
2634 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2635 			     -ENOBUFS;
2636 	} else {
2637 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2638 	}
2639 
2640 	if (likely(!err)) {
2641 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2642 		/* Update global TCP statistics. */
2643 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2644 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2645 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2646 		tp->total_retrans++;
2647 	}
2648 	return err;
2649 }
2650 
2651 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2652 {
2653 	struct tcp_sock *tp = tcp_sk(sk);
2654 	int err = __tcp_retransmit_skb(sk, skb);
2655 
2656 	if (err == 0) {
2657 #if FASTRETRANS_DEBUG > 0
2658 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2659 			net_dbg_ratelimited("retrans_out leaked\n");
2660 		}
2661 #endif
2662 		if (!tp->retrans_out)
2663 			tp->lost_retrans_low = tp->snd_nxt;
2664 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2665 		tp->retrans_out += tcp_skb_pcount(skb);
2666 
2667 		/* Save stamp of the first retransmit. */
2668 		if (!tp->retrans_stamp)
2669 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2670 
2671 		/* snd_nxt is stored to detect loss of retransmitted segment,
2672 		 * see tcp_input.c tcp_sacktag_write_queue().
2673 		 */
2674 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2675 	} else if (err != -EBUSY) {
2676 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2677 	}
2678 
2679 	if (tp->undo_retrans < 0)
2680 		tp->undo_retrans = 0;
2681 	tp->undo_retrans += tcp_skb_pcount(skb);
2682 	return err;
2683 }
2684 
2685 /* Check if we forward retransmits are possible in the current
2686  * window/congestion state.
2687  */
2688 static bool tcp_can_forward_retransmit(struct sock *sk)
2689 {
2690 	const struct inet_connection_sock *icsk = inet_csk(sk);
2691 	const struct tcp_sock *tp = tcp_sk(sk);
2692 
2693 	/* Forward retransmissions are possible only during Recovery. */
2694 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2695 		return false;
2696 
2697 	/* No forward retransmissions in Reno are possible. */
2698 	if (tcp_is_reno(tp))
2699 		return false;
2700 
2701 	/* Yeah, we have to make difficult choice between forward transmission
2702 	 * and retransmission... Both ways have their merits...
2703 	 *
2704 	 * For now we do not retransmit anything, while we have some new
2705 	 * segments to send. In the other cases, follow rule 3 for
2706 	 * NextSeg() specified in RFC3517.
2707 	 */
2708 
2709 	if (tcp_may_send_now(sk))
2710 		return false;
2711 
2712 	return true;
2713 }
2714 
2715 /* This gets called after a retransmit timeout, and the initially
2716  * retransmitted data is acknowledged.  It tries to continue
2717  * resending the rest of the retransmit queue, until either
2718  * we've sent it all or the congestion window limit is reached.
2719  * If doing SACK, the first ACK which comes back for a timeout
2720  * based retransmit packet might feed us FACK information again.
2721  * If so, we use it to avoid unnecessarily retransmissions.
2722  */
2723 void tcp_xmit_retransmit_queue(struct sock *sk)
2724 {
2725 	const struct inet_connection_sock *icsk = inet_csk(sk);
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 	struct sk_buff *skb;
2728 	struct sk_buff *hole = NULL;
2729 	u32 last_lost;
2730 	int mib_idx;
2731 	int fwd_rexmitting = 0;
2732 
2733 	if (!tp->packets_out)
2734 		return;
2735 
2736 	if (!tp->lost_out)
2737 		tp->retransmit_high = tp->snd_una;
2738 
2739 	if (tp->retransmit_skb_hint) {
2740 		skb = tp->retransmit_skb_hint;
2741 		last_lost = TCP_SKB_CB(skb)->end_seq;
2742 		if (after(last_lost, tp->retransmit_high))
2743 			last_lost = tp->retransmit_high;
2744 	} else {
2745 		skb = tcp_write_queue_head(sk);
2746 		last_lost = tp->snd_una;
2747 	}
2748 
2749 	tcp_for_write_queue_from(skb, sk) {
2750 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2751 
2752 		if (skb == tcp_send_head(sk))
2753 			break;
2754 		/* we could do better than to assign each time */
2755 		if (!hole)
2756 			tp->retransmit_skb_hint = skb;
2757 
2758 		/* Assume this retransmit will generate
2759 		 * only one packet for congestion window
2760 		 * calculation purposes.  This works because
2761 		 * tcp_retransmit_skb() will chop up the
2762 		 * packet to be MSS sized and all the
2763 		 * packet counting works out.
2764 		 */
2765 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2766 			return;
2767 
2768 		if (fwd_rexmitting) {
2769 begin_fwd:
2770 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2771 				break;
2772 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2773 
2774 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2775 			tp->retransmit_high = last_lost;
2776 			if (!tcp_can_forward_retransmit(sk))
2777 				break;
2778 			/* Backtrack if necessary to non-L'ed skb */
2779 			if (hole) {
2780 				skb = hole;
2781 				hole = NULL;
2782 			}
2783 			fwd_rexmitting = 1;
2784 			goto begin_fwd;
2785 
2786 		} else if (!(sacked & TCPCB_LOST)) {
2787 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2788 				hole = skb;
2789 			continue;
2790 
2791 		} else {
2792 			last_lost = TCP_SKB_CB(skb)->end_seq;
2793 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2794 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2795 			else
2796 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2797 		}
2798 
2799 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2800 			continue;
2801 
2802 		if (tcp_retransmit_skb(sk, skb))
2803 			return;
2804 
2805 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2806 
2807 		if (tcp_in_cwnd_reduction(sk))
2808 			tp->prr_out += tcp_skb_pcount(skb);
2809 
2810 		if (skb == tcp_write_queue_head(sk))
2811 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2812 						  inet_csk(sk)->icsk_rto,
2813 						  TCP_RTO_MAX);
2814 	}
2815 }
2816 
2817 /* We allow to exceed memory limits for FIN packets to expedite
2818  * connection tear down and (memory) recovery.
2819  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2820  * or even be forced to close flow without any FIN.
2821  * In general, we want to allow one skb per socket to avoid hangs
2822  * with edge trigger epoll()
2823  */
2824 void sk_forced_mem_schedule(struct sock *sk, int size)
2825 {
2826 	int amt, status;
2827 
2828 	if (size <= sk->sk_forward_alloc)
2829 		return;
2830 	amt = sk_mem_pages(size);
2831 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2832 	sk_memory_allocated_add(sk, amt, &status);
2833 }
2834 
2835 /* Send a FIN. The caller locks the socket for us.
2836  * We should try to send a FIN packet really hard, but eventually give up.
2837  */
2838 void tcp_send_fin(struct sock *sk)
2839 {
2840 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2841 	struct tcp_sock *tp = tcp_sk(sk);
2842 
2843 	/* Optimization, tack on the FIN if we have one skb in write queue and
2844 	 * this skb was not yet sent, or we are under memory pressure.
2845 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2846 	 * as TCP stack thinks it has already been transmitted.
2847 	 */
2848 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2849 coalesce:
2850 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2851 		TCP_SKB_CB(tskb)->end_seq++;
2852 		tp->write_seq++;
2853 		if (!tcp_send_head(sk)) {
2854 			/* This means tskb was already sent.
2855 			 * Pretend we included the FIN on previous transmit.
2856 			 * We need to set tp->snd_nxt to the value it would have
2857 			 * if FIN had been sent. This is because retransmit path
2858 			 * does not change tp->snd_nxt.
2859 			 */
2860 			tp->snd_nxt++;
2861 			return;
2862 		}
2863 	} else {
2864 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2865 		if (unlikely(!skb)) {
2866 			if (tskb)
2867 				goto coalesce;
2868 			return;
2869 		}
2870 		skb_reserve(skb, MAX_TCP_HEADER);
2871 		sk_forced_mem_schedule(sk, skb->truesize);
2872 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2873 		tcp_init_nondata_skb(skb, tp->write_seq,
2874 				     TCPHDR_ACK | TCPHDR_FIN);
2875 		tcp_queue_skb(sk, skb);
2876 	}
2877 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2878 }
2879 
2880 /* We get here when a process closes a file descriptor (either due to
2881  * an explicit close() or as a byproduct of exit()'ing) and there
2882  * was unread data in the receive queue.  This behavior is recommended
2883  * by RFC 2525, section 2.17.  -DaveM
2884  */
2885 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2886 {
2887 	struct sk_buff *skb;
2888 
2889 	/* NOTE: No TCP options attached and we never retransmit this. */
2890 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2891 	if (!skb) {
2892 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2893 		return;
2894 	}
2895 
2896 	/* Reserve space for headers and prepare control bits. */
2897 	skb_reserve(skb, MAX_TCP_HEADER);
2898 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2899 			     TCPHDR_ACK | TCPHDR_RST);
2900 	skb_mstamp_get(&skb->skb_mstamp);
2901 	/* Send it off. */
2902 	if (tcp_transmit_skb(sk, skb, 0, priority))
2903 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2904 
2905 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2906 }
2907 
2908 /* Send a crossed SYN-ACK during socket establishment.
2909  * WARNING: This routine must only be called when we have already sent
2910  * a SYN packet that crossed the incoming SYN that caused this routine
2911  * to get called. If this assumption fails then the initial rcv_wnd
2912  * and rcv_wscale values will not be correct.
2913  */
2914 int tcp_send_synack(struct sock *sk)
2915 {
2916 	struct sk_buff *skb;
2917 
2918 	skb = tcp_write_queue_head(sk);
2919 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2920 		pr_debug("%s: wrong queue state\n", __func__);
2921 		return -EFAULT;
2922 	}
2923 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2924 		if (skb_cloned(skb)) {
2925 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2926 			if (!nskb)
2927 				return -ENOMEM;
2928 			tcp_unlink_write_queue(skb, sk);
2929 			__skb_header_release(nskb);
2930 			__tcp_add_write_queue_head(sk, nskb);
2931 			sk_wmem_free_skb(sk, skb);
2932 			sk->sk_wmem_queued += nskb->truesize;
2933 			sk_mem_charge(sk, nskb->truesize);
2934 			skb = nskb;
2935 		}
2936 
2937 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2938 		tcp_ecn_send_synack(sk, skb);
2939 	}
2940 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2941 }
2942 
2943 /**
2944  * tcp_make_synack - Prepare a SYN-ACK.
2945  * sk: listener socket
2946  * dst: dst entry attached to the SYNACK
2947  * req: request_sock pointer
2948  *
2949  * Allocate one skb and build a SYNACK packet.
2950  * @dst is consumed : Caller should not use it again.
2951  */
2952 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2953 				struct request_sock *req,
2954 				struct tcp_fastopen_cookie *foc)
2955 {
2956 	struct tcp_out_options opts;
2957 	struct inet_request_sock *ireq = inet_rsk(req);
2958 	struct tcp_sock *tp = tcp_sk(sk);
2959 	struct tcphdr *th;
2960 	struct sk_buff *skb;
2961 	struct tcp_md5sig_key *md5 = NULL;
2962 	int tcp_header_size;
2963 	int mss;
2964 
2965 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2966 	if (unlikely(!skb)) {
2967 		dst_release(dst);
2968 		return NULL;
2969 	}
2970 	/* Reserve space for headers. */
2971 	skb_reserve(skb, MAX_TCP_HEADER);
2972 
2973 	skb_dst_set(skb, dst);
2974 
2975 	mss = dst_metric_advmss(dst);
2976 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2977 		mss = tp->rx_opt.user_mss;
2978 
2979 	memset(&opts, 0, sizeof(opts));
2980 #ifdef CONFIG_SYN_COOKIES
2981 	if (unlikely(req->cookie_ts))
2982 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2983 	else
2984 #endif
2985 	skb_mstamp_get(&skb->skb_mstamp);
2986 
2987 #ifdef CONFIG_TCP_MD5SIG
2988 	rcu_read_lock();
2989 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2990 #endif
2991 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
2992 					     foc) + sizeof(*th);
2993 
2994 	skb_push(skb, tcp_header_size);
2995 	skb_reset_transport_header(skb);
2996 
2997 	th = tcp_hdr(skb);
2998 	memset(th, 0, sizeof(struct tcphdr));
2999 	th->syn = 1;
3000 	th->ack = 1;
3001 	tcp_ecn_make_synack(req, th, sk);
3002 	th->source = htons(ireq->ir_num);
3003 	th->dest = ireq->ir_rmt_port;
3004 	/* Setting of flags are superfluous here for callers (and ECE is
3005 	 * not even correctly set)
3006 	 */
3007 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3008 			     TCPHDR_SYN | TCPHDR_ACK);
3009 
3010 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3011 	/* XXX data is queued and acked as is. No buffer/window check */
3012 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3013 
3014 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3015 	th->window = htons(min(req->rcv_wnd, 65535U));
3016 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
3017 	th->doff = (tcp_header_size >> 2);
3018 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3019 
3020 #ifdef CONFIG_TCP_MD5SIG
3021 	/* Okay, we have all we need - do the md5 hash if needed */
3022 	if (md5)
3023 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3024 					       md5, req_to_sk(req), skb);
3025 	rcu_read_unlock();
3026 #endif
3027 
3028 	/* Do not fool tcpdump (if any), clean our debris */
3029 	skb->tstamp.tv64 = 0;
3030 	return skb;
3031 }
3032 EXPORT_SYMBOL(tcp_make_synack);
3033 
3034 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3035 {
3036 	struct inet_connection_sock *icsk = inet_csk(sk);
3037 	const struct tcp_congestion_ops *ca;
3038 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3039 
3040 	if (ca_key == TCP_CA_UNSPEC)
3041 		return;
3042 
3043 	rcu_read_lock();
3044 	ca = tcp_ca_find_key(ca_key);
3045 	if (likely(ca && try_module_get(ca->owner))) {
3046 		module_put(icsk->icsk_ca_ops->owner);
3047 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3048 		icsk->icsk_ca_ops = ca;
3049 	}
3050 	rcu_read_unlock();
3051 }
3052 
3053 /* Do all connect socket setups that can be done AF independent. */
3054 static void tcp_connect_init(struct sock *sk)
3055 {
3056 	const struct dst_entry *dst = __sk_dst_get(sk);
3057 	struct tcp_sock *tp = tcp_sk(sk);
3058 	__u8 rcv_wscale;
3059 
3060 	/* We'll fix this up when we get a response from the other end.
3061 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3062 	 */
3063 	tp->tcp_header_len = sizeof(struct tcphdr) +
3064 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3065 
3066 #ifdef CONFIG_TCP_MD5SIG
3067 	if (tp->af_specific->md5_lookup(sk, sk))
3068 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3069 #endif
3070 
3071 	/* If user gave his TCP_MAXSEG, record it to clamp */
3072 	if (tp->rx_opt.user_mss)
3073 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3074 	tp->max_window = 0;
3075 	tcp_mtup_init(sk);
3076 	tcp_sync_mss(sk, dst_mtu(dst));
3077 
3078 	tcp_ca_dst_init(sk, dst);
3079 
3080 	if (!tp->window_clamp)
3081 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3082 	tp->advmss = dst_metric_advmss(dst);
3083 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3084 		tp->advmss = tp->rx_opt.user_mss;
3085 
3086 	tcp_initialize_rcv_mss(sk);
3087 
3088 	/* limit the window selection if the user enforce a smaller rx buffer */
3089 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3090 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3091 		tp->window_clamp = tcp_full_space(sk);
3092 
3093 	tcp_select_initial_window(tcp_full_space(sk),
3094 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3095 				  &tp->rcv_wnd,
3096 				  &tp->window_clamp,
3097 				  sysctl_tcp_window_scaling,
3098 				  &rcv_wscale,
3099 				  dst_metric(dst, RTAX_INITRWND));
3100 
3101 	tp->rx_opt.rcv_wscale = rcv_wscale;
3102 	tp->rcv_ssthresh = tp->rcv_wnd;
3103 
3104 	sk->sk_err = 0;
3105 	sock_reset_flag(sk, SOCK_DONE);
3106 	tp->snd_wnd = 0;
3107 	tcp_init_wl(tp, 0);
3108 	tp->snd_una = tp->write_seq;
3109 	tp->snd_sml = tp->write_seq;
3110 	tp->snd_up = tp->write_seq;
3111 	tp->snd_nxt = tp->write_seq;
3112 
3113 	if (likely(!tp->repair))
3114 		tp->rcv_nxt = 0;
3115 	else
3116 		tp->rcv_tstamp = tcp_time_stamp;
3117 	tp->rcv_wup = tp->rcv_nxt;
3118 	tp->copied_seq = tp->rcv_nxt;
3119 
3120 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3121 	inet_csk(sk)->icsk_retransmits = 0;
3122 	tcp_clear_retrans(tp);
3123 }
3124 
3125 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3126 {
3127 	struct tcp_sock *tp = tcp_sk(sk);
3128 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3129 
3130 	tcb->end_seq += skb->len;
3131 	__skb_header_release(skb);
3132 	__tcp_add_write_queue_tail(sk, skb);
3133 	sk->sk_wmem_queued += skb->truesize;
3134 	sk_mem_charge(sk, skb->truesize);
3135 	tp->write_seq = tcb->end_seq;
3136 	tp->packets_out += tcp_skb_pcount(skb);
3137 }
3138 
3139 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3140  * queue a data-only packet after the regular SYN, such that regular SYNs
3141  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3142  * only the SYN sequence, the data are retransmitted in the first ACK.
3143  * If cookie is not cached or other error occurs, falls back to send a
3144  * regular SYN with Fast Open cookie request option.
3145  */
3146 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3147 {
3148 	struct tcp_sock *tp = tcp_sk(sk);
3149 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3150 	int syn_loss = 0, space, err = 0, copied;
3151 	unsigned long last_syn_loss = 0;
3152 	struct sk_buff *syn_data;
3153 
3154 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3155 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3156 			       &syn_loss, &last_syn_loss);
3157 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3158 	if (syn_loss > 1 &&
3159 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3160 		fo->cookie.len = -1;
3161 		goto fallback;
3162 	}
3163 
3164 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3165 		fo->cookie.len = -1;
3166 	else if (fo->cookie.len <= 0)
3167 		goto fallback;
3168 
3169 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3170 	 * user-MSS. Reserve maximum option space for middleboxes that add
3171 	 * private TCP options. The cost is reduced data space in SYN :(
3172 	 */
3173 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3174 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3175 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3176 		MAX_TCP_OPTION_SPACE;
3177 
3178 	space = min_t(size_t, space, fo->size);
3179 
3180 	/* limit to order-0 allocations */
3181 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3182 
3183 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3184 	if (!syn_data)
3185 		goto fallback;
3186 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3187 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3188 	copied = copy_from_iter(skb_put(syn_data, space), space,
3189 				&fo->data->msg_iter);
3190 	if (unlikely(!copied)) {
3191 		kfree_skb(syn_data);
3192 		goto fallback;
3193 	}
3194 	if (copied != space) {
3195 		skb_trim(syn_data, copied);
3196 		space = copied;
3197 	}
3198 
3199 	/* No more data pending in inet_wait_for_connect() */
3200 	if (space == fo->size)
3201 		fo->data = NULL;
3202 	fo->copied = space;
3203 
3204 	tcp_connect_queue_skb(sk, syn_data);
3205 
3206 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3207 
3208 	syn->skb_mstamp = syn_data->skb_mstamp;
3209 
3210 	/* Now full SYN+DATA was cloned and sent (or not),
3211 	 * remove the SYN from the original skb (syn_data)
3212 	 * we keep in write queue in case of a retransmit, as we
3213 	 * also have the SYN packet (with no data) in the same queue.
3214 	 */
3215 	TCP_SKB_CB(syn_data)->seq++;
3216 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3217 	if (!err) {
3218 		tp->syn_data = (fo->copied > 0);
3219 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3220 		goto done;
3221 	}
3222 
3223 fallback:
3224 	/* Send a regular SYN with Fast Open cookie request option */
3225 	if (fo->cookie.len > 0)
3226 		fo->cookie.len = 0;
3227 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3228 	if (err)
3229 		tp->syn_fastopen = 0;
3230 done:
3231 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3232 	return err;
3233 }
3234 
3235 /* Build a SYN and send it off. */
3236 int tcp_connect(struct sock *sk)
3237 {
3238 	struct tcp_sock *tp = tcp_sk(sk);
3239 	struct sk_buff *buff;
3240 	int err;
3241 
3242 	tcp_connect_init(sk);
3243 
3244 	if (unlikely(tp->repair)) {
3245 		tcp_finish_connect(sk, NULL);
3246 		return 0;
3247 	}
3248 
3249 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3250 	if (unlikely(!buff))
3251 		return -ENOBUFS;
3252 
3253 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3254 	tp->retrans_stamp = tcp_time_stamp;
3255 	tcp_connect_queue_skb(sk, buff);
3256 	tcp_ecn_send_syn(sk, buff);
3257 
3258 	/* Send off SYN; include data in Fast Open. */
3259 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3260 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3261 	if (err == -ECONNREFUSED)
3262 		return err;
3263 
3264 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3265 	 * in order to make this packet get counted in tcpOutSegs.
3266 	 */
3267 	tp->snd_nxt = tp->write_seq;
3268 	tp->pushed_seq = tp->write_seq;
3269 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3270 
3271 	/* Timer for repeating the SYN until an answer. */
3272 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3273 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3274 	return 0;
3275 }
3276 EXPORT_SYMBOL(tcp_connect);
3277 
3278 /* Send out a delayed ack, the caller does the policy checking
3279  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3280  * for details.
3281  */
3282 void tcp_send_delayed_ack(struct sock *sk)
3283 {
3284 	struct inet_connection_sock *icsk = inet_csk(sk);
3285 	int ato = icsk->icsk_ack.ato;
3286 	unsigned long timeout;
3287 
3288 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3289 
3290 	if (ato > TCP_DELACK_MIN) {
3291 		const struct tcp_sock *tp = tcp_sk(sk);
3292 		int max_ato = HZ / 2;
3293 
3294 		if (icsk->icsk_ack.pingpong ||
3295 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3296 			max_ato = TCP_DELACK_MAX;
3297 
3298 		/* Slow path, intersegment interval is "high". */
3299 
3300 		/* If some rtt estimate is known, use it to bound delayed ack.
3301 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3302 		 * directly.
3303 		 */
3304 		if (tp->srtt_us) {
3305 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3306 					TCP_DELACK_MIN);
3307 
3308 			if (rtt < max_ato)
3309 				max_ato = rtt;
3310 		}
3311 
3312 		ato = min(ato, max_ato);
3313 	}
3314 
3315 	/* Stay within the limit we were given */
3316 	timeout = jiffies + ato;
3317 
3318 	/* Use new timeout only if there wasn't a older one earlier. */
3319 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3320 		/* If delack timer was blocked or is about to expire,
3321 		 * send ACK now.
3322 		 */
3323 		if (icsk->icsk_ack.blocked ||
3324 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3325 			tcp_send_ack(sk);
3326 			return;
3327 		}
3328 
3329 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3330 			timeout = icsk->icsk_ack.timeout;
3331 	}
3332 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3333 	icsk->icsk_ack.timeout = timeout;
3334 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3335 }
3336 
3337 /* This routine sends an ack and also updates the window. */
3338 void tcp_send_ack(struct sock *sk)
3339 {
3340 	struct sk_buff *buff;
3341 
3342 	/* If we have been reset, we may not send again. */
3343 	if (sk->sk_state == TCP_CLOSE)
3344 		return;
3345 
3346 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3347 
3348 	/* We are not putting this on the write queue, so
3349 	 * tcp_transmit_skb() will set the ownership to this
3350 	 * sock.
3351 	 */
3352 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3353 	if (!buff) {
3354 		inet_csk_schedule_ack(sk);
3355 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3356 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3357 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3358 		return;
3359 	}
3360 
3361 	/* Reserve space for headers and prepare control bits. */
3362 	skb_reserve(buff, MAX_TCP_HEADER);
3363 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3364 
3365 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3366 	 * too much.
3367 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3368 	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3369 	 * tp->tsq_flags) by using regular sock_wfree()
3370 	 */
3371 	skb_set_tcp_pure_ack(buff);
3372 
3373 	/* Send it off, this clears delayed acks for us. */
3374 	skb_mstamp_get(&buff->skb_mstamp);
3375 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3376 }
3377 EXPORT_SYMBOL_GPL(tcp_send_ack);
3378 
3379 /* This routine sends a packet with an out of date sequence
3380  * number. It assumes the other end will try to ack it.
3381  *
3382  * Question: what should we make while urgent mode?
3383  * 4.4BSD forces sending single byte of data. We cannot send
3384  * out of window data, because we have SND.NXT==SND.MAX...
3385  *
3386  * Current solution: to send TWO zero-length segments in urgent mode:
3387  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3388  * out-of-date with SND.UNA-1 to probe window.
3389  */
3390 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3391 {
3392 	struct tcp_sock *tp = tcp_sk(sk);
3393 	struct sk_buff *skb;
3394 
3395 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3396 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3397 	if (!skb)
3398 		return -1;
3399 
3400 	/* Reserve space for headers and set control bits. */
3401 	skb_reserve(skb, MAX_TCP_HEADER);
3402 	/* Use a previous sequence.  This should cause the other
3403 	 * end to send an ack.  Don't queue or clone SKB, just
3404 	 * send it.
3405 	 */
3406 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3407 	skb_mstamp_get(&skb->skb_mstamp);
3408 	NET_INC_STATS_BH(sock_net(sk), mib);
3409 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3410 }
3411 
3412 void tcp_send_window_probe(struct sock *sk)
3413 {
3414 	if (sk->sk_state == TCP_ESTABLISHED) {
3415 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3416 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3417 	}
3418 }
3419 
3420 /* Initiate keepalive or window probe from timer. */
3421 int tcp_write_wakeup(struct sock *sk, int mib)
3422 {
3423 	struct tcp_sock *tp = tcp_sk(sk);
3424 	struct sk_buff *skb;
3425 
3426 	if (sk->sk_state == TCP_CLOSE)
3427 		return -1;
3428 
3429 	skb = tcp_send_head(sk);
3430 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3431 		int err;
3432 		unsigned int mss = tcp_current_mss(sk);
3433 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3434 
3435 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3436 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3437 
3438 		/* We are probing the opening of a window
3439 		 * but the window size is != 0
3440 		 * must have been a result SWS avoidance ( sender )
3441 		 */
3442 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3443 		    skb->len > mss) {
3444 			seg_size = min(seg_size, mss);
3445 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3446 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3447 				return -1;
3448 		} else if (!tcp_skb_pcount(skb))
3449 			tcp_set_skb_tso_segs(skb, mss);
3450 
3451 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3452 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3453 		if (!err)
3454 			tcp_event_new_data_sent(sk, skb);
3455 		return err;
3456 	} else {
3457 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3458 			tcp_xmit_probe_skb(sk, 1, mib);
3459 		return tcp_xmit_probe_skb(sk, 0, mib);
3460 	}
3461 }
3462 
3463 /* A window probe timeout has occurred.  If window is not closed send
3464  * a partial packet else a zero probe.
3465  */
3466 void tcp_send_probe0(struct sock *sk)
3467 {
3468 	struct inet_connection_sock *icsk = inet_csk(sk);
3469 	struct tcp_sock *tp = tcp_sk(sk);
3470 	unsigned long probe_max;
3471 	int err;
3472 
3473 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3474 
3475 	if (tp->packets_out || !tcp_send_head(sk)) {
3476 		/* Cancel probe timer, if it is not required. */
3477 		icsk->icsk_probes_out = 0;
3478 		icsk->icsk_backoff = 0;
3479 		return;
3480 	}
3481 
3482 	if (err <= 0) {
3483 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3484 			icsk->icsk_backoff++;
3485 		icsk->icsk_probes_out++;
3486 		probe_max = TCP_RTO_MAX;
3487 	} else {
3488 		/* If packet was not sent due to local congestion,
3489 		 * do not backoff and do not remember icsk_probes_out.
3490 		 * Let local senders to fight for local resources.
3491 		 *
3492 		 * Use accumulated backoff yet.
3493 		 */
3494 		if (!icsk->icsk_probes_out)
3495 			icsk->icsk_probes_out = 1;
3496 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3497 	}
3498 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3499 				  tcp_probe0_when(sk, probe_max),
3500 				  TCP_RTO_MAX);
3501 }
3502 
3503 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3504 {
3505 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3506 	struct flowi fl;
3507 	int res;
3508 
3509 	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3510 	if (!res) {
3511 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3512 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3513 	}
3514 	return res;
3515 }
3516 EXPORT_SYMBOL(tcp_rtx_synack);
3517