xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 1d27a0be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 }
86 
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88  * window scaling factor due to loss of precision.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 	    (tp->rx_opt.wscale_ok &&
100 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 		return tp->snd_nxt;
102 	else
103 		return tcp_wnd_end(tp);
104 }
105 
106 /* Calculate mss to advertise in SYN segment.
107  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108  *
109  * 1. It is independent of path mtu.
110  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112  *    attached devices, because some buggy hosts are confused by
113  *    large MSS.
114  * 4. We do not make 3, we advertise MSS, calculated from first
115  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116  *    This may be overridden via information stored in routing table.
117  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118  *    probably even Jumbo".
119  */
120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 	struct tcp_sock *tp = tcp_sk(sk);
123 	const struct dst_entry *dst = __sk_dst_get(sk);
124 	int mss = tp->advmss;
125 
126 	if (dst) {
127 		unsigned int metric = dst_metric_advmss(dst);
128 
129 		if (metric < mss) {
130 			mss = metric;
131 			tp->advmss = mss;
132 		}
133 	}
134 
135 	return (__u16)mss;
136 }
137 
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139  * This is the first part of cwnd validation mechanism.
140  */
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 	u32 cwnd = tp->snd_cwnd;
146 
147 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 
149 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 	restart_cwnd = min(restart_cwnd, cwnd);
151 
152 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 		cwnd >>= 1;
154 	tp->snd_cwnd = max(cwnd, restart_cwnd);
155 	tp->snd_cwnd_stamp = tcp_jiffies32;
156 	tp->snd_cwnd_used = 0;
157 }
158 
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 				struct sock *sk)
162 {
163 	struct inet_connection_sock *icsk = inet_csk(sk);
164 	const u32 now = tcp_jiffies32;
165 
166 	if (tcp_packets_in_flight(tp) == 0)
167 		tcp_ca_event(sk, CA_EVENT_TX_START);
168 
169 	/* If this is the first data packet sent in response to the
170 	 * previous received data,
171 	 * and it is a reply for ato after last received packet,
172 	 * increase pingpong count.
173 	 */
174 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 
178 	tp->lsndtime = now;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 				      u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk, pkts);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (*window_clamp == 0)
217 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(*window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 		space = max_t(u32, space, sysctl_rmem_max);
245 		space = min_t(u32, space, *window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win = tcp_receive_window(tp);
264 	u32 new_win = __tcp_select_window(sk);
265 
266 	/* Never shrink the offered window */
267 	if (new_win < cur_win) {
268 		/* Danger Will Robinson!
269 		 * Don't update rcv_wup/rcv_wnd here or else
270 		 * we will not be able to advertise a zero
271 		 * window in time.  --DaveM
272 		 *
273 		 * Relax Will Robinson.
274 		 */
275 		if (new_win == 0)
276 			NET_INC_STATS(sock_net(sk),
277 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
278 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 	}
280 	tp->rcv_wnd = new_win;
281 	tp->rcv_wup = tp->rcv_nxt;
282 
283 	/* Make sure we do not exceed the maximum possible
284 	 * scaled window.
285 	 */
286 	if (!tp->rx_opt.rcv_wscale &&
287 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 		new_win = min(new_win, MAX_TCP_WINDOW);
289 	else
290 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291 
292 	/* RFC1323 scaling applied */
293 	new_win >>= tp->rx_opt.rcv_wscale;
294 
295 	/* If we advertise zero window, disable fast path. */
296 	if (new_win == 0) {
297 		tp->pred_flags = 0;
298 		if (old_win)
299 			NET_INC_STATS(sock_net(sk),
300 				      LINUX_MIB_TCPTOZEROWINDOWADV);
301 	} else if (old_win == 0) {
302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 	}
304 
305 	return new_win;
306 }
307 
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 
313 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 	if (!(tp->ecn_flags & TCP_ECN_OK))
315 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 	else if (tcp_ca_needs_ecn(sk) ||
317 		 tcp_bpf_ca_needs_ecn(sk))
318 		INET_ECN_xmit(sk);
319 }
320 
321 /* Packet ECN state for a SYN.  */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 
396 	TCP_SKB_CB(skb)->tcp_flags = flags;
397 	TCP_SKB_CB(skb)->sacked = 0;
398 
399 	tcp_skb_pcount_set(skb, 1);
400 
401 	TCP_SKB_CB(skb)->seq = seq;
402 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 		seq++;
404 	TCP_SKB_CB(skb)->end_seq = seq;
405 }
406 
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 	return tp->snd_una != tp->snd_up;
410 }
411 
412 #define OPTION_SACK_ADVERTISE	(1 << 0)
413 #define OPTION_TS		(1 << 1)
414 #define OPTION_MD5		(1 << 2)
415 #define OPTION_WSCALE		(1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
417 #define OPTION_SMC		(1 << 9)
418 #define OPTION_MPTCP		(1 << 10)
419 
420 static void smc_options_write(__be32 *ptr, u16 *options)
421 {
422 #if IS_ENABLED(CONFIG_SMC)
423 	if (static_branch_unlikely(&tcp_have_smc)) {
424 		if (unlikely(OPTION_SMC & *options)) {
425 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
426 				       (TCPOPT_NOP  << 16) |
427 				       (TCPOPT_EXP <<  8) |
428 				       (TCPOLEN_EXP_SMC_BASE));
429 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 		}
431 	}
432 #endif
433 }
434 
435 struct tcp_out_options {
436 	u16 options;		/* bit field of OPTION_* */
437 	u16 mss;		/* 0 to disable */
438 	u8 ws;			/* window scale, 0 to disable */
439 	u8 num_sack_blocks;	/* number of SACK blocks to include */
440 	u8 hash_size;		/* bytes in hash_location */
441 	__u8 *hash_location;	/* temporary pointer, overloaded */
442 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
443 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
444 	struct mptcp_out_options mptcp;
445 };
446 
447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
448 {
449 #if IS_ENABLED(CONFIG_MPTCP)
450 	if (unlikely(OPTION_MPTCP & opts->options))
451 		mptcp_write_options(ptr, &opts->mptcp);
452 #endif
453 }
454 
455 /* Write previously computed TCP options to the packet.
456  *
457  * Beware: Something in the Internet is very sensitive to the ordering of
458  * TCP options, we learned this through the hard way, so be careful here.
459  * Luckily we can at least blame others for their non-compliance but from
460  * inter-operability perspective it seems that we're somewhat stuck with
461  * the ordering which we have been using if we want to keep working with
462  * those broken things (not that it currently hurts anybody as there isn't
463  * particular reason why the ordering would need to be changed).
464  *
465  * At least SACK_PERM as the first option is known to lead to a disaster
466  * (but it may well be that other scenarios fail similarly).
467  */
468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
469 			      struct tcp_out_options *opts)
470 {
471 	u16 options = opts->options;	/* mungable copy */
472 
473 	if (unlikely(OPTION_MD5 & options)) {
474 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
475 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
476 		/* overload cookie hash location */
477 		opts->hash_location = (__u8 *)ptr;
478 		ptr += 4;
479 	}
480 
481 	if (unlikely(opts->mss)) {
482 		*ptr++ = htonl((TCPOPT_MSS << 24) |
483 			       (TCPOLEN_MSS << 16) |
484 			       opts->mss);
485 	}
486 
487 	if (likely(OPTION_TS & options)) {
488 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
489 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
490 				       (TCPOLEN_SACK_PERM << 16) |
491 				       (TCPOPT_TIMESTAMP << 8) |
492 				       TCPOLEN_TIMESTAMP);
493 			options &= ~OPTION_SACK_ADVERTISE;
494 		} else {
495 			*ptr++ = htonl((TCPOPT_NOP << 24) |
496 				       (TCPOPT_NOP << 16) |
497 				       (TCPOPT_TIMESTAMP << 8) |
498 				       TCPOLEN_TIMESTAMP);
499 		}
500 		*ptr++ = htonl(opts->tsval);
501 		*ptr++ = htonl(opts->tsecr);
502 	}
503 
504 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
505 		*ptr++ = htonl((TCPOPT_NOP << 24) |
506 			       (TCPOPT_NOP << 16) |
507 			       (TCPOPT_SACK_PERM << 8) |
508 			       TCPOLEN_SACK_PERM);
509 	}
510 
511 	if (unlikely(OPTION_WSCALE & options)) {
512 		*ptr++ = htonl((TCPOPT_NOP << 24) |
513 			       (TCPOPT_WINDOW << 16) |
514 			       (TCPOLEN_WINDOW << 8) |
515 			       opts->ws);
516 	}
517 
518 	if (unlikely(opts->num_sack_blocks)) {
519 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
520 			tp->duplicate_sack : tp->selective_acks;
521 		int this_sack;
522 
523 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
524 			       (TCPOPT_NOP  << 16) |
525 			       (TCPOPT_SACK <<  8) |
526 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
527 						     TCPOLEN_SACK_PERBLOCK)));
528 
529 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
530 		     ++this_sack) {
531 			*ptr++ = htonl(sp[this_sack].start_seq);
532 			*ptr++ = htonl(sp[this_sack].end_seq);
533 		}
534 
535 		tp->rx_opt.dsack = 0;
536 	}
537 
538 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
539 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
540 		u8 *p = (u8 *)ptr;
541 		u32 len; /* Fast Open option length */
542 
543 		if (foc->exp) {
544 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
545 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
546 				     TCPOPT_FASTOPEN_MAGIC);
547 			p += TCPOLEN_EXP_FASTOPEN_BASE;
548 		} else {
549 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
550 			*p++ = TCPOPT_FASTOPEN;
551 			*p++ = len;
552 		}
553 
554 		memcpy(p, foc->val, foc->len);
555 		if ((len & 3) == 2) {
556 			p[foc->len] = TCPOPT_NOP;
557 			p[foc->len + 1] = TCPOPT_NOP;
558 		}
559 		ptr += (len + 3) >> 2;
560 	}
561 
562 	smc_options_write(ptr, &options);
563 
564 	mptcp_options_write(ptr, opts);
565 }
566 
567 static void smc_set_option(const struct tcp_sock *tp,
568 			   struct tcp_out_options *opts,
569 			   unsigned int *remaining)
570 {
571 #if IS_ENABLED(CONFIG_SMC)
572 	if (static_branch_unlikely(&tcp_have_smc)) {
573 		if (tp->syn_smc) {
574 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
575 				opts->options |= OPTION_SMC;
576 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
577 			}
578 		}
579 	}
580 #endif
581 }
582 
583 static void smc_set_option_cond(const struct tcp_sock *tp,
584 				const struct inet_request_sock *ireq,
585 				struct tcp_out_options *opts,
586 				unsigned int *remaining)
587 {
588 #if IS_ENABLED(CONFIG_SMC)
589 	if (static_branch_unlikely(&tcp_have_smc)) {
590 		if (tp->syn_smc && ireq->smc_ok) {
591 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
592 				opts->options |= OPTION_SMC;
593 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
594 			}
595 		}
596 	}
597 #endif
598 }
599 
600 static void mptcp_set_option_cond(const struct request_sock *req,
601 				  struct tcp_out_options *opts,
602 				  unsigned int *remaining)
603 {
604 	if (rsk_is_mptcp(req)) {
605 		unsigned int size;
606 
607 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
608 			if (*remaining >= size) {
609 				opts->options |= OPTION_MPTCP;
610 				*remaining -= size;
611 			}
612 		}
613 	}
614 }
615 
616 /* Compute TCP options for SYN packets. This is not the final
617  * network wire format yet.
618  */
619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
620 				struct tcp_out_options *opts,
621 				struct tcp_md5sig_key **md5)
622 {
623 	struct tcp_sock *tp = tcp_sk(sk);
624 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
625 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
626 
627 	*md5 = NULL;
628 #ifdef CONFIG_TCP_MD5SIG
629 	if (static_branch_unlikely(&tcp_md5_needed) &&
630 	    rcu_access_pointer(tp->md5sig_info)) {
631 		*md5 = tp->af_specific->md5_lookup(sk, sk);
632 		if (*md5) {
633 			opts->options |= OPTION_MD5;
634 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
635 		}
636 	}
637 #endif
638 
639 	/* We always get an MSS option.  The option bytes which will be seen in
640 	 * normal data packets should timestamps be used, must be in the MSS
641 	 * advertised.  But we subtract them from tp->mss_cache so that
642 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
643 	 * fact here if necessary.  If we don't do this correctly, as a
644 	 * receiver we won't recognize data packets as being full sized when we
645 	 * should, and thus we won't abide by the delayed ACK rules correctly.
646 	 * SACKs don't matter, we never delay an ACK when we have any of those
647 	 * going out.  */
648 	opts->mss = tcp_advertise_mss(sk);
649 	remaining -= TCPOLEN_MSS_ALIGNED;
650 
651 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
652 		opts->options |= OPTION_TS;
653 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
654 		opts->tsecr = tp->rx_opt.ts_recent;
655 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
656 	}
657 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
658 		opts->ws = tp->rx_opt.rcv_wscale;
659 		opts->options |= OPTION_WSCALE;
660 		remaining -= TCPOLEN_WSCALE_ALIGNED;
661 	}
662 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
663 		opts->options |= OPTION_SACK_ADVERTISE;
664 		if (unlikely(!(OPTION_TS & opts->options)))
665 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
666 	}
667 
668 	if (fastopen && fastopen->cookie.len >= 0) {
669 		u32 need = fastopen->cookie.len;
670 
671 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
672 					       TCPOLEN_FASTOPEN_BASE;
673 		need = (need + 3) & ~3U;  /* Align to 32 bits */
674 		if (remaining >= need) {
675 			opts->options |= OPTION_FAST_OPEN_COOKIE;
676 			opts->fastopen_cookie = &fastopen->cookie;
677 			remaining -= need;
678 			tp->syn_fastopen = 1;
679 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
680 		}
681 	}
682 
683 	smc_set_option(tp, opts, &remaining);
684 
685 	if (sk_is_mptcp(sk)) {
686 		unsigned int size;
687 
688 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
689 			opts->options |= OPTION_MPTCP;
690 			remaining -= size;
691 		}
692 	}
693 
694 	return MAX_TCP_OPTION_SPACE - remaining;
695 }
696 
697 /* Set up TCP options for SYN-ACKs. */
698 static unsigned int tcp_synack_options(const struct sock *sk,
699 				       struct request_sock *req,
700 				       unsigned int mss, struct sk_buff *skb,
701 				       struct tcp_out_options *opts,
702 				       const struct tcp_md5sig_key *md5,
703 				       struct tcp_fastopen_cookie *foc,
704 				       enum tcp_synack_type synack_type)
705 {
706 	struct inet_request_sock *ireq = inet_rsk(req);
707 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
708 
709 #ifdef CONFIG_TCP_MD5SIG
710 	if (md5) {
711 		opts->options |= OPTION_MD5;
712 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
713 
714 		/* We can't fit any SACK blocks in a packet with MD5 + TS
715 		 * options. There was discussion about disabling SACK
716 		 * rather than TS in order to fit in better with old,
717 		 * buggy kernels, but that was deemed to be unnecessary.
718 		 */
719 		if (synack_type != TCP_SYNACK_COOKIE)
720 			ireq->tstamp_ok &= !ireq->sack_ok;
721 	}
722 #endif
723 
724 	/* We always send an MSS option. */
725 	opts->mss = mss;
726 	remaining -= TCPOLEN_MSS_ALIGNED;
727 
728 	if (likely(ireq->wscale_ok)) {
729 		opts->ws = ireq->rcv_wscale;
730 		opts->options |= OPTION_WSCALE;
731 		remaining -= TCPOLEN_WSCALE_ALIGNED;
732 	}
733 	if (likely(ireq->tstamp_ok)) {
734 		opts->options |= OPTION_TS;
735 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
736 		opts->tsecr = req->ts_recent;
737 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
738 	}
739 	if (likely(ireq->sack_ok)) {
740 		opts->options |= OPTION_SACK_ADVERTISE;
741 		if (unlikely(!ireq->tstamp_ok))
742 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
743 	}
744 	if (foc != NULL && foc->len >= 0) {
745 		u32 need = foc->len;
746 
747 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
748 				   TCPOLEN_FASTOPEN_BASE;
749 		need = (need + 3) & ~3U;  /* Align to 32 bits */
750 		if (remaining >= need) {
751 			opts->options |= OPTION_FAST_OPEN_COOKIE;
752 			opts->fastopen_cookie = foc;
753 			remaining -= need;
754 		}
755 	}
756 
757 	mptcp_set_option_cond(req, opts, &remaining);
758 
759 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
760 
761 	return MAX_TCP_OPTION_SPACE - remaining;
762 }
763 
764 /* Compute TCP options for ESTABLISHED sockets. This is not the
765  * final wire format yet.
766  */
767 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
768 					struct tcp_out_options *opts,
769 					struct tcp_md5sig_key **md5)
770 {
771 	struct tcp_sock *tp = tcp_sk(sk);
772 	unsigned int size = 0;
773 	unsigned int eff_sacks;
774 
775 	opts->options = 0;
776 
777 	*md5 = NULL;
778 #ifdef CONFIG_TCP_MD5SIG
779 	if (static_branch_unlikely(&tcp_md5_needed) &&
780 	    rcu_access_pointer(tp->md5sig_info)) {
781 		*md5 = tp->af_specific->md5_lookup(sk, sk);
782 		if (*md5) {
783 			opts->options |= OPTION_MD5;
784 			size += TCPOLEN_MD5SIG_ALIGNED;
785 		}
786 	}
787 #endif
788 
789 	if (likely(tp->rx_opt.tstamp_ok)) {
790 		opts->options |= OPTION_TS;
791 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
792 		opts->tsecr = tp->rx_opt.ts_recent;
793 		size += TCPOLEN_TSTAMP_ALIGNED;
794 	}
795 
796 	/* MPTCP options have precedence over SACK for the limited TCP
797 	 * option space because a MPTCP connection would be forced to
798 	 * fall back to regular TCP if a required multipath option is
799 	 * missing. SACK still gets a chance to use whatever space is
800 	 * left.
801 	 */
802 	if (sk_is_mptcp(sk)) {
803 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
804 		unsigned int opt_size = 0;
805 
806 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
807 					      &opts->mptcp)) {
808 			opts->options |= OPTION_MPTCP;
809 			size += opt_size;
810 		}
811 	}
812 
813 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
814 	if (unlikely(eff_sacks)) {
815 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
816 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
817 					 TCPOLEN_SACK_PERBLOCK))
818 			return size;
819 
820 		opts->num_sack_blocks =
821 			min_t(unsigned int, eff_sacks,
822 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
823 			      TCPOLEN_SACK_PERBLOCK);
824 
825 		size += TCPOLEN_SACK_BASE_ALIGNED +
826 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
827 	}
828 
829 	return size;
830 }
831 
832 
833 /* TCP SMALL QUEUES (TSQ)
834  *
835  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
836  * to reduce RTT and bufferbloat.
837  * We do this using a special skb destructor (tcp_wfree).
838  *
839  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
840  * needs to be reallocated in a driver.
841  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
842  *
843  * Since transmit from skb destructor is forbidden, we use a tasklet
844  * to process all sockets that eventually need to send more skbs.
845  * We use one tasklet per cpu, with its own queue of sockets.
846  */
847 struct tsq_tasklet {
848 	struct tasklet_struct	tasklet;
849 	struct list_head	head; /* queue of tcp sockets */
850 };
851 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
852 
853 static void tcp_tsq_write(struct sock *sk)
854 {
855 	if ((1 << sk->sk_state) &
856 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
857 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
858 		struct tcp_sock *tp = tcp_sk(sk);
859 
860 		if (tp->lost_out > tp->retrans_out &&
861 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
862 			tcp_mstamp_refresh(tp);
863 			tcp_xmit_retransmit_queue(sk);
864 		}
865 
866 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
867 			       0, GFP_ATOMIC);
868 	}
869 }
870 
871 static void tcp_tsq_handler(struct sock *sk)
872 {
873 	bh_lock_sock(sk);
874 	if (!sock_owned_by_user(sk))
875 		tcp_tsq_write(sk);
876 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
877 		sock_hold(sk);
878 	bh_unlock_sock(sk);
879 }
880 /*
881  * One tasklet per cpu tries to send more skbs.
882  * We run in tasklet context but need to disable irqs when
883  * transferring tsq->head because tcp_wfree() might
884  * interrupt us (non NAPI drivers)
885  */
886 static void tcp_tasklet_func(unsigned long data)
887 {
888 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
889 	LIST_HEAD(list);
890 	unsigned long flags;
891 	struct list_head *q, *n;
892 	struct tcp_sock *tp;
893 	struct sock *sk;
894 
895 	local_irq_save(flags);
896 	list_splice_init(&tsq->head, &list);
897 	local_irq_restore(flags);
898 
899 	list_for_each_safe(q, n, &list) {
900 		tp = list_entry(q, struct tcp_sock, tsq_node);
901 		list_del(&tp->tsq_node);
902 
903 		sk = (struct sock *)tp;
904 		smp_mb__before_atomic();
905 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
906 
907 		tcp_tsq_handler(sk);
908 		sk_free(sk);
909 	}
910 }
911 
912 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
913 			  TCPF_WRITE_TIMER_DEFERRED |	\
914 			  TCPF_DELACK_TIMER_DEFERRED |	\
915 			  TCPF_MTU_REDUCED_DEFERRED)
916 /**
917  * tcp_release_cb - tcp release_sock() callback
918  * @sk: socket
919  *
920  * called from release_sock() to perform protocol dependent
921  * actions before socket release.
922  */
923 void tcp_release_cb(struct sock *sk)
924 {
925 	unsigned long flags, nflags;
926 
927 	/* perform an atomic operation only if at least one flag is set */
928 	do {
929 		flags = sk->sk_tsq_flags;
930 		if (!(flags & TCP_DEFERRED_ALL))
931 			return;
932 		nflags = flags & ~TCP_DEFERRED_ALL;
933 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
934 
935 	if (flags & TCPF_TSQ_DEFERRED) {
936 		tcp_tsq_write(sk);
937 		__sock_put(sk);
938 	}
939 	/* Here begins the tricky part :
940 	 * We are called from release_sock() with :
941 	 * 1) BH disabled
942 	 * 2) sk_lock.slock spinlock held
943 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
944 	 *
945 	 * But following code is meant to be called from BH handlers,
946 	 * so we should keep BH disabled, but early release socket ownership
947 	 */
948 	sock_release_ownership(sk);
949 
950 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
951 		tcp_write_timer_handler(sk);
952 		__sock_put(sk);
953 	}
954 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
955 		tcp_delack_timer_handler(sk);
956 		__sock_put(sk);
957 	}
958 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
959 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
960 		__sock_put(sk);
961 	}
962 }
963 EXPORT_SYMBOL(tcp_release_cb);
964 
965 void __init tcp_tasklet_init(void)
966 {
967 	int i;
968 
969 	for_each_possible_cpu(i) {
970 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
971 
972 		INIT_LIST_HEAD(&tsq->head);
973 		tasklet_init(&tsq->tasklet,
974 			     tcp_tasklet_func,
975 			     (unsigned long)tsq);
976 	}
977 }
978 
979 /*
980  * Write buffer destructor automatically called from kfree_skb.
981  * We can't xmit new skbs from this context, as we might already
982  * hold qdisc lock.
983  */
984 void tcp_wfree(struct sk_buff *skb)
985 {
986 	struct sock *sk = skb->sk;
987 	struct tcp_sock *tp = tcp_sk(sk);
988 	unsigned long flags, nval, oval;
989 
990 	/* Keep one reference on sk_wmem_alloc.
991 	 * Will be released by sk_free() from here or tcp_tasklet_func()
992 	 */
993 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
994 
995 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
996 	 * Wait until our queues (qdisc + devices) are drained.
997 	 * This gives :
998 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
999 	 * - chance for incoming ACK (processed by another cpu maybe)
1000 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1001 	 */
1002 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1003 		goto out;
1004 
1005 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1006 		struct tsq_tasklet *tsq;
1007 		bool empty;
1008 
1009 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1010 			goto out;
1011 
1012 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1013 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1014 		if (nval != oval)
1015 			continue;
1016 
1017 		/* queue this socket to tasklet queue */
1018 		local_irq_save(flags);
1019 		tsq = this_cpu_ptr(&tsq_tasklet);
1020 		empty = list_empty(&tsq->head);
1021 		list_add(&tp->tsq_node, &tsq->head);
1022 		if (empty)
1023 			tasklet_schedule(&tsq->tasklet);
1024 		local_irq_restore(flags);
1025 		return;
1026 	}
1027 out:
1028 	sk_free(sk);
1029 }
1030 
1031 /* Note: Called under soft irq.
1032  * We can call TCP stack right away, unless socket is owned by user.
1033  */
1034 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1035 {
1036 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1037 	struct sock *sk = (struct sock *)tp;
1038 
1039 	tcp_tsq_handler(sk);
1040 	sock_put(sk);
1041 
1042 	return HRTIMER_NORESTART;
1043 }
1044 
1045 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1046 				      u64 prior_wstamp)
1047 {
1048 	struct tcp_sock *tp = tcp_sk(sk);
1049 
1050 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1051 		unsigned long rate = sk->sk_pacing_rate;
1052 
1053 		/* Original sch_fq does not pace first 10 MSS
1054 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1055 		 * this is a minor annoyance.
1056 		 */
1057 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1058 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1059 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1060 
1061 			/* take into account OS jitter */
1062 			len_ns -= min_t(u64, len_ns / 2, credit);
1063 			tp->tcp_wstamp_ns += len_ns;
1064 		}
1065 	}
1066 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1067 }
1068 
1069 /* This routine actually transmits TCP packets queued in by
1070  * tcp_do_sendmsg().  This is used by both the initial
1071  * transmission and possible later retransmissions.
1072  * All SKB's seen here are completely headerless.  It is our
1073  * job to build the TCP header, and pass the packet down to
1074  * IP so it can do the same plus pass the packet off to the
1075  * device.
1076  *
1077  * We are working here with either a clone of the original
1078  * SKB, or a fresh unique copy made by the retransmit engine.
1079  */
1080 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1081 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1082 {
1083 	const struct inet_connection_sock *icsk = inet_csk(sk);
1084 	struct inet_sock *inet;
1085 	struct tcp_sock *tp;
1086 	struct tcp_skb_cb *tcb;
1087 	struct tcp_out_options opts;
1088 	unsigned int tcp_options_size, tcp_header_size;
1089 	struct sk_buff *oskb = NULL;
1090 	struct tcp_md5sig_key *md5;
1091 	struct tcphdr *th;
1092 	u64 prior_wstamp;
1093 	int err;
1094 
1095 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1096 	tp = tcp_sk(sk);
1097 	prior_wstamp = tp->tcp_wstamp_ns;
1098 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1099 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1100 	if (clone_it) {
1101 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1102 			- tp->snd_una;
1103 		oskb = skb;
1104 
1105 		tcp_skb_tsorted_save(oskb) {
1106 			if (unlikely(skb_cloned(oskb)))
1107 				skb = pskb_copy(oskb, gfp_mask);
1108 			else
1109 				skb = skb_clone(oskb, gfp_mask);
1110 		} tcp_skb_tsorted_restore(oskb);
1111 
1112 		if (unlikely(!skb))
1113 			return -ENOBUFS;
1114 		/* retransmit skbs might have a non zero value in skb->dev
1115 		 * because skb->dev is aliased with skb->rbnode.rb_left
1116 		 */
1117 		skb->dev = NULL;
1118 	}
1119 
1120 	inet = inet_sk(sk);
1121 	tcb = TCP_SKB_CB(skb);
1122 	memset(&opts, 0, sizeof(opts));
1123 
1124 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1125 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1126 	} else {
1127 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1128 							   &md5);
1129 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1130 		 * at receiver : This slightly improve GRO performance.
1131 		 * Note that we do not force the PSH flag for non GSO packets,
1132 		 * because they might be sent under high congestion events,
1133 		 * and in this case it is better to delay the delivery of 1-MSS
1134 		 * packets and thus the corresponding ACK packet that would
1135 		 * release the following packet.
1136 		 */
1137 		if (tcp_skb_pcount(skb) > 1)
1138 			tcb->tcp_flags |= TCPHDR_PSH;
1139 	}
1140 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1141 
1142 	/* if no packet is in qdisc/device queue, then allow XPS to select
1143 	 * another queue. We can be called from tcp_tsq_handler()
1144 	 * which holds one reference to sk.
1145 	 *
1146 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1147 	 * One way to get this would be to set skb->truesize = 2 on them.
1148 	 */
1149 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1150 
1151 	/* If we had to use memory reserve to allocate this skb,
1152 	 * this might cause drops if packet is looped back :
1153 	 * Other socket might not have SOCK_MEMALLOC.
1154 	 * Packets not looped back do not care about pfmemalloc.
1155 	 */
1156 	skb->pfmemalloc = 0;
1157 
1158 	skb_push(skb, tcp_header_size);
1159 	skb_reset_transport_header(skb);
1160 
1161 	skb_orphan(skb);
1162 	skb->sk = sk;
1163 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1164 	skb_set_hash_from_sk(skb, sk);
1165 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1166 
1167 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1168 
1169 	/* Build TCP header and checksum it. */
1170 	th = (struct tcphdr *)skb->data;
1171 	th->source		= inet->inet_sport;
1172 	th->dest		= inet->inet_dport;
1173 	th->seq			= htonl(tcb->seq);
1174 	th->ack_seq		= htonl(rcv_nxt);
1175 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1176 					tcb->tcp_flags);
1177 
1178 	th->check		= 0;
1179 	th->urg_ptr		= 0;
1180 
1181 	/* The urg_mode check is necessary during a below snd_una win probe */
1182 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1183 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1184 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1185 			th->urg = 1;
1186 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1187 			th->urg_ptr = htons(0xFFFF);
1188 			th->urg = 1;
1189 		}
1190 	}
1191 
1192 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1193 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1194 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1195 		th->window      = htons(tcp_select_window(sk));
1196 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1197 	} else {
1198 		/* RFC1323: The window in SYN & SYN/ACK segments
1199 		 * is never scaled.
1200 		 */
1201 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1202 	}
1203 #ifdef CONFIG_TCP_MD5SIG
1204 	/* Calculate the MD5 hash, as we have all we need now */
1205 	if (md5) {
1206 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1207 		tp->af_specific->calc_md5_hash(opts.hash_location,
1208 					       md5, sk, skb);
1209 	}
1210 #endif
1211 
1212 	icsk->icsk_af_ops->send_check(sk, skb);
1213 
1214 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1215 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1216 
1217 	if (skb->len != tcp_header_size) {
1218 		tcp_event_data_sent(tp, sk);
1219 		tp->data_segs_out += tcp_skb_pcount(skb);
1220 		tp->bytes_sent += skb->len - tcp_header_size;
1221 	}
1222 
1223 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1224 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1225 			      tcp_skb_pcount(skb));
1226 
1227 	tp->segs_out += tcp_skb_pcount(skb);
1228 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1229 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1230 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1231 
1232 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1233 
1234 	/* Cleanup our debris for IP stacks */
1235 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1236 			       sizeof(struct inet6_skb_parm)));
1237 
1238 	tcp_add_tx_delay(skb, tp);
1239 
1240 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1241 
1242 	if (unlikely(err > 0)) {
1243 		tcp_enter_cwr(sk);
1244 		err = net_xmit_eval(err);
1245 	}
1246 	if (!err && oskb) {
1247 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1248 		tcp_rate_skb_sent(sk, oskb);
1249 	}
1250 	return err;
1251 }
1252 
1253 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1254 			    gfp_t gfp_mask)
1255 {
1256 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1257 				  tcp_sk(sk)->rcv_nxt);
1258 }
1259 
1260 /* This routine just queues the buffer for sending.
1261  *
1262  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1263  * otherwise socket can stall.
1264  */
1265 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1266 {
1267 	struct tcp_sock *tp = tcp_sk(sk);
1268 
1269 	/* Advance write_seq and place onto the write_queue. */
1270 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1271 	__skb_header_release(skb);
1272 	tcp_add_write_queue_tail(sk, skb);
1273 	sk_wmem_queued_add(sk, skb->truesize);
1274 	sk_mem_charge(sk, skb->truesize);
1275 }
1276 
1277 /* Initialize TSO segments for a packet. */
1278 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1279 {
1280 	if (skb->len <= mss_now) {
1281 		/* Avoid the costly divide in the normal
1282 		 * non-TSO case.
1283 		 */
1284 		tcp_skb_pcount_set(skb, 1);
1285 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286 	} else {
1287 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1288 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1289 	}
1290 }
1291 
1292 /* Pcount in the middle of the write queue got changed, we need to do various
1293  * tweaks to fix counters
1294  */
1295 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1296 {
1297 	struct tcp_sock *tp = tcp_sk(sk);
1298 
1299 	tp->packets_out -= decr;
1300 
1301 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1302 		tp->sacked_out -= decr;
1303 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1304 		tp->retrans_out -= decr;
1305 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1306 		tp->lost_out -= decr;
1307 
1308 	/* Reno case is special. Sigh... */
1309 	if (tcp_is_reno(tp) && decr > 0)
1310 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1311 
1312 	if (tp->lost_skb_hint &&
1313 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1314 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1315 		tp->lost_cnt_hint -= decr;
1316 
1317 	tcp_verify_left_out(tp);
1318 }
1319 
1320 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1321 {
1322 	return TCP_SKB_CB(skb)->txstamp_ack ||
1323 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1324 }
1325 
1326 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1327 {
1328 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1329 
1330 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1331 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1332 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1333 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1334 
1335 		shinfo->tx_flags &= ~tsflags;
1336 		shinfo2->tx_flags |= tsflags;
1337 		swap(shinfo->tskey, shinfo2->tskey);
1338 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1339 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1340 	}
1341 }
1342 
1343 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1344 {
1345 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1346 	TCP_SKB_CB(skb)->eor = 0;
1347 }
1348 
1349 /* Insert buff after skb on the write or rtx queue of sk.  */
1350 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1351 					 struct sk_buff *buff,
1352 					 struct sock *sk,
1353 					 enum tcp_queue tcp_queue)
1354 {
1355 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1356 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1357 	else
1358 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1359 }
1360 
1361 /* Function to create two new TCP segments.  Shrinks the given segment
1362  * to the specified size and appends a new segment with the rest of the
1363  * packet to the list.  This won't be called frequently, I hope.
1364  * Remember, these are still headerless SKBs at this point.
1365  */
1366 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1367 		 struct sk_buff *skb, u32 len,
1368 		 unsigned int mss_now, gfp_t gfp)
1369 {
1370 	struct tcp_sock *tp = tcp_sk(sk);
1371 	struct sk_buff *buff;
1372 	int nsize, old_factor;
1373 	long limit;
1374 	int nlen;
1375 	u8 flags;
1376 
1377 	if (WARN_ON(len > skb->len))
1378 		return -EINVAL;
1379 
1380 	nsize = skb_headlen(skb) - len;
1381 	if (nsize < 0)
1382 		nsize = 0;
1383 
1384 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1385 	 * We need some allowance to not penalize applications setting small
1386 	 * SO_SNDBUF values.
1387 	 * Also allow first and last skb in retransmit queue to be split.
1388 	 */
1389 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1390 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1391 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1392 		     skb != tcp_rtx_queue_head(sk) &&
1393 		     skb != tcp_rtx_queue_tail(sk))) {
1394 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1395 		return -ENOMEM;
1396 	}
1397 
1398 	if (skb_unclone(skb, gfp))
1399 		return -ENOMEM;
1400 
1401 	/* Get a new skb... force flag on. */
1402 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1403 	if (!buff)
1404 		return -ENOMEM; /* We'll just try again later. */
1405 	skb_copy_decrypted(buff, skb);
1406 
1407 	sk_wmem_queued_add(sk, buff->truesize);
1408 	sk_mem_charge(sk, buff->truesize);
1409 	nlen = skb->len - len - nsize;
1410 	buff->truesize += nlen;
1411 	skb->truesize -= nlen;
1412 
1413 	/* Correct the sequence numbers. */
1414 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1415 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1416 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1417 
1418 	/* PSH and FIN should only be set in the second packet. */
1419 	flags = TCP_SKB_CB(skb)->tcp_flags;
1420 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1421 	TCP_SKB_CB(buff)->tcp_flags = flags;
1422 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1423 	tcp_skb_fragment_eor(skb, buff);
1424 
1425 	skb_split(skb, buff, len);
1426 
1427 	buff->ip_summed = CHECKSUM_PARTIAL;
1428 
1429 	buff->tstamp = skb->tstamp;
1430 	tcp_fragment_tstamp(skb, buff);
1431 
1432 	old_factor = tcp_skb_pcount(skb);
1433 
1434 	/* Fix up tso_factor for both original and new SKB.  */
1435 	tcp_set_skb_tso_segs(skb, mss_now);
1436 	tcp_set_skb_tso_segs(buff, mss_now);
1437 
1438 	/* Update delivered info for the new segment */
1439 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1440 
1441 	/* If this packet has been sent out already, we must
1442 	 * adjust the various packet counters.
1443 	 */
1444 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1445 		int diff = old_factor - tcp_skb_pcount(skb) -
1446 			tcp_skb_pcount(buff);
1447 
1448 		if (diff)
1449 			tcp_adjust_pcount(sk, skb, diff);
1450 	}
1451 
1452 	/* Link BUFF into the send queue. */
1453 	__skb_header_release(buff);
1454 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1455 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1456 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1457 
1458 	return 0;
1459 }
1460 
1461 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1462  * data is not copied, but immediately discarded.
1463  */
1464 static int __pskb_trim_head(struct sk_buff *skb, int len)
1465 {
1466 	struct skb_shared_info *shinfo;
1467 	int i, k, eat;
1468 
1469 	eat = min_t(int, len, skb_headlen(skb));
1470 	if (eat) {
1471 		__skb_pull(skb, eat);
1472 		len -= eat;
1473 		if (!len)
1474 			return 0;
1475 	}
1476 	eat = len;
1477 	k = 0;
1478 	shinfo = skb_shinfo(skb);
1479 	for (i = 0; i < shinfo->nr_frags; i++) {
1480 		int size = skb_frag_size(&shinfo->frags[i]);
1481 
1482 		if (size <= eat) {
1483 			skb_frag_unref(skb, i);
1484 			eat -= size;
1485 		} else {
1486 			shinfo->frags[k] = shinfo->frags[i];
1487 			if (eat) {
1488 				skb_frag_off_add(&shinfo->frags[k], eat);
1489 				skb_frag_size_sub(&shinfo->frags[k], eat);
1490 				eat = 0;
1491 			}
1492 			k++;
1493 		}
1494 	}
1495 	shinfo->nr_frags = k;
1496 
1497 	skb->data_len -= len;
1498 	skb->len = skb->data_len;
1499 	return len;
1500 }
1501 
1502 /* Remove acked data from a packet in the transmit queue. */
1503 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1504 {
1505 	u32 delta_truesize;
1506 
1507 	if (skb_unclone(skb, GFP_ATOMIC))
1508 		return -ENOMEM;
1509 
1510 	delta_truesize = __pskb_trim_head(skb, len);
1511 
1512 	TCP_SKB_CB(skb)->seq += len;
1513 	skb->ip_summed = CHECKSUM_PARTIAL;
1514 
1515 	if (delta_truesize) {
1516 		skb->truesize	   -= delta_truesize;
1517 		sk_wmem_queued_add(sk, -delta_truesize);
1518 		sk_mem_uncharge(sk, delta_truesize);
1519 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1520 	}
1521 
1522 	/* Any change of skb->len requires recalculation of tso factor. */
1523 	if (tcp_skb_pcount(skb) > 1)
1524 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1525 
1526 	return 0;
1527 }
1528 
1529 /* Calculate MSS not accounting any TCP options.  */
1530 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1531 {
1532 	const struct tcp_sock *tp = tcp_sk(sk);
1533 	const struct inet_connection_sock *icsk = inet_csk(sk);
1534 	int mss_now;
1535 
1536 	/* Calculate base mss without TCP options:
1537 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1538 	 */
1539 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1540 
1541 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1542 	if (icsk->icsk_af_ops->net_frag_header_len) {
1543 		const struct dst_entry *dst = __sk_dst_get(sk);
1544 
1545 		if (dst && dst_allfrag(dst))
1546 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1547 	}
1548 
1549 	/* Clamp it (mss_clamp does not include tcp options) */
1550 	if (mss_now > tp->rx_opt.mss_clamp)
1551 		mss_now = tp->rx_opt.mss_clamp;
1552 
1553 	/* Now subtract optional transport overhead */
1554 	mss_now -= icsk->icsk_ext_hdr_len;
1555 
1556 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1557 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1558 	return mss_now;
1559 }
1560 
1561 /* Calculate MSS. Not accounting for SACKs here.  */
1562 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1563 {
1564 	/* Subtract TCP options size, not including SACKs */
1565 	return __tcp_mtu_to_mss(sk, pmtu) -
1566 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1567 }
1568 
1569 /* Inverse of above */
1570 int tcp_mss_to_mtu(struct sock *sk, int mss)
1571 {
1572 	const struct tcp_sock *tp = tcp_sk(sk);
1573 	const struct inet_connection_sock *icsk = inet_csk(sk);
1574 	int mtu;
1575 
1576 	mtu = mss +
1577 	      tp->tcp_header_len +
1578 	      icsk->icsk_ext_hdr_len +
1579 	      icsk->icsk_af_ops->net_header_len;
1580 
1581 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1582 	if (icsk->icsk_af_ops->net_frag_header_len) {
1583 		const struct dst_entry *dst = __sk_dst_get(sk);
1584 
1585 		if (dst && dst_allfrag(dst))
1586 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1587 	}
1588 	return mtu;
1589 }
1590 EXPORT_SYMBOL(tcp_mss_to_mtu);
1591 
1592 /* MTU probing init per socket */
1593 void tcp_mtup_init(struct sock *sk)
1594 {
1595 	struct tcp_sock *tp = tcp_sk(sk);
1596 	struct inet_connection_sock *icsk = inet_csk(sk);
1597 	struct net *net = sock_net(sk);
1598 
1599 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1600 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1601 			       icsk->icsk_af_ops->net_header_len;
1602 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1603 	icsk->icsk_mtup.probe_size = 0;
1604 	if (icsk->icsk_mtup.enabled)
1605 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1606 }
1607 EXPORT_SYMBOL(tcp_mtup_init);
1608 
1609 /* This function synchronize snd mss to current pmtu/exthdr set.
1610 
1611    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1612    for TCP options, but includes only bare TCP header.
1613 
1614    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1615    It is minimum of user_mss and mss received with SYN.
1616    It also does not include TCP options.
1617 
1618    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1619 
1620    tp->mss_cache is current effective sending mss, including
1621    all tcp options except for SACKs. It is evaluated,
1622    taking into account current pmtu, but never exceeds
1623    tp->rx_opt.mss_clamp.
1624 
1625    NOTE1. rfc1122 clearly states that advertised MSS
1626    DOES NOT include either tcp or ip options.
1627 
1628    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1629    are READ ONLY outside this function.		--ANK (980731)
1630  */
1631 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1632 {
1633 	struct tcp_sock *tp = tcp_sk(sk);
1634 	struct inet_connection_sock *icsk = inet_csk(sk);
1635 	int mss_now;
1636 
1637 	if (icsk->icsk_mtup.search_high > pmtu)
1638 		icsk->icsk_mtup.search_high = pmtu;
1639 
1640 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1641 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1642 
1643 	/* And store cached results */
1644 	icsk->icsk_pmtu_cookie = pmtu;
1645 	if (icsk->icsk_mtup.enabled)
1646 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1647 	tp->mss_cache = mss_now;
1648 
1649 	return mss_now;
1650 }
1651 EXPORT_SYMBOL(tcp_sync_mss);
1652 
1653 /* Compute the current effective MSS, taking SACKs and IP options,
1654  * and even PMTU discovery events into account.
1655  */
1656 unsigned int tcp_current_mss(struct sock *sk)
1657 {
1658 	const struct tcp_sock *tp = tcp_sk(sk);
1659 	const struct dst_entry *dst = __sk_dst_get(sk);
1660 	u32 mss_now;
1661 	unsigned int header_len;
1662 	struct tcp_out_options opts;
1663 	struct tcp_md5sig_key *md5;
1664 
1665 	mss_now = tp->mss_cache;
1666 
1667 	if (dst) {
1668 		u32 mtu = dst_mtu(dst);
1669 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1670 			mss_now = tcp_sync_mss(sk, mtu);
1671 	}
1672 
1673 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1674 		     sizeof(struct tcphdr);
1675 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1676 	 * some common options. If this is an odd packet (because we have SACK
1677 	 * blocks etc) then our calculated header_len will be different, and
1678 	 * we have to adjust mss_now correspondingly */
1679 	if (header_len != tp->tcp_header_len) {
1680 		int delta = (int) header_len - tp->tcp_header_len;
1681 		mss_now -= delta;
1682 	}
1683 
1684 	return mss_now;
1685 }
1686 
1687 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1688  * As additional protections, we do not touch cwnd in retransmission phases,
1689  * and if application hit its sndbuf limit recently.
1690  */
1691 static void tcp_cwnd_application_limited(struct sock *sk)
1692 {
1693 	struct tcp_sock *tp = tcp_sk(sk);
1694 
1695 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1696 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1697 		/* Limited by application or receiver window. */
1698 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1699 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1700 		if (win_used < tp->snd_cwnd) {
1701 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1702 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1703 		}
1704 		tp->snd_cwnd_used = 0;
1705 	}
1706 	tp->snd_cwnd_stamp = tcp_jiffies32;
1707 }
1708 
1709 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1710 {
1711 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1712 	struct tcp_sock *tp = tcp_sk(sk);
1713 
1714 	/* Track the maximum number of outstanding packets in each
1715 	 * window, and remember whether we were cwnd-limited then.
1716 	 */
1717 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1718 	    tp->packets_out > tp->max_packets_out) {
1719 		tp->max_packets_out = tp->packets_out;
1720 		tp->max_packets_seq = tp->snd_nxt;
1721 		tp->is_cwnd_limited = is_cwnd_limited;
1722 	}
1723 
1724 	if (tcp_is_cwnd_limited(sk)) {
1725 		/* Network is feed fully. */
1726 		tp->snd_cwnd_used = 0;
1727 		tp->snd_cwnd_stamp = tcp_jiffies32;
1728 	} else {
1729 		/* Network starves. */
1730 		if (tp->packets_out > tp->snd_cwnd_used)
1731 			tp->snd_cwnd_used = tp->packets_out;
1732 
1733 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1734 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1735 		    !ca_ops->cong_control)
1736 			tcp_cwnd_application_limited(sk);
1737 
1738 		/* The following conditions together indicate the starvation
1739 		 * is caused by insufficient sender buffer:
1740 		 * 1) just sent some data (see tcp_write_xmit)
1741 		 * 2) not cwnd limited (this else condition)
1742 		 * 3) no more data to send (tcp_write_queue_empty())
1743 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1744 		 */
1745 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1746 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1747 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1748 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1749 	}
1750 }
1751 
1752 /* Minshall's variant of the Nagle send check. */
1753 static bool tcp_minshall_check(const struct tcp_sock *tp)
1754 {
1755 	return after(tp->snd_sml, tp->snd_una) &&
1756 		!after(tp->snd_sml, tp->snd_nxt);
1757 }
1758 
1759 /* Update snd_sml if this skb is under mss
1760  * Note that a TSO packet might end with a sub-mss segment
1761  * The test is really :
1762  * if ((skb->len % mss) != 0)
1763  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1764  * But we can avoid doing the divide again given we already have
1765  *  skb_pcount = skb->len / mss_now
1766  */
1767 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1768 				const struct sk_buff *skb)
1769 {
1770 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1771 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1772 }
1773 
1774 /* Return false, if packet can be sent now without violation Nagle's rules:
1775  * 1. It is full sized. (provided by caller in %partial bool)
1776  * 2. Or it contains FIN. (already checked by caller)
1777  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1778  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1779  *    With Minshall's modification: all sent small packets are ACKed.
1780  */
1781 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1782 			    int nonagle)
1783 {
1784 	return partial &&
1785 		((nonagle & TCP_NAGLE_CORK) ||
1786 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1787 }
1788 
1789 /* Return how many segs we'd like on a TSO packet,
1790  * to send one TSO packet per ms
1791  */
1792 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1793 			    int min_tso_segs)
1794 {
1795 	u32 bytes, segs;
1796 
1797 	bytes = min_t(unsigned long,
1798 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1799 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1800 
1801 	/* Goal is to send at least one packet per ms,
1802 	 * not one big TSO packet every 100 ms.
1803 	 * This preserves ACK clocking and is consistent
1804 	 * with tcp_tso_should_defer() heuristic.
1805 	 */
1806 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1807 
1808 	return segs;
1809 }
1810 
1811 /* Return the number of segments we want in the skb we are transmitting.
1812  * See if congestion control module wants to decide; otherwise, autosize.
1813  */
1814 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1815 {
1816 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1817 	u32 min_tso, tso_segs;
1818 
1819 	min_tso = ca_ops->min_tso_segs ?
1820 			ca_ops->min_tso_segs(sk) :
1821 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1822 
1823 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1824 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1825 }
1826 
1827 /* Returns the portion of skb which can be sent right away */
1828 static unsigned int tcp_mss_split_point(const struct sock *sk,
1829 					const struct sk_buff *skb,
1830 					unsigned int mss_now,
1831 					unsigned int max_segs,
1832 					int nonagle)
1833 {
1834 	const struct tcp_sock *tp = tcp_sk(sk);
1835 	u32 partial, needed, window, max_len;
1836 
1837 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1838 	max_len = mss_now * max_segs;
1839 
1840 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1841 		return max_len;
1842 
1843 	needed = min(skb->len, window);
1844 
1845 	if (max_len <= needed)
1846 		return max_len;
1847 
1848 	partial = needed % mss_now;
1849 	/* If last segment is not a full MSS, check if Nagle rules allow us
1850 	 * to include this last segment in this skb.
1851 	 * Otherwise, we'll split the skb at last MSS boundary
1852 	 */
1853 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1854 		return needed - partial;
1855 
1856 	return needed;
1857 }
1858 
1859 /* Can at least one segment of SKB be sent right now, according to the
1860  * congestion window rules?  If so, return how many segments are allowed.
1861  */
1862 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1863 					 const struct sk_buff *skb)
1864 {
1865 	u32 in_flight, cwnd, halfcwnd;
1866 
1867 	/* Don't be strict about the congestion window for the final FIN.  */
1868 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1869 	    tcp_skb_pcount(skb) == 1)
1870 		return 1;
1871 
1872 	in_flight = tcp_packets_in_flight(tp);
1873 	cwnd = tp->snd_cwnd;
1874 	if (in_flight >= cwnd)
1875 		return 0;
1876 
1877 	/* For better scheduling, ensure we have at least
1878 	 * 2 GSO packets in flight.
1879 	 */
1880 	halfcwnd = max(cwnd >> 1, 1U);
1881 	return min(halfcwnd, cwnd - in_flight);
1882 }
1883 
1884 /* Initialize TSO state of a skb.
1885  * This must be invoked the first time we consider transmitting
1886  * SKB onto the wire.
1887  */
1888 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1889 {
1890 	int tso_segs = tcp_skb_pcount(skb);
1891 
1892 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1893 		tcp_set_skb_tso_segs(skb, mss_now);
1894 		tso_segs = tcp_skb_pcount(skb);
1895 	}
1896 	return tso_segs;
1897 }
1898 
1899 
1900 /* Return true if the Nagle test allows this packet to be
1901  * sent now.
1902  */
1903 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1904 				  unsigned int cur_mss, int nonagle)
1905 {
1906 	/* Nagle rule does not apply to frames, which sit in the middle of the
1907 	 * write_queue (they have no chances to get new data).
1908 	 *
1909 	 * This is implemented in the callers, where they modify the 'nonagle'
1910 	 * argument based upon the location of SKB in the send queue.
1911 	 */
1912 	if (nonagle & TCP_NAGLE_PUSH)
1913 		return true;
1914 
1915 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1916 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1917 		return true;
1918 
1919 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1920 		return true;
1921 
1922 	return false;
1923 }
1924 
1925 /* Does at least the first segment of SKB fit into the send window? */
1926 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1927 			     const struct sk_buff *skb,
1928 			     unsigned int cur_mss)
1929 {
1930 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1931 
1932 	if (skb->len > cur_mss)
1933 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1934 
1935 	return !after(end_seq, tcp_wnd_end(tp));
1936 }
1937 
1938 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1939  * which is put after SKB on the list.  It is very much like
1940  * tcp_fragment() except that it may make several kinds of assumptions
1941  * in order to speed up the splitting operation.  In particular, we
1942  * know that all the data is in scatter-gather pages, and that the
1943  * packet has never been sent out before (and thus is not cloned).
1944  */
1945 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1946 			unsigned int mss_now, gfp_t gfp)
1947 {
1948 	int nlen = skb->len - len;
1949 	struct sk_buff *buff;
1950 	u8 flags;
1951 
1952 	/* All of a TSO frame must be composed of paged data.  */
1953 	if (skb->len != skb->data_len)
1954 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1955 				    skb, len, mss_now, gfp);
1956 
1957 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1958 	if (unlikely(!buff))
1959 		return -ENOMEM;
1960 	skb_copy_decrypted(buff, skb);
1961 
1962 	sk_wmem_queued_add(sk, buff->truesize);
1963 	sk_mem_charge(sk, buff->truesize);
1964 	buff->truesize += nlen;
1965 	skb->truesize -= nlen;
1966 
1967 	/* Correct the sequence numbers. */
1968 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1969 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1970 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1971 
1972 	/* PSH and FIN should only be set in the second packet. */
1973 	flags = TCP_SKB_CB(skb)->tcp_flags;
1974 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1975 	TCP_SKB_CB(buff)->tcp_flags = flags;
1976 
1977 	/* This packet was never sent out yet, so no SACK bits. */
1978 	TCP_SKB_CB(buff)->sacked = 0;
1979 
1980 	tcp_skb_fragment_eor(skb, buff);
1981 
1982 	buff->ip_summed = CHECKSUM_PARTIAL;
1983 	skb_split(skb, buff, len);
1984 	tcp_fragment_tstamp(skb, buff);
1985 
1986 	/* Fix up tso_factor for both original and new SKB.  */
1987 	tcp_set_skb_tso_segs(skb, mss_now);
1988 	tcp_set_skb_tso_segs(buff, mss_now);
1989 
1990 	/* Link BUFF into the send queue. */
1991 	__skb_header_release(buff);
1992 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1993 
1994 	return 0;
1995 }
1996 
1997 /* Try to defer sending, if possible, in order to minimize the amount
1998  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1999  *
2000  * This algorithm is from John Heffner.
2001  */
2002 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2003 				 bool *is_cwnd_limited,
2004 				 bool *is_rwnd_limited,
2005 				 u32 max_segs)
2006 {
2007 	const struct inet_connection_sock *icsk = inet_csk(sk);
2008 	u32 send_win, cong_win, limit, in_flight;
2009 	struct tcp_sock *tp = tcp_sk(sk);
2010 	struct sk_buff *head;
2011 	int win_divisor;
2012 	s64 delta;
2013 
2014 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2015 		goto send_now;
2016 
2017 	/* Avoid bursty behavior by allowing defer
2018 	 * only if the last write was recent (1 ms).
2019 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2020 	 * packets waiting in a qdisc or device for EDT delivery.
2021 	 */
2022 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2023 	if (delta > 0)
2024 		goto send_now;
2025 
2026 	in_flight = tcp_packets_in_flight(tp);
2027 
2028 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2029 	BUG_ON(tp->snd_cwnd <= in_flight);
2030 
2031 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2032 
2033 	/* From in_flight test above, we know that cwnd > in_flight.  */
2034 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2035 
2036 	limit = min(send_win, cong_win);
2037 
2038 	/* If a full-sized TSO skb can be sent, do it. */
2039 	if (limit >= max_segs * tp->mss_cache)
2040 		goto send_now;
2041 
2042 	/* Middle in queue won't get any more data, full sendable already? */
2043 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2044 		goto send_now;
2045 
2046 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2047 	if (win_divisor) {
2048 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2049 
2050 		/* If at least some fraction of a window is available,
2051 		 * just use it.
2052 		 */
2053 		chunk /= win_divisor;
2054 		if (limit >= chunk)
2055 			goto send_now;
2056 	} else {
2057 		/* Different approach, try not to defer past a single
2058 		 * ACK.  Receiver should ACK every other full sized
2059 		 * frame, so if we have space for more than 3 frames
2060 		 * then send now.
2061 		 */
2062 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2063 			goto send_now;
2064 	}
2065 
2066 	/* TODO : use tsorted_sent_queue ? */
2067 	head = tcp_rtx_queue_head(sk);
2068 	if (!head)
2069 		goto send_now;
2070 	delta = tp->tcp_clock_cache - head->tstamp;
2071 	/* If next ACK is likely to come too late (half srtt), do not defer */
2072 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2073 		goto send_now;
2074 
2075 	/* Ok, it looks like it is advisable to defer.
2076 	 * Three cases are tracked :
2077 	 * 1) We are cwnd-limited
2078 	 * 2) We are rwnd-limited
2079 	 * 3) We are application limited.
2080 	 */
2081 	if (cong_win < send_win) {
2082 		if (cong_win <= skb->len) {
2083 			*is_cwnd_limited = true;
2084 			return true;
2085 		}
2086 	} else {
2087 		if (send_win <= skb->len) {
2088 			*is_rwnd_limited = true;
2089 			return true;
2090 		}
2091 	}
2092 
2093 	/* If this packet won't get more data, do not wait. */
2094 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2095 	    TCP_SKB_CB(skb)->eor)
2096 		goto send_now;
2097 
2098 	return true;
2099 
2100 send_now:
2101 	return false;
2102 }
2103 
2104 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2105 {
2106 	struct inet_connection_sock *icsk = inet_csk(sk);
2107 	struct tcp_sock *tp = tcp_sk(sk);
2108 	struct net *net = sock_net(sk);
2109 	u32 interval;
2110 	s32 delta;
2111 
2112 	interval = net->ipv4.sysctl_tcp_probe_interval;
2113 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2114 	if (unlikely(delta >= interval * HZ)) {
2115 		int mss = tcp_current_mss(sk);
2116 
2117 		/* Update current search range */
2118 		icsk->icsk_mtup.probe_size = 0;
2119 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2120 			sizeof(struct tcphdr) +
2121 			icsk->icsk_af_ops->net_header_len;
2122 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2123 
2124 		/* Update probe time stamp */
2125 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2126 	}
2127 }
2128 
2129 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2130 {
2131 	struct sk_buff *skb, *next;
2132 
2133 	skb = tcp_send_head(sk);
2134 	tcp_for_write_queue_from_safe(skb, next, sk) {
2135 		if (len <= skb->len)
2136 			break;
2137 
2138 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2139 			return false;
2140 
2141 		len -= skb->len;
2142 	}
2143 
2144 	return true;
2145 }
2146 
2147 /* Create a new MTU probe if we are ready.
2148  * MTU probe is regularly attempting to increase the path MTU by
2149  * deliberately sending larger packets.  This discovers routing
2150  * changes resulting in larger path MTUs.
2151  *
2152  * Returns 0 if we should wait to probe (no cwnd available),
2153  *         1 if a probe was sent,
2154  *         -1 otherwise
2155  */
2156 static int tcp_mtu_probe(struct sock *sk)
2157 {
2158 	struct inet_connection_sock *icsk = inet_csk(sk);
2159 	struct tcp_sock *tp = tcp_sk(sk);
2160 	struct sk_buff *skb, *nskb, *next;
2161 	struct net *net = sock_net(sk);
2162 	int probe_size;
2163 	int size_needed;
2164 	int copy, len;
2165 	int mss_now;
2166 	int interval;
2167 
2168 	/* Not currently probing/verifying,
2169 	 * not in recovery,
2170 	 * have enough cwnd, and
2171 	 * not SACKing (the variable headers throw things off)
2172 	 */
2173 	if (likely(!icsk->icsk_mtup.enabled ||
2174 		   icsk->icsk_mtup.probe_size ||
2175 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2176 		   tp->snd_cwnd < 11 ||
2177 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2178 		return -1;
2179 
2180 	/* Use binary search for probe_size between tcp_mss_base,
2181 	 * and current mss_clamp. if (search_high - search_low)
2182 	 * smaller than a threshold, backoff from probing.
2183 	 */
2184 	mss_now = tcp_current_mss(sk);
2185 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2186 				    icsk->icsk_mtup.search_low) >> 1);
2187 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2188 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2189 	/* When misfortune happens, we are reprobing actively,
2190 	 * and then reprobe timer has expired. We stick with current
2191 	 * probing process by not resetting search range to its orignal.
2192 	 */
2193 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2194 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2195 		/* Check whether enough time has elaplased for
2196 		 * another round of probing.
2197 		 */
2198 		tcp_mtu_check_reprobe(sk);
2199 		return -1;
2200 	}
2201 
2202 	/* Have enough data in the send queue to probe? */
2203 	if (tp->write_seq - tp->snd_nxt < size_needed)
2204 		return -1;
2205 
2206 	if (tp->snd_wnd < size_needed)
2207 		return -1;
2208 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2209 		return 0;
2210 
2211 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2212 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2213 		if (!tcp_packets_in_flight(tp))
2214 			return -1;
2215 		else
2216 			return 0;
2217 	}
2218 
2219 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2220 		return -1;
2221 
2222 	/* We're allowed to probe.  Build it now. */
2223 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2224 	if (!nskb)
2225 		return -1;
2226 	sk_wmem_queued_add(sk, nskb->truesize);
2227 	sk_mem_charge(sk, nskb->truesize);
2228 
2229 	skb = tcp_send_head(sk);
2230 	skb_copy_decrypted(nskb, skb);
2231 
2232 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2233 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2234 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2235 	TCP_SKB_CB(nskb)->sacked = 0;
2236 	nskb->csum = 0;
2237 	nskb->ip_summed = CHECKSUM_PARTIAL;
2238 
2239 	tcp_insert_write_queue_before(nskb, skb, sk);
2240 	tcp_highest_sack_replace(sk, skb, nskb);
2241 
2242 	len = 0;
2243 	tcp_for_write_queue_from_safe(skb, next, sk) {
2244 		copy = min_t(int, skb->len, probe_size - len);
2245 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2246 
2247 		if (skb->len <= copy) {
2248 			/* We've eaten all the data from this skb.
2249 			 * Throw it away. */
2250 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2251 			/* If this is the last SKB we copy and eor is set
2252 			 * we need to propagate it to the new skb.
2253 			 */
2254 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2255 			tcp_skb_collapse_tstamp(nskb, skb);
2256 			tcp_unlink_write_queue(skb, sk);
2257 			sk_wmem_free_skb(sk, skb);
2258 		} else {
2259 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2260 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2261 			if (!skb_shinfo(skb)->nr_frags) {
2262 				skb_pull(skb, copy);
2263 			} else {
2264 				__pskb_trim_head(skb, copy);
2265 				tcp_set_skb_tso_segs(skb, mss_now);
2266 			}
2267 			TCP_SKB_CB(skb)->seq += copy;
2268 		}
2269 
2270 		len += copy;
2271 
2272 		if (len >= probe_size)
2273 			break;
2274 	}
2275 	tcp_init_tso_segs(nskb, nskb->len);
2276 
2277 	/* We're ready to send.  If this fails, the probe will
2278 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2279 	 */
2280 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2281 		/* Decrement cwnd here because we are sending
2282 		 * effectively two packets. */
2283 		tp->snd_cwnd--;
2284 		tcp_event_new_data_sent(sk, nskb);
2285 
2286 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2287 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2288 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2289 
2290 		return 1;
2291 	}
2292 
2293 	return -1;
2294 }
2295 
2296 static bool tcp_pacing_check(struct sock *sk)
2297 {
2298 	struct tcp_sock *tp = tcp_sk(sk);
2299 
2300 	if (!tcp_needs_internal_pacing(sk))
2301 		return false;
2302 
2303 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2304 		return false;
2305 
2306 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2307 		hrtimer_start(&tp->pacing_timer,
2308 			      ns_to_ktime(tp->tcp_wstamp_ns),
2309 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2310 		sock_hold(sk);
2311 	}
2312 	return true;
2313 }
2314 
2315 /* TCP Small Queues :
2316  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2317  * (These limits are doubled for retransmits)
2318  * This allows for :
2319  *  - better RTT estimation and ACK scheduling
2320  *  - faster recovery
2321  *  - high rates
2322  * Alas, some drivers / subsystems require a fair amount
2323  * of queued bytes to ensure line rate.
2324  * One example is wifi aggregation (802.11 AMPDU)
2325  */
2326 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2327 				  unsigned int factor)
2328 {
2329 	unsigned long limit;
2330 
2331 	limit = max_t(unsigned long,
2332 		      2 * skb->truesize,
2333 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2334 	if (sk->sk_pacing_status == SK_PACING_NONE)
2335 		limit = min_t(unsigned long, limit,
2336 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2337 	limit <<= factor;
2338 
2339 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2340 	    tcp_sk(sk)->tcp_tx_delay) {
2341 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2342 
2343 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2344 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2345 		 * USEC_PER_SEC is approximated by 2^20.
2346 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2347 		 */
2348 		extra_bytes >>= (20 - 1);
2349 		limit += extra_bytes;
2350 	}
2351 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2352 		/* Always send skb if rtx queue is empty.
2353 		 * No need to wait for TX completion to call us back,
2354 		 * after softirq/tasklet schedule.
2355 		 * This helps when TX completions are delayed too much.
2356 		 */
2357 		if (tcp_rtx_queue_empty(sk))
2358 			return false;
2359 
2360 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2361 		/* It is possible TX completion already happened
2362 		 * before we set TSQ_THROTTLED, so we must
2363 		 * test again the condition.
2364 		 */
2365 		smp_mb__after_atomic();
2366 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2367 			return true;
2368 	}
2369 	return false;
2370 }
2371 
2372 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2373 {
2374 	const u32 now = tcp_jiffies32;
2375 	enum tcp_chrono old = tp->chrono_type;
2376 
2377 	if (old > TCP_CHRONO_UNSPEC)
2378 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2379 	tp->chrono_start = now;
2380 	tp->chrono_type = new;
2381 }
2382 
2383 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2384 {
2385 	struct tcp_sock *tp = tcp_sk(sk);
2386 
2387 	/* If there are multiple conditions worthy of tracking in a
2388 	 * chronograph then the highest priority enum takes precedence
2389 	 * over the other conditions. So that if something "more interesting"
2390 	 * starts happening, stop the previous chrono and start a new one.
2391 	 */
2392 	if (type > tp->chrono_type)
2393 		tcp_chrono_set(tp, type);
2394 }
2395 
2396 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 
2400 
2401 	/* There are multiple conditions worthy of tracking in a
2402 	 * chronograph, so that the highest priority enum takes
2403 	 * precedence over the other conditions (see tcp_chrono_start).
2404 	 * If a condition stops, we only stop chrono tracking if
2405 	 * it's the "most interesting" or current chrono we are
2406 	 * tracking and starts busy chrono if we have pending data.
2407 	 */
2408 	if (tcp_rtx_and_write_queues_empty(sk))
2409 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2410 	else if (type == tp->chrono_type)
2411 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2412 }
2413 
2414 /* This routine writes packets to the network.  It advances the
2415  * send_head.  This happens as incoming acks open up the remote
2416  * window for us.
2417  *
2418  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2419  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2420  * account rare use of URG, this is not a big flaw.
2421  *
2422  * Send at most one packet when push_one > 0. Temporarily ignore
2423  * cwnd limit to force at most one packet out when push_one == 2.
2424 
2425  * Returns true, if no segments are in flight and we have queued segments,
2426  * but cannot send anything now because of SWS or another problem.
2427  */
2428 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2429 			   int push_one, gfp_t gfp)
2430 {
2431 	struct tcp_sock *tp = tcp_sk(sk);
2432 	struct sk_buff *skb;
2433 	unsigned int tso_segs, sent_pkts;
2434 	int cwnd_quota;
2435 	int result;
2436 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2437 	u32 max_segs;
2438 
2439 	sent_pkts = 0;
2440 
2441 	tcp_mstamp_refresh(tp);
2442 	if (!push_one) {
2443 		/* Do MTU probing. */
2444 		result = tcp_mtu_probe(sk);
2445 		if (!result) {
2446 			return false;
2447 		} else if (result > 0) {
2448 			sent_pkts = 1;
2449 		}
2450 	}
2451 
2452 	max_segs = tcp_tso_segs(sk, mss_now);
2453 	while ((skb = tcp_send_head(sk))) {
2454 		unsigned int limit;
2455 
2456 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2457 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2458 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2459 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2460 			tcp_init_tso_segs(skb, mss_now);
2461 			goto repair; /* Skip network transmission */
2462 		}
2463 
2464 		if (tcp_pacing_check(sk))
2465 			break;
2466 
2467 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2468 		BUG_ON(!tso_segs);
2469 
2470 		cwnd_quota = tcp_cwnd_test(tp, skb);
2471 		if (!cwnd_quota) {
2472 			if (push_one == 2)
2473 				/* Force out a loss probe pkt. */
2474 				cwnd_quota = 1;
2475 			else
2476 				break;
2477 		}
2478 
2479 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2480 			is_rwnd_limited = true;
2481 			break;
2482 		}
2483 
2484 		if (tso_segs == 1) {
2485 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2486 						     (tcp_skb_is_last(sk, skb) ?
2487 						      nonagle : TCP_NAGLE_PUSH))))
2488 				break;
2489 		} else {
2490 			if (!push_one &&
2491 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2492 						 &is_rwnd_limited, max_segs))
2493 				break;
2494 		}
2495 
2496 		limit = mss_now;
2497 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2498 			limit = tcp_mss_split_point(sk, skb, mss_now,
2499 						    min_t(unsigned int,
2500 							  cwnd_quota,
2501 							  max_segs),
2502 						    nonagle);
2503 
2504 		if (skb->len > limit &&
2505 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2506 			break;
2507 
2508 		if (tcp_small_queue_check(sk, skb, 0))
2509 			break;
2510 
2511 		/* Argh, we hit an empty skb(), presumably a thread
2512 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2513 		 * We do not want to send a pure-ack packet and have
2514 		 * a strange looking rtx queue with empty packet(s).
2515 		 */
2516 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2517 			break;
2518 
2519 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2520 			break;
2521 
2522 repair:
2523 		/* Advance the send_head.  This one is sent out.
2524 		 * This call will increment packets_out.
2525 		 */
2526 		tcp_event_new_data_sent(sk, skb);
2527 
2528 		tcp_minshall_update(tp, mss_now, skb);
2529 		sent_pkts += tcp_skb_pcount(skb);
2530 
2531 		if (push_one)
2532 			break;
2533 	}
2534 
2535 	if (is_rwnd_limited)
2536 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2537 	else
2538 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2539 
2540 	if (likely(sent_pkts)) {
2541 		if (tcp_in_cwnd_reduction(sk))
2542 			tp->prr_out += sent_pkts;
2543 
2544 		/* Send one loss probe per tail loss episode. */
2545 		if (push_one != 2)
2546 			tcp_schedule_loss_probe(sk, false);
2547 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2548 		tcp_cwnd_validate(sk, is_cwnd_limited);
2549 		return false;
2550 	}
2551 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2552 }
2553 
2554 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2555 {
2556 	struct inet_connection_sock *icsk = inet_csk(sk);
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 	u32 timeout, rto_delta_us;
2559 	int early_retrans;
2560 
2561 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2562 	 * finishes.
2563 	 */
2564 	if (rcu_access_pointer(tp->fastopen_rsk))
2565 		return false;
2566 
2567 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2568 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2569 	 * not in loss recovery, that are either limited by cwnd or application.
2570 	 */
2571 	if ((early_retrans != 3 && early_retrans != 4) ||
2572 	    !tp->packets_out || !tcp_is_sack(tp) ||
2573 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2574 	     icsk->icsk_ca_state != TCP_CA_CWR))
2575 		return false;
2576 
2577 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2578 	 * for delayed ack when there's one outstanding packet. If no RTT
2579 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2580 	 */
2581 	if (tp->srtt_us) {
2582 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2583 		if (tp->packets_out == 1)
2584 			timeout += TCP_RTO_MIN;
2585 		else
2586 			timeout += TCP_TIMEOUT_MIN;
2587 	} else {
2588 		timeout = TCP_TIMEOUT_INIT;
2589 	}
2590 
2591 	/* If the RTO formula yields an earlier time, then use that time. */
2592 	rto_delta_us = advancing_rto ?
2593 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2594 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2595 	if (rto_delta_us > 0)
2596 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2597 
2598 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2599 	return true;
2600 }
2601 
2602 /* Thanks to skb fast clones, we can detect if a prior transmit of
2603  * a packet is still in a qdisc or driver queue.
2604  * In this case, there is very little point doing a retransmit !
2605  */
2606 static bool skb_still_in_host_queue(const struct sock *sk,
2607 				    const struct sk_buff *skb)
2608 {
2609 	if (unlikely(skb_fclone_busy(sk, skb))) {
2610 		NET_INC_STATS(sock_net(sk),
2611 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2612 		return true;
2613 	}
2614 	return false;
2615 }
2616 
2617 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2618  * retransmit the last segment.
2619  */
2620 void tcp_send_loss_probe(struct sock *sk)
2621 {
2622 	struct tcp_sock *tp = tcp_sk(sk);
2623 	struct sk_buff *skb;
2624 	int pcount;
2625 	int mss = tcp_current_mss(sk);
2626 
2627 	skb = tcp_send_head(sk);
2628 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2629 		pcount = tp->packets_out;
2630 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2631 		if (tp->packets_out > pcount)
2632 			goto probe_sent;
2633 		goto rearm_timer;
2634 	}
2635 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2636 	if (unlikely(!skb)) {
2637 		WARN_ONCE(tp->packets_out,
2638 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2639 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2640 		inet_csk(sk)->icsk_pending = 0;
2641 		return;
2642 	}
2643 
2644 	/* At most one outstanding TLP retransmission. */
2645 	if (tp->tlp_high_seq)
2646 		goto rearm_timer;
2647 
2648 	if (skb_still_in_host_queue(sk, skb))
2649 		goto rearm_timer;
2650 
2651 	pcount = tcp_skb_pcount(skb);
2652 	if (WARN_ON(!pcount))
2653 		goto rearm_timer;
2654 
2655 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2656 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2657 					  (pcount - 1) * mss, mss,
2658 					  GFP_ATOMIC)))
2659 			goto rearm_timer;
2660 		skb = skb_rb_next(skb);
2661 	}
2662 
2663 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2664 		goto rearm_timer;
2665 
2666 	if (__tcp_retransmit_skb(sk, skb, 1))
2667 		goto rearm_timer;
2668 
2669 	/* Record snd_nxt for loss detection. */
2670 	tp->tlp_high_seq = tp->snd_nxt;
2671 
2672 probe_sent:
2673 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2674 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2675 	inet_csk(sk)->icsk_pending = 0;
2676 rearm_timer:
2677 	tcp_rearm_rto(sk);
2678 }
2679 
2680 /* Push out any pending frames which were held back due to
2681  * TCP_CORK or attempt at coalescing tiny packets.
2682  * The socket must be locked by the caller.
2683  */
2684 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2685 			       int nonagle)
2686 {
2687 	/* If we are closed, the bytes will have to remain here.
2688 	 * In time closedown will finish, we empty the write queue and
2689 	 * all will be happy.
2690 	 */
2691 	if (unlikely(sk->sk_state == TCP_CLOSE))
2692 		return;
2693 
2694 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2695 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2696 		tcp_check_probe_timer(sk);
2697 }
2698 
2699 /* Send _single_ skb sitting at the send head. This function requires
2700  * true push pending frames to setup probe timer etc.
2701  */
2702 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2703 {
2704 	struct sk_buff *skb = tcp_send_head(sk);
2705 
2706 	BUG_ON(!skb || skb->len < mss_now);
2707 
2708 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2709 }
2710 
2711 /* This function returns the amount that we can raise the
2712  * usable window based on the following constraints
2713  *
2714  * 1. The window can never be shrunk once it is offered (RFC 793)
2715  * 2. We limit memory per socket
2716  *
2717  * RFC 1122:
2718  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2719  *  RECV.NEXT + RCV.WIN fixed until:
2720  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2721  *
2722  * i.e. don't raise the right edge of the window until you can raise
2723  * it at least MSS bytes.
2724  *
2725  * Unfortunately, the recommended algorithm breaks header prediction,
2726  * since header prediction assumes th->window stays fixed.
2727  *
2728  * Strictly speaking, keeping th->window fixed violates the receiver
2729  * side SWS prevention criteria. The problem is that under this rule
2730  * a stream of single byte packets will cause the right side of the
2731  * window to always advance by a single byte.
2732  *
2733  * Of course, if the sender implements sender side SWS prevention
2734  * then this will not be a problem.
2735  *
2736  * BSD seems to make the following compromise:
2737  *
2738  *	If the free space is less than the 1/4 of the maximum
2739  *	space available and the free space is less than 1/2 mss,
2740  *	then set the window to 0.
2741  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2742  *	Otherwise, just prevent the window from shrinking
2743  *	and from being larger than the largest representable value.
2744  *
2745  * This prevents incremental opening of the window in the regime
2746  * where TCP is limited by the speed of the reader side taking
2747  * data out of the TCP receive queue. It does nothing about
2748  * those cases where the window is constrained on the sender side
2749  * because the pipeline is full.
2750  *
2751  * BSD also seems to "accidentally" limit itself to windows that are a
2752  * multiple of MSS, at least until the free space gets quite small.
2753  * This would appear to be a side effect of the mbuf implementation.
2754  * Combining these two algorithms results in the observed behavior
2755  * of having a fixed window size at almost all times.
2756  *
2757  * Below we obtain similar behavior by forcing the offered window to
2758  * a multiple of the mss when it is feasible to do so.
2759  *
2760  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2761  * Regular options like TIMESTAMP are taken into account.
2762  */
2763 u32 __tcp_select_window(struct sock *sk)
2764 {
2765 	struct inet_connection_sock *icsk = inet_csk(sk);
2766 	struct tcp_sock *tp = tcp_sk(sk);
2767 	/* MSS for the peer's data.  Previous versions used mss_clamp
2768 	 * here.  I don't know if the value based on our guesses
2769 	 * of peer's MSS is better for the performance.  It's more correct
2770 	 * but may be worse for the performance because of rcv_mss
2771 	 * fluctuations.  --SAW  1998/11/1
2772 	 */
2773 	int mss = icsk->icsk_ack.rcv_mss;
2774 	int free_space = tcp_space(sk);
2775 	int allowed_space = tcp_full_space(sk);
2776 	int full_space, window;
2777 
2778 	if (sk_is_mptcp(sk))
2779 		mptcp_space(sk, &free_space, &allowed_space);
2780 
2781 	full_space = min_t(int, tp->window_clamp, allowed_space);
2782 
2783 	if (unlikely(mss > full_space)) {
2784 		mss = full_space;
2785 		if (mss <= 0)
2786 			return 0;
2787 	}
2788 	if (free_space < (full_space >> 1)) {
2789 		icsk->icsk_ack.quick = 0;
2790 
2791 		if (tcp_under_memory_pressure(sk))
2792 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2793 					       4U * tp->advmss);
2794 
2795 		/* free_space might become our new window, make sure we don't
2796 		 * increase it due to wscale.
2797 		 */
2798 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2799 
2800 		/* if free space is less than mss estimate, or is below 1/16th
2801 		 * of the maximum allowed, try to move to zero-window, else
2802 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2803 		 * new incoming data is dropped due to memory limits.
2804 		 * With large window, mss test triggers way too late in order
2805 		 * to announce zero window in time before rmem limit kicks in.
2806 		 */
2807 		if (free_space < (allowed_space >> 4) || free_space < mss)
2808 			return 0;
2809 	}
2810 
2811 	if (free_space > tp->rcv_ssthresh)
2812 		free_space = tp->rcv_ssthresh;
2813 
2814 	/* Don't do rounding if we are using window scaling, since the
2815 	 * scaled window will not line up with the MSS boundary anyway.
2816 	 */
2817 	if (tp->rx_opt.rcv_wscale) {
2818 		window = free_space;
2819 
2820 		/* Advertise enough space so that it won't get scaled away.
2821 		 * Import case: prevent zero window announcement if
2822 		 * 1<<rcv_wscale > mss.
2823 		 */
2824 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2825 	} else {
2826 		window = tp->rcv_wnd;
2827 		/* Get the largest window that is a nice multiple of mss.
2828 		 * Window clamp already applied above.
2829 		 * If our current window offering is within 1 mss of the
2830 		 * free space we just keep it. This prevents the divide
2831 		 * and multiply from happening most of the time.
2832 		 * We also don't do any window rounding when the free space
2833 		 * is too small.
2834 		 */
2835 		if (window <= free_space - mss || window > free_space)
2836 			window = rounddown(free_space, mss);
2837 		else if (mss == full_space &&
2838 			 free_space > window + (full_space >> 1))
2839 			window = free_space;
2840 	}
2841 
2842 	return window;
2843 }
2844 
2845 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2846 			     const struct sk_buff *next_skb)
2847 {
2848 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2849 		const struct skb_shared_info *next_shinfo =
2850 			skb_shinfo(next_skb);
2851 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2852 
2853 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2854 		shinfo->tskey = next_shinfo->tskey;
2855 		TCP_SKB_CB(skb)->txstamp_ack |=
2856 			TCP_SKB_CB(next_skb)->txstamp_ack;
2857 	}
2858 }
2859 
2860 /* Collapses two adjacent SKB's during retransmission. */
2861 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 	struct sk_buff *next_skb = skb_rb_next(skb);
2865 	int next_skb_size;
2866 
2867 	next_skb_size = next_skb->len;
2868 
2869 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2870 
2871 	if (next_skb_size) {
2872 		if (next_skb_size <= skb_availroom(skb))
2873 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2874 				      next_skb_size);
2875 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2876 			return false;
2877 	}
2878 	tcp_highest_sack_replace(sk, next_skb, skb);
2879 
2880 	/* Update sequence range on original skb. */
2881 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2882 
2883 	/* Merge over control information. This moves PSH/FIN etc. over */
2884 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2885 
2886 	/* All done, get rid of second SKB and account for it so
2887 	 * packet counting does not break.
2888 	 */
2889 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2890 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2891 
2892 	/* changed transmit queue under us so clear hints */
2893 	tcp_clear_retrans_hints_partial(tp);
2894 	if (next_skb == tp->retransmit_skb_hint)
2895 		tp->retransmit_skb_hint = skb;
2896 
2897 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2898 
2899 	tcp_skb_collapse_tstamp(skb, next_skb);
2900 
2901 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2902 	return true;
2903 }
2904 
2905 /* Check if coalescing SKBs is legal. */
2906 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2907 {
2908 	if (tcp_skb_pcount(skb) > 1)
2909 		return false;
2910 	if (skb_cloned(skb))
2911 		return false;
2912 	/* Some heuristics for collapsing over SACK'd could be invented */
2913 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2914 		return false;
2915 
2916 	return true;
2917 }
2918 
2919 /* Collapse packets in the retransmit queue to make to create
2920  * less packets on the wire. This is only done on retransmission.
2921  */
2922 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2923 				     int space)
2924 {
2925 	struct tcp_sock *tp = tcp_sk(sk);
2926 	struct sk_buff *skb = to, *tmp;
2927 	bool first = true;
2928 
2929 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2930 		return;
2931 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2932 		return;
2933 
2934 	skb_rbtree_walk_from_safe(skb, tmp) {
2935 		if (!tcp_can_collapse(sk, skb))
2936 			break;
2937 
2938 		if (!tcp_skb_can_collapse(to, skb))
2939 			break;
2940 
2941 		space -= skb->len;
2942 
2943 		if (first) {
2944 			first = false;
2945 			continue;
2946 		}
2947 
2948 		if (space < 0)
2949 			break;
2950 
2951 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2952 			break;
2953 
2954 		if (!tcp_collapse_retrans(sk, to))
2955 			break;
2956 	}
2957 }
2958 
2959 /* This retransmits one SKB.  Policy decisions and retransmit queue
2960  * state updates are done by the caller.  Returns non-zero if an
2961  * error occurred which prevented the send.
2962  */
2963 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2964 {
2965 	struct inet_connection_sock *icsk = inet_csk(sk);
2966 	struct tcp_sock *tp = tcp_sk(sk);
2967 	unsigned int cur_mss;
2968 	int diff, len, err;
2969 
2970 
2971 	/* Inconclusive MTU probe */
2972 	if (icsk->icsk_mtup.probe_size)
2973 		icsk->icsk_mtup.probe_size = 0;
2974 
2975 	/* Do not sent more than we queued. 1/4 is reserved for possible
2976 	 * copying overhead: fragmentation, tunneling, mangling etc.
2977 	 */
2978 	if (refcount_read(&sk->sk_wmem_alloc) >
2979 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2980 		  sk->sk_sndbuf))
2981 		return -EAGAIN;
2982 
2983 	if (skb_still_in_host_queue(sk, skb))
2984 		return -EBUSY;
2985 
2986 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2987 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2988 			WARN_ON_ONCE(1);
2989 			return -EINVAL;
2990 		}
2991 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2992 			return -ENOMEM;
2993 	}
2994 
2995 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2996 		return -EHOSTUNREACH; /* Routing failure or similar. */
2997 
2998 	cur_mss = tcp_current_mss(sk);
2999 
3000 	/* If receiver has shrunk his window, and skb is out of
3001 	 * new window, do not retransmit it. The exception is the
3002 	 * case, when window is shrunk to zero. In this case
3003 	 * our retransmit serves as a zero window probe.
3004 	 */
3005 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3006 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3007 		return -EAGAIN;
3008 
3009 	len = cur_mss * segs;
3010 	if (skb->len > len) {
3011 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3012 				 cur_mss, GFP_ATOMIC))
3013 			return -ENOMEM; /* We'll try again later. */
3014 	} else {
3015 		if (skb_unclone(skb, GFP_ATOMIC))
3016 			return -ENOMEM;
3017 
3018 		diff = tcp_skb_pcount(skb);
3019 		tcp_set_skb_tso_segs(skb, cur_mss);
3020 		diff -= tcp_skb_pcount(skb);
3021 		if (diff)
3022 			tcp_adjust_pcount(sk, skb, diff);
3023 		if (skb->len < cur_mss)
3024 			tcp_retrans_try_collapse(sk, skb, cur_mss);
3025 	}
3026 
3027 	/* RFC3168, section 6.1.1.1. ECN fallback */
3028 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3029 		tcp_ecn_clear_syn(sk, skb);
3030 
3031 	/* Update global and local TCP statistics. */
3032 	segs = tcp_skb_pcount(skb);
3033 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3034 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3035 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3036 	tp->total_retrans += segs;
3037 	tp->bytes_retrans += skb->len;
3038 
3039 	/* make sure skb->data is aligned on arches that require it
3040 	 * and check if ack-trimming & collapsing extended the headroom
3041 	 * beyond what csum_start can cover.
3042 	 */
3043 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3044 		     skb_headroom(skb) >= 0xFFFF)) {
3045 		struct sk_buff *nskb;
3046 
3047 		tcp_skb_tsorted_save(skb) {
3048 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3049 			if (nskb) {
3050 				nskb->dev = NULL;
3051 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3052 			} else {
3053 				err = -ENOBUFS;
3054 			}
3055 		} tcp_skb_tsorted_restore(skb);
3056 
3057 		if (!err) {
3058 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3059 			tcp_rate_skb_sent(sk, skb);
3060 		}
3061 	} else {
3062 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3063 	}
3064 
3065 	/* To avoid taking spuriously low RTT samples based on a timestamp
3066 	 * for a transmit that never happened, always mark EVER_RETRANS
3067 	 */
3068 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3069 
3070 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3071 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3072 				  TCP_SKB_CB(skb)->seq, segs, err);
3073 
3074 	if (likely(!err)) {
3075 		trace_tcp_retransmit_skb(sk, skb);
3076 	} else if (err != -EBUSY) {
3077 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3078 	}
3079 	return err;
3080 }
3081 
3082 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3083 {
3084 	struct tcp_sock *tp = tcp_sk(sk);
3085 	int err = __tcp_retransmit_skb(sk, skb, segs);
3086 
3087 	if (err == 0) {
3088 #if FASTRETRANS_DEBUG > 0
3089 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3090 			net_dbg_ratelimited("retrans_out leaked\n");
3091 		}
3092 #endif
3093 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3094 		tp->retrans_out += tcp_skb_pcount(skb);
3095 	}
3096 
3097 	/* Save stamp of the first (attempted) retransmit. */
3098 	if (!tp->retrans_stamp)
3099 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3100 
3101 	if (tp->undo_retrans < 0)
3102 		tp->undo_retrans = 0;
3103 	tp->undo_retrans += tcp_skb_pcount(skb);
3104 	return err;
3105 }
3106 
3107 /* This gets called after a retransmit timeout, and the initially
3108  * retransmitted data is acknowledged.  It tries to continue
3109  * resending the rest of the retransmit queue, until either
3110  * we've sent it all or the congestion window limit is reached.
3111  */
3112 void tcp_xmit_retransmit_queue(struct sock *sk)
3113 {
3114 	const struct inet_connection_sock *icsk = inet_csk(sk);
3115 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3116 	struct tcp_sock *tp = tcp_sk(sk);
3117 	bool rearm_timer = false;
3118 	u32 max_segs;
3119 	int mib_idx;
3120 
3121 	if (!tp->packets_out)
3122 		return;
3123 
3124 	rtx_head = tcp_rtx_queue_head(sk);
3125 	skb = tp->retransmit_skb_hint ?: rtx_head;
3126 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3127 	skb_rbtree_walk_from(skb) {
3128 		__u8 sacked;
3129 		int segs;
3130 
3131 		if (tcp_pacing_check(sk))
3132 			break;
3133 
3134 		/* we could do better than to assign each time */
3135 		if (!hole)
3136 			tp->retransmit_skb_hint = skb;
3137 
3138 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3139 		if (segs <= 0)
3140 			break;
3141 		sacked = TCP_SKB_CB(skb)->sacked;
3142 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3143 		 * we need to make sure not sending too bigs TSO packets
3144 		 */
3145 		segs = min_t(int, segs, max_segs);
3146 
3147 		if (tp->retrans_out >= tp->lost_out) {
3148 			break;
3149 		} else if (!(sacked & TCPCB_LOST)) {
3150 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3151 				hole = skb;
3152 			continue;
3153 
3154 		} else {
3155 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3156 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3157 			else
3158 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3159 		}
3160 
3161 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3162 			continue;
3163 
3164 		if (tcp_small_queue_check(sk, skb, 1))
3165 			break;
3166 
3167 		if (tcp_retransmit_skb(sk, skb, segs))
3168 			break;
3169 
3170 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3171 
3172 		if (tcp_in_cwnd_reduction(sk))
3173 			tp->prr_out += tcp_skb_pcount(skb);
3174 
3175 		if (skb == rtx_head &&
3176 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3177 			rearm_timer = true;
3178 
3179 	}
3180 	if (rearm_timer)
3181 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3182 				     inet_csk(sk)->icsk_rto,
3183 				     TCP_RTO_MAX);
3184 }
3185 
3186 /* We allow to exceed memory limits for FIN packets to expedite
3187  * connection tear down and (memory) recovery.
3188  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3189  * or even be forced to close flow without any FIN.
3190  * In general, we want to allow one skb per socket to avoid hangs
3191  * with edge trigger epoll()
3192  */
3193 void sk_forced_mem_schedule(struct sock *sk, int size)
3194 {
3195 	int amt;
3196 
3197 	if (size <= sk->sk_forward_alloc)
3198 		return;
3199 	amt = sk_mem_pages(size);
3200 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3201 	sk_memory_allocated_add(sk, amt);
3202 
3203 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3204 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3205 }
3206 
3207 /* Send a FIN. The caller locks the socket for us.
3208  * We should try to send a FIN packet really hard, but eventually give up.
3209  */
3210 void tcp_send_fin(struct sock *sk)
3211 {
3212 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3213 	struct tcp_sock *tp = tcp_sk(sk);
3214 
3215 	/* Optimization, tack on the FIN if we have one skb in write queue and
3216 	 * this skb was not yet sent, or we are under memory pressure.
3217 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3218 	 * as TCP stack thinks it has already been transmitted.
3219 	 */
3220 	tskb = tail;
3221 	if (!tskb && tcp_under_memory_pressure(sk))
3222 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3223 
3224 	if (tskb) {
3225 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3226 		TCP_SKB_CB(tskb)->end_seq++;
3227 		tp->write_seq++;
3228 		if (!tail) {
3229 			/* This means tskb was already sent.
3230 			 * Pretend we included the FIN on previous transmit.
3231 			 * We need to set tp->snd_nxt to the value it would have
3232 			 * if FIN had been sent. This is because retransmit path
3233 			 * does not change tp->snd_nxt.
3234 			 */
3235 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3236 			return;
3237 		}
3238 	} else {
3239 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3240 		if (unlikely(!skb))
3241 			return;
3242 
3243 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3244 		skb_reserve(skb, MAX_TCP_HEADER);
3245 		sk_forced_mem_schedule(sk, skb->truesize);
3246 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3247 		tcp_init_nondata_skb(skb, tp->write_seq,
3248 				     TCPHDR_ACK | TCPHDR_FIN);
3249 		tcp_queue_skb(sk, skb);
3250 	}
3251 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3252 }
3253 
3254 /* We get here when a process closes a file descriptor (either due to
3255  * an explicit close() or as a byproduct of exit()'ing) and there
3256  * was unread data in the receive queue.  This behavior is recommended
3257  * by RFC 2525, section 2.17.  -DaveM
3258  */
3259 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3260 {
3261 	struct sk_buff *skb;
3262 
3263 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3264 
3265 	/* NOTE: No TCP options attached and we never retransmit this. */
3266 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3267 	if (!skb) {
3268 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3269 		return;
3270 	}
3271 
3272 	/* Reserve space for headers and prepare control bits. */
3273 	skb_reserve(skb, MAX_TCP_HEADER);
3274 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3275 			     TCPHDR_ACK | TCPHDR_RST);
3276 	tcp_mstamp_refresh(tcp_sk(sk));
3277 	/* Send it off. */
3278 	if (tcp_transmit_skb(sk, skb, 0, priority))
3279 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3280 
3281 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3282 	 * skb here is different to the troublesome skb, so use NULL
3283 	 */
3284 	trace_tcp_send_reset(sk, NULL);
3285 }
3286 
3287 /* Send a crossed SYN-ACK during socket establishment.
3288  * WARNING: This routine must only be called when we have already sent
3289  * a SYN packet that crossed the incoming SYN that caused this routine
3290  * to get called. If this assumption fails then the initial rcv_wnd
3291  * and rcv_wscale values will not be correct.
3292  */
3293 int tcp_send_synack(struct sock *sk)
3294 {
3295 	struct sk_buff *skb;
3296 
3297 	skb = tcp_rtx_queue_head(sk);
3298 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3299 		pr_err("%s: wrong queue state\n", __func__);
3300 		return -EFAULT;
3301 	}
3302 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3303 		if (skb_cloned(skb)) {
3304 			struct sk_buff *nskb;
3305 
3306 			tcp_skb_tsorted_save(skb) {
3307 				nskb = skb_copy(skb, GFP_ATOMIC);
3308 			} tcp_skb_tsorted_restore(skb);
3309 			if (!nskb)
3310 				return -ENOMEM;
3311 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3312 			tcp_highest_sack_replace(sk, skb, nskb);
3313 			tcp_rtx_queue_unlink_and_free(skb, sk);
3314 			__skb_header_release(nskb);
3315 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3316 			sk_wmem_queued_add(sk, nskb->truesize);
3317 			sk_mem_charge(sk, nskb->truesize);
3318 			skb = nskb;
3319 		}
3320 
3321 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3322 		tcp_ecn_send_synack(sk, skb);
3323 	}
3324 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3325 }
3326 
3327 /**
3328  * tcp_make_synack - Prepare a SYN-ACK.
3329  * sk: listener socket
3330  * dst: dst entry attached to the SYNACK
3331  * req: request_sock pointer
3332  *
3333  * Allocate one skb and build a SYNACK packet.
3334  * @dst is consumed : Caller should not use it again.
3335  */
3336 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3337 				struct request_sock *req,
3338 				struct tcp_fastopen_cookie *foc,
3339 				enum tcp_synack_type synack_type)
3340 {
3341 	struct inet_request_sock *ireq = inet_rsk(req);
3342 	const struct tcp_sock *tp = tcp_sk(sk);
3343 	struct tcp_md5sig_key *md5 = NULL;
3344 	struct tcp_out_options opts;
3345 	struct sk_buff *skb;
3346 	int tcp_header_size;
3347 	struct tcphdr *th;
3348 	int mss;
3349 	u64 now;
3350 
3351 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3352 	if (unlikely(!skb)) {
3353 		dst_release(dst);
3354 		return NULL;
3355 	}
3356 	/* Reserve space for headers. */
3357 	skb_reserve(skb, MAX_TCP_HEADER);
3358 
3359 	switch (synack_type) {
3360 	case TCP_SYNACK_NORMAL:
3361 		skb_set_owner_w(skb, req_to_sk(req));
3362 		break;
3363 	case TCP_SYNACK_COOKIE:
3364 		/* Under synflood, we do not attach skb to a socket,
3365 		 * to avoid false sharing.
3366 		 */
3367 		break;
3368 	case TCP_SYNACK_FASTOPEN:
3369 		/* sk is a const pointer, because we want to express multiple
3370 		 * cpu might call us concurrently.
3371 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3372 		 */
3373 		skb_set_owner_w(skb, (struct sock *)sk);
3374 		break;
3375 	}
3376 	skb_dst_set(skb, dst);
3377 
3378 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3379 
3380 	memset(&opts, 0, sizeof(opts));
3381 	now = tcp_clock_ns();
3382 #ifdef CONFIG_SYN_COOKIES
3383 	if (unlikely(req->cookie_ts))
3384 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3385 	else
3386 #endif
3387 	{
3388 		skb->skb_mstamp_ns = now;
3389 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3390 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3391 	}
3392 
3393 #ifdef CONFIG_TCP_MD5SIG
3394 	rcu_read_lock();
3395 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3396 #endif
3397 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3398 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3399 					     foc, synack_type) + sizeof(*th);
3400 
3401 	skb_push(skb, tcp_header_size);
3402 	skb_reset_transport_header(skb);
3403 
3404 	th = (struct tcphdr *)skb->data;
3405 	memset(th, 0, sizeof(struct tcphdr));
3406 	th->syn = 1;
3407 	th->ack = 1;
3408 	tcp_ecn_make_synack(req, th);
3409 	th->source = htons(ireq->ir_num);
3410 	th->dest = ireq->ir_rmt_port;
3411 	skb->mark = ireq->ir_mark;
3412 	skb->ip_summed = CHECKSUM_PARTIAL;
3413 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3414 	/* XXX data is queued and acked as is. No buffer/window check */
3415 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3416 
3417 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3418 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3419 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3420 	th->doff = (tcp_header_size >> 2);
3421 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3422 
3423 #ifdef CONFIG_TCP_MD5SIG
3424 	/* Okay, we have all we need - do the md5 hash if needed */
3425 	if (md5)
3426 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3427 					       md5, req_to_sk(req), skb);
3428 	rcu_read_unlock();
3429 #endif
3430 
3431 	skb->skb_mstamp_ns = now;
3432 	tcp_add_tx_delay(skb, tp);
3433 
3434 	return skb;
3435 }
3436 EXPORT_SYMBOL(tcp_make_synack);
3437 
3438 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3439 {
3440 	struct inet_connection_sock *icsk = inet_csk(sk);
3441 	const struct tcp_congestion_ops *ca;
3442 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3443 
3444 	if (ca_key == TCP_CA_UNSPEC)
3445 		return;
3446 
3447 	rcu_read_lock();
3448 	ca = tcp_ca_find_key(ca_key);
3449 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3450 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3451 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3452 		icsk->icsk_ca_ops = ca;
3453 	}
3454 	rcu_read_unlock();
3455 }
3456 
3457 /* Do all connect socket setups that can be done AF independent. */
3458 static void tcp_connect_init(struct sock *sk)
3459 {
3460 	const struct dst_entry *dst = __sk_dst_get(sk);
3461 	struct tcp_sock *tp = tcp_sk(sk);
3462 	__u8 rcv_wscale;
3463 	u32 rcv_wnd;
3464 
3465 	/* We'll fix this up when we get a response from the other end.
3466 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3467 	 */
3468 	tp->tcp_header_len = sizeof(struct tcphdr);
3469 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3470 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3471 
3472 #ifdef CONFIG_TCP_MD5SIG
3473 	if (tp->af_specific->md5_lookup(sk, sk))
3474 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3475 #endif
3476 
3477 	/* If user gave his TCP_MAXSEG, record it to clamp */
3478 	if (tp->rx_opt.user_mss)
3479 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3480 	tp->max_window = 0;
3481 	tcp_mtup_init(sk);
3482 	tcp_sync_mss(sk, dst_mtu(dst));
3483 
3484 	tcp_ca_dst_init(sk, dst);
3485 
3486 	if (!tp->window_clamp)
3487 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3488 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3489 
3490 	tcp_initialize_rcv_mss(sk);
3491 
3492 	/* limit the window selection if the user enforce a smaller rx buffer */
3493 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3494 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3495 		tp->window_clamp = tcp_full_space(sk);
3496 
3497 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3498 	if (rcv_wnd == 0)
3499 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3500 
3501 	tcp_select_initial_window(sk, tcp_full_space(sk),
3502 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3503 				  &tp->rcv_wnd,
3504 				  &tp->window_clamp,
3505 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3506 				  &rcv_wscale,
3507 				  rcv_wnd);
3508 
3509 	tp->rx_opt.rcv_wscale = rcv_wscale;
3510 	tp->rcv_ssthresh = tp->rcv_wnd;
3511 
3512 	sk->sk_err = 0;
3513 	sock_reset_flag(sk, SOCK_DONE);
3514 	tp->snd_wnd = 0;
3515 	tcp_init_wl(tp, 0);
3516 	tcp_write_queue_purge(sk);
3517 	tp->snd_una = tp->write_seq;
3518 	tp->snd_sml = tp->write_seq;
3519 	tp->snd_up = tp->write_seq;
3520 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3521 
3522 	if (likely(!tp->repair))
3523 		tp->rcv_nxt = 0;
3524 	else
3525 		tp->rcv_tstamp = tcp_jiffies32;
3526 	tp->rcv_wup = tp->rcv_nxt;
3527 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3528 
3529 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3530 	inet_csk(sk)->icsk_retransmits = 0;
3531 	tcp_clear_retrans(tp);
3532 }
3533 
3534 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3535 {
3536 	struct tcp_sock *tp = tcp_sk(sk);
3537 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3538 
3539 	tcb->end_seq += skb->len;
3540 	__skb_header_release(skb);
3541 	sk_wmem_queued_add(sk, skb->truesize);
3542 	sk_mem_charge(sk, skb->truesize);
3543 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3544 	tp->packets_out += tcp_skb_pcount(skb);
3545 }
3546 
3547 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3548  * queue a data-only packet after the regular SYN, such that regular SYNs
3549  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3550  * only the SYN sequence, the data are retransmitted in the first ACK.
3551  * If cookie is not cached or other error occurs, falls back to send a
3552  * regular SYN with Fast Open cookie request option.
3553  */
3554 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3555 {
3556 	struct tcp_sock *tp = tcp_sk(sk);
3557 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3558 	int space, err = 0;
3559 	struct sk_buff *syn_data;
3560 
3561 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3562 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3563 		goto fallback;
3564 
3565 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3566 	 * user-MSS. Reserve maximum option space for middleboxes that add
3567 	 * private TCP options. The cost is reduced data space in SYN :(
3568 	 */
3569 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3570 
3571 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3572 		MAX_TCP_OPTION_SPACE;
3573 
3574 	space = min_t(size_t, space, fo->size);
3575 
3576 	/* limit to order-0 allocations */
3577 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3578 
3579 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3580 	if (!syn_data)
3581 		goto fallback;
3582 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3583 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3584 	if (space) {
3585 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3586 					    &fo->data->msg_iter);
3587 		if (unlikely(!copied)) {
3588 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3589 			kfree_skb(syn_data);
3590 			goto fallback;
3591 		}
3592 		if (copied != space) {
3593 			skb_trim(syn_data, copied);
3594 			space = copied;
3595 		}
3596 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3597 	}
3598 	/* No more data pending in inet_wait_for_connect() */
3599 	if (space == fo->size)
3600 		fo->data = NULL;
3601 	fo->copied = space;
3602 
3603 	tcp_connect_queue_skb(sk, syn_data);
3604 	if (syn_data->len)
3605 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3606 
3607 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3608 
3609 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3610 
3611 	/* Now full SYN+DATA was cloned and sent (or not),
3612 	 * remove the SYN from the original skb (syn_data)
3613 	 * we keep in write queue in case of a retransmit, as we
3614 	 * also have the SYN packet (with no data) in the same queue.
3615 	 */
3616 	TCP_SKB_CB(syn_data)->seq++;
3617 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3618 	if (!err) {
3619 		tp->syn_data = (fo->copied > 0);
3620 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3621 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3622 		goto done;
3623 	}
3624 
3625 	/* data was not sent, put it in write_queue */
3626 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3627 	tp->packets_out -= tcp_skb_pcount(syn_data);
3628 
3629 fallback:
3630 	/* Send a regular SYN with Fast Open cookie request option */
3631 	if (fo->cookie.len > 0)
3632 		fo->cookie.len = 0;
3633 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3634 	if (err)
3635 		tp->syn_fastopen = 0;
3636 done:
3637 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3638 	return err;
3639 }
3640 
3641 /* Build a SYN and send it off. */
3642 int tcp_connect(struct sock *sk)
3643 {
3644 	struct tcp_sock *tp = tcp_sk(sk);
3645 	struct sk_buff *buff;
3646 	int err;
3647 
3648 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3649 
3650 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3651 		return -EHOSTUNREACH; /* Routing failure or similar. */
3652 
3653 	tcp_connect_init(sk);
3654 
3655 	if (unlikely(tp->repair)) {
3656 		tcp_finish_connect(sk, NULL);
3657 		return 0;
3658 	}
3659 
3660 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3661 	if (unlikely(!buff))
3662 		return -ENOBUFS;
3663 
3664 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3665 	tcp_mstamp_refresh(tp);
3666 	tp->retrans_stamp = tcp_time_stamp(tp);
3667 	tcp_connect_queue_skb(sk, buff);
3668 	tcp_ecn_send_syn(sk, buff);
3669 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3670 
3671 	/* Send off SYN; include data in Fast Open. */
3672 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3673 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3674 	if (err == -ECONNREFUSED)
3675 		return err;
3676 
3677 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3678 	 * in order to make this packet get counted in tcpOutSegs.
3679 	 */
3680 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3681 	tp->pushed_seq = tp->write_seq;
3682 	buff = tcp_send_head(sk);
3683 	if (unlikely(buff)) {
3684 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3685 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3686 	}
3687 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3688 
3689 	/* Timer for repeating the SYN until an answer. */
3690 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3691 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3692 	return 0;
3693 }
3694 EXPORT_SYMBOL(tcp_connect);
3695 
3696 /* Send out a delayed ack, the caller does the policy checking
3697  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3698  * for details.
3699  */
3700 void tcp_send_delayed_ack(struct sock *sk)
3701 {
3702 	struct inet_connection_sock *icsk = inet_csk(sk);
3703 	int ato = icsk->icsk_ack.ato;
3704 	unsigned long timeout;
3705 
3706 	if (ato > TCP_DELACK_MIN) {
3707 		const struct tcp_sock *tp = tcp_sk(sk);
3708 		int max_ato = HZ / 2;
3709 
3710 		if (inet_csk_in_pingpong_mode(sk) ||
3711 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3712 			max_ato = TCP_DELACK_MAX;
3713 
3714 		/* Slow path, intersegment interval is "high". */
3715 
3716 		/* If some rtt estimate is known, use it to bound delayed ack.
3717 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3718 		 * directly.
3719 		 */
3720 		if (tp->srtt_us) {
3721 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3722 					TCP_DELACK_MIN);
3723 
3724 			if (rtt < max_ato)
3725 				max_ato = rtt;
3726 		}
3727 
3728 		ato = min(ato, max_ato);
3729 	}
3730 
3731 	/* Stay within the limit we were given */
3732 	timeout = jiffies + ato;
3733 
3734 	/* Use new timeout only if there wasn't a older one earlier. */
3735 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3736 		/* If delack timer was blocked or is about to expire,
3737 		 * send ACK now.
3738 		 */
3739 		if (icsk->icsk_ack.blocked ||
3740 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3741 			tcp_send_ack(sk);
3742 			return;
3743 		}
3744 
3745 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3746 			timeout = icsk->icsk_ack.timeout;
3747 	}
3748 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3749 	icsk->icsk_ack.timeout = timeout;
3750 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3751 }
3752 
3753 /* This routine sends an ack and also updates the window. */
3754 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3755 {
3756 	struct sk_buff *buff;
3757 
3758 	/* If we have been reset, we may not send again. */
3759 	if (sk->sk_state == TCP_CLOSE)
3760 		return;
3761 
3762 	/* We are not putting this on the write queue, so
3763 	 * tcp_transmit_skb() will set the ownership to this
3764 	 * sock.
3765 	 */
3766 	buff = alloc_skb(MAX_TCP_HEADER,
3767 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3768 	if (unlikely(!buff)) {
3769 		inet_csk_schedule_ack(sk);
3770 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3771 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3772 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3773 		return;
3774 	}
3775 
3776 	/* Reserve space for headers and prepare control bits. */
3777 	skb_reserve(buff, MAX_TCP_HEADER);
3778 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3779 
3780 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3781 	 * too much.
3782 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3783 	 */
3784 	skb_set_tcp_pure_ack(buff);
3785 
3786 	/* Send it off, this clears delayed acks for us. */
3787 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3788 }
3789 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3790 
3791 void tcp_send_ack(struct sock *sk)
3792 {
3793 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3794 }
3795 
3796 /* This routine sends a packet with an out of date sequence
3797  * number. It assumes the other end will try to ack it.
3798  *
3799  * Question: what should we make while urgent mode?
3800  * 4.4BSD forces sending single byte of data. We cannot send
3801  * out of window data, because we have SND.NXT==SND.MAX...
3802  *
3803  * Current solution: to send TWO zero-length segments in urgent mode:
3804  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3805  * out-of-date with SND.UNA-1 to probe window.
3806  */
3807 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3808 {
3809 	struct tcp_sock *tp = tcp_sk(sk);
3810 	struct sk_buff *skb;
3811 
3812 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3813 	skb = alloc_skb(MAX_TCP_HEADER,
3814 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3815 	if (!skb)
3816 		return -1;
3817 
3818 	/* Reserve space for headers and set control bits. */
3819 	skb_reserve(skb, MAX_TCP_HEADER);
3820 	/* Use a previous sequence.  This should cause the other
3821 	 * end to send an ack.  Don't queue or clone SKB, just
3822 	 * send it.
3823 	 */
3824 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3825 	NET_INC_STATS(sock_net(sk), mib);
3826 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3827 }
3828 
3829 /* Called from setsockopt( ... TCP_REPAIR ) */
3830 void tcp_send_window_probe(struct sock *sk)
3831 {
3832 	if (sk->sk_state == TCP_ESTABLISHED) {
3833 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3834 		tcp_mstamp_refresh(tcp_sk(sk));
3835 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3836 	}
3837 }
3838 
3839 /* Initiate keepalive or window probe from timer. */
3840 int tcp_write_wakeup(struct sock *sk, int mib)
3841 {
3842 	struct tcp_sock *tp = tcp_sk(sk);
3843 	struct sk_buff *skb;
3844 
3845 	if (sk->sk_state == TCP_CLOSE)
3846 		return -1;
3847 
3848 	skb = tcp_send_head(sk);
3849 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3850 		int err;
3851 		unsigned int mss = tcp_current_mss(sk);
3852 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3853 
3854 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3855 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3856 
3857 		/* We are probing the opening of a window
3858 		 * but the window size is != 0
3859 		 * must have been a result SWS avoidance ( sender )
3860 		 */
3861 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3862 		    skb->len > mss) {
3863 			seg_size = min(seg_size, mss);
3864 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3865 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3866 					 skb, seg_size, mss, GFP_ATOMIC))
3867 				return -1;
3868 		} else if (!tcp_skb_pcount(skb))
3869 			tcp_set_skb_tso_segs(skb, mss);
3870 
3871 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3872 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3873 		if (!err)
3874 			tcp_event_new_data_sent(sk, skb);
3875 		return err;
3876 	} else {
3877 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3878 			tcp_xmit_probe_skb(sk, 1, mib);
3879 		return tcp_xmit_probe_skb(sk, 0, mib);
3880 	}
3881 }
3882 
3883 /* A window probe timeout has occurred.  If window is not closed send
3884  * a partial packet else a zero probe.
3885  */
3886 void tcp_send_probe0(struct sock *sk)
3887 {
3888 	struct inet_connection_sock *icsk = inet_csk(sk);
3889 	struct tcp_sock *tp = tcp_sk(sk);
3890 	struct net *net = sock_net(sk);
3891 	unsigned long timeout;
3892 	int err;
3893 
3894 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3895 
3896 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3897 		/* Cancel probe timer, if it is not required. */
3898 		icsk->icsk_probes_out = 0;
3899 		icsk->icsk_backoff = 0;
3900 		return;
3901 	}
3902 
3903 	icsk->icsk_probes_out++;
3904 	if (err <= 0) {
3905 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3906 			icsk->icsk_backoff++;
3907 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3908 	} else {
3909 		/* If packet was not sent due to local congestion,
3910 		 * Let senders fight for local resources conservatively.
3911 		 */
3912 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3913 	}
3914 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
3915 }
3916 
3917 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3918 {
3919 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3920 	struct flowi fl;
3921 	int res;
3922 
3923 	tcp_rsk(req)->txhash = net_tx_rndhash();
3924 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3925 	if (!res) {
3926 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3927 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3928 		if (unlikely(tcp_passive_fastopen(sk)))
3929 			tcp_sk(sk)->total_retrans++;
3930 		trace_tcp_retransmit_synack(sk, req);
3931 	}
3932 	return res;
3933 }
3934 EXPORT_SYMBOL(tcp_rtx_synack);
3935