xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 1edd0337)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 				      u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk, pkts);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, *window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251 
252 /* Chose a new window to advertise, update state in tcp_sock for the
253  * socket, and return result with RFC1323 scaling applied.  The return
254  * value can be stuffed directly into th->window for an outgoing
255  * frame.
256  */
257 static u16 tcp_select_window(struct sock *sk)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win = tcp_receive_window(tp);
262 	u32 new_win = __tcp_select_window(sk);
263 
264 	/* Never shrink the offered window */
265 	if (new_win < cur_win) {
266 		/* Danger Will Robinson!
267 		 * Don't update rcv_wup/rcv_wnd here or else
268 		 * we will not be able to advertise a zero
269 		 * window in time.  --DaveM
270 		 *
271 		 * Relax Will Robinson.
272 		 */
273 		if (new_win == 0)
274 			NET_INC_STATS(sock_net(sk),
275 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
276 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 	}
278 	tp->rcv_wnd = new_win;
279 	tp->rcv_wup = tp->rcv_nxt;
280 
281 	/* Make sure we do not exceed the maximum possible
282 	 * scaled window.
283 	 */
284 	if (!tp->rx_opt.rcv_wscale &&
285 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
286 		new_win = min(new_win, MAX_TCP_WINDOW);
287 	else
288 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
289 
290 	/* RFC1323 scaling applied */
291 	new_win >>= tp->rx_opt.rcv_wscale;
292 
293 	/* If we advertise zero window, disable fast path. */
294 	if (new_win == 0) {
295 		tp->pred_flags = 0;
296 		if (old_win)
297 			NET_INC_STATS(sock_net(sk),
298 				      LINUX_MIB_TCPTOZEROWINDOWADV);
299 	} else if (old_win == 0) {
300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
301 	}
302 
303 	return new_win;
304 }
305 
306 /* Packet ECN state for a SYN-ACK */
307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
308 {
309 	const struct tcp_sock *tp = tcp_sk(sk);
310 
311 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 	if (!(tp->ecn_flags & TCP_ECN_OK))
313 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 	else if (tcp_ca_needs_ecn(sk) ||
315 		 tcp_bpf_ca_needs_ecn(sk))
316 		INET_ECN_xmit(sk);
317 }
318 
319 /* Packet ECN state for a SYN.  */
320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
321 {
322 	struct tcp_sock *tp = tcp_sk(sk);
323 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
325 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
326 
327 	if (!use_ecn) {
328 		const struct dst_entry *dst = __sk_dst_get(sk);
329 
330 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
331 			use_ecn = true;
332 	}
333 
334 	tp->ecn_flags = 0;
335 
336 	if (use_ecn) {
337 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 		tp->ecn_flags = TCP_ECN_OK;
339 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
340 			INET_ECN_xmit(sk);
341 	}
342 }
343 
344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
345 {
346 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
347 		/* tp->ecn_flags are cleared at a later point in time when
348 		 * SYN ACK is ultimatively being received.
349 		 */
350 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
351 }
352 
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
355 {
356 	if (inet_rsk(req)->ecn_ok)
357 		th->ece = 1;
358 }
359 
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361  * be sent.
362  */
363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 			 struct tcphdr *th, int tcp_header_len)
365 {
366 	struct tcp_sock *tp = tcp_sk(sk);
367 
368 	if (tp->ecn_flags & TCP_ECN_OK) {
369 		/* Not-retransmitted data segment: set ECT and inject CWR. */
370 		if (skb->len != tcp_header_len &&
371 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
372 			INET_ECN_xmit(sk);
373 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
375 				th->cwr = 1;
376 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
377 			}
378 		} else if (!tcp_ca_needs_ecn(sk)) {
379 			/* ACK or retransmitted segment: clear ECT|CE */
380 			INET_ECN_dontxmit(sk);
381 		}
382 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
383 			th->ece = 1;
384 	}
385 }
386 
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388  * auto increment end seqno.
389  */
390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
391 {
392 	skb->ip_summed = CHECKSUM_PARTIAL;
393 
394 	TCP_SKB_CB(skb)->tcp_flags = flags;
395 
396 	tcp_skb_pcount_set(skb, 1);
397 
398 	TCP_SKB_CB(skb)->seq = seq;
399 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
400 		seq++;
401 	TCP_SKB_CB(skb)->end_seq = seq;
402 }
403 
404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
405 {
406 	return tp->snd_una != tp->snd_up;
407 }
408 
409 #define OPTION_SACK_ADVERTISE	BIT(0)
410 #define OPTION_TS		BIT(1)
411 #define OPTION_MD5		BIT(2)
412 #define OPTION_WSCALE		BIT(3)
413 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
414 #define OPTION_SMC		BIT(9)
415 #define OPTION_MPTCP		BIT(10)
416 
417 static void smc_options_write(__be32 *ptr, u16 *options)
418 {
419 #if IS_ENABLED(CONFIG_SMC)
420 	if (static_branch_unlikely(&tcp_have_smc)) {
421 		if (unlikely(OPTION_SMC & *options)) {
422 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
423 				       (TCPOPT_NOP  << 16) |
424 				       (TCPOPT_EXP <<  8) |
425 				       (TCPOLEN_EXP_SMC_BASE));
426 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
427 		}
428 	}
429 #endif
430 }
431 
432 struct tcp_out_options {
433 	u16 options;		/* bit field of OPTION_* */
434 	u16 mss;		/* 0 to disable */
435 	u8 ws;			/* window scale, 0 to disable */
436 	u8 num_sack_blocks;	/* number of SACK blocks to include */
437 	u8 hash_size;		/* bytes in hash_location */
438 	u8 bpf_opt_len;		/* length of BPF hdr option */
439 	__u8 *hash_location;	/* temporary pointer, overloaded */
440 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
441 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
442 	struct mptcp_out_options mptcp;
443 };
444 
445 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
446 				struct tcp_sock *tp,
447 				struct tcp_out_options *opts)
448 {
449 #if IS_ENABLED(CONFIG_MPTCP)
450 	if (unlikely(OPTION_MPTCP & opts->options))
451 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
452 #endif
453 }
454 
455 #ifdef CONFIG_CGROUP_BPF
456 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
457 					enum tcp_synack_type synack_type)
458 {
459 	if (unlikely(!skb))
460 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
461 
462 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
463 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
464 
465 	return 0;
466 }
467 
468 /* req, syn_skb and synack_type are used when writing synack */
469 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
470 				  struct request_sock *req,
471 				  struct sk_buff *syn_skb,
472 				  enum tcp_synack_type synack_type,
473 				  struct tcp_out_options *opts,
474 				  unsigned int *remaining)
475 {
476 	struct bpf_sock_ops_kern sock_ops;
477 	int err;
478 
479 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
480 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
481 	    !*remaining)
482 		return;
483 
484 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
485 
486 	/* init sock_ops */
487 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
488 
489 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
490 
491 	if (req) {
492 		/* The listen "sk" cannot be passed here because
493 		 * it is not locked.  It would not make too much
494 		 * sense to do bpf_setsockopt(listen_sk) based
495 		 * on individual connection request also.
496 		 *
497 		 * Thus, "req" is passed here and the cgroup-bpf-progs
498 		 * of the listen "sk" will be run.
499 		 *
500 		 * "req" is also used here for fastopen even the "sk" here is
501 		 * a fullsock "child" sk.  It is to keep the behavior
502 		 * consistent between fastopen and non-fastopen on
503 		 * the bpf programming side.
504 		 */
505 		sock_ops.sk = (struct sock *)req;
506 		sock_ops.syn_skb = syn_skb;
507 	} else {
508 		sock_owned_by_me(sk);
509 
510 		sock_ops.is_fullsock = 1;
511 		sock_ops.sk = sk;
512 	}
513 
514 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
515 	sock_ops.remaining_opt_len = *remaining;
516 	/* tcp_current_mss() does not pass a skb */
517 	if (skb)
518 		bpf_skops_init_skb(&sock_ops, skb, 0);
519 
520 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
521 
522 	if (err || sock_ops.remaining_opt_len == *remaining)
523 		return;
524 
525 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
526 	/* round up to 4 bytes */
527 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
528 
529 	*remaining -= opts->bpf_opt_len;
530 }
531 
532 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
533 				    struct request_sock *req,
534 				    struct sk_buff *syn_skb,
535 				    enum tcp_synack_type synack_type,
536 				    struct tcp_out_options *opts)
537 {
538 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
539 	struct bpf_sock_ops_kern sock_ops;
540 	int err;
541 
542 	if (likely(!max_opt_len))
543 		return;
544 
545 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
546 
547 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
548 
549 	if (req) {
550 		sock_ops.sk = (struct sock *)req;
551 		sock_ops.syn_skb = syn_skb;
552 	} else {
553 		sock_owned_by_me(sk);
554 
555 		sock_ops.is_fullsock = 1;
556 		sock_ops.sk = sk;
557 	}
558 
559 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
560 	sock_ops.remaining_opt_len = max_opt_len;
561 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
562 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
563 
564 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
565 
566 	if (err)
567 		nr_written = 0;
568 	else
569 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
570 
571 	if (nr_written < max_opt_len)
572 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
573 		       max_opt_len - nr_written);
574 }
575 #else
576 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
577 				  struct request_sock *req,
578 				  struct sk_buff *syn_skb,
579 				  enum tcp_synack_type synack_type,
580 				  struct tcp_out_options *opts,
581 				  unsigned int *remaining)
582 {
583 }
584 
585 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
586 				    struct request_sock *req,
587 				    struct sk_buff *syn_skb,
588 				    enum tcp_synack_type synack_type,
589 				    struct tcp_out_options *opts)
590 {
591 }
592 #endif
593 
594 /* Write previously computed TCP options to the packet.
595  *
596  * Beware: Something in the Internet is very sensitive to the ordering of
597  * TCP options, we learned this through the hard way, so be careful here.
598  * Luckily we can at least blame others for their non-compliance but from
599  * inter-operability perspective it seems that we're somewhat stuck with
600  * the ordering which we have been using if we want to keep working with
601  * those broken things (not that it currently hurts anybody as there isn't
602  * particular reason why the ordering would need to be changed).
603  *
604  * At least SACK_PERM as the first option is known to lead to a disaster
605  * (but it may well be that other scenarios fail similarly).
606  */
607 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
608 			      struct tcp_out_options *opts)
609 {
610 	__be32 *ptr = (__be32 *)(th + 1);
611 	u16 options = opts->options;	/* mungable copy */
612 
613 	if (unlikely(OPTION_MD5 & options)) {
614 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 		/* overload cookie hash location */
617 		opts->hash_location = (__u8 *)ptr;
618 		ptr += 4;
619 	}
620 
621 	if (unlikely(opts->mss)) {
622 		*ptr++ = htonl((TCPOPT_MSS << 24) |
623 			       (TCPOLEN_MSS << 16) |
624 			       opts->mss);
625 	}
626 
627 	if (likely(OPTION_TS & options)) {
628 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 				       (TCPOLEN_SACK_PERM << 16) |
631 				       (TCPOPT_TIMESTAMP << 8) |
632 				       TCPOLEN_TIMESTAMP);
633 			options &= ~OPTION_SACK_ADVERTISE;
634 		} else {
635 			*ptr++ = htonl((TCPOPT_NOP << 24) |
636 				       (TCPOPT_NOP << 16) |
637 				       (TCPOPT_TIMESTAMP << 8) |
638 				       TCPOLEN_TIMESTAMP);
639 		}
640 		*ptr++ = htonl(opts->tsval);
641 		*ptr++ = htonl(opts->tsecr);
642 	}
643 
644 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 		*ptr++ = htonl((TCPOPT_NOP << 24) |
646 			       (TCPOPT_NOP << 16) |
647 			       (TCPOPT_SACK_PERM << 8) |
648 			       TCPOLEN_SACK_PERM);
649 	}
650 
651 	if (unlikely(OPTION_WSCALE & options)) {
652 		*ptr++ = htonl((TCPOPT_NOP << 24) |
653 			       (TCPOPT_WINDOW << 16) |
654 			       (TCPOLEN_WINDOW << 8) |
655 			       opts->ws);
656 	}
657 
658 	if (unlikely(opts->num_sack_blocks)) {
659 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 			tp->duplicate_sack : tp->selective_acks;
661 		int this_sack;
662 
663 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
664 			       (TCPOPT_NOP  << 16) |
665 			       (TCPOPT_SACK <<  8) |
666 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 						     TCPOLEN_SACK_PERBLOCK)));
668 
669 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 		     ++this_sack) {
671 			*ptr++ = htonl(sp[this_sack].start_seq);
672 			*ptr++ = htonl(sp[this_sack].end_seq);
673 		}
674 
675 		tp->rx_opt.dsack = 0;
676 	}
677 
678 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 		u8 *p = (u8 *)ptr;
681 		u32 len; /* Fast Open option length */
682 
683 		if (foc->exp) {
684 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 				     TCPOPT_FASTOPEN_MAGIC);
687 			p += TCPOLEN_EXP_FASTOPEN_BASE;
688 		} else {
689 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 			*p++ = TCPOPT_FASTOPEN;
691 			*p++ = len;
692 		}
693 
694 		memcpy(p, foc->val, foc->len);
695 		if ((len & 3) == 2) {
696 			p[foc->len] = TCPOPT_NOP;
697 			p[foc->len + 1] = TCPOPT_NOP;
698 		}
699 		ptr += (len + 3) >> 2;
700 	}
701 
702 	smc_options_write(ptr, &options);
703 
704 	mptcp_options_write(th, ptr, tp, opts);
705 }
706 
707 static void smc_set_option(const struct tcp_sock *tp,
708 			   struct tcp_out_options *opts,
709 			   unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 	if (static_branch_unlikely(&tcp_have_smc)) {
713 		if (tp->syn_smc) {
714 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 				opts->options |= OPTION_SMC;
716 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 			}
718 		}
719 	}
720 #endif
721 }
722 
723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 				const struct inet_request_sock *ireq,
725 				struct tcp_out_options *opts,
726 				unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 	if (static_branch_unlikely(&tcp_have_smc)) {
730 		if (tp->syn_smc && ireq->smc_ok) {
731 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 				opts->options |= OPTION_SMC;
733 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 			}
735 		}
736 	}
737 #endif
738 }
739 
740 static void mptcp_set_option_cond(const struct request_sock *req,
741 				  struct tcp_out_options *opts,
742 				  unsigned int *remaining)
743 {
744 	if (rsk_is_mptcp(req)) {
745 		unsigned int size;
746 
747 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 			if (*remaining >= size) {
749 				opts->options |= OPTION_MPTCP;
750 				*remaining -= size;
751 			}
752 		}
753 	}
754 }
755 
756 /* Compute TCP options for SYN packets. This is not the final
757  * network wire format yet.
758  */
759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 				struct tcp_out_options *opts,
761 				struct tcp_md5sig_key **md5)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766 
767 	*md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
770 	    rcu_access_pointer(tp->md5sig_info)) {
771 		*md5 = tp->af_specific->md5_lookup(sk, sk);
772 		if (*md5) {
773 			opts->options |= OPTION_MD5;
774 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 		}
776 	}
777 #endif
778 
779 	/* We always get an MSS option.  The option bytes which will be seen in
780 	 * normal data packets should timestamps be used, must be in the MSS
781 	 * advertised.  But we subtract them from tp->mss_cache so that
782 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
783 	 * fact here if necessary.  If we don't do this correctly, as a
784 	 * receiver we won't recognize data packets as being full sized when we
785 	 * should, and thus we won't abide by the delayed ACK rules correctly.
786 	 * SACKs don't matter, we never delay an ACK when we have any of those
787 	 * going out.  */
788 	opts->mss = tcp_advertise_mss(sk);
789 	remaining -= TCPOLEN_MSS_ALIGNED;
790 
791 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
792 		opts->options |= OPTION_TS;
793 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 		opts->tsecr = tp->rx_opt.ts_recent;
795 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 	}
797 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
798 		opts->ws = tp->rx_opt.rcv_wscale;
799 		opts->options |= OPTION_WSCALE;
800 		remaining -= TCPOLEN_WSCALE_ALIGNED;
801 	}
802 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
803 		opts->options |= OPTION_SACK_ADVERTISE;
804 		if (unlikely(!(OPTION_TS & opts->options)))
805 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 	}
807 
808 	if (fastopen && fastopen->cookie.len >= 0) {
809 		u32 need = fastopen->cookie.len;
810 
811 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 					       TCPOLEN_FASTOPEN_BASE;
813 		need = (need + 3) & ~3U;  /* Align to 32 bits */
814 		if (remaining >= need) {
815 			opts->options |= OPTION_FAST_OPEN_COOKIE;
816 			opts->fastopen_cookie = &fastopen->cookie;
817 			remaining -= need;
818 			tp->syn_fastopen = 1;
819 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 		}
821 	}
822 
823 	smc_set_option(tp, opts, &remaining);
824 
825 	if (sk_is_mptcp(sk)) {
826 		unsigned int size;
827 
828 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 			opts->options |= OPTION_MPTCP;
830 			remaining -= size;
831 		}
832 	}
833 
834 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835 
836 	return MAX_TCP_OPTION_SPACE - remaining;
837 }
838 
839 /* Set up TCP options for SYN-ACKs. */
840 static unsigned int tcp_synack_options(const struct sock *sk,
841 				       struct request_sock *req,
842 				       unsigned int mss, struct sk_buff *skb,
843 				       struct tcp_out_options *opts,
844 				       const struct tcp_md5sig_key *md5,
845 				       struct tcp_fastopen_cookie *foc,
846 				       enum tcp_synack_type synack_type,
847 				       struct sk_buff *syn_skb)
848 {
849 	struct inet_request_sock *ireq = inet_rsk(req);
850 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
851 
852 #ifdef CONFIG_TCP_MD5SIG
853 	if (md5) {
854 		opts->options |= OPTION_MD5;
855 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
856 
857 		/* We can't fit any SACK blocks in a packet with MD5 + TS
858 		 * options. There was discussion about disabling SACK
859 		 * rather than TS in order to fit in better with old,
860 		 * buggy kernels, but that was deemed to be unnecessary.
861 		 */
862 		if (synack_type != TCP_SYNACK_COOKIE)
863 			ireq->tstamp_ok &= !ireq->sack_ok;
864 	}
865 #endif
866 
867 	/* We always send an MSS option. */
868 	opts->mss = mss;
869 	remaining -= TCPOLEN_MSS_ALIGNED;
870 
871 	if (likely(ireq->wscale_ok)) {
872 		opts->ws = ireq->rcv_wscale;
873 		opts->options |= OPTION_WSCALE;
874 		remaining -= TCPOLEN_WSCALE_ALIGNED;
875 	}
876 	if (likely(ireq->tstamp_ok)) {
877 		opts->options |= OPTION_TS;
878 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 		opts->tsecr = req->ts_recent;
880 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 	}
882 	if (likely(ireq->sack_ok)) {
883 		opts->options |= OPTION_SACK_ADVERTISE;
884 		if (unlikely(!ireq->tstamp_ok))
885 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 	}
887 	if (foc != NULL && foc->len >= 0) {
888 		u32 need = foc->len;
889 
890 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 				   TCPOLEN_FASTOPEN_BASE;
892 		need = (need + 3) & ~3U;  /* Align to 32 bits */
893 		if (remaining >= need) {
894 			opts->options |= OPTION_FAST_OPEN_COOKIE;
895 			opts->fastopen_cookie = foc;
896 			remaining -= need;
897 		}
898 	}
899 
900 	mptcp_set_option_cond(req, opts, &remaining);
901 
902 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903 
904 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 			      synack_type, opts, &remaining);
906 
907 	return MAX_TCP_OPTION_SPACE - remaining;
908 }
909 
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911  * final wire format yet.
912  */
913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 					struct tcp_out_options *opts,
915 					struct tcp_md5sig_key **md5)
916 {
917 	struct tcp_sock *tp = tcp_sk(sk);
918 	unsigned int size = 0;
919 	unsigned int eff_sacks;
920 
921 	opts->options = 0;
922 
923 	*md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
926 	    rcu_access_pointer(tp->md5sig_info)) {
927 		*md5 = tp->af_specific->md5_lookup(sk, sk);
928 		if (*md5) {
929 			opts->options |= OPTION_MD5;
930 			size += TCPOLEN_MD5SIG_ALIGNED;
931 		}
932 	}
933 #endif
934 
935 	if (likely(tp->rx_opt.tstamp_ok)) {
936 		opts->options |= OPTION_TS;
937 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 		opts->tsecr = tp->rx_opt.ts_recent;
939 		size += TCPOLEN_TSTAMP_ALIGNED;
940 	}
941 
942 	/* MPTCP options have precedence over SACK for the limited TCP
943 	 * option space because a MPTCP connection would be forced to
944 	 * fall back to regular TCP if a required multipath option is
945 	 * missing. SACK still gets a chance to use whatever space is
946 	 * left.
947 	 */
948 	if (sk_is_mptcp(sk)) {
949 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 		unsigned int opt_size = 0;
951 
952 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 					      &opts->mptcp)) {
954 			opts->options |= OPTION_MPTCP;
955 			size += opt_size;
956 		}
957 	}
958 
959 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 	if (unlikely(eff_sacks)) {
961 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 					 TCPOLEN_SACK_PERBLOCK))
964 			return size;
965 
966 		opts->num_sack_blocks =
967 			min_t(unsigned int, eff_sacks,
968 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 			      TCPOLEN_SACK_PERBLOCK);
970 
971 		size += TCPOLEN_SACK_BASE_ALIGNED +
972 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 	}
974 
975 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978 
979 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980 
981 		size = MAX_TCP_OPTION_SPACE - remaining;
982 	}
983 
984 	return size;
985 }
986 
987 
988 /* TCP SMALL QUEUES (TSQ)
989  *
990  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991  * to reduce RTT and bufferbloat.
992  * We do this using a special skb destructor (tcp_wfree).
993  *
994  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995  * needs to be reallocated in a driver.
996  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997  *
998  * Since transmit from skb destructor is forbidden, we use a tasklet
999  * to process all sockets that eventually need to send more skbs.
1000  * We use one tasklet per cpu, with its own queue of sockets.
1001  */
1002 struct tsq_tasklet {
1003 	struct tasklet_struct	tasklet;
1004 	struct list_head	head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007 
1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 	if ((1 << sk->sk_state) &
1011 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1013 		struct tcp_sock *tp = tcp_sk(sk);
1014 
1015 		if (tp->lost_out > tp->retrans_out &&
1016 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1017 			tcp_mstamp_refresh(tp);
1018 			tcp_xmit_retransmit_queue(sk);
1019 		}
1020 
1021 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 			       0, GFP_ATOMIC);
1023 	}
1024 }
1025 
1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 	bh_lock_sock(sk);
1029 	if (!sock_owned_by_user(sk))
1030 		tcp_tsq_write(sk);
1031 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 		sock_hold(sk);
1033 	bh_unlock_sock(sk);
1034 }
1035 /*
1036  * One tasklet per cpu tries to send more skbs.
1037  * We run in tasklet context but need to disable irqs when
1038  * transferring tsq->head because tcp_wfree() might
1039  * interrupt us (non NAPI drivers)
1040  */
1041 static void tcp_tasklet_func(struct tasklet_struct *t)
1042 {
1043 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1044 	LIST_HEAD(list);
1045 	unsigned long flags;
1046 	struct list_head *q, *n;
1047 	struct tcp_sock *tp;
1048 	struct sock *sk;
1049 
1050 	local_irq_save(flags);
1051 	list_splice_init(&tsq->head, &list);
1052 	local_irq_restore(flags);
1053 
1054 	list_for_each_safe(q, n, &list) {
1055 		tp = list_entry(q, struct tcp_sock, tsq_node);
1056 		list_del(&tp->tsq_node);
1057 
1058 		sk = (struct sock *)tp;
1059 		smp_mb__before_atomic();
1060 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061 
1062 		tcp_tsq_handler(sk);
1063 		sk_free(sk);
1064 	}
1065 }
1066 
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1068 			  TCPF_WRITE_TIMER_DEFERRED |	\
1069 			  TCPF_DELACK_TIMER_DEFERRED |	\
1070 			  TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072  * tcp_release_cb - tcp release_sock() callback
1073  * @sk: socket
1074  *
1075  * called from release_sock() to perform protocol dependent
1076  * actions before socket release.
1077  */
1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1081 	unsigned long nflags;
1082 
1083 	/* perform an atomic operation only if at least one flag is set */
1084 	do {
1085 		if (!(flags & TCP_DEFERRED_ALL))
1086 			return;
1087 		nflags = flags & ~TCP_DEFERRED_ALL;
1088 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1089 
1090 	if (flags & TCPF_TSQ_DEFERRED) {
1091 		tcp_tsq_write(sk);
1092 		__sock_put(sk);
1093 	}
1094 	/* Here begins the tricky part :
1095 	 * We are called from release_sock() with :
1096 	 * 1) BH disabled
1097 	 * 2) sk_lock.slock spinlock held
1098 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 	 *
1100 	 * But following code is meant to be called from BH handlers,
1101 	 * so we should keep BH disabled, but early release socket ownership
1102 	 */
1103 	sock_release_ownership(sk);
1104 
1105 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 		tcp_write_timer_handler(sk);
1107 		__sock_put(sk);
1108 	}
1109 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 		tcp_delack_timer_handler(sk);
1111 		__sock_put(sk);
1112 	}
1113 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 		__sock_put(sk);
1116 	}
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119 
1120 void __init tcp_tasklet_init(void)
1121 {
1122 	int i;
1123 
1124 	for_each_possible_cpu(i) {
1125 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126 
1127 		INIT_LIST_HEAD(&tsq->head);
1128 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1129 	}
1130 }
1131 
1132 /*
1133  * Write buffer destructor automatically called from kfree_skb.
1134  * We can't xmit new skbs from this context, as we might already
1135  * hold qdisc lock.
1136  */
1137 void tcp_wfree(struct sk_buff *skb)
1138 {
1139 	struct sock *sk = skb->sk;
1140 	struct tcp_sock *tp = tcp_sk(sk);
1141 	unsigned long flags, nval, oval;
1142 	struct tsq_tasklet *tsq;
1143 	bool empty;
1144 
1145 	/* Keep one reference on sk_wmem_alloc.
1146 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1147 	 */
1148 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1149 
1150 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1151 	 * Wait until our queues (qdisc + devices) are drained.
1152 	 * This gives :
1153 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1154 	 * - chance for incoming ACK (processed by another cpu maybe)
1155 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1156 	 */
1157 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1158 		goto out;
1159 
1160 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1161 	do {
1162 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1163 			goto out;
1164 
1165 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1167 
1168 	/* queue this socket to tasklet queue */
1169 	local_irq_save(flags);
1170 	tsq = this_cpu_ptr(&tsq_tasklet);
1171 	empty = list_empty(&tsq->head);
1172 	list_add(&tp->tsq_node, &tsq->head);
1173 	if (empty)
1174 		tasklet_schedule(&tsq->tasklet);
1175 	local_irq_restore(flags);
1176 	return;
1177 out:
1178 	sk_free(sk);
1179 }
1180 
1181 /* Note: Called under soft irq.
1182  * We can call TCP stack right away, unless socket is owned by user.
1183  */
1184 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1185 {
1186 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1187 	struct sock *sk = (struct sock *)tp;
1188 
1189 	tcp_tsq_handler(sk);
1190 	sock_put(sk);
1191 
1192 	return HRTIMER_NORESTART;
1193 }
1194 
1195 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1196 				      u64 prior_wstamp)
1197 {
1198 	struct tcp_sock *tp = tcp_sk(sk);
1199 
1200 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1201 		unsigned long rate = sk->sk_pacing_rate;
1202 
1203 		/* Original sch_fq does not pace first 10 MSS
1204 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1205 		 * this is a minor annoyance.
1206 		 */
1207 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1208 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1209 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1210 
1211 			/* take into account OS jitter */
1212 			len_ns -= min_t(u64, len_ns / 2, credit);
1213 			tp->tcp_wstamp_ns += len_ns;
1214 		}
1215 	}
1216 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1217 }
1218 
1219 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1220 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1221 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1222 
1223 /* This routine actually transmits TCP packets queued in by
1224  * tcp_do_sendmsg().  This is used by both the initial
1225  * transmission and possible later retransmissions.
1226  * All SKB's seen here are completely headerless.  It is our
1227  * job to build the TCP header, and pass the packet down to
1228  * IP so it can do the same plus pass the packet off to the
1229  * device.
1230  *
1231  * We are working here with either a clone of the original
1232  * SKB, or a fresh unique copy made by the retransmit engine.
1233  */
1234 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1235 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1236 {
1237 	const struct inet_connection_sock *icsk = inet_csk(sk);
1238 	struct inet_sock *inet;
1239 	struct tcp_sock *tp;
1240 	struct tcp_skb_cb *tcb;
1241 	struct tcp_out_options opts;
1242 	unsigned int tcp_options_size, tcp_header_size;
1243 	struct sk_buff *oskb = NULL;
1244 	struct tcp_md5sig_key *md5;
1245 	struct tcphdr *th;
1246 	u64 prior_wstamp;
1247 	int err;
1248 
1249 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1250 	tp = tcp_sk(sk);
1251 	prior_wstamp = tp->tcp_wstamp_ns;
1252 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1253 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1254 	if (clone_it) {
1255 		oskb = skb;
1256 
1257 		tcp_skb_tsorted_save(oskb) {
1258 			if (unlikely(skb_cloned(oskb)))
1259 				skb = pskb_copy(oskb, gfp_mask);
1260 			else
1261 				skb = skb_clone(oskb, gfp_mask);
1262 		} tcp_skb_tsorted_restore(oskb);
1263 
1264 		if (unlikely(!skb))
1265 			return -ENOBUFS;
1266 		/* retransmit skbs might have a non zero value in skb->dev
1267 		 * because skb->dev is aliased with skb->rbnode.rb_left
1268 		 */
1269 		skb->dev = NULL;
1270 	}
1271 
1272 	inet = inet_sk(sk);
1273 	tcb = TCP_SKB_CB(skb);
1274 	memset(&opts, 0, sizeof(opts));
1275 
1276 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1277 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1278 	} else {
1279 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1280 							   &md5);
1281 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1282 		 * at receiver : This slightly improve GRO performance.
1283 		 * Note that we do not force the PSH flag for non GSO packets,
1284 		 * because they might be sent under high congestion events,
1285 		 * and in this case it is better to delay the delivery of 1-MSS
1286 		 * packets and thus the corresponding ACK packet that would
1287 		 * release the following packet.
1288 		 */
1289 		if (tcp_skb_pcount(skb) > 1)
1290 			tcb->tcp_flags |= TCPHDR_PSH;
1291 	}
1292 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1293 
1294 	/* if no packet is in qdisc/device queue, then allow XPS to select
1295 	 * another queue. We can be called from tcp_tsq_handler()
1296 	 * which holds one reference to sk.
1297 	 *
1298 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1299 	 * One way to get this would be to set skb->truesize = 2 on them.
1300 	 */
1301 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1302 
1303 	/* If we had to use memory reserve to allocate this skb,
1304 	 * this might cause drops if packet is looped back :
1305 	 * Other socket might not have SOCK_MEMALLOC.
1306 	 * Packets not looped back do not care about pfmemalloc.
1307 	 */
1308 	skb->pfmemalloc = 0;
1309 
1310 	skb_push(skb, tcp_header_size);
1311 	skb_reset_transport_header(skb);
1312 
1313 	skb_orphan(skb);
1314 	skb->sk = sk;
1315 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1316 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1317 
1318 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1319 
1320 	/* Build TCP header and checksum it. */
1321 	th = (struct tcphdr *)skb->data;
1322 	th->source		= inet->inet_sport;
1323 	th->dest		= inet->inet_dport;
1324 	th->seq			= htonl(tcb->seq);
1325 	th->ack_seq		= htonl(rcv_nxt);
1326 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1327 					tcb->tcp_flags);
1328 
1329 	th->check		= 0;
1330 	th->urg_ptr		= 0;
1331 
1332 	/* The urg_mode check is necessary during a below snd_una win probe */
1333 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1334 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1335 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1336 			th->urg = 1;
1337 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1338 			th->urg_ptr = htons(0xFFFF);
1339 			th->urg = 1;
1340 		}
1341 	}
1342 
1343 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1344 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1345 		th->window      = htons(tcp_select_window(sk));
1346 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1347 	} else {
1348 		/* RFC1323: The window in SYN & SYN/ACK segments
1349 		 * is never scaled.
1350 		 */
1351 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1352 	}
1353 
1354 	tcp_options_write(th, tp, &opts);
1355 
1356 #ifdef CONFIG_TCP_MD5SIG
1357 	/* Calculate the MD5 hash, as we have all we need now */
1358 	if (md5) {
1359 		sk_gso_disable(sk);
1360 		tp->af_specific->calc_md5_hash(opts.hash_location,
1361 					       md5, sk, skb);
1362 	}
1363 #endif
1364 
1365 	/* BPF prog is the last one writing header option */
1366 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1367 
1368 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1369 			   tcp_v6_send_check, tcp_v4_send_check,
1370 			   sk, skb);
1371 
1372 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1373 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1374 
1375 	if (skb->len != tcp_header_size) {
1376 		tcp_event_data_sent(tp, sk);
1377 		tp->data_segs_out += tcp_skb_pcount(skb);
1378 		tp->bytes_sent += skb->len - tcp_header_size;
1379 	}
1380 
1381 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1382 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1383 			      tcp_skb_pcount(skb));
1384 
1385 	tp->segs_out += tcp_skb_pcount(skb);
1386 	skb_set_hash_from_sk(skb, sk);
1387 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1388 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1389 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1390 
1391 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1392 
1393 	/* Cleanup our debris for IP stacks */
1394 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1395 			       sizeof(struct inet6_skb_parm)));
1396 
1397 	tcp_add_tx_delay(skb, tp);
1398 
1399 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1400 				 inet6_csk_xmit, ip_queue_xmit,
1401 				 sk, skb, &inet->cork.fl);
1402 
1403 	if (unlikely(err > 0)) {
1404 		tcp_enter_cwr(sk);
1405 		err = net_xmit_eval(err);
1406 	}
1407 	if (!err && oskb) {
1408 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1409 		tcp_rate_skb_sent(sk, oskb);
1410 	}
1411 	return err;
1412 }
1413 
1414 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1415 			    gfp_t gfp_mask)
1416 {
1417 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1418 				  tcp_sk(sk)->rcv_nxt);
1419 }
1420 
1421 /* This routine just queues the buffer for sending.
1422  *
1423  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1424  * otherwise socket can stall.
1425  */
1426 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1427 {
1428 	struct tcp_sock *tp = tcp_sk(sk);
1429 
1430 	/* Advance write_seq and place onto the write_queue. */
1431 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1432 	__skb_header_release(skb);
1433 	tcp_add_write_queue_tail(sk, skb);
1434 	sk_wmem_queued_add(sk, skb->truesize);
1435 	sk_mem_charge(sk, skb->truesize);
1436 }
1437 
1438 /* Initialize TSO segments for a packet. */
1439 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1440 {
1441 	if (skb->len <= mss_now) {
1442 		/* Avoid the costly divide in the normal
1443 		 * non-TSO case.
1444 		 */
1445 		tcp_skb_pcount_set(skb, 1);
1446 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1447 	} else {
1448 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1449 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1450 	}
1451 }
1452 
1453 /* Pcount in the middle of the write queue got changed, we need to do various
1454  * tweaks to fix counters
1455  */
1456 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1457 {
1458 	struct tcp_sock *tp = tcp_sk(sk);
1459 
1460 	tp->packets_out -= decr;
1461 
1462 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1463 		tp->sacked_out -= decr;
1464 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1465 		tp->retrans_out -= decr;
1466 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1467 		tp->lost_out -= decr;
1468 
1469 	/* Reno case is special. Sigh... */
1470 	if (tcp_is_reno(tp) && decr > 0)
1471 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1472 
1473 	if (tp->lost_skb_hint &&
1474 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1475 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1476 		tp->lost_cnt_hint -= decr;
1477 
1478 	tcp_verify_left_out(tp);
1479 }
1480 
1481 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1482 {
1483 	return TCP_SKB_CB(skb)->txstamp_ack ||
1484 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1485 }
1486 
1487 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1488 {
1489 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1490 
1491 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1492 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1493 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1494 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1495 
1496 		shinfo->tx_flags &= ~tsflags;
1497 		shinfo2->tx_flags |= tsflags;
1498 		swap(shinfo->tskey, shinfo2->tskey);
1499 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1500 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1501 	}
1502 }
1503 
1504 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1505 {
1506 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1507 	TCP_SKB_CB(skb)->eor = 0;
1508 }
1509 
1510 /* Insert buff after skb on the write or rtx queue of sk.  */
1511 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1512 					 struct sk_buff *buff,
1513 					 struct sock *sk,
1514 					 enum tcp_queue tcp_queue)
1515 {
1516 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1517 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1518 	else
1519 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1520 }
1521 
1522 /* Function to create two new TCP segments.  Shrinks the given segment
1523  * to the specified size and appends a new segment with the rest of the
1524  * packet to the list.  This won't be called frequently, I hope.
1525  * Remember, these are still headerless SKBs at this point.
1526  */
1527 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1528 		 struct sk_buff *skb, u32 len,
1529 		 unsigned int mss_now, gfp_t gfp)
1530 {
1531 	struct tcp_sock *tp = tcp_sk(sk);
1532 	struct sk_buff *buff;
1533 	int nsize, old_factor;
1534 	long limit;
1535 	int nlen;
1536 	u8 flags;
1537 
1538 	if (WARN_ON(len > skb->len))
1539 		return -EINVAL;
1540 
1541 	nsize = skb_headlen(skb) - len;
1542 	if (nsize < 0)
1543 		nsize = 0;
1544 
1545 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1546 	 * We need some allowance to not penalize applications setting small
1547 	 * SO_SNDBUF values.
1548 	 * Also allow first and last skb in retransmit queue to be split.
1549 	 */
1550 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1551 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1552 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1553 		     skb != tcp_rtx_queue_head(sk) &&
1554 		     skb != tcp_rtx_queue_tail(sk))) {
1555 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1556 		return -ENOMEM;
1557 	}
1558 
1559 	if (skb_unclone_keeptruesize(skb, gfp))
1560 		return -ENOMEM;
1561 
1562 	/* Get a new skb... force flag on. */
1563 	buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1564 	if (!buff)
1565 		return -ENOMEM; /* We'll just try again later. */
1566 	skb_copy_decrypted(buff, skb);
1567 	mptcp_skb_ext_copy(buff, skb);
1568 
1569 	sk_wmem_queued_add(sk, buff->truesize);
1570 	sk_mem_charge(sk, buff->truesize);
1571 	nlen = skb->len - len - nsize;
1572 	buff->truesize += nlen;
1573 	skb->truesize -= nlen;
1574 
1575 	/* Correct the sequence numbers. */
1576 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1577 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1578 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1579 
1580 	/* PSH and FIN should only be set in the second packet. */
1581 	flags = TCP_SKB_CB(skb)->tcp_flags;
1582 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1583 	TCP_SKB_CB(buff)->tcp_flags = flags;
1584 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1585 	tcp_skb_fragment_eor(skb, buff);
1586 
1587 	skb_split(skb, buff, len);
1588 
1589 	skb_set_delivery_time(buff, skb->tstamp, true);
1590 	tcp_fragment_tstamp(skb, buff);
1591 
1592 	old_factor = tcp_skb_pcount(skb);
1593 
1594 	/* Fix up tso_factor for both original and new SKB.  */
1595 	tcp_set_skb_tso_segs(skb, mss_now);
1596 	tcp_set_skb_tso_segs(buff, mss_now);
1597 
1598 	/* Update delivered info for the new segment */
1599 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1600 
1601 	/* If this packet has been sent out already, we must
1602 	 * adjust the various packet counters.
1603 	 */
1604 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1605 		int diff = old_factor - tcp_skb_pcount(skb) -
1606 			tcp_skb_pcount(buff);
1607 
1608 		if (diff)
1609 			tcp_adjust_pcount(sk, skb, diff);
1610 	}
1611 
1612 	/* Link BUFF into the send queue. */
1613 	__skb_header_release(buff);
1614 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1615 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1616 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1617 
1618 	return 0;
1619 }
1620 
1621 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1622  * data is not copied, but immediately discarded.
1623  */
1624 static int __pskb_trim_head(struct sk_buff *skb, int len)
1625 {
1626 	struct skb_shared_info *shinfo;
1627 	int i, k, eat;
1628 
1629 	eat = min_t(int, len, skb_headlen(skb));
1630 	if (eat) {
1631 		__skb_pull(skb, eat);
1632 		len -= eat;
1633 		if (!len)
1634 			return 0;
1635 	}
1636 	eat = len;
1637 	k = 0;
1638 	shinfo = skb_shinfo(skb);
1639 	for (i = 0; i < shinfo->nr_frags; i++) {
1640 		int size = skb_frag_size(&shinfo->frags[i]);
1641 
1642 		if (size <= eat) {
1643 			skb_frag_unref(skb, i);
1644 			eat -= size;
1645 		} else {
1646 			shinfo->frags[k] = shinfo->frags[i];
1647 			if (eat) {
1648 				skb_frag_off_add(&shinfo->frags[k], eat);
1649 				skb_frag_size_sub(&shinfo->frags[k], eat);
1650 				eat = 0;
1651 			}
1652 			k++;
1653 		}
1654 	}
1655 	shinfo->nr_frags = k;
1656 
1657 	skb->data_len -= len;
1658 	skb->len = skb->data_len;
1659 	return len;
1660 }
1661 
1662 /* Remove acked data from a packet in the transmit queue. */
1663 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1664 {
1665 	u32 delta_truesize;
1666 
1667 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1668 		return -ENOMEM;
1669 
1670 	delta_truesize = __pskb_trim_head(skb, len);
1671 
1672 	TCP_SKB_CB(skb)->seq += len;
1673 
1674 	if (delta_truesize) {
1675 		skb->truesize	   -= delta_truesize;
1676 		sk_wmem_queued_add(sk, -delta_truesize);
1677 		if (!skb_zcopy_pure(skb))
1678 			sk_mem_uncharge(sk, delta_truesize);
1679 	}
1680 
1681 	/* Any change of skb->len requires recalculation of tso factor. */
1682 	if (tcp_skb_pcount(skb) > 1)
1683 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1684 
1685 	return 0;
1686 }
1687 
1688 /* Calculate MSS not accounting any TCP options.  */
1689 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1690 {
1691 	const struct tcp_sock *tp = tcp_sk(sk);
1692 	const struct inet_connection_sock *icsk = inet_csk(sk);
1693 	int mss_now;
1694 
1695 	/* Calculate base mss without TCP options:
1696 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1697 	 */
1698 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1699 
1700 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1701 	if (icsk->icsk_af_ops->net_frag_header_len) {
1702 		const struct dst_entry *dst = __sk_dst_get(sk);
1703 
1704 		if (dst && dst_allfrag(dst))
1705 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1706 	}
1707 
1708 	/* Clamp it (mss_clamp does not include tcp options) */
1709 	if (mss_now > tp->rx_opt.mss_clamp)
1710 		mss_now = tp->rx_opt.mss_clamp;
1711 
1712 	/* Now subtract optional transport overhead */
1713 	mss_now -= icsk->icsk_ext_hdr_len;
1714 
1715 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1716 	mss_now = max(mss_now,
1717 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1718 	return mss_now;
1719 }
1720 
1721 /* Calculate MSS. Not accounting for SACKs here.  */
1722 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1723 {
1724 	/* Subtract TCP options size, not including SACKs */
1725 	return __tcp_mtu_to_mss(sk, pmtu) -
1726 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1727 }
1728 EXPORT_SYMBOL(tcp_mtu_to_mss);
1729 
1730 /* Inverse of above */
1731 int tcp_mss_to_mtu(struct sock *sk, int mss)
1732 {
1733 	const struct tcp_sock *tp = tcp_sk(sk);
1734 	const struct inet_connection_sock *icsk = inet_csk(sk);
1735 	int mtu;
1736 
1737 	mtu = mss +
1738 	      tp->tcp_header_len +
1739 	      icsk->icsk_ext_hdr_len +
1740 	      icsk->icsk_af_ops->net_header_len;
1741 
1742 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1743 	if (icsk->icsk_af_ops->net_frag_header_len) {
1744 		const struct dst_entry *dst = __sk_dst_get(sk);
1745 
1746 		if (dst && dst_allfrag(dst))
1747 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1748 	}
1749 	return mtu;
1750 }
1751 EXPORT_SYMBOL(tcp_mss_to_mtu);
1752 
1753 /* MTU probing init per socket */
1754 void tcp_mtup_init(struct sock *sk)
1755 {
1756 	struct tcp_sock *tp = tcp_sk(sk);
1757 	struct inet_connection_sock *icsk = inet_csk(sk);
1758 	struct net *net = sock_net(sk);
1759 
1760 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1761 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1762 			       icsk->icsk_af_ops->net_header_len;
1763 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1764 	icsk->icsk_mtup.probe_size = 0;
1765 	if (icsk->icsk_mtup.enabled)
1766 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1767 }
1768 EXPORT_SYMBOL(tcp_mtup_init);
1769 
1770 /* This function synchronize snd mss to current pmtu/exthdr set.
1771 
1772    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1773    for TCP options, but includes only bare TCP header.
1774 
1775    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1776    It is minimum of user_mss and mss received with SYN.
1777    It also does not include TCP options.
1778 
1779    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1780 
1781    tp->mss_cache is current effective sending mss, including
1782    all tcp options except for SACKs. It is evaluated,
1783    taking into account current pmtu, but never exceeds
1784    tp->rx_opt.mss_clamp.
1785 
1786    NOTE1. rfc1122 clearly states that advertised MSS
1787    DOES NOT include either tcp or ip options.
1788 
1789    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1790    are READ ONLY outside this function.		--ANK (980731)
1791  */
1792 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1793 {
1794 	struct tcp_sock *tp = tcp_sk(sk);
1795 	struct inet_connection_sock *icsk = inet_csk(sk);
1796 	int mss_now;
1797 
1798 	if (icsk->icsk_mtup.search_high > pmtu)
1799 		icsk->icsk_mtup.search_high = pmtu;
1800 
1801 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1802 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1803 
1804 	/* And store cached results */
1805 	icsk->icsk_pmtu_cookie = pmtu;
1806 	if (icsk->icsk_mtup.enabled)
1807 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1808 	tp->mss_cache = mss_now;
1809 
1810 	return mss_now;
1811 }
1812 EXPORT_SYMBOL(tcp_sync_mss);
1813 
1814 /* Compute the current effective MSS, taking SACKs and IP options,
1815  * and even PMTU discovery events into account.
1816  */
1817 unsigned int tcp_current_mss(struct sock *sk)
1818 {
1819 	const struct tcp_sock *tp = tcp_sk(sk);
1820 	const struct dst_entry *dst = __sk_dst_get(sk);
1821 	u32 mss_now;
1822 	unsigned int header_len;
1823 	struct tcp_out_options opts;
1824 	struct tcp_md5sig_key *md5;
1825 
1826 	mss_now = tp->mss_cache;
1827 
1828 	if (dst) {
1829 		u32 mtu = dst_mtu(dst);
1830 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1831 			mss_now = tcp_sync_mss(sk, mtu);
1832 	}
1833 
1834 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1835 		     sizeof(struct tcphdr);
1836 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1837 	 * some common options. If this is an odd packet (because we have SACK
1838 	 * blocks etc) then our calculated header_len will be different, and
1839 	 * we have to adjust mss_now correspondingly */
1840 	if (header_len != tp->tcp_header_len) {
1841 		int delta = (int) header_len - tp->tcp_header_len;
1842 		mss_now -= delta;
1843 	}
1844 
1845 	return mss_now;
1846 }
1847 
1848 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1849  * As additional protections, we do not touch cwnd in retransmission phases,
1850  * and if application hit its sndbuf limit recently.
1851  */
1852 static void tcp_cwnd_application_limited(struct sock *sk)
1853 {
1854 	struct tcp_sock *tp = tcp_sk(sk);
1855 
1856 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1857 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1858 		/* Limited by application or receiver window. */
1859 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1860 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1861 		if (win_used < tcp_snd_cwnd(tp)) {
1862 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1863 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1864 		}
1865 		tp->snd_cwnd_used = 0;
1866 	}
1867 	tp->snd_cwnd_stamp = tcp_jiffies32;
1868 }
1869 
1870 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1871 {
1872 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 
1875 	/* Track the strongest available signal of the degree to which the cwnd
1876 	 * is fully utilized. If cwnd-limited then remember that fact for the
1877 	 * current window. If not cwnd-limited then track the maximum number of
1878 	 * outstanding packets in the current window. (If cwnd-limited then we
1879 	 * chose to not update tp->max_packets_out to avoid an extra else
1880 	 * clause with no functional impact.)
1881 	 */
1882 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1883 	    is_cwnd_limited ||
1884 	    (!tp->is_cwnd_limited &&
1885 	     tp->packets_out > tp->max_packets_out)) {
1886 		tp->is_cwnd_limited = is_cwnd_limited;
1887 		tp->max_packets_out = tp->packets_out;
1888 		tp->cwnd_usage_seq = tp->snd_nxt;
1889 	}
1890 
1891 	if (tcp_is_cwnd_limited(sk)) {
1892 		/* Network is feed fully. */
1893 		tp->snd_cwnd_used = 0;
1894 		tp->snd_cwnd_stamp = tcp_jiffies32;
1895 	} else {
1896 		/* Network starves. */
1897 		if (tp->packets_out > tp->snd_cwnd_used)
1898 			tp->snd_cwnd_used = tp->packets_out;
1899 
1900 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1901 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1902 		    !ca_ops->cong_control)
1903 			tcp_cwnd_application_limited(sk);
1904 
1905 		/* The following conditions together indicate the starvation
1906 		 * is caused by insufficient sender buffer:
1907 		 * 1) just sent some data (see tcp_write_xmit)
1908 		 * 2) not cwnd limited (this else condition)
1909 		 * 3) no more data to send (tcp_write_queue_empty())
1910 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1911 		 */
1912 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1913 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1914 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1915 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1916 	}
1917 }
1918 
1919 /* Minshall's variant of the Nagle send check. */
1920 static bool tcp_minshall_check(const struct tcp_sock *tp)
1921 {
1922 	return after(tp->snd_sml, tp->snd_una) &&
1923 		!after(tp->snd_sml, tp->snd_nxt);
1924 }
1925 
1926 /* Update snd_sml if this skb is under mss
1927  * Note that a TSO packet might end with a sub-mss segment
1928  * The test is really :
1929  * if ((skb->len % mss) != 0)
1930  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1931  * But we can avoid doing the divide again given we already have
1932  *  skb_pcount = skb->len / mss_now
1933  */
1934 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1935 				const struct sk_buff *skb)
1936 {
1937 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1938 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1939 }
1940 
1941 /* Return false, if packet can be sent now without violation Nagle's rules:
1942  * 1. It is full sized. (provided by caller in %partial bool)
1943  * 2. Or it contains FIN. (already checked by caller)
1944  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1945  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1946  *    With Minshall's modification: all sent small packets are ACKed.
1947  */
1948 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1949 			    int nonagle)
1950 {
1951 	return partial &&
1952 		((nonagle & TCP_NAGLE_CORK) ||
1953 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1954 }
1955 
1956 /* Return how many segs we'd like on a TSO packet,
1957  * depending on current pacing rate, and how close the peer is.
1958  *
1959  * Rationale is:
1960  * - For close peers, we rather send bigger packets to reduce
1961  *   cpu costs, because occasional losses will be repaired fast.
1962  * - For long distance/rtt flows, we would like to get ACK clocking
1963  *   with 1 ACK per ms.
1964  *
1965  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1966  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1967  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1968  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1969  */
1970 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1971 			    int min_tso_segs)
1972 {
1973 	unsigned long bytes;
1974 	u32 r;
1975 
1976 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1977 
1978 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1979 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1980 		bytes += sk->sk_gso_max_size >> r;
1981 
1982 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1983 
1984 	return max_t(u32, bytes / mss_now, min_tso_segs);
1985 }
1986 
1987 /* Return the number of segments we want in the skb we are transmitting.
1988  * See if congestion control module wants to decide; otherwise, autosize.
1989  */
1990 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1991 {
1992 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1993 	u32 min_tso, tso_segs;
1994 
1995 	min_tso = ca_ops->min_tso_segs ?
1996 			ca_ops->min_tso_segs(sk) :
1997 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1998 
1999 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2000 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2001 }
2002 
2003 /* Returns the portion of skb which can be sent right away */
2004 static unsigned int tcp_mss_split_point(const struct sock *sk,
2005 					const struct sk_buff *skb,
2006 					unsigned int mss_now,
2007 					unsigned int max_segs,
2008 					int nonagle)
2009 {
2010 	const struct tcp_sock *tp = tcp_sk(sk);
2011 	u32 partial, needed, window, max_len;
2012 
2013 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2014 	max_len = mss_now * max_segs;
2015 
2016 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2017 		return max_len;
2018 
2019 	needed = min(skb->len, window);
2020 
2021 	if (max_len <= needed)
2022 		return max_len;
2023 
2024 	partial = needed % mss_now;
2025 	/* If last segment is not a full MSS, check if Nagle rules allow us
2026 	 * to include this last segment in this skb.
2027 	 * Otherwise, we'll split the skb at last MSS boundary
2028 	 */
2029 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2030 		return needed - partial;
2031 
2032 	return needed;
2033 }
2034 
2035 /* Can at least one segment of SKB be sent right now, according to the
2036  * congestion window rules?  If so, return how many segments are allowed.
2037  */
2038 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2039 					 const struct sk_buff *skb)
2040 {
2041 	u32 in_flight, cwnd, halfcwnd;
2042 
2043 	/* Don't be strict about the congestion window for the final FIN.  */
2044 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2045 	    tcp_skb_pcount(skb) == 1)
2046 		return 1;
2047 
2048 	in_flight = tcp_packets_in_flight(tp);
2049 	cwnd = tcp_snd_cwnd(tp);
2050 	if (in_flight >= cwnd)
2051 		return 0;
2052 
2053 	/* For better scheduling, ensure we have at least
2054 	 * 2 GSO packets in flight.
2055 	 */
2056 	halfcwnd = max(cwnd >> 1, 1U);
2057 	return min(halfcwnd, cwnd - in_flight);
2058 }
2059 
2060 /* Initialize TSO state of a skb.
2061  * This must be invoked the first time we consider transmitting
2062  * SKB onto the wire.
2063  */
2064 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2065 {
2066 	int tso_segs = tcp_skb_pcount(skb);
2067 
2068 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2069 		tcp_set_skb_tso_segs(skb, mss_now);
2070 		tso_segs = tcp_skb_pcount(skb);
2071 	}
2072 	return tso_segs;
2073 }
2074 
2075 
2076 /* Return true if the Nagle test allows this packet to be
2077  * sent now.
2078  */
2079 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2080 				  unsigned int cur_mss, int nonagle)
2081 {
2082 	/* Nagle rule does not apply to frames, which sit in the middle of the
2083 	 * write_queue (they have no chances to get new data).
2084 	 *
2085 	 * This is implemented in the callers, where they modify the 'nonagle'
2086 	 * argument based upon the location of SKB in the send queue.
2087 	 */
2088 	if (nonagle & TCP_NAGLE_PUSH)
2089 		return true;
2090 
2091 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2092 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2093 		return true;
2094 
2095 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2096 		return true;
2097 
2098 	return false;
2099 }
2100 
2101 /* Does at least the first segment of SKB fit into the send window? */
2102 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2103 			     const struct sk_buff *skb,
2104 			     unsigned int cur_mss)
2105 {
2106 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2107 
2108 	if (skb->len > cur_mss)
2109 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2110 
2111 	return !after(end_seq, tcp_wnd_end(tp));
2112 }
2113 
2114 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2115  * which is put after SKB on the list.  It is very much like
2116  * tcp_fragment() except that it may make several kinds of assumptions
2117  * in order to speed up the splitting operation.  In particular, we
2118  * know that all the data is in scatter-gather pages, and that the
2119  * packet has never been sent out before (and thus is not cloned).
2120  */
2121 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2122 			unsigned int mss_now, gfp_t gfp)
2123 {
2124 	int nlen = skb->len - len;
2125 	struct sk_buff *buff;
2126 	u8 flags;
2127 
2128 	/* All of a TSO frame must be composed of paged data.  */
2129 	if (skb->len != skb->data_len)
2130 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2131 				    skb, len, mss_now, gfp);
2132 
2133 	buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2134 	if (unlikely(!buff))
2135 		return -ENOMEM;
2136 	skb_copy_decrypted(buff, skb);
2137 	mptcp_skb_ext_copy(buff, skb);
2138 
2139 	sk_wmem_queued_add(sk, buff->truesize);
2140 	sk_mem_charge(sk, buff->truesize);
2141 	buff->truesize += nlen;
2142 	skb->truesize -= nlen;
2143 
2144 	/* Correct the sequence numbers. */
2145 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2146 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2147 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2148 
2149 	/* PSH and FIN should only be set in the second packet. */
2150 	flags = TCP_SKB_CB(skb)->tcp_flags;
2151 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2152 	TCP_SKB_CB(buff)->tcp_flags = flags;
2153 
2154 	tcp_skb_fragment_eor(skb, buff);
2155 
2156 	skb_split(skb, buff, len);
2157 	tcp_fragment_tstamp(skb, buff);
2158 
2159 	/* Fix up tso_factor for both original and new SKB.  */
2160 	tcp_set_skb_tso_segs(skb, mss_now);
2161 	tcp_set_skb_tso_segs(buff, mss_now);
2162 
2163 	/* Link BUFF into the send queue. */
2164 	__skb_header_release(buff);
2165 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2166 
2167 	return 0;
2168 }
2169 
2170 /* Try to defer sending, if possible, in order to minimize the amount
2171  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2172  *
2173  * This algorithm is from John Heffner.
2174  */
2175 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2176 				 bool *is_cwnd_limited,
2177 				 bool *is_rwnd_limited,
2178 				 u32 max_segs)
2179 {
2180 	const struct inet_connection_sock *icsk = inet_csk(sk);
2181 	u32 send_win, cong_win, limit, in_flight;
2182 	struct tcp_sock *tp = tcp_sk(sk);
2183 	struct sk_buff *head;
2184 	int win_divisor;
2185 	s64 delta;
2186 
2187 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2188 		goto send_now;
2189 
2190 	/* Avoid bursty behavior by allowing defer
2191 	 * only if the last write was recent (1 ms).
2192 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2193 	 * packets waiting in a qdisc or device for EDT delivery.
2194 	 */
2195 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2196 	if (delta > 0)
2197 		goto send_now;
2198 
2199 	in_flight = tcp_packets_in_flight(tp);
2200 
2201 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2202 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2203 
2204 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2205 
2206 	/* From in_flight test above, we know that cwnd > in_flight.  */
2207 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2208 
2209 	limit = min(send_win, cong_win);
2210 
2211 	/* If a full-sized TSO skb can be sent, do it. */
2212 	if (limit >= max_segs * tp->mss_cache)
2213 		goto send_now;
2214 
2215 	/* Middle in queue won't get any more data, full sendable already? */
2216 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2217 		goto send_now;
2218 
2219 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2220 	if (win_divisor) {
2221 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2222 
2223 		/* If at least some fraction of a window is available,
2224 		 * just use it.
2225 		 */
2226 		chunk /= win_divisor;
2227 		if (limit >= chunk)
2228 			goto send_now;
2229 	} else {
2230 		/* Different approach, try not to defer past a single
2231 		 * ACK.  Receiver should ACK every other full sized
2232 		 * frame, so if we have space for more than 3 frames
2233 		 * then send now.
2234 		 */
2235 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2236 			goto send_now;
2237 	}
2238 
2239 	/* TODO : use tsorted_sent_queue ? */
2240 	head = tcp_rtx_queue_head(sk);
2241 	if (!head)
2242 		goto send_now;
2243 	delta = tp->tcp_clock_cache - head->tstamp;
2244 	/* If next ACK is likely to come too late (half srtt), do not defer */
2245 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2246 		goto send_now;
2247 
2248 	/* Ok, it looks like it is advisable to defer.
2249 	 * Three cases are tracked :
2250 	 * 1) We are cwnd-limited
2251 	 * 2) We are rwnd-limited
2252 	 * 3) We are application limited.
2253 	 */
2254 	if (cong_win < send_win) {
2255 		if (cong_win <= skb->len) {
2256 			*is_cwnd_limited = true;
2257 			return true;
2258 		}
2259 	} else {
2260 		if (send_win <= skb->len) {
2261 			*is_rwnd_limited = true;
2262 			return true;
2263 		}
2264 	}
2265 
2266 	/* If this packet won't get more data, do not wait. */
2267 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2268 	    TCP_SKB_CB(skb)->eor)
2269 		goto send_now;
2270 
2271 	return true;
2272 
2273 send_now:
2274 	return false;
2275 }
2276 
2277 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2278 {
2279 	struct inet_connection_sock *icsk = inet_csk(sk);
2280 	struct tcp_sock *tp = tcp_sk(sk);
2281 	struct net *net = sock_net(sk);
2282 	u32 interval;
2283 	s32 delta;
2284 
2285 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2286 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2287 	if (unlikely(delta >= interval * HZ)) {
2288 		int mss = tcp_current_mss(sk);
2289 
2290 		/* Update current search range */
2291 		icsk->icsk_mtup.probe_size = 0;
2292 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2293 			sizeof(struct tcphdr) +
2294 			icsk->icsk_af_ops->net_header_len;
2295 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2296 
2297 		/* Update probe time stamp */
2298 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2299 	}
2300 }
2301 
2302 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2303 {
2304 	struct sk_buff *skb, *next;
2305 
2306 	skb = tcp_send_head(sk);
2307 	tcp_for_write_queue_from_safe(skb, next, sk) {
2308 		if (len <= skb->len)
2309 			break;
2310 
2311 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2312 		    tcp_has_tx_tstamp(skb) ||
2313 		    !skb_pure_zcopy_same(skb, next))
2314 			return false;
2315 
2316 		len -= skb->len;
2317 	}
2318 
2319 	return true;
2320 }
2321 
2322 /* Create a new MTU probe if we are ready.
2323  * MTU probe is regularly attempting to increase the path MTU by
2324  * deliberately sending larger packets.  This discovers routing
2325  * changes resulting in larger path MTUs.
2326  *
2327  * Returns 0 if we should wait to probe (no cwnd available),
2328  *         1 if a probe was sent,
2329  *         -1 otherwise
2330  */
2331 static int tcp_mtu_probe(struct sock *sk)
2332 {
2333 	struct inet_connection_sock *icsk = inet_csk(sk);
2334 	struct tcp_sock *tp = tcp_sk(sk);
2335 	struct sk_buff *skb, *nskb, *next;
2336 	struct net *net = sock_net(sk);
2337 	int probe_size;
2338 	int size_needed;
2339 	int copy, len;
2340 	int mss_now;
2341 	int interval;
2342 
2343 	/* Not currently probing/verifying,
2344 	 * not in recovery,
2345 	 * have enough cwnd, and
2346 	 * not SACKing (the variable headers throw things off)
2347 	 */
2348 	if (likely(!icsk->icsk_mtup.enabled ||
2349 		   icsk->icsk_mtup.probe_size ||
2350 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2351 		   tcp_snd_cwnd(tp) < 11 ||
2352 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2353 		return -1;
2354 
2355 	/* Use binary search for probe_size between tcp_mss_base,
2356 	 * and current mss_clamp. if (search_high - search_low)
2357 	 * smaller than a threshold, backoff from probing.
2358 	 */
2359 	mss_now = tcp_current_mss(sk);
2360 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2361 				    icsk->icsk_mtup.search_low) >> 1);
2362 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2363 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2364 	/* When misfortune happens, we are reprobing actively,
2365 	 * and then reprobe timer has expired. We stick with current
2366 	 * probing process by not resetting search range to its orignal.
2367 	 */
2368 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2369 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2370 		/* Check whether enough time has elaplased for
2371 		 * another round of probing.
2372 		 */
2373 		tcp_mtu_check_reprobe(sk);
2374 		return -1;
2375 	}
2376 
2377 	/* Have enough data in the send queue to probe? */
2378 	if (tp->write_seq - tp->snd_nxt < size_needed)
2379 		return -1;
2380 
2381 	if (tp->snd_wnd < size_needed)
2382 		return -1;
2383 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2384 		return 0;
2385 
2386 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2387 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2388 		if (!tcp_packets_in_flight(tp))
2389 			return -1;
2390 		else
2391 			return 0;
2392 	}
2393 
2394 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2395 		return -1;
2396 
2397 	/* We're allowed to probe.  Build it now. */
2398 	nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2399 	if (!nskb)
2400 		return -1;
2401 	sk_wmem_queued_add(sk, nskb->truesize);
2402 	sk_mem_charge(sk, nskb->truesize);
2403 
2404 	skb = tcp_send_head(sk);
2405 	skb_copy_decrypted(nskb, skb);
2406 	mptcp_skb_ext_copy(nskb, skb);
2407 
2408 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2409 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2410 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2411 
2412 	tcp_insert_write_queue_before(nskb, skb, sk);
2413 	tcp_highest_sack_replace(sk, skb, nskb);
2414 
2415 	len = 0;
2416 	tcp_for_write_queue_from_safe(skb, next, sk) {
2417 		copy = min_t(int, skb->len, probe_size - len);
2418 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2419 
2420 		if (skb->len <= copy) {
2421 			/* We've eaten all the data from this skb.
2422 			 * Throw it away. */
2423 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2424 			/* If this is the last SKB we copy and eor is set
2425 			 * we need to propagate it to the new skb.
2426 			 */
2427 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2428 			tcp_skb_collapse_tstamp(nskb, skb);
2429 			tcp_unlink_write_queue(skb, sk);
2430 			tcp_wmem_free_skb(sk, skb);
2431 		} else {
2432 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2433 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2434 			if (!skb_shinfo(skb)->nr_frags) {
2435 				skb_pull(skb, copy);
2436 			} else {
2437 				__pskb_trim_head(skb, copy);
2438 				tcp_set_skb_tso_segs(skb, mss_now);
2439 			}
2440 			TCP_SKB_CB(skb)->seq += copy;
2441 		}
2442 
2443 		len += copy;
2444 
2445 		if (len >= probe_size)
2446 			break;
2447 	}
2448 	tcp_init_tso_segs(nskb, nskb->len);
2449 
2450 	/* We're ready to send.  If this fails, the probe will
2451 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2452 	 */
2453 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2454 		/* Decrement cwnd here because we are sending
2455 		 * effectively two packets. */
2456 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2457 		tcp_event_new_data_sent(sk, nskb);
2458 
2459 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2460 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2461 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2462 
2463 		return 1;
2464 	}
2465 
2466 	return -1;
2467 }
2468 
2469 static bool tcp_pacing_check(struct sock *sk)
2470 {
2471 	struct tcp_sock *tp = tcp_sk(sk);
2472 
2473 	if (!tcp_needs_internal_pacing(sk))
2474 		return false;
2475 
2476 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2477 		return false;
2478 
2479 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2480 		hrtimer_start(&tp->pacing_timer,
2481 			      ns_to_ktime(tp->tcp_wstamp_ns),
2482 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2483 		sock_hold(sk);
2484 	}
2485 	return true;
2486 }
2487 
2488 /* TCP Small Queues :
2489  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2490  * (These limits are doubled for retransmits)
2491  * This allows for :
2492  *  - better RTT estimation and ACK scheduling
2493  *  - faster recovery
2494  *  - high rates
2495  * Alas, some drivers / subsystems require a fair amount
2496  * of queued bytes to ensure line rate.
2497  * One example is wifi aggregation (802.11 AMPDU)
2498  */
2499 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2500 				  unsigned int factor)
2501 {
2502 	unsigned long limit;
2503 
2504 	limit = max_t(unsigned long,
2505 		      2 * skb->truesize,
2506 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2507 	if (sk->sk_pacing_status == SK_PACING_NONE)
2508 		limit = min_t(unsigned long, limit,
2509 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2510 	limit <<= factor;
2511 
2512 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2513 	    tcp_sk(sk)->tcp_tx_delay) {
2514 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2515 
2516 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2517 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2518 		 * USEC_PER_SEC is approximated by 2^20.
2519 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2520 		 */
2521 		extra_bytes >>= (20 - 1);
2522 		limit += extra_bytes;
2523 	}
2524 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2525 		/* Always send skb if rtx queue is empty.
2526 		 * No need to wait for TX completion to call us back,
2527 		 * after softirq/tasklet schedule.
2528 		 * This helps when TX completions are delayed too much.
2529 		 */
2530 		if (tcp_rtx_queue_empty(sk))
2531 			return false;
2532 
2533 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2534 		/* It is possible TX completion already happened
2535 		 * before we set TSQ_THROTTLED, so we must
2536 		 * test again the condition.
2537 		 */
2538 		smp_mb__after_atomic();
2539 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2540 			return true;
2541 	}
2542 	return false;
2543 }
2544 
2545 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2546 {
2547 	const u32 now = tcp_jiffies32;
2548 	enum tcp_chrono old = tp->chrono_type;
2549 
2550 	if (old > TCP_CHRONO_UNSPEC)
2551 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2552 	tp->chrono_start = now;
2553 	tp->chrono_type = new;
2554 }
2555 
2556 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 
2560 	/* If there are multiple conditions worthy of tracking in a
2561 	 * chronograph then the highest priority enum takes precedence
2562 	 * over the other conditions. So that if something "more interesting"
2563 	 * starts happening, stop the previous chrono and start a new one.
2564 	 */
2565 	if (type > tp->chrono_type)
2566 		tcp_chrono_set(tp, type);
2567 }
2568 
2569 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 
2573 
2574 	/* There are multiple conditions worthy of tracking in a
2575 	 * chronograph, so that the highest priority enum takes
2576 	 * precedence over the other conditions (see tcp_chrono_start).
2577 	 * If a condition stops, we only stop chrono tracking if
2578 	 * it's the "most interesting" or current chrono we are
2579 	 * tracking and starts busy chrono if we have pending data.
2580 	 */
2581 	if (tcp_rtx_and_write_queues_empty(sk))
2582 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2583 	else if (type == tp->chrono_type)
2584 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2585 }
2586 
2587 /* This routine writes packets to the network.  It advances the
2588  * send_head.  This happens as incoming acks open up the remote
2589  * window for us.
2590  *
2591  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2592  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2593  * account rare use of URG, this is not a big flaw.
2594  *
2595  * Send at most one packet when push_one > 0. Temporarily ignore
2596  * cwnd limit to force at most one packet out when push_one == 2.
2597 
2598  * Returns true, if no segments are in flight and we have queued segments,
2599  * but cannot send anything now because of SWS or another problem.
2600  */
2601 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2602 			   int push_one, gfp_t gfp)
2603 {
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 	struct sk_buff *skb;
2606 	unsigned int tso_segs, sent_pkts;
2607 	int cwnd_quota;
2608 	int result;
2609 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2610 	u32 max_segs;
2611 
2612 	sent_pkts = 0;
2613 
2614 	tcp_mstamp_refresh(tp);
2615 	if (!push_one) {
2616 		/* Do MTU probing. */
2617 		result = tcp_mtu_probe(sk);
2618 		if (!result) {
2619 			return false;
2620 		} else if (result > 0) {
2621 			sent_pkts = 1;
2622 		}
2623 	}
2624 
2625 	max_segs = tcp_tso_segs(sk, mss_now);
2626 	while ((skb = tcp_send_head(sk))) {
2627 		unsigned int limit;
2628 
2629 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2630 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2631 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2632 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2633 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2634 			tcp_init_tso_segs(skb, mss_now);
2635 			goto repair; /* Skip network transmission */
2636 		}
2637 
2638 		if (tcp_pacing_check(sk))
2639 			break;
2640 
2641 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2642 		BUG_ON(!tso_segs);
2643 
2644 		cwnd_quota = tcp_cwnd_test(tp, skb);
2645 		if (!cwnd_quota) {
2646 			if (push_one == 2)
2647 				/* Force out a loss probe pkt. */
2648 				cwnd_quota = 1;
2649 			else
2650 				break;
2651 		}
2652 
2653 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2654 			is_rwnd_limited = true;
2655 			break;
2656 		}
2657 
2658 		if (tso_segs == 1) {
2659 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2660 						     (tcp_skb_is_last(sk, skb) ?
2661 						      nonagle : TCP_NAGLE_PUSH))))
2662 				break;
2663 		} else {
2664 			if (!push_one &&
2665 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2666 						 &is_rwnd_limited, max_segs))
2667 				break;
2668 		}
2669 
2670 		limit = mss_now;
2671 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2672 			limit = tcp_mss_split_point(sk, skb, mss_now,
2673 						    min_t(unsigned int,
2674 							  cwnd_quota,
2675 							  max_segs),
2676 						    nonagle);
2677 
2678 		if (skb->len > limit &&
2679 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2680 			break;
2681 
2682 		if (tcp_small_queue_check(sk, skb, 0))
2683 			break;
2684 
2685 		/* Argh, we hit an empty skb(), presumably a thread
2686 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2687 		 * We do not want to send a pure-ack packet and have
2688 		 * a strange looking rtx queue with empty packet(s).
2689 		 */
2690 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2691 			break;
2692 
2693 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2694 			break;
2695 
2696 repair:
2697 		/* Advance the send_head.  This one is sent out.
2698 		 * This call will increment packets_out.
2699 		 */
2700 		tcp_event_new_data_sent(sk, skb);
2701 
2702 		tcp_minshall_update(tp, mss_now, skb);
2703 		sent_pkts += tcp_skb_pcount(skb);
2704 
2705 		if (push_one)
2706 			break;
2707 	}
2708 
2709 	if (is_rwnd_limited)
2710 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2711 	else
2712 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2713 
2714 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2715 	if (likely(sent_pkts || is_cwnd_limited))
2716 		tcp_cwnd_validate(sk, is_cwnd_limited);
2717 
2718 	if (likely(sent_pkts)) {
2719 		if (tcp_in_cwnd_reduction(sk))
2720 			tp->prr_out += sent_pkts;
2721 
2722 		/* Send one loss probe per tail loss episode. */
2723 		if (push_one != 2)
2724 			tcp_schedule_loss_probe(sk, false);
2725 		return false;
2726 	}
2727 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2728 }
2729 
2730 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2731 {
2732 	struct inet_connection_sock *icsk = inet_csk(sk);
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 	u32 timeout, rto_delta_us;
2735 	int early_retrans;
2736 
2737 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2738 	 * finishes.
2739 	 */
2740 	if (rcu_access_pointer(tp->fastopen_rsk))
2741 		return false;
2742 
2743 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2744 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2745 	 * not in loss recovery, that are either limited by cwnd or application.
2746 	 */
2747 	if ((early_retrans != 3 && early_retrans != 4) ||
2748 	    !tp->packets_out || !tcp_is_sack(tp) ||
2749 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2750 	     icsk->icsk_ca_state != TCP_CA_CWR))
2751 		return false;
2752 
2753 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2754 	 * for delayed ack when there's one outstanding packet. If no RTT
2755 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2756 	 */
2757 	if (tp->srtt_us) {
2758 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2759 		if (tp->packets_out == 1)
2760 			timeout += TCP_RTO_MIN;
2761 		else
2762 			timeout += TCP_TIMEOUT_MIN;
2763 	} else {
2764 		timeout = TCP_TIMEOUT_INIT;
2765 	}
2766 
2767 	/* If the RTO formula yields an earlier time, then use that time. */
2768 	rto_delta_us = advancing_rto ?
2769 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2770 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2771 	if (rto_delta_us > 0)
2772 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2773 
2774 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2775 	return true;
2776 }
2777 
2778 /* Thanks to skb fast clones, we can detect if a prior transmit of
2779  * a packet is still in a qdisc or driver queue.
2780  * In this case, there is very little point doing a retransmit !
2781  */
2782 static bool skb_still_in_host_queue(struct sock *sk,
2783 				    const struct sk_buff *skb)
2784 {
2785 	if (unlikely(skb_fclone_busy(sk, skb))) {
2786 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2787 		smp_mb__after_atomic();
2788 		if (skb_fclone_busy(sk, skb)) {
2789 			NET_INC_STATS(sock_net(sk),
2790 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2791 			return true;
2792 		}
2793 	}
2794 	return false;
2795 }
2796 
2797 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2798  * retransmit the last segment.
2799  */
2800 void tcp_send_loss_probe(struct sock *sk)
2801 {
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 	struct sk_buff *skb;
2804 	int pcount;
2805 	int mss = tcp_current_mss(sk);
2806 
2807 	/* At most one outstanding TLP */
2808 	if (tp->tlp_high_seq)
2809 		goto rearm_timer;
2810 
2811 	tp->tlp_retrans = 0;
2812 	skb = tcp_send_head(sk);
2813 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2814 		pcount = tp->packets_out;
2815 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2816 		if (tp->packets_out > pcount)
2817 			goto probe_sent;
2818 		goto rearm_timer;
2819 	}
2820 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2821 	if (unlikely(!skb)) {
2822 		WARN_ONCE(tp->packets_out,
2823 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2824 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2825 		inet_csk(sk)->icsk_pending = 0;
2826 		return;
2827 	}
2828 
2829 	if (skb_still_in_host_queue(sk, skb))
2830 		goto rearm_timer;
2831 
2832 	pcount = tcp_skb_pcount(skb);
2833 	if (WARN_ON(!pcount))
2834 		goto rearm_timer;
2835 
2836 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2837 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2838 					  (pcount - 1) * mss, mss,
2839 					  GFP_ATOMIC)))
2840 			goto rearm_timer;
2841 		skb = skb_rb_next(skb);
2842 	}
2843 
2844 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2845 		goto rearm_timer;
2846 
2847 	if (__tcp_retransmit_skb(sk, skb, 1))
2848 		goto rearm_timer;
2849 
2850 	tp->tlp_retrans = 1;
2851 
2852 probe_sent:
2853 	/* Record snd_nxt for loss detection. */
2854 	tp->tlp_high_seq = tp->snd_nxt;
2855 
2856 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2857 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2858 	inet_csk(sk)->icsk_pending = 0;
2859 rearm_timer:
2860 	tcp_rearm_rto(sk);
2861 }
2862 
2863 /* Push out any pending frames which were held back due to
2864  * TCP_CORK or attempt at coalescing tiny packets.
2865  * The socket must be locked by the caller.
2866  */
2867 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2868 			       int nonagle)
2869 {
2870 	/* If we are closed, the bytes will have to remain here.
2871 	 * In time closedown will finish, we empty the write queue and
2872 	 * all will be happy.
2873 	 */
2874 	if (unlikely(sk->sk_state == TCP_CLOSE))
2875 		return;
2876 
2877 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2878 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2879 		tcp_check_probe_timer(sk);
2880 }
2881 
2882 /* Send _single_ skb sitting at the send head. This function requires
2883  * true push pending frames to setup probe timer etc.
2884  */
2885 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2886 {
2887 	struct sk_buff *skb = tcp_send_head(sk);
2888 
2889 	BUG_ON(!skb || skb->len < mss_now);
2890 
2891 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2892 }
2893 
2894 /* This function returns the amount that we can raise the
2895  * usable window based on the following constraints
2896  *
2897  * 1. The window can never be shrunk once it is offered (RFC 793)
2898  * 2. We limit memory per socket
2899  *
2900  * RFC 1122:
2901  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2902  *  RECV.NEXT + RCV.WIN fixed until:
2903  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2904  *
2905  * i.e. don't raise the right edge of the window until you can raise
2906  * it at least MSS bytes.
2907  *
2908  * Unfortunately, the recommended algorithm breaks header prediction,
2909  * since header prediction assumes th->window stays fixed.
2910  *
2911  * Strictly speaking, keeping th->window fixed violates the receiver
2912  * side SWS prevention criteria. The problem is that under this rule
2913  * a stream of single byte packets will cause the right side of the
2914  * window to always advance by a single byte.
2915  *
2916  * Of course, if the sender implements sender side SWS prevention
2917  * then this will not be a problem.
2918  *
2919  * BSD seems to make the following compromise:
2920  *
2921  *	If the free space is less than the 1/4 of the maximum
2922  *	space available and the free space is less than 1/2 mss,
2923  *	then set the window to 0.
2924  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2925  *	Otherwise, just prevent the window from shrinking
2926  *	and from being larger than the largest representable value.
2927  *
2928  * This prevents incremental opening of the window in the regime
2929  * where TCP is limited by the speed of the reader side taking
2930  * data out of the TCP receive queue. It does nothing about
2931  * those cases where the window is constrained on the sender side
2932  * because the pipeline is full.
2933  *
2934  * BSD also seems to "accidentally" limit itself to windows that are a
2935  * multiple of MSS, at least until the free space gets quite small.
2936  * This would appear to be a side effect of the mbuf implementation.
2937  * Combining these two algorithms results in the observed behavior
2938  * of having a fixed window size at almost all times.
2939  *
2940  * Below we obtain similar behavior by forcing the offered window to
2941  * a multiple of the mss when it is feasible to do so.
2942  *
2943  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2944  * Regular options like TIMESTAMP are taken into account.
2945  */
2946 u32 __tcp_select_window(struct sock *sk)
2947 {
2948 	struct inet_connection_sock *icsk = inet_csk(sk);
2949 	struct tcp_sock *tp = tcp_sk(sk);
2950 	/* MSS for the peer's data.  Previous versions used mss_clamp
2951 	 * here.  I don't know if the value based on our guesses
2952 	 * of peer's MSS is better for the performance.  It's more correct
2953 	 * but may be worse for the performance because of rcv_mss
2954 	 * fluctuations.  --SAW  1998/11/1
2955 	 */
2956 	int mss = icsk->icsk_ack.rcv_mss;
2957 	int free_space = tcp_space(sk);
2958 	int allowed_space = tcp_full_space(sk);
2959 	int full_space, window;
2960 
2961 	if (sk_is_mptcp(sk))
2962 		mptcp_space(sk, &free_space, &allowed_space);
2963 
2964 	full_space = min_t(int, tp->window_clamp, allowed_space);
2965 
2966 	if (unlikely(mss > full_space)) {
2967 		mss = full_space;
2968 		if (mss <= 0)
2969 			return 0;
2970 	}
2971 	if (free_space < (full_space >> 1)) {
2972 		icsk->icsk_ack.quick = 0;
2973 
2974 		if (tcp_under_memory_pressure(sk))
2975 			tcp_adjust_rcv_ssthresh(sk);
2976 
2977 		/* free_space might become our new window, make sure we don't
2978 		 * increase it due to wscale.
2979 		 */
2980 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2981 
2982 		/* if free space is less than mss estimate, or is below 1/16th
2983 		 * of the maximum allowed, try to move to zero-window, else
2984 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2985 		 * new incoming data is dropped due to memory limits.
2986 		 * With large window, mss test triggers way too late in order
2987 		 * to announce zero window in time before rmem limit kicks in.
2988 		 */
2989 		if (free_space < (allowed_space >> 4) || free_space < mss)
2990 			return 0;
2991 	}
2992 
2993 	if (free_space > tp->rcv_ssthresh)
2994 		free_space = tp->rcv_ssthresh;
2995 
2996 	/* Don't do rounding if we are using window scaling, since the
2997 	 * scaled window will not line up with the MSS boundary anyway.
2998 	 */
2999 	if (tp->rx_opt.rcv_wscale) {
3000 		window = free_space;
3001 
3002 		/* Advertise enough space so that it won't get scaled away.
3003 		 * Import case: prevent zero window announcement if
3004 		 * 1<<rcv_wscale > mss.
3005 		 */
3006 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3007 	} else {
3008 		window = tp->rcv_wnd;
3009 		/* Get the largest window that is a nice multiple of mss.
3010 		 * Window clamp already applied above.
3011 		 * If our current window offering is within 1 mss of the
3012 		 * free space we just keep it. This prevents the divide
3013 		 * and multiply from happening most of the time.
3014 		 * We also don't do any window rounding when the free space
3015 		 * is too small.
3016 		 */
3017 		if (window <= free_space - mss || window > free_space)
3018 			window = rounddown(free_space, mss);
3019 		else if (mss == full_space &&
3020 			 free_space > window + (full_space >> 1))
3021 			window = free_space;
3022 	}
3023 
3024 	return window;
3025 }
3026 
3027 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3028 			     const struct sk_buff *next_skb)
3029 {
3030 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3031 		const struct skb_shared_info *next_shinfo =
3032 			skb_shinfo(next_skb);
3033 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3034 
3035 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3036 		shinfo->tskey = next_shinfo->tskey;
3037 		TCP_SKB_CB(skb)->txstamp_ack |=
3038 			TCP_SKB_CB(next_skb)->txstamp_ack;
3039 	}
3040 }
3041 
3042 /* Collapses two adjacent SKB's during retransmission. */
3043 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3044 {
3045 	struct tcp_sock *tp = tcp_sk(sk);
3046 	struct sk_buff *next_skb = skb_rb_next(skb);
3047 	int next_skb_size;
3048 
3049 	next_skb_size = next_skb->len;
3050 
3051 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3052 
3053 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3054 		return false;
3055 
3056 	tcp_highest_sack_replace(sk, next_skb, skb);
3057 
3058 	/* Update sequence range on original skb. */
3059 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3060 
3061 	/* Merge over control information. This moves PSH/FIN etc. over */
3062 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3063 
3064 	/* All done, get rid of second SKB and account for it so
3065 	 * packet counting does not break.
3066 	 */
3067 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3068 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3069 
3070 	/* changed transmit queue under us so clear hints */
3071 	tcp_clear_retrans_hints_partial(tp);
3072 	if (next_skb == tp->retransmit_skb_hint)
3073 		tp->retransmit_skb_hint = skb;
3074 
3075 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3076 
3077 	tcp_skb_collapse_tstamp(skb, next_skb);
3078 
3079 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3080 	return true;
3081 }
3082 
3083 /* Check if coalescing SKBs is legal. */
3084 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3085 {
3086 	if (tcp_skb_pcount(skb) > 1)
3087 		return false;
3088 	if (skb_cloned(skb))
3089 		return false;
3090 	/* Some heuristics for collapsing over SACK'd could be invented */
3091 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3092 		return false;
3093 
3094 	return true;
3095 }
3096 
3097 /* Collapse packets in the retransmit queue to make to create
3098  * less packets on the wire. This is only done on retransmission.
3099  */
3100 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3101 				     int space)
3102 {
3103 	struct tcp_sock *tp = tcp_sk(sk);
3104 	struct sk_buff *skb = to, *tmp;
3105 	bool first = true;
3106 
3107 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3108 		return;
3109 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3110 		return;
3111 
3112 	skb_rbtree_walk_from_safe(skb, tmp) {
3113 		if (!tcp_can_collapse(sk, skb))
3114 			break;
3115 
3116 		if (!tcp_skb_can_collapse(to, skb))
3117 			break;
3118 
3119 		space -= skb->len;
3120 
3121 		if (first) {
3122 			first = false;
3123 			continue;
3124 		}
3125 
3126 		if (space < 0)
3127 			break;
3128 
3129 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3130 			break;
3131 
3132 		if (!tcp_collapse_retrans(sk, to))
3133 			break;
3134 	}
3135 }
3136 
3137 /* This retransmits one SKB.  Policy decisions and retransmit queue
3138  * state updates are done by the caller.  Returns non-zero if an
3139  * error occurred which prevented the send.
3140  */
3141 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3142 {
3143 	struct inet_connection_sock *icsk = inet_csk(sk);
3144 	struct tcp_sock *tp = tcp_sk(sk);
3145 	unsigned int cur_mss;
3146 	int diff, len, err;
3147 	int avail_wnd;
3148 
3149 	/* Inconclusive MTU probe */
3150 	if (icsk->icsk_mtup.probe_size)
3151 		icsk->icsk_mtup.probe_size = 0;
3152 
3153 	if (skb_still_in_host_queue(sk, skb))
3154 		return -EBUSY;
3155 
3156 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3157 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3158 			WARN_ON_ONCE(1);
3159 			return -EINVAL;
3160 		}
3161 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3162 			return -ENOMEM;
3163 	}
3164 
3165 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3166 		return -EHOSTUNREACH; /* Routing failure or similar. */
3167 
3168 	cur_mss = tcp_current_mss(sk);
3169 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3170 
3171 	/* If receiver has shrunk his window, and skb is out of
3172 	 * new window, do not retransmit it. The exception is the
3173 	 * case, when window is shrunk to zero. In this case
3174 	 * our retransmit of one segment serves as a zero window probe.
3175 	 */
3176 	if (avail_wnd <= 0) {
3177 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3178 			return -EAGAIN;
3179 		avail_wnd = cur_mss;
3180 	}
3181 
3182 	len = cur_mss * segs;
3183 	if (len > avail_wnd) {
3184 		len = rounddown(avail_wnd, cur_mss);
3185 		if (!len)
3186 			len = avail_wnd;
3187 	}
3188 	if (skb->len > len) {
3189 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3190 				 cur_mss, GFP_ATOMIC))
3191 			return -ENOMEM; /* We'll try again later. */
3192 	} else {
3193 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3194 			return -ENOMEM;
3195 
3196 		diff = tcp_skb_pcount(skb);
3197 		tcp_set_skb_tso_segs(skb, cur_mss);
3198 		diff -= tcp_skb_pcount(skb);
3199 		if (diff)
3200 			tcp_adjust_pcount(sk, skb, diff);
3201 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3202 		if (skb->len < avail_wnd)
3203 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3204 	}
3205 
3206 	/* RFC3168, section 6.1.1.1. ECN fallback */
3207 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3208 		tcp_ecn_clear_syn(sk, skb);
3209 
3210 	/* Update global and local TCP statistics. */
3211 	segs = tcp_skb_pcount(skb);
3212 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3213 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3214 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3215 	tp->total_retrans += segs;
3216 	tp->bytes_retrans += skb->len;
3217 
3218 	/* make sure skb->data is aligned on arches that require it
3219 	 * and check if ack-trimming & collapsing extended the headroom
3220 	 * beyond what csum_start can cover.
3221 	 */
3222 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3223 		     skb_headroom(skb) >= 0xFFFF)) {
3224 		struct sk_buff *nskb;
3225 
3226 		tcp_skb_tsorted_save(skb) {
3227 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3228 			if (nskb) {
3229 				nskb->dev = NULL;
3230 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3231 			} else {
3232 				err = -ENOBUFS;
3233 			}
3234 		} tcp_skb_tsorted_restore(skb);
3235 
3236 		if (!err) {
3237 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3238 			tcp_rate_skb_sent(sk, skb);
3239 		}
3240 	} else {
3241 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3242 	}
3243 
3244 	/* To avoid taking spuriously low RTT samples based on a timestamp
3245 	 * for a transmit that never happened, always mark EVER_RETRANS
3246 	 */
3247 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3248 
3249 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3250 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3251 				  TCP_SKB_CB(skb)->seq, segs, err);
3252 
3253 	if (likely(!err)) {
3254 		trace_tcp_retransmit_skb(sk, skb);
3255 	} else if (err != -EBUSY) {
3256 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3257 	}
3258 	return err;
3259 }
3260 
3261 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3262 {
3263 	struct tcp_sock *tp = tcp_sk(sk);
3264 	int err = __tcp_retransmit_skb(sk, skb, segs);
3265 
3266 	if (err == 0) {
3267 #if FASTRETRANS_DEBUG > 0
3268 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3269 			net_dbg_ratelimited("retrans_out leaked\n");
3270 		}
3271 #endif
3272 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3273 		tp->retrans_out += tcp_skb_pcount(skb);
3274 	}
3275 
3276 	/* Save stamp of the first (attempted) retransmit. */
3277 	if (!tp->retrans_stamp)
3278 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3279 
3280 	if (tp->undo_retrans < 0)
3281 		tp->undo_retrans = 0;
3282 	tp->undo_retrans += tcp_skb_pcount(skb);
3283 	return err;
3284 }
3285 
3286 /* This gets called after a retransmit timeout, and the initially
3287  * retransmitted data is acknowledged.  It tries to continue
3288  * resending the rest of the retransmit queue, until either
3289  * we've sent it all or the congestion window limit is reached.
3290  */
3291 void tcp_xmit_retransmit_queue(struct sock *sk)
3292 {
3293 	const struct inet_connection_sock *icsk = inet_csk(sk);
3294 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3295 	struct tcp_sock *tp = tcp_sk(sk);
3296 	bool rearm_timer = false;
3297 	u32 max_segs;
3298 	int mib_idx;
3299 
3300 	if (!tp->packets_out)
3301 		return;
3302 
3303 	rtx_head = tcp_rtx_queue_head(sk);
3304 	skb = tp->retransmit_skb_hint ?: rtx_head;
3305 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3306 	skb_rbtree_walk_from(skb) {
3307 		__u8 sacked;
3308 		int segs;
3309 
3310 		if (tcp_pacing_check(sk))
3311 			break;
3312 
3313 		/* we could do better than to assign each time */
3314 		if (!hole)
3315 			tp->retransmit_skb_hint = skb;
3316 
3317 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3318 		if (segs <= 0)
3319 			break;
3320 		sacked = TCP_SKB_CB(skb)->sacked;
3321 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3322 		 * we need to make sure not sending too bigs TSO packets
3323 		 */
3324 		segs = min_t(int, segs, max_segs);
3325 
3326 		if (tp->retrans_out >= tp->lost_out) {
3327 			break;
3328 		} else if (!(sacked & TCPCB_LOST)) {
3329 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3330 				hole = skb;
3331 			continue;
3332 
3333 		} else {
3334 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3335 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3336 			else
3337 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3338 		}
3339 
3340 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3341 			continue;
3342 
3343 		if (tcp_small_queue_check(sk, skb, 1))
3344 			break;
3345 
3346 		if (tcp_retransmit_skb(sk, skb, segs))
3347 			break;
3348 
3349 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3350 
3351 		if (tcp_in_cwnd_reduction(sk))
3352 			tp->prr_out += tcp_skb_pcount(skb);
3353 
3354 		if (skb == rtx_head &&
3355 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3356 			rearm_timer = true;
3357 
3358 	}
3359 	if (rearm_timer)
3360 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3361 				     inet_csk(sk)->icsk_rto,
3362 				     TCP_RTO_MAX);
3363 }
3364 
3365 /* We allow to exceed memory limits for FIN packets to expedite
3366  * connection tear down and (memory) recovery.
3367  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3368  * or even be forced to close flow without any FIN.
3369  * In general, we want to allow one skb per socket to avoid hangs
3370  * with edge trigger epoll()
3371  */
3372 void sk_forced_mem_schedule(struct sock *sk, int size)
3373 {
3374 	int delta, amt;
3375 
3376 	delta = size - sk->sk_forward_alloc;
3377 	if (delta <= 0)
3378 		return;
3379 	amt = sk_mem_pages(delta);
3380 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3381 	sk_memory_allocated_add(sk, amt);
3382 
3383 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3384 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3385 					gfp_memcg_charge() | __GFP_NOFAIL);
3386 }
3387 
3388 /* Send a FIN. The caller locks the socket for us.
3389  * We should try to send a FIN packet really hard, but eventually give up.
3390  */
3391 void tcp_send_fin(struct sock *sk)
3392 {
3393 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3394 	struct tcp_sock *tp = tcp_sk(sk);
3395 
3396 	/* Optimization, tack on the FIN if we have one skb in write queue and
3397 	 * this skb was not yet sent, or we are under memory pressure.
3398 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3399 	 * as TCP stack thinks it has already been transmitted.
3400 	 */
3401 	tskb = tail;
3402 	if (!tskb && tcp_under_memory_pressure(sk))
3403 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3404 
3405 	if (tskb) {
3406 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3407 		TCP_SKB_CB(tskb)->end_seq++;
3408 		tp->write_seq++;
3409 		if (!tail) {
3410 			/* This means tskb was already sent.
3411 			 * Pretend we included the FIN on previous transmit.
3412 			 * We need to set tp->snd_nxt to the value it would have
3413 			 * if FIN had been sent. This is because retransmit path
3414 			 * does not change tp->snd_nxt.
3415 			 */
3416 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3417 			return;
3418 		}
3419 	} else {
3420 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3421 		if (unlikely(!skb))
3422 			return;
3423 
3424 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3425 		skb_reserve(skb, MAX_TCP_HEADER);
3426 		sk_forced_mem_schedule(sk, skb->truesize);
3427 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3428 		tcp_init_nondata_skb(skb, tp->write_seq,
3429 				     TCPHDR_ACK | TCPHDR_FIN);
3430 		tcp_queue_skb(sk, skb);
3431 	}
3432 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3433 }
3434 
3435 /* We get here when a process closes a file descriptor (either due to
3436  * an explicit close() or as a byproduct of exit()'ing) and there
3437  * was unread data in the receive queue.  This behavior is recommended
3438  * by RFC 2525, section 2.17.  -DaveM
3439  */
3440 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3441 {
3442 	struct sk_buff *skb;
3443 
3444 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3445 
3446 	/* NOTE: No TCP options attached and we never retransmit this. */
3447 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3448 	if (!skb) {
3449 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3450 		return;
3451 	}
3452 
3453 	/* Reserve space for headers and prepare control bits. */
3454 	skb_reserve(skb, MAX_TCP_HEADER);
3455 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3456 			     TCPHDR_ACK | TCPHDR_RST);
3457 	tcp_mstamp_refresh(tcp_sk(sk));
3458 	/* Send it off. */
3459 	if (tcp_transmit_skb(sk, skb, 0, priority))
3460 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3461 
3462 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3463 	 * skb here is different to the troublesome skb, so use NULL
3464 	 */
3465 	trace_tcp_send_reset(sk, NULL);
3466 }
3467 
3468 /* Send a crossed SYN-ACK during socket establishment.
3469  * WARNING: This routine must only be called when we have already sent
3470  * a SYN packet that crossed the incoming SYN that caused this routine
3471  * to get called. If this assumption fails then the initial rcv_wnd
3472  * and rcv_wscale values will not be correct.
3473  */
3474 int tcp_send_synack(struct sock *sk)
3475 {
3476 	struct sk_buff *skb;
3477 
3478 	skb = tcp_rtx_queue_head(sk);
3479 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3480 		pr_err("%s: wrong queue state\n", __func__);
3481 		return -EFAULT;
3482 	}
3483 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3484 		if (skb_cloned(skb)) {
3485 			struct sk_buff *nskb;
3486 
3487 			tcp_skb_tsorted_save(skb) {
3488 				nskb = skb_copy(skb, GFP_ATOMIC);
3489 			} tcp_skb_tsorted_restore(skb);
3490 			if (!nskb)
3491 				return -ENOMEM;
3492 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3493 			tcp_highest_sack_replace(sk, skb, nskb);
3494 			tcp_rtx_queue_unlink_and_free(skb, sk);
3495 			__skb_header_release(nskb);
3496 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3497 			sk_wmem_queued_add(sk, nskb->truesize);
3498 			sk_mem_charge(sk, nskb->truesize);
3499 			skb = nskb;
3500 		}
3501 
3502 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3503 		tcp_ecn_send_synack(sk, skb);
3504 	}
3505 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3506 }
3507 
3508 /**
3509  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3510  * @sk: listener socket
3511  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3512  *       should not use it again.
3513  * @req: request_sock pointer
3514  * @foc: cookie for tcp fast open
3515  * @synack_type: Type of synack to prepare
3516  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3517  */
3518 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3519 				struct request_sock *req,
3520 				struct tcp_fastopen_cookie *foc,
3521 				enum tcp_synack_type synack_type,
3522 				struct sk_buff *syn_skb)
3523 {
3524 	struct inet_request_sock *ireq = inet_rsk(req);
3525 	const struct tcp_sock *tp = tcp_sk(sk);
3526 	struct tcp_md5sig_key *md5 = NULL;
3527 	struct tcp_out_options opts;
3528 	struct sk_buff *skb;
3529 	int tcp_header_size;
3530 	struct tcphdr *th;
3531 	int mss;
3532 	u64 now;
3533 
3534 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3535 	if (unlikely(!skb)) {
3536 		dst_release(dst);
3537 		return NULL;
3538 	}
3539 	/* Reserve space for headers. */
3540 	skb_reserve(skb, MAX_TCP_HEADER);
3541 
3542 	switch (synack_type) {
3543 	case TCP_SYNACK_NORMAL:
3544 		skb_set_owner_w(skb, req_to_sk(req));
3545 		break;
3546 	case TCP_SYNACK_COOKIE:
3547 		/* Under synflood, we do not attach skb to a socket,
3548 		 * to avoid false sharing.
3549 		 */
3550 		break;
3551 	case TCP_SYNACK_FASTOPEN:
3552 		/* sk is a const pointer, because we want to express multiple
3553 		 * cpu might call us concurrently.
3554 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3555 		 */
3556 		skb_set_owner_w(skb, (struct sock *)sk);
3557 		break;
3558 	}
3559 	skb_dst_set(skb, dst);
3560 
3561 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3562 
3563 	memset(&opts, 0, sizeof(opts));
3564 	now = tcp_clock_ns();
3565 #ifdef CONFIG_SYN_COOKIES
3566 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3567 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3568 				      true);
3569 	else
3570 #endif
3571 	{
3572 		skb_set_delivery_time(skb, now, true);
3573 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3574 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3575 	}
3576 
3577 #ifdef CONFIG_TCP_MD5SIG
3578 	rcu_read_lock();
3579 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3580 #endif
3581 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3582 	/* bpf program will be interested in the tcp_flags */
3583 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3584 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3585 					     foc, synack_type,
3586 					     syn_skb) + sizeof(*th);
3587 
3588 	skb_push(skb, tcp_header_size);
3589 	skb_reset_transport_header(skb);
3590 
3591 	th = (struct tcphdr *)skb->data;
3592 	memset(th, 0, sizeof(struct tcphdr));
3593 	th->syn = 1;
3594 	th->ack = 1;
3595 	tcp_ecn_make_synack(req, th);
3596 	th->source = htons(ireq->ir_num);
3597 	th->dest = ireq->ir_rmt_port;
3598 	skb->mark = ireq->ir_mark;
3599 	skb->ip_summed = CHECKSUM_PARTIAL;
3600 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3601 	/* XXX data is queued and acked as is. No buffer/window check */
3602 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3603 
3604 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3605 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3606 	tcp_options_write(th, NULL, &opts);
3607 	th->doff = (tcp_header_size >> 2);
3608 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3609 
3610 #ifdef CONFIG_TCP_MD5SIG
3611 	/* Okay, we have all we need - do the md5 hash if needed */
3612 	if (md5)
3613 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3614 					       md5, req_to_sk(req), skb);
3615 	rcu_read_unlock();
3616 #endif
3617 
3618 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3619 				synack_type, &opts);
3620 
3621 	skb_set_delivery_time(skb, now, true);
3622 	tcp_add_tx_delay(skb, tp);
3623 
3624 	return skb;
3625 }
3626 EXPORT_SYMBOL(tcp_make_synack);
3627 
3628 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3629 {
3630 	struct inet_connection_sock *icsk = inet_csk(sk);
3631 	const struct tcp_congestion_ops *ca;
3632 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3633 
3634 	if (ca_key == TCP_CA_UNSPEC)
3635 		return;
3636 
3637 	rcu_read_lock();
3638 	ca = tcp_ca_find_key(ca_key);
3639 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3640 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3641 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3642 		icsk->icsk_ca_ops = ca;
3643 	}
3644 	rcu_read_unlock();
3645 }
3646 
3647 /* Do all connect socket setups that can be done AF independent. */
3648 static void tcp_connect_init(struct sock *sk)
3649 {
3650 	const struct dst_entry *dst = __sk_dst_get(sk);
3651 	struct tcp_sock *tp = tcp_sk(sk);
3652 	__u8 rcv_wscale;
3653 	u32 rcv_wnd;
3654 
3655 	/* We'll fix this up when we get a response from the other end.
3656 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3657 	 */
3658 	tp->tcp_header_len = sizeof(struct tcphdr);
3659 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3660 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3661 
3662 #ifdef CONFIG_TCP_MD5SIG
3663 	if (tp->af_specific->md5_lookup(sk, sk))
3664 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3665 #endif
3666 
3667 	/* If user gave his TCP_MAXSEG, record it to clamp */
3668 	if (tp->rx_opt.user_mss)
3669 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3670 	tp->max_window = 0;
3671 	tcp_mtup_init(sk);
3672 	tcp_sync_mss(sk, dst_mtu(dst));
3673 
3674 	tcp_ca_dst_init(sk, dst);
3675 
3676 	if (!tp->window_clamp)
3677 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3678 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3679 
3680 	tcp_initialize_rcv_mss(sk);
3681 
3682 	/* limit the window selection if the user enforce a smaller rx buffer */
3683 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3684 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3685 		tp->window_clamp = tcp_full_space(sk);
3686 
3687 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3688 	if (rcv_wnd == 0)
3689 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3690 
3691 	tcp_select_initial_window(sk, tcp_full_space(sk),
3692 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3693 				  &tp->rcv_wnd,
3694 				  &tp->window_clamp,
3695 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3696 				  &rcv_wscale,
3697 				  rcv_wnd);
3698 
3699 	tp->rx_opt.rcv_wscale = rcv_wscale;
3700 	tp->rcv_ssthresh = tp->rcv_wnd;
3701 
3702 	sk->sk_err = 0;
3703 	sock_reset_flag(sk, SOCK_DONE);
3704 	tp->snd_wnd = 0;
3705 	tcp_init_wl(tp, 0);
3706 	tcp_write_queue_purge(sk);
3707 	tp->snd_una = tp->write_seq;
3708 	tp->snd_sml = tp->write_seq;
3709 	tp->snd_up = tp->write_seq;
3710 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3711 
3712 	if (likely(!tp->repair))
3713 		tp->rcv_nxt = 0;
3714 	else
3715 		tp->rcv_tstamp = tcp_jiffies32;
3716 	tp->rcv_wup = tp->rcv_nxt;
3717 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3718 
3719 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3720 	inet_csk(sk)->icsk_retransmits = 0;
3721 	tcp_clear_retrans(tp);
3722 }
3723 
3724 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3725 {
3726 	struct tcp_sock *tp = tcp_sk(sk);
3727 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3728 
3729 	tcb->end_seq += skb->len;
3730 	__skb_header_release(skb);
3731 	sk_wmem_queued_add(sk, skb->truesize);
3732 	sk_mem_charge(sk, skb->truesize);
3733 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3734 	tp->packets_out += tcp_skb_pcount(skb);
3735 }
3736 
3737 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3738  * queue a data-only packet after the regular SYN, such that regular SYNs
3739  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3740  * only the SYN sequence, the data are retransmitted in the first ACK.
3741  * If cookie is not cached or other error occurs, falls back to send a
3742  * regular SYN with Fast Open cookie request option.
3743  */
3744 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3745 {
3746 	struct inet_connection_sock *icsk = inet_csk(sk);
3747 	struct tcp_sock *tp = tcp_sk(sk);
3748 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3749 	int space, err = 0;
3750 	struct sk_buff *syn_data;
3751 
3752 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3753 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3754 		goto fallback;
3755 
3756 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3757 	 * user-MSS. Reserve maximum option space for middleboxes that add
3758 	 * private TCP options. The cost is reduced data space in SYN :(
3759 	 */
3760 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3761 	/* Sync mss_cache after updating the mss_clamp */
3762 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3763 
3764 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3765 		MAX_TCP_OPTION_SPACE;
3766 
3767 	space = min_t(size_t, space, fo->size);
3768 
3769 	/* limit to order-0 allocations */
3770 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3771 
3772 	syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3773 	if (!syn_data)
3774 		goto fallback;
3775 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3776 	if (space) {
3777 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3778 					    &fo->data->msg_iter);
3779 		if (unlikely(!copied)) {
3780 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3781 			kfree_skb(syn_data);
3782 			goto fallback;
3783 		}
3784 		if (copied != space) {
3785 			skb_trim(syn_data, copied);
3786 			space = copied;
3787 		}
3788 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3789 	}
3790 	/* No more data pending in inet_wait_for_connect() */
3791 	if (space == fo->size)
3792 		fo->data = NULL;
3793 	fo->copied = space;
3794 
3795 	tcp_connect_queue_skb(sk, syn_data);
3796 	if (syn_data->len)
3797 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3798 
3799 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3800 
3801 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3802 
3803 	/* Now full SYN+DATA was cloned and sent (or not),
3804 	 * remove the SYN from the original skb (syn_data)
3805 	 * we keep in write queue in case of a retransmit, as we
3806 	 * also have the SYN packet (with no data) in the same queue.
3807 	 */
3808 	TCP_SKB_CB(syn_data)->seq++;
3809 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3810 	if (!err) {
3811 		tp->syn_data = (fo->copied > 0);
3812 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3813 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3814 		goto done;
3815 	}
3816 
3817 	/* data was not sent, put it in write_queue */
3818 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3819 	tp->packets_out -= tcp_skb_pcount(syn_data);
3820 
3821 fallback:
3822 	/* Send a regular SYN with Fast Open cookie request option */
3823 	if (fo->cookie.len > 0)
3824 		fo->cookie.len = 0;
3825 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3826 	if (err)
3827 		tp->syn_fastopen = 0;
3828 done:
3829 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3830 	return err;
3831 }
3832 
3833 /* Build a SYN and send it off. */
3834 int tcp_connect(struct sock *sk)
3835 {
3836 	struct tcp_sock *tp = tcp_sk(sk);
3837 	struct sk_buff *buff;
3838 	int err;
3839 
3840 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3841 
3842 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3843 		return -EHOSTUNREACH; /* Routing failure or similar. */
3844 
3845 	tcp_connect_init(sk);
3846 
3847 	if (unlikely(tp->repair)) {
3848 		tcp_finish_connect(sk, NULL);
3849 		return 0;
3850 	}
3851 
3852 	buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3853 	if (unlikely(!buff))
3854 		return -ENOBUFS;
3855 
3856 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3857 	tcp_mstamp_refresh(tp);
3858 	tp->retrans_stamp = tcp_time_stamp(tp);
3859 	tcp_connect_queue_skb(sk, buff);
3860 	tcp_ecn_send_syn(sk, buff);
3861 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3862 
3863 	/* Send off SYN; include data in Fast Open. */
3864 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3865 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3866 	if (err == -ECONNREFUSED)
3867 		return err;
3868 
3869 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3870 	 * in order to make this packet get counted in tcpOutSegs.
3871 	 */
3872 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3873 	tp->pushed_seq = tp->write_seq;
3874 	buff = tcp_send_head(sk);
3875 	if (unlikely(buff)) {
3876 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3877 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3878 	}
3879 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3880 
3881 	/* Timer for repeating the SYN until an answer. */
3882 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3883 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3884 	return 0;
3885 }
3886 EXPORT_SYMBOL(tcp_connect);
3887 
3888 /* Send out a delayed ack, the caller does the policy checking
3889  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3890  * for details.
3891  */
3892 void tcp_send_delayed_ack(struct sock *sk)
3893 {
3894 	struct inet_connection_sock *icsk = inet_csk(sk);
3895 	int ato = icsk->icsk_ack.ato;
3896 	unsigned long timeout;
3897 
3898 	if (ato > TCP_DELACK_MIN) {
3899 		const struct tcp_sock *tp = tcp_sk(sk);
3900 		int max_ato = HZ / 2;
3901 
3902 		if (inet_csk_in_pingpong_mode(sk) ||
3903 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3904 			max_ato = TCP_DELACK_MAX;
3905 
3906 		/* Slow path, intersegment interval is "high". */
3907 
3908 		/* If some rtt estimate is known, use it to bound delayed ack.
3909 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3910 		 * directly.
3911 		 */
3912 		if (tp->srtt_us) {
3913 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3914 					TCP_DELACK_MIN);
3915 
3916 			if (rtt < max_ato)
3917 				max_ato = rtt;
3918 		}
3919 
3920 		ato = min(ato, max_ato);
3921 	}
3922 
3923 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3924 
3925 	/* Stay within the limit we were given */
3926 	timeout = jiffies + ato;
3927 
3928 	/* Use new timeout only if there wasn't a older one earlier. */
3929 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3930 		/* If delack timer is about to expire, send ACK now. */
3931 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3932 			tcp_send_ack(sk);
3933 			return;
3934 		}
3935 
3936 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3937 			timeout = icsk->icsk_ack.timeout;
3938 	}
3939 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3940 	icsk->icsk_ack.timeout = timeout;
3941 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3942 }
3943 
3944 /* This routine sends an ack and also updates the window. */
3945 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3946 {
3947 	struct sk_buff *buff;
3948 
3949 	/* If we have been reset, we may not send again. */
3950 	if (sk->sk_state == TCP_CLOSE)
3951 		return;
3952 
3953 	/* We are not putting this on the write queue, so
3954 	 * tcp_transmit_skb() will set the ownership to this
3955 	 * sock.
3956 	 */
3957 	buff = alloc_skb(MAX_TCP_HEADER,
3958 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3959 	if (unlikely(!buff)) {
3960 		struct inet_connection_sock *icsk = inet_csk(sk);
3961 		unsigned long delay;
3962 
3963 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3964 		if (delay < TCP_RTO_MAX)
3965 			icsk->icsk_ack.retry++;
3966 		inet_csk_schedule_ack(sk);
3967 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3968 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3969 		return;
3970 	}
3971 
3972 	/* Reserve space for headers and prepare control bits. */
3973 	skb_reserve(buff, MAX_TCP_HEADER);
3974 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3975 
3976 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3977 	 * too much.
3978 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3979 	 */
3980 	skb_set_tcp_pure_ack(buff);
3981 
3982 	/* Send it off, this clears delayed acks for us. */
3983 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3984 }
3985 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3986 
3987 void tcp_send_ack(struct sock *sk)
3988 {
3989 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3990 }
3991 
3992 /* This routine sends a packet with an out of date sequence
3993  * number. It assumes the other end will try to ack it.
3994  *
3995  * Question: what should we make while urgent mode?
3996  * 4.4BSD forces sending single byte of data. We cannot send
3997  * out of window data, because we have SND.NXT==SND.MAX...
3998  *
3999  * Current solution: to send TWO zero-length segments in urgent mode:
4000  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4001  * out-of-date with SND.UNA-1 to probe window.
4002  */
4003 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4004 {
4005 	struct tcp_sock *tp = tcp_sk(sk);
4006 	struct sk_buff *skb;
4007 
4008 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4009 	skb = alloc_skb(MAX_TCP_HEADER,
4010 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4011 	if (!skb)
4012 		return -1;
4013 
4014 	/* Reserve space for headers and set control bits. */
4015 	skb_reserve(skb, MAX_TCP_HEADER);
4016 	/* Use a previous sequence.  This should cause the other
4017 	 * end to send an ack.  Don't queue or clone SKB, just
4018 	 * send it.
4019 	 */
4020 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4021 	NET_INC_STATS(sock_net(sk), mib);
4022 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4023 }
4024 
4025 /* Called from setsockopt( ... TCP_REPAIR ) */
4026 void tcp_send_window_probe(struct sock *sk)
4027 {
4028 	if (sk->sk_state == TCP_ESTABLISHED) {
4029 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4030 		tcp_mstamp_refresh(tcp_sk(sk));
4031 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4032 	}
4033 }
4034 
4035 /* Initiate keepalive or window probe from timer. */
4036 int tcp_write_wakeup(struct sock *sk, int mib)
4037 {
4038 	struct tcp_sock *tp = tcp_sk(sk);
4039 	struct sk_buff *skb;
4040 
4041 	if (sk->sk_state == TCP_CLOSE)
4042 		return -1;
4043 
4044 	skb = tcp_send_head(sk);
4045 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4046 		int err;
4047 		unsigned int mss = tcp_current_mss(sk);
4048 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4049 
4050 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4051 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4052 
4053 		/* We are probing the opening of a window
4054 		 * but the window size is != 0
4055 		 * must have been a result SWS avoidance ( sender )
4056 		 */
4057 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4058 		    skb->len > mss) {
4059 			seg_size = min(seg_size, mss);
4060 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4061 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4062 					 skb, seg_size, mss, GFP_ATOMIC))
4063 				return -1;
4064 		} else if (!tcp_skb_pcount(skb))
4065 			tcp_set_skb_tso_segs(skb, mss);
4066 
4067 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4068 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4069 		if (!err)
4070 			tcp_event_new_data_sent(sk, skb);
4071 		return err;
4072 	} else {
4073 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4074 			tcp_xmit_probe_skb(sk, 1, mib);
4075 		return tcp_xmit_probe_skb(sk, 0, mib);
4076 	}
4077 }
4078 
4079 /* A window probe timeout has occurred.  If window is not closed send
4080  * a partial packet else a zero probe.
4081  */
4082 void tcp_send_probe0(struct sock *sk)
4083 {
4084 	struct inet_connection_sock *icsk = inet_csk(sk);
4085 	struct tcp_sock *tp = tcp_sk(sk);
4086 	struct net *net = sock_net(sk);
4087 	unsigned long timeout;
4088 	int err;
4089 
4090 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4091 
4092 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4093 		/* Cancel probe timer, if it is not required. */
4094 		icsk->icsk_probes_out = 0;
4095 		icsk->icsk_backoff = 0;
4096 		icsk->icsk_probes_tstamp = 0;
4097 		return;
4098 	}
4099 
4100 	icsk->icsk_probes_out++;
4101 	if (err <= 0) {
4102 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4103 			icsk->icsk_backoff++;
4104 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4105 	} else {
4106 		/* If packet was not sent due to local congestion,
4107 		 * Let senders fight for local resources conservatively.
4108 		 */
4109 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4110 	}
4111 
4112 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4113 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4114 }
4115 
4116 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4117 {
4118 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4119 	struct flowi fl;
4120 	int res;
4121 
4122 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4123 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4124 		tcp_rsk(req)->txhash = net_tx_rndhash();
4125 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4126 				  NULL);
4127 	if (!res) {
4128 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4129 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4130 		if (unlikely(tcp_passive_fastopen(sk)))
4131 			tcp_sk(sk)->total_retrans++;
4132 		trace_tcp_retransmit_synack(sk, req);
4133 	}
4134 	return res;
4135 }
4136 EXPORT_SYMBOL(tcp_rtx_synack);
4137