1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack); 190 tp->compressed_ack = 0; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 __u8 *hash_location; /* temporary pointer, overloaded */ 442 __u32 tsval, tsecr; /* need to include OPTION_TS */ 443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 444 struct mptcp_out_options mptcp; 445 }; 446 447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts) 448 { 449 #if IS_ENABLED(CONFIG_MPTCP) 450 if (unlikely(OPTION_MPTCP & opts->options)) 451 mptcp_write_options(ptr, &opts->mptcp); 452 #endif 453 } 454 455 /* Write previously computed TCP options to the packet. 456 * 457 * Beware: Something in the Internet is very sensitive to the ordering of 458 * TCP options, we learned this through the hard way, so be careful here. 459 * Luckily we can at least blame others for their non-compliance but from 460 * inter-operability perspective it seems that we're somewhat stuck with 461 * the ordering which we have been using if we want to keep working with 462 * those broken things (not that it currently hurts anybody as there isn't 463 * particular reason why the ordering would need to be changed). 464 * 465 * At least SACK_PERM as the first option is known to lead to a disaster 466 * (but it may well be that other scenarios fail similarly). 467 */ 468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 469 struct tcp_out_options *opts) 470 { 471 u16 options = opts->options; /* mungable copy */ 472 473 if (unlikely(OPTION_MD5 & options)) { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 475 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 476 /* overload cookie hash location */ 477 opts->hash_location = (__u8 *)ptr; 478 ptr += 4; 479 } 480 481 if (unlikely(opts->mss)) { 482 *ptr++ = htonl((TCPOPT_MSS << 24) | 483 (TCPOLEN_MSS << 16) | 484 opts->mss); 485 } 486 487 if (likely(OPTION_TS & options)) { 488 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 489 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 490 (TCPOLEN_SACK_PERM << 16) | 491 (TCPOPT_TIMESTAMP << 8) | 492 TCPOLEN_TIMESTAMP); 493 options &= ~OPTION_SACK_ADVERTISE; 494 } else { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_NOP << 16) | 497 (TCPOPT_TIMESTAMP << 8) | 498 TCPOLEN_TIMESTAMP); 499 } 500 *ptr++ = htonl(opts->tsval); 501 *ptr++ = htonl(opts->tsecr); 502 } 503 504 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 505 *ptr++ = htonl((TCPOPT_NOP << 24) | 506 (TCPOPT_NOP << 16) | 507 (TCPOPT_SACK_PERM << 8) | 508 TCPOLEN_SACK_PERM); 509 } 510 511 if (unlikely(OPTION_WSCALE & options)) { 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_WINDOW << 16) | 514 (TCPOLEN_WINDOW << 8) | 515 opts->ws); 516 } 517 518 if (unlikely(opts->num_sack_blocks)) { 519 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 520 tp->duplicate_sack : tp->selective_acks; 521 int this_sack; 522 523 *ptr++ = htonl((TCPOPT_NOP << 24) | 524 (TCPOPT_NOP << 16) | 525 (TCPOPT_SACK << 8) | 526 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 527 TCPOLEN_SACK_PERBLOCK))); 528 529 for (this_sack = 0; this_sack < opts->num_sack_blocks; 530 ++this_sack) { 531 *ptr++ = htonl(sp[this_sack].start_seq); 532 *ptr++ = htonl(sp[this_sack].end_seq); 533 } 534 535 tp->rx_opt.dsack = 0; 536 } 537 538 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 539 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 540 u8 *p = (u8 *)ptr; 541 u32 len; /* Fast Open option length */ 542 543 if (foc->exp) { 544 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 545 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 546 TCPOPT_FASTOPEN_MAGIC); 547 p += TCPOLEN_EXP_FASTOPEN_BASE; 548 } else { 549 len = TCPOLEN_FASTOPEN_BASE + foc->len; 550 *p++ = TCPOPT_FASTOPEN; 551 *p++ = len; 552 } 553 554 memcpy(p, foc->val, foc->len); 555 if ((len & 3) == 2) { 556 p[foc->len] = TCPOPT_NOP; 557 p[foc->len + 1] = TCPOPT_NOP; 558 } 559 ptr += (len + 3) >> 2; 560 } 561 562 smc_options_write(ptr, &options); 563 564 mptcp_options_write(ptr, opts); 565 } 566 567 static void smc_set_option(const struct tcp_sock *tp, 568 struct tcp_out_options *opts, 569 unsigned int *remaining) 570 { 571 #if IS_ENABLED(CONFIG_SMC) 572 if (static_branch_unlikely(&tcp_have_smc)) { 573 if (tp->syn_smc) { 574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 575 opts->options |= OPTION_SMC; 576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 577 } 578 } 579 } 580 #endif 581 } 582 583 static void smc_set_option_cond(const struct tcp_sock *tp, 584 const struct inet_request_sock *ireq, 585 struct tcp_out_options *opts, 586 unsigned int *remaining) 587 { 588 #if IS_ENABLED(CONFIG_SMC) 589 if (static_branch_unlikely(&tcp_have_smc)) { 590 if (tp->syn_smc && ireq->smc_ok) { 591 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 592 opts->options |= OPTION_SMC; 593 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 594 } 595 } 596 } 597 #endif 598 } 599 600 static void mptcp_set_option_cond(const struct request_sock *req, 601 struct tcp_out_options *opts, 602 unsigned int *remaining) 603 { 604 if (rsk_is_mptcp(req)) { 605 unsigned int size; 606 607 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 608 if (*remaining >= size) { 609 opts->options |= OPTION_MPTCP; 610 *remaining -= size; 611 } 612 } 613 } 614 } 615 616 /* Compute TCP options for SYN packets. This is not the final 617 * network wire format yet. 618 */ 619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 620 struct tcp_out_options *opts, 621 struct tcp_md5sig_key **md5) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 unsigned int remaining = MAX_TCP_OPTION_SPACE; 625 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 626 627 *md5 = NULL; 628 #ifdef CONFIG_TCP_MD5SIG 629 if (static_branch_unlikely(&tcp_md5_needed) && 630 rcu_access_pointer(tp->md5sig_info)) { 631 *md5 = tp->af_specific->md5_lookup(sk, sk); 632 if (*md5) { 633 opts->options |= OPTION_MD5; 634 remaining -= TCPOLEN_MD5SIG_ALIGNED; 635 } 636 } 637 #endif 638 639 /* We always get an MSS option. The option bytes which will be seen in 640 * normal data packets should timestamps be used, must be in the MSS 641 * advertised. But we subtract them from tp->mss_cache so that 642 * calculations in tcp_sendmsg are simpler etc. So account for this 643 * fact here if necessary. If we don't do this correctly, as a 644 * receiver we won't recognize data packets as being full sized when we 645 * should, and thus we won't abide by the delayed ACK rules correctly. 646 * SACKs don't matter, we never delay an ACK when we have any of those 647 * going out. */ 648 opts->mss = tcp_advertise_mss(sk); 649 remaining -= TCPOLEN_MSS_ALIGNED; 650 651 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 652 opts->options |= OPTION_TS; 653 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 654 opts->tsecr = tp->rx_opt.ts_recent; 655 remaining -= TCPOLEN_TSTAMP_ALIGNED; 656 } 657 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 658 opts->ws = tp->rx_opt.rcv_wscale; 659 opts->options |= OPTION_WSCALE; 660 remaining -= TCPOLEN_WSCALE_ALIGNED; 661 } 662 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 663 opts->options |= OPTION_SACK_ADVERTISE; 664 if (unlikely(!(OPTION_TS & opts->options))) 665 remaining -= TCPOLEN_SACKPERM_ALIGNED; 666 } 667 668 if (fastopen && fastopen->cookie.len >= 0) { 669 u32 need = fastopen->cookie.len; 670 671 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 672 TCPOLEN_FASTOPEN_BASE; 673 need = (need + 3) & ~3U; /* Align to 32 bits */ 674 if (remaining >= need) { 675 opts->options |= OPTION_FAST_OPEN_COOKIE; 676 opts->fastopen_cookie = &fastopen->cookie; 677 remaining -= need; 678 tp->syn_fastopen = 1; 679 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 680 } 681 } 682 683 smc_set_option(tp, opts, &remaining); 684 685 if (sk_is_mptcp(sk)) { 686 unsigned int size; 687 688 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 689 opts->options |= OPTION_MPTCP; 690 remaining -= size; 691 } 692 } 693 694 return MAX_TCP_OPTION_SPACE - remaining; 695 } 696 697 /* Set up TCP options for SYN-ACKs. */ 698 static unsigned int tcp_synack_options(const struct sock *sk, 699 struct request_sock *req, 700 unsigned int mss, struct sk_buff *skb, 701 struct tcp_out_options *opts, 702 const struct tcp_md5sig_key *md5, 703 struct tcp_fastopen_cookie *foc, 704 enum tcp_synack_type synack_type) 705 { 706 struct inet_request_sock *ireq = inet_rsk(req); 707 unsigned int remaining = MAX_TCP_OPTION_SPACE; 708 709 #ifdef CONFIG_TCP_MD5SIG 710 if (md5) { 711 opts->options |= OPTION_MD5; 712 remaining -= TCPOLEN_MD5SIG_ALIGNED; 713 714 /* We can't fit any SACK blocks in a packet with MD5 + TS 715 * options. There was discussion about disabling SACK 716 * rather than TS in order to fit in better with old, 717 * buggy kernels, but that was deemed to be unnecessary. 718 */ 719 if (synack_type != TCP_SYNACK_COOKIE) 720 ireq->tstamp_ok &= !ireq->sack_ok; 721 } 722 #endif 723 724 /* We always send an MSS option. */ 725 opts->mss = mss; 726 remaining -= TCPOLEN_MSS_ALIGNED; 727 728 if (likely(ireq->wscale_ok)) { 729 opts->ws = ireq->rcv_wscale; 730 opts->options |= OPTION_WSCALE; 731 remaining -= TCPOLEN_WSCALE_ALIGNED; 732 } 733 if (likely(ireq->tstamp_ok)) { 734 opts->options |= OPTION_TS; 735 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 736 opts->tsecr = req->ts_recent; 737 remaining -= TCPOLEN_TSTAMP_ALIGNED; 738 } 739 if (likely(ireq->sack_ok)) { 740 opts->options |= OPTION_SACK_ADVERTISE; 741 if (unlikely(!ireq->tstamp_ok)) 742 remaining -= TCPOLEN_SACKPERM_ALIGNED; 743 } 744 if (foc != NULL && foc->len >= 0) { 745 u32 need = foc->len; 746 747 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 748 TCPOLEN_FASTOPEN_BASE; 749 need = (need + 3) & ~3U; /* Align to 32 bits */ 750 if (remaining >= need) { 751 opts->options |= OPTION_FAST_OPEN_COOKIE; 752 opts->fastopen_cookie = foc; 753 remaining -= need; 754 } 755 } 756 757 mptcp_set_option_cond(req, opts, &remaining); 758 759 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 760 761 return MAX_TCP_OPTION_SPACE - remaining; 762 } 763 764 /* Compute TCP options for ESTABLISHED sockets. This is not the 765 * final wire format yet. 766 */ 767 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 768 struct tcp_out_options *opts, 769 struct tcp_md5sig_key **md5) 770 { 771 struct tcp_sock *tp = tcp_sk(sk); 772 unsigned int size = 0; 773 unsigned int eff_sacks; 774 775 opts->options = 0; 776 777 *md5 = NULL; 778 #ifdef CONFIG_TCP_MD5SIG 779 if (static_branch_unlikely(&tcp_md5_needed) && 780 rcu_access_pointer(tp->md5sig_info)) { 781 *md5 = tp->af_specific->md5_lookup(sk, sk); 782 if (*md5) { 783 opts->options |= OPTION_MD5; 784 size += TCPOLEN_MD5SIG_ALIGNED; 785 } 786 } 787 #endif 788 789 if (likely(tp->rx_opt.tstamp_ok)) { 790 opts->options |= OPTION_TS; 791 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 792 opts->tsecr = tp->rx_opt.ts_recent; 793 size += TCPOLEN_TSTAMP_ALIGNED; 794 } 795 796 /* MPTCP options have precedence over SACK for the limited TCP 797 * option space because a MPTCP connection would be forced to 798 * fall back to regular TCP if a required multipath option is 799 * missing. SACK still gets a chance to use whatever space is 800 * left. 801 */ 802 if (sk_is_mptcp(sk)) { 803 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 804 unsigned int opt_size = 0; 805 806 if (mptcp_established_options(sk, skb, &opt_size, remaining, 807 &opts->mptcp)) { 808 opts->options |= OPTION_MPTCP; 809 size += opt_size; 810 } 811 } 812 813 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 814 if (unlikely(eff_sacks)) { 815 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 816 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 817 TCPOLEN_SACK_PERBLOCK)) 818 return size; 819 820 opts->num_sack_blocks = 821 min_t(unsigned int, eff_sacks, 822 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 823 TCPOLEN_SACK_PERBLOCK); 824 825 size += TCPOLEN_SACK_BASE_ALIGNED + 826 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 827 } 828 829 return size; 830 } 831 832 833 /* TCP SMALL QUEUES (TSQ) 834 * 835 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 836 * to reduce RTT and bufferbloat. 837 * We do this using a special skb destructor (tcp_wfree). 838 * 839 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 840 * needs to be reallocated in a driver. 841 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 842 * 843 * Since transmit from skb destructor is forbidden, we use a tasklet 844 * to process all sockets that eventually need to send more skbs. 845 * We use one tasklet per cpu, with its own queue of sockets. 846 */ 847 struct tsq_tasklet { 848 struct tasklet_struct tasklet; 849 struct list_head head; /* queue of tcp sockets */ 850 }; 851 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 852 853 static void tcp_tsq_write(struct sock *sk) 854 { 855 if ((1 << sk->sk_state) & 856 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 857 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 858 struct tcp_sock *tp = tcp_sk(sk); 859 860 if (tp->lost_out > tp->retrans_out && 861 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 862 tcp_mstamp_refresh(tp); 863 tcp_xmit_retransmit_queue(sk); 864 } 865 866 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 867 0, GFP_ATOMIC); 868 } 869 } 870 871 static void tcp_tsq_handler(struct sock *sk) 872 { 873 bh_lock_sock(sk); 874 if (!sock_owned_by_user(sk)) 875 tcp_tsq_write(sk); 876 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 877 sock_hold(sk); 878 bh_unlock_sock(sk); 879 } 880 /* 881 * One tasklet per cpu tries to send more skbs. 882 * We run in tasklet context but need to disable irqs when 883 * transferring tsq->head because tcp_wfree() might 884 * interrupt us (non NAPI drivers) 885 */ 886 static void tcp_tasklet_func(unsigned long data) 887 { 888 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 889 LIST_HEAD(list); 890 unsigned long flags; 891 struct list_head *q, *n; 892 struct tcp_sock *tp; 893 struct sock *sk; 894 895 local_irq_save(flags); 896 list_splice_init(&tsq->head, &list); 897 local_irq_restore(flags); 898 899 list_for_each_safe(q, n, &list) { 900 tp = list_entry(q, struct tcp_sock, tsq_node); 901 list_del(&tp->tsq_node); 902 903 sk = (struct sock *)tp; 904 smp_mb__before_atomic(); 905 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 906 907 tcp_tsq_handler(sk); 908 sk_free(sk); 909 } 910 } 911 912 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 913 TCPF_WRITE_TIMER_DEFERRED | \ 914 TCPF_DELACK_TIMER_DEFERRED | \ 915 TCPF_MTU_REDUCED_DEFERRED) 916 /** 917 * tcp_release_cb - tcp release_sock() callback 918 * @sk: socket 919 * 920 * called from release_sock() to perform protocol dependent 921 * actions before socket release. 922 */ 923 void tcp_release_cb(struct sock *sk) 924 { 925 unsigned long flags, nflags; 926 927 /* perform an atomic operation only if at least one flag is set */ 928 do { 929 flags = sk->sk_tsq_flags; 930 if (!(flags & TCP_DEFERRED_ALL)) 931 return; 932 nflags = flags & ~TCP_DEFERRED_ALL; 933 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 934 935 if (flags & TCPF_TSQ_DEFERRED) { 936 tcp_tsq_write(sk); 937 __sock_put(sk); 938 } 939 /* Here begins the tricky part : 940 * We are called from release_sock() with : 941 * 1) BH disabled 942 * 2) sk_lock.slock spinlock held 943 * 3) socket owned by us (sk->sk_lock.owned == 1) 944 * 945 * But following code is meant to be called from BH handlers, 946 * so we should keep BH disabled, but early release socket ownership 947 */ 948 sock_release_ownership(sk); 949 950 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 951 tcp_write_timer_handler(sk); 952 __sock_put(sk); 953 } 954 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 955 tcp_delack_timer_handler(sk); 956 __sock_put(sk); 957 } 958 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 959 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 960 __sock_put(sk); 961 } 962 } 963 EXPORT_SYMBOL(tcp_release_cb); 964 965 void __init tcp_tasklet_init(void) 966 { 967 int i; 968 969 for_each_possible_cpu(i) { 970 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 971 972 INIT_LIST_HEAD(&tsq->head); 973 tasklet_init(&tsq->tasklet, 974 tcp_tasklet_func, 975 (unsigned long)tsq); 976 } 977 } 978 979 /* 980 * Write buffer destructor automatically called from kfree_skb. 981 * We can't xmit new skbs from this context, as we might already 982 * hold qdisc lock. 983 */ 984 void tcp_wfree(struct sk_buff *skb) 985 { 986 struct sock *sk = skb->sk; 987 struct tcp_sock *tp = tcp_sk(sk); 988 unsigned long flags, nval, oval; 989 990 /* Keep one reference on sk_wmem_alloc. 991 * Will be released by sk_free() from here or tcp_tasklet_func() 992 */ 993 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 994 995 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 996 * Wait until our queues (qdisc + devices) are drained. 997 * This gives : 998 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 999 * - chance for incoming ACK (processed by another cpu maybe) 1000 * to migrate this flow (skb->ooo_okay will be eventually set) 1001 */ 1002 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1003 goto out; 1004 1005 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1006 struct tsq_tasklet *tsq; 1007 bool empty; 1008 1009 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1010 goto out; 1011 1012 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1013 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1014 if (nval != oval) 1015 continue; 1016 1017 /* queue this socket to tasklet queue */ 1018 local_irq_save(flags); 1019 tsq = this_cpu_ptr(&tsq_tasklet); 1020 empty = list_empty(&tsq->head); 1021 list_add(&tp->tsq_node, &tsq->head); 1022 if (empty) 1023 tasklet_schedule(&tsq->tasklet); 1024 local_irq_restore(flags); 1025 return; 1026 } 1027 out: 1028 sk_free(sk); 1029 } 1030 1031 /* Note: Called under soft irq. 1032 * We can call TCP stack right away, unless socket is owned by user. 1033 */ 1034 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1035 { 1036 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1037 struct sock *sk = (struct sock *)tp; 1038 1039 tcp_tsq_handler(sk); 1040 sock_put(sk); 1041 1042 return HRTIMER_NORESTART; 1043 } 1044 1045 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1046 u64 prior_wstamp) 1047 { 1048 struct tcp_sock *tp = tcp_sk(sk); 1049 1050 if (sk->sk_pacing_status != SK_PACING_NONE) { 1051 unsigned long rate = sk->sk_pacing_rate; 1052 1053 /* Original sch_fq does not pace first 10 MSS 1054 * Note that tp->data_segs_out overflows after 2^32 packets, 1055 * this is a minor annoyance. 1056 */ 1057 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1058 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1059 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1060 1061 /* take into account OS jitter */ 1062 len_ns -= min_t(u64, len_ns / 2, credit); 1063 tp->tcp_wstamp_ns += len_ns; 1064 } 1065 } 1066 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1067 } 1068 1069 /* This routine actually transmits TCP packets queued in by 1070 * tcp_do_sendmsg(). This is used by both the initial 1071 * transmission and possible later retransmissions. 1072 * All SKB's seen here are completely headerless. It is our 1073 * job to build the TCP header, and pass the packet down to 1074 * IP so it can do the same plus pass the packet off to the 1075 * device. 1076 * 1077 * We are working here with either a clone of the original 1078 * SKB, or a fresh unique copy made by the retransmit engine. 1079 */ 1080 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1081 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1082 { 1083 const struct inet_connection_sock *icsk = inet_csk(sk); 1084 struct inet_sock *inet; 1085 struct tcp_sock *tp; 1086 struct tcp_skb_cb *tcb; 1087 struct tcp_out_options opts; 1088 unsigned int tcp_options_size, tcp_header_size; 1089 struct sk_buff *oskb = NULL; 1090 struct tcp_md5sig_key *md5; 1091 struct tcphdr *th; 1092 u64 prior_wstamp; 1093 int err; 1094 1095 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1096 tp = tcp_sk(sk); 1097 prior_wstamp = tp->tcp_wstamp_ns; 1098 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1099 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1100 if (clone_it) { 1101 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1102 - tp->snd_una; 1103 oskb = skb; 1104 1105 tcp_skb_tsorted_save(oskb) { 1106 if (unlikely(skb_cloned(oskb))) 1107 skb = pskb_copy(oskb, gfp_mask); 1108 else 1109 skb = skb_clone(oskb, gfp_mask); 1110 } tcp_skb_tsorted_restore(oskb); 1111 1112 if (unlikely(!skb)) 1113 return -ENOBUFS; 1114 /* retransmit skbs might have a non zero value in skb->dev 1115 * because skb->dev is aliased with skb->rbnode.rb_left 1116 */ 1117 skb->dev = NULL; 1118 } 1119 1120 inet = inet_sk(sk); 1121 tcb = TCP_SKB_CB(skb); 1122 memset(&opts, 0, sizeof(opts)); 1123 1124 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1125 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1126 } else { 1127 tcp_options_size = tcp_established_options(sk, skb, &opts, 1128 &md5); 1129 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1130 * at receiver : This slightly improve GRO performance. 1131 * Note that we do not force the PSH flag for non GSO packets, 1132 * because they might be sent under high congestion events, 1133 * and in this case it is better to delay the delivery of 1-MSS 1134 * packets and thus the corresponding ACK packet that would 1135 * release the following packet. 1136 */ 1137 if (tcp_skb_pcount(skb) > 1) 1138 tcb->tcp_flags |= TCPHDR_PSH; 1139 } 1140 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1141 1142 /* if no packet is in qdisc/device queue, then allow XPS to select 1143 * another queue. We can be called from tcp_tsq_handler() 1144 * which holds one reference to sk. 1145 * 1146 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1147 * One way to get this would be to set skb->truesize = 2 on them. 1148 */ 1149 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1150 1151 /* If we had to use memory reserve to allocate this skb, 1152 * this might cause drops if packet is looped back : 1153 * Other socket might not have SOCK_MEMALLOC. 1154 * Packets not looped back do not care about pfmemalloc. 1155 */ 1156 skb->pfmemalloc = 0; 1157 1158 skb_push(skb, tcp_header_size); 1159 skb_reset_transport_header(skb); 1160 1161 skb_orphan(skb); 1162 skb->sk = sk; 1163 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1164 skb_set_hash_from_sk(skb, sk); 1165 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1166 1167 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1168 1169 /* Build TCP header and checksum it. */ 1170 th = (struct tcphdr *)skb->data; 1171 th->source = inet->inet_sport; 1172 th->dest = inet->inet_dport; 1173 th->seq = htonl(tcb->seq); 1174 th->ack_seq = htonl(rcv_nxt); 1175 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1176 tcb->tcp_flags); 1177 1178 th->check = 0; 1179 th->urg_ptr = 0; 1180 1181 /* The urg_mode check is necessary during a below snd_una win probe */ 1182 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1183 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1184 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1185 th->urg = 1; 1186 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1187 th->urg_ptr = htons(0xFFFF); 1188 th->urg = 1; 1189 } 1190 } 1191 1192 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1193 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1194 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1195 th->window = htons(tcp_select_window(sk)); 1196 tcp_ecn_send(sk, skb, th, tcp_header_size); 1197 } else { 1198 /* RFC1323: The window in SYN & SYN/ACK segments 1199 * is never scaled. 1200 */ 1201 th->window = htons(min(tp->rcv_wnd, 65535U)); 1202 } 1203 #ifdef CONFIG_TCP_MD5SIG 1204 /* Calculate the MD5 hash, as we have all we need now */ 1205 if (md5) { 1206 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1207 tp->af_specific->calc_md5_hash(opts.hash_location, 1208 md5, sk, skb); 1209 } 1210 #endif 1211 1212 icsk->icsk_af_ops->send_check(sk, skb); 1213 1214 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1215 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1216 1217 if (skb->len != tcp_header_size) { 1218 tcp_event_data_sent(tp, sk); 1219 tp->data_segs_out += tcp_skb_pcount(skb); 1220 tp->bytes_sent += skb->len - tcp_header_size; 1221 } 1222 1223 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1224 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1225 tcp_skb_pcount(skb)); 1226 1227 tp->segs_out += tcp_skb_pcount(skb); 1228 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1229 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1230 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1231 1232 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1233 1234 /* Cleanup our debris for IP stacks */ 1235 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1236 sizeof(struct inet6_skb_parm))); 1237 1238 tcp_add_tx_delay(skb, tp); 1239 1240 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1241 1242 if (unlikely(err > 0)) { 1243 tcp_enter_cwr(sk); 1244 err = net_xmit_eval(err); 1245 } 1246 if (!err && oskb) { 1247 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1248 tcp_rate_skb_sent(sk, oskb); 1249 } 1250 return err; 1251 } 1252 1253 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1254 gfp_t gfp_mask) 1255 { 1256 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1257 tcp_sk(sk)->rcv_nxt); 1258 } 1259 1260 /* This routine just queues the buffer for sending. 1261 * 1262 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1263 * otherwise socket can stall. 1264 */ 1265 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1266 { 1267 struct tcp_sock *tp = tcp_sk(sk); 1268 1269 /* Advance write_seq and place onto the write_queue. */ 1270 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1271 __skb_header_release(skb); 1272 tcp_add_write_queue_tail(sk, skb); 1273 sk_wmem_queued_add(sk, skb->truesize); 1274 sk_mem_charge(sk, skb->truesize); 1275 } 1276 1277 /* Initialize TSO segments for a packet. */ 1278 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1279 { 1280 if (skb->len <= mss_now) { 1281 /* Avoid the costly divide in the normal 1282 * non-TSO case. 1283 */ 1284 tcp_skb_pcount_set(skb, 1); 1285 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1286 } else { 1287 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1288 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1289 } 1290 } 1291 1292 /* Pcount in the middle of the write queue got changed, we need to do various 1293 * tweaks to fix counters 1294 */ 1295 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1296 { 1297 struct tcp_sock *tp = tcp_sk(sk); 1298 1299 tp->packets_out -= decr; 1300 1301 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1302 tp->sacked_out -= decr; 1303 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1304 tp->retrans_out -= decr; 1305 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1306 tp->lost_out -= decr; 1307 1308 /* Reno case is special. Sigh... */ 1309 if (tcp_is_reno(tp) && decr > 0) 1310 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1311 1312 if (tp->lost_skb_hint && 1313 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1314 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1315 tp->lost_cnt_hint -= decr; 1316 1317 tcp_verify_left_out(tp); 1318 } 1319 1320 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1321 { 1322 return TCP_SKB_CB(skb)->txstamp_ack || 1323 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1324 } 1325 1326 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1327 { 1328 struct skb_shared_info *shinfo = skb_shinfo(skb); 1329 1330 if (unlikely(tcp_has_tx_tstamp(skb)) && 1331 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1332 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1333 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1334 1335 shinfo->tx_flags &= ~tsflags; 1336 shinfo2->tx_flags |= tsflags; 1337 swap(shinfo->tskey, shinfo2->tskey); 1338 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1339 TCP_SKB_CB(skb)->txstamp_ack = 0; 1340 } 1341 } 1342 1343 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1344 { 1345 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1346 TCP_SKB_CB(skb)->eor = 0; 1347 } 1348 1349 /* Insert buff after skb on the write or rtx queue of sk. */ 1350 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1351 struct sk_buff *buff, 1352 struct sock *sk, 1353 enum tcp_queue tcp_queue) 1354 { 1355 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1356 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1357 else 1358 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1359 } 1360 1361 /* Function to create two new TCP segments. Shrinks the given segment 1362 * to the specified size and appends a new segment with the rest of the 1363 * packet to the list. This won't be called frequently, I hope. 1364 * Remember, these are still headerless SKBs at this point. 1365 */ 1366 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1367 struct sk_buff *skb, u32 len, 1368 unsigned int mss_now, gfp_t gfp) 1369 { 1370 struct tcp_sock *tp = tcp_sk(sk); 1371 struct sk_buff *buff; 1372 int nsize, old_factor; 1373 long limit; 1374 int nlen; 1375 u8 flags; 1376 1377 if (WARN_ON(len > skb->len)) 1378 return -EINVAL; 1379 1380 nsize = skb_headlen(skb) - len; 1381 if (nsize < 0) 1382 nsize = 0; 1383 1384 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1385 * We need some allowance to not penalize applications setting small 1386 * SO_SNDBUF values. 1387 * Also allow first and last skb in retransmit queue to be split. 1388 */ 1389 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1390 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1391 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1392 skb != tcp_rtx_queue_head(sk) && 1393 skb != tcp_rtx_queue_tail(sk))) { 1394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1395 return -ENOMEM; 1396 } 1397 1398 if (skb_unclone(skb, gfp)) 1399 return -ENOMEM; 1400 1401 /* Get a new skb... force flag on. */ 1402 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1403 if (!buff) 1404 return -ENOMEM; /* We'll just try again later. */ 1405 skb_copy_decrypted(buff, skb); 1406 1407 sk_wmem_queued_add(sk, buff->truesize); 1408 sk_mem_charge(sk, buff->truesize); 1409 nlen = skb->len - len - nsize; 1410 buff->truesize += nlen; 1411 skb->truesize -= nlen; 1412 1413 /* Correct the sequence numbers. */ 1414 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1415 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1416 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1417 1418 /* PSH and FIN should only be set in the second packet. */ 1419 flags = TCP_SKB_CB(skb)->tcp_flags; 1420 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1421 TCP_SKB_CB(buff)->tcp_flags = flags; 1422 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1423 tcp_skb_fragment_eor(skb, buff); 1424 1425 skb_split(skb, buff, len); 1426 1427 buff->ip_summed = CHECKSUM_PARTIAL; 1428 1429 buff->tstamp = skb->tstamp; 1430 tcp_fragment_tstamp(skb, buff); 1431 1432 old_factor = tcp_skb_pcount(skb); 1433 1434 /* Fix up tso_factor for both original and new SKB. */ 1435 tcp_set_skb_tso_segs(skb, mss_now); 1436 tcp_set_skb_tso_segs(buff, mss_now); 1437 1438 /* Update delivered info for the new segment */ 1439 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1440 1441 /* If this packet has been sent out already, we must 1442 * adjust the various packet counters. 1443 */ 1444 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1445 int diff = old_factor - tcp_skb_pcount(skb) - 1446 tcp_skb_pcount(buff); 1447 1448 if (diff) 1449 tcp_adjust_pcount(sk, skb, diff); 1450 } 1451 1452 /* Link BUFF into the send queue. */ 1453 __skb_header_release(buff); 1454 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1455 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1456 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1457 1458 return 0; 1459 } 1460 1461 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1462 * data is not copied, but immediately discarded. 1463 */ 1464 static int __pskb_trim_head(struct sk_buff *skb, int len) 1465 { 1466 struct skb_shared_info *shinfo; 1467 int i, k, eat; 1468 1469 eat = min_t(int, len, skb_headlen(skb)); 1470 if (eat) { 1471 __skb_pull(skb, eat); 1472 len -= eat; 1473 if (!len) 1474 return 0; 1475 } 1476 eat = len; 1477 k = 0; 1478 shinfo = skb_shinfo(skb); 1479 for (i = 0; i < shinfo->nr_frags; i++) { 1480 int size = skb_frag_size(&shinfo->frags[i]); 1481 1482 if (size <= eat) { 1483 skb_frag_unref(skb, i); 1484 eat -= size; 1485 } else { 1486 shinfo->frags[k] = shinfo->frags[i]; 1487 if (eat) { 1488 skb_frag_off_add(&shinfo->frags[k], eat); 1489 skb_frag_size_sub(&shinfo->frags[k], eat); 1490 eat = 0; 1491 } 1492 k++; 1493 } 1494 } 1495 shinfo->nr_frags = k; 1496 1497 skb->data_len -= len; 1498 skb->len = skb->data_len; 1499 return len; 1500 } 1501 1502 /* Remove acked data from a packet in the transmit queue. */ 1503 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1504 { 1505 u32 delta_truesize; 1506 1507 if (skb_unclone(skb, GFP_ATOMIC)) 1508 return -ENOMEM; 1509 1510 delta_truesize = __pskb_trim_head(skb, len); 1511 1512 TCP_SKB_CB(skb)->seq += len; 1513 skb->ip_summed = CHECKSUM_PARTIAL; 1514 1515 if (delta_truesize) { 1516 skb->truesize -= delta_truesize; 1517 sk_wmem_queued_add(sk, -delta_truesize); 1518 sk_mem_uncharge(sk, delta_truesize); 1519 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1520 } 1521 1522 /* Any change of skb->len requires recalculation of tso factor. */ 1523 if (tcp_skb_pcount(skb) > 1) 1524 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1525 1526 return 0; 1527 } 1528 1529 /* Calculate MSS not accounting any TCP options. */ 1530 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1531 { 1532 const struct tcp_sock *tp = tcp_sk(sk); 1533 const struct inet_connection_sock *icsk = inet_csk(sk); 1534 int mss_now; 1535 1536 /* Calculate base mss without TCP options: 1537 It is MMS_S - sizeof(tcphdr) of rfc1122 1538 */ 1539 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1540 1541 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1542 if (icsk->icsk_af_ops->net_frag_header_len) { 1543 const struct dst_entry *dst = __sk_dst_get(sk); 1544 1545 if (dst && dst_allfrag(dst)) 1546 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1547 } 1548 1549 /* Clamp it (mss_clamp does not include tcp options) */ 1550 if (mss_now > tp->rx_opt.mss_clamp) 1551 mss_now = tp->rx_opt.mss_clamp; 1552 1553 /* Now subtract optional transport overhead */ 1554 mss_now -= icsk->icsk_ext_hdr_len; 1555 1556 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1557 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1558 return mss_now; 1559 } 1560 1561 /* Calculate MSS. Not accounting for SACKs here. */ 1562 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1563 { 1564 /* Subtract TCP options size, not including SACKs */ 1565 return __tcp_mtu_to_mss(sk, pmtu) - 1566 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1567 } 1568 1569 /* Inverse of above */ 1570 int tcp_mss_to_mtu(struct sock *sk, int mss) 1571 { 1572 const struct tcp_sock *tp = tcp_sk(sk); 1573 const struct inet_connection_sock *icsk = inet_csk(sk); 1574 int mtu; 1575 1576 mtu = mss + 1577 tp->tcp_header_len + 1578 icsk->icsk_ext_hdr_len + 1579 icsk->icsk_af_ops->net_header_len; 1580 1581 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1582 if (icsk->icsk_af_ops->net_frag_header_len) { 1583 const struct dst_entry *dst = __sk_dst_get(sk); 1584 1585 if (dst && dst_allfrag(dst)) 1586 mtu += icsk->icsk_af_ops->net_frag_header_len; 1587 } 1588 return mtu; 1589 } 1590 EXPORT_SYMBOL(tcp_mss_to_mtu); 1591 1592 /* MTU probing init per socket */ 1593 void tcp_mtup_init(struct sock *sk) 1594 { 1595 struct tcp_sock *tp = tcp_sk(sk); 1596 struct inet_connection_sock *icsk = inet_csk(sk); 1597 struct net *net = sock_net(sk); 1598 1599 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1600 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1601 icsk->icsk_af_ops->net_header_len; 1602 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1603 icsk->icsk_mtup.probe_size = 0; 1604 if (icsk->icsk_mtup.enabled) 1605 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1606 } 1607 EXPORT_SYMBOL(tcp_mtup_init); 1608 1609 /* This function synchronize snd mss to current pmtu/exthdr set. 1610 1611 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1612 for TCP options, but includes only bare TCP header. 1613 1614 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1615 It is minimum of user_mss and mss received with SYN. 1616 It also does not include TCP options. 1617 1618 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1619 1620 tp->mss_cache is current effective sending mss, including 1621 all tcp options except for SACKs. It is evaluated, 1622 taking into account current pmtu, but never exceeds 1623 tp->rx_opt.mss_clamp. 1624 1625 NOTE1. rfc1122 clearly states that advertised MSS 1626 DOES NOT include either tcp or ip options. 1627 1628 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1629 are READ ONLY outside this function. --ANK (980731) 1630 */ 1631 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1632 { 1633 struct tcp_sock *tp = tcp_sk(sk); 1634 struct inet_connection_sock *icsk = inet_csk(sk); 1635 int mss_now; 1636 1637 if (icsk->icsk_mtup.search_high > pmtu) 1638 icsk->icsk_mtup.search_high = pmtu; 1639 1640 mss_now = tcp_mtu_to_mss(sk, pmtu); 1641 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1642 1643 /* And store cached results */ 1644 icsk->icsk_pmtu_cookie = pmtu; 1645 if (icsk->icsk_mtup.enabled) 1646 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1647 tp->mss_cache = mss_now; 1648 1649 return mss_now; 1650 } 1651 EXPORT_SYMBOL(tcp_sync_mss); 1652 1653 /* Compute the current effective MSS, taking SACKs and IP options, 1654 * and even PMTU discovery events into account. 1655 */ 1656 unsigned int tcp_current_mss(struct sock *sk) 1657 { 1658 const struct tcp_sock *tp = tcp_sk(sk); 1659 const struct dst_entry *dst = __sk_dst_get(sk); 1660 u32 mss_now; 1661 unsigned int header_len; 1662 struct tcp_out_options opts; 1663 struct tcp_md5sig_key *md5; 1664 1665 mss_now = tp->mss_cache; 1666 1667 if (dst) { 1668 u32 mtu = dst_mtu(dst); 1669 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1670 mss_now = tcp_sync_mss(sk, mtu); 1671 } 1672 1673 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1674 sizeof(struct tcphdr); 1675 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1676 * some common options. If this is an odd packet (because we have SACK 1677 * blocks etc) then our calculated header_len will be different, and 1678 * we have to adjust mss_now correspondingly */ 1679 if (header_len != tp->tcp_header_len) { 1680 int delta = (int) header_len - tp->tcp_header_len; 1681 mss_now -= delta; 1682 } 1683 1684 return mss_now; 1685 } 1686 1687 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1688 * As additional protections, we do not touch cwnd in retransmission phases, 1689 * and if application hit its sndbuf limit recently. 1690 */ 1691 static void tcp_cwnd_application_limited(struct sock *sk) 1692 { 1693 struct tcp_sock *tp = tcp_sk(sk); 1694 1695 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1696 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1697 /* Limited by application or receiver window. */ 1698 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1699 u32 win_used = max(tp->snd_cwnd_used, init_win); 1700 if (win_used < tp->snd_cwnd) { 1701 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1702 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1703 } 1704 tp->snd_cwnd_used = 0; 1705 } 1706 tp->snd_cwnd_stamp = tcp_jiffies32; 1707 } 1708 1709 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1710 { 1711 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1712 struct tcp_sock *tp = tcp_sk(sk); 1713 1714 /* Track the maximum number of outstanding packets in each 1715 * window, and remember whether we were cwnd-limited then. 1716 */ 1717 if (!before(tp->snd_una, tp->max_packets_seq) || 1718 tp->packets_out > tp->max_packets_out) { 1719 tp->max_packets_out = tp->packets_out; 1720 tp->max_packets_seq = tp->snd_nxt; 1721 tp->is_cwnd_limited = is_cwnd_limited; 1722 } 1723 1724 if (tcp_is_cwnd_limited(sk)) { 1725 /* Network is feed fully. */ 1726 tp->snd_cwnd_used = 0; 1727 tp->snd_cwnd_stamp = tcp_jiffies32; 1728 } else { 1729 /* Network starves. */ 1730 if (tp->packets_out > tp->snd_cwnd_used) 1731 tp->snd_cwnd_used = tp->packets_out; 1732 1733 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1734 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1735 !ca_ops->cong_control) 1736 tcp_cwnd_application_limited(sk); 1737 1738 /* The following conditions together indicate the starvation 1739 * is caused by insufficient sender buffer: 1740 * 1) just sent some data (see tcp_write_xmit) 1741 * 2) not cwnd limited (this else condition) 1742 * 3) no more data to send (tcp_write_queue_empty()) 1743 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1744 */ 1745 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1746 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1747 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1748 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1749 } 1750 } 1751 1752 /* Minshall's variant of the Nagle send check. */ 1753 static bool tcp_minshall_check(const struct tcp_sock *tp) 1754 { 1755 return after(tp->snd_sml, tp->snd_una) && 1756 !after(tp->snd_sml, tp->snd_nxt); 1757 } 1758 1759 /* Update snd_sml if this skb is under mss 1760 * Note that a TSO packet might end with a sub-mss segment 1761 * The test is really : 1762 * if ((skb->len % mss) != 0) 1763 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1764 * But we can avoid doing the divide again given we already have 1765 * skb_pcount = skb->len / mss_now 1766 */ 1767 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1768 const struct sk_buff *skb) 1769 { 1770 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1771 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1772 } 1773 1774 /* Return false, if packet can be sent now without violation Nagle's rules: 1775 * 1. It is full sized. (provided by caller in %partial bool) 1776 * 2. Or it contains FIN. (already checked by caller) 1777 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1778 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1779 * With Minshall's modification: all sent small packets are ACKed. 1780 */ 1781 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1782 int nonagle) 1783 { 1784 return partial && 1785 ((nonagle & TCP_NAGLE_CORK) || 1786 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1787 } 1788 1789 /* Return how many segs we'd like on a TSO packet, 1790 * to send one TSO packet per ms 1791 */ 1792 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1793 int min_tso_segs) 1794 { 1795 u32 bytes, segs; 1796 1797 bytes = min_t(unsigned long, 1798 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1799 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1800 1801 /* Goal is to send at least one packet per ms, 1802 * not one big TSO packet every 100 ms. 1803 * This preserves ACK clocking and is consistent 1804 * with tcp_tso_should_defer() heuristic. 1805 */ 1806 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1807 1808 return segs; 1809 } 1810 1811 /* Return the number of segments we want in the skb we are transmitting. 1812 * See if congestion control module wants to decide; otherwise, autosize. 1813 */ 1814 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1815 { 1816 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1817 u32 min_tso, tso_segs; 1818 1819 min_tso = ca_ops->min_tso_segs ? 1820 ca_ops->min_tso_segs(sk) : 1821 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1822 1823 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1824 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1825 } 1826 1827 /* Returns the portion of skb which can be sent right away */ 1828 static unsigned int tcp_mss_split_point(const struct sock *sk, 1829 const struct sk_buff *skb, 1830 unsigned int mss_now, 1831 unsigned int max_segs, 1832 int nonagle) 1833 { 1834 const struct tcp_sock *tp = tcp_sk(sk); 1835 u32 partial, needed, window, max_len; 1836 1837 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1838 max_len = mss_now * max_segs; 1839 1840 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1841 return max_len; 1842 1843 needed = min(skb->len, window); 1844 1845 if (max_len <= needed) 1846 return max_len; 1847 1848 partial = needed % mss_now; 1849 /* If last segment is not a full MSS, check if Nagle rules allow us 1850 * to include this last segment in this skb. 1851 * Otherwise, we'll split the skb at last MSS boundary 1852 */ 1853 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1854 return needed - partial; 1855 1856 return needed; 1857 } 1858 1859 /* Can at least one segment of SKB be sent right now, according to the 1860 * congestion window rules? If so, return how many segments are allowed. 1861 */ 1862 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1863 const struct sk_buff *skb) 1864 { 1865 u32 in_flight, cwnd, halfcwnd; 1866 1867 /* Don't be strict about the congestion window for the final FIN. */ 1868 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1869 tcp_skb_pcount(skb) == 1) 1870 return 1; 1871 1872 in_flight = tcp_packets_in_flight(tp); 1873 cwnd = tp->snd_cwnd; 1874 if (in_flight >= cwnd) 1875 return 0; 1876 1877 /* For better scheduling, ensure we have at least 1878 * 2 GSO packets in flight. 1879 */ 1880 halfcwnd = max(cwnd >> 1, 1U); 1881 return min(halfcwnd, cwnd - in_flight); 1882 } 1883 1884 /* Initialize TSO state of a skb. 1885 * This must be invoked the first time we consider transmitting 1886 * SKB onto the wire. 1887 */ 1888 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1889 { 1890 int tso_segs = tcp_skb_pcount(skb); 1891 1892 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1893 tcp_set_skb_tso_segs(skb, mss_now); 1894 tso_segs = tcp_skb_pcount(skb); 1895 } 1896 return tso_segs; 1897 } 1898 1899 1900 /* Return true if the Nagle test allows this packet to be 1901 * sent now. 1902 */ 1903 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1904 unsigned int cur_mss, int nonagle) 1905 { 1906 /* Nagle rule does not apply to frames, which sit in the middle of the 1907 * write_queue (they have no chances to get new data). 1908 * 1909 * This is implemented in the callers, where they modify the 'nonagle' 1910 * argument based upon the location of SKB in the send queue. 1911 */ 1912 if (nonagle & TCP_NAGLE_PUSH) 1913 return true; 1914 1915 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1916 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1917 return true; 1918 1919 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1920 return true; 1921 1922 return false; 1923 } 1924 1925 /* Does at least the first segment of SKB fit into the send window? */ 1926 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1927 const struct sk_buff *skb, 1928 unsigned int cur_mss) 1929 { 1930 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1931 1932 if (skb->len > cur_mss) 1933 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1934 1935 return !after(end_seq, tcp_wnd_end(tp)); 1936 } 1937 1938 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1939 * which is put after SKB on the list. It is very much like 1940 * tcp_fragment() except that it may make several kinds of assumptions 1941 * in order to speed up the splitting operation. In particular, we 1942 * know that all the data is in scatter-gather pages, and that the 1943 * packet has never been sent out before (and thus is not cloned). 1944 */ 1945 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1946 unsigned int mss_now, gfp_t gfp) 1947 { 1948 int nlen = skb->len - len; 1949 struct sk_buff *buff; 1950 u8 flags; 1951 1952 /* All of a TSO frame must be composed of paged data. */ 1953 if (skb->len != skb->data_len) 1954 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1955 skb, len, mss_now, gfp); 1956 1957 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1958 if (unlikely(!buff)) 1959 return -ENOMEM; 1960 skb_copy_decrypted(buff, skb); 1961 1962 sk_wmem_queued_add(sk, buff->truesize); 1963 sk_mem_charge(sk, buff->truesize); 1964 buff->truesize += nlen; 1965 skb->truesize -= nlen; 1966 1967 /* Correct the sequence numbers. */ 1968 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1969 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1970 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1971 1972 /* PSH and FIN should only be set in the second packet. */ 1973 flags = TCP_SKB_CB(skb)->tcp_flags; 1974 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1975 TCP_SKB_CB(buff)->tcp_flags = flags; 1976 1977 /* This packet was never sent out yet, so no SACK bits. */ 1978 TCP_SKB_CB(buff)->sacked = 0; 1979 1980 tcp_skb_fragment_eor(skb, buff); 1981 1982 buff->ip_summed = CHECKSUM_PARTIAL; 1983 skb_split(skb, buff, len); 1984 tcp_fragment_tstamp(skb, buff); 1985 1986 /* Fix up tso_factor for both original and new SKB. */ 1987 tcp_set_skb_tso_segs(skb, mss_now); 1988 tcp_set_skb_tso_segs(buff, mss_now); 1989 1990 /* Link BUFF into the send queue. */ 1991 __skb_header_release(buff); 1992 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1993 1994 return 0; 1995 } 1996 1997 /* Try to defer sending, if possible, in order to minimize the amount 1998 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1999 * 2000 * This algorithm is from John Heffner. 2001 */ 2002 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2003 bool *is_cwnd_limited, 2004 bool *is_rwnd_limited, 2005 u32 max_segs) 2006 { 2007 const struct inet_connection_sock *icsk = inet_csk(sk); 2008 u32 send_win, cong_win, limit, in_flight; 2009 struct tcp_sock *tp = tcp_sk(sk); 2010 struct sk_buff *head; 2011 int win_divisor; 2012 s64 delta; 2013 2014 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2015 goto send_now; 2016 2017 /* Avoid bursty behavior by allowing defer 2018 * only if the last write was recent (1 ms). 2019 * Note that tp->tcp_wstamp_ns can be in the future if we have 2020 * packets waiting in a qdisc or device for EDT delivery. 2021 */ 2022 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2023 if (delta > 0) 2024 goto send_now; 2025 2026 in_flight = tcp_packets_in_flight(tp); 2027 2028 BUG_ON(tcp_skb_pcount(skb) <= 1); 2029 BUG_ON(tp->snd_cwnd <= in_flight); 2030 2031 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2032 2033 /* From in_flight test above, we know that cwnd > in_flight. */ 2034 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2035 2036 limit = min(send_win, cong_win); 2037 2038 /* If a full-sized TSO skb can be sent, do it. */ 2039 if (limit >= max_segs * tp->mss_cache) 2040 goto send_now; 2041 2042 /* Middle in queue won't get any more data, full sendable already? */ 2043 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2044 goto send_now; 2045 2046 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2047 if (win_divisor) { 2048 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2049 2050 /* If at least some fraction of a window is available, 2051 * just use it. 2052 */ 2053 chunk /= win_divisor; 2054 if (limit >= chunk) 2055 goto send_now; 2056 } else { 2057 /* Different approach, try not to defer past a single 2058 * ACK. Receiver should ACK every other full sized 2059 * frame, so if we have space for more than 3 frames 2060 * then send now. 2061 */ 2062 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2063 goto send_now; 2064 } 2065 2066 /* TODO : use tsorted_sent_queue ? */ 2067 head = tcp_rtx_queue_head(sk); 2068 if (!head) 2069 goto send_now; 2070 delta = tp->tcp_clock_cache - head->tstamp; 2071 /* If next ACK is likely to come too late (half srtt), do not defer */ 2072 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2073 goto send_now; 2074 2075 /* Ok, it looks like it is advisable to defer. 2076 * Three cases are tracked : 2077 * 1) We are cwnd-limited 2078 * 2) We are rwnd-limited 2079 * 3) We are application limited. 2080 */ 2081 if (cong_win < send_win) { 2082 if (cong_win <= skb->len) { 2083 *is_cwnd_limited = true; 2084 return true; 2085 } 2086 } else { 2087 if (send_win <= skb->len) { 2088 *is_rwnd_limited = true; 2089 return true; 2090 } 2091 } 2092 2093 /* If this packet won't get more data, do not wait. */ 2094 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2095 TCP_SKB_CB(skb)->eor) 2096 goto send_now; 2097 2098 return true; 2099 2100 send_now: 2101 return false; 2102 } 2103 2104 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2105 { 2106 struct inet_connection_sock *icsk = inet_csk(sk); 2107 struct tcp_sock *tp = tcp_sk(sk); 2108 struct net *net = sock_net(sk); 2109 u32 interval; 2110 s32 delta; 2111 2112 interval = net->ipv4.sysctl_tcp_probe_interval; 2113 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2114 if (unlikely(delta >= interval * HZ)) { 2115 int mss = tcp_current_mss(sk); 2116 2117 /* Update current search range */ 2118 icsk->icsk_mtup.probe_size = 0; 2119 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2120 sizeof(struct tcphdr) + 2121 icsk->icsk_af_ops->net_header_len; 2122 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2123 2124 /* Update probe time stamp */ 2125 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2126 } 2127 } 2128 2129 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2130 { 2131 struct sk_buff *skb, *next; 2132 2133 skb = tcp_send_head(sk); 2134 tcp_for_write_queue_from_safe(skb, next, sk) { 2135 if (len <= skb->len) 2136 break; 2137 2138 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2139 return false; 2140 2141 len -= skb->len; 2142 } 2143 2144 return true; 2145 } 2146 2147 /* Create a new MTU probe if we are ready. 2148 * MTU probe is regularly attempting to increase the path MTU by 2149 * deliberately sending larger packets. This discovers routing 2150 * changes resulting in larger path MTUs. 2151 * 2152 * Returns 0 if we should wait to probe (no cwnd available), 2153 * 1 if a probe was sent, 2154 * -1 otherwise 2155 */ 2156 static int tcp_mtu_probe(struct sock *sk) 2157 { 2158 struct inet_connection_sock *icsk = inet_csk(sk); 2159 struct tcp_sock *tp = tcp_sk(sk); 2160 struct sk_buff *skb, *nskb, *next; 2161 struct net *net = sock_net(sk); 2162 int probe_size; 2163 int size_needed; 2164 int copy, len; 2165 int mss_now; 2166 int interval; 2167 2168 /* Not currently probing/verifying, 2169 * not in recovery, 2170 * have enough cwnd, and 2171 * not SACKing (the variable headers throw things off) 2172 */ 2173 if (likely(!icsk->icsk_mtup.enabled || 2174 icsk->icsk_mtup.probe_size || 2175 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2176 tp->snd_cwnd < 11 || 2177 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2178 return -1; 2179 2180 /* Use binary search for probe_size between tcp_mss_base, 2181 * and current mss_clamp. if (search_high - search_low) 2182 * smaller than a threshold, backoff from probing. 2183 */ 2184 mss_now = tcp_current_mss(sk); 2185 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2186 icsk->icsk_mtup.search_low) >> 1); 2187 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2188 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2189 /* When misfortune happens, we are reprobing actively, 2190 * and then reprobe timer has expired. We stick with current 2191 * probing process by not resetting search range to its orignal. 2192 */ 2193 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2194 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2195 /* Check whether enough time has elaplased for 2196 * another round of probing. 2197 */ 2198 tcp_mtu_check_reprobe(sk); 2199 return -1; 2200 } 2201 2202 /* Have enough data in the send queue to probe? */ 2203 if (tp->write_seq - tp->snd_nxt < size_needed) 2204 return -1; 2205 2206 if (tp->snd_wnd < size_needed) 2207 return -1; 2208 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2209 return 0; 2210 2211 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2212 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2213 if (!tcp_packets_in_flight(tp)) 2214 return -1; 2215 else 2216 return 0; 2217 } 2218 2219 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2220 return -1; 2221 2222 /* We're allowed to probe. Build it now. */ 2223 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2224 if (!nskb) 2225 return -1; 2226 sk_wmem_queued_add(sk, nskb->truesize); 2227 sk_mem_charge(sk, nskb->truesize); 2228 2229 skb = tcp_send_head(sk); 2230 skb_copy_decrypted(nskb, skb); 2231 2232 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2233 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2234 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2235 TCP_SKB_CB(nskb)->sacked = 0; 2236 nskb->csum = 0; 2237 nskb->ip_summed = CHECKSUM_PARTIAL; 2238 2239 tcp_insert_write_queue_before(nskb, skb, sk); 2240 tcp_highest_sack_replace(sk, skb, nskb); 2241 2242 len = 0; 2243 tcp_for_write_queue_from_safe(skb, next, sk) { 2244 copy = min_t(int, skb->len, probe_size - len); 2245 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2246 2247 if (skb->len <= copy) { 2248 /* We've eaten all the data from this skb. 2249 * Throw it away. */ 2250 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2251 /* If this is the last SKB we copy and eor is set 2252 * we need to propagate it to the new skb. 2253 */ 2254 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2255 tcp_skb_collapse_tstamp(nskb, skb); 2256 tcp_unlink_write_queue(skb, sk); 2257 sk_wmem_free_skb(sk, skb); 2258 } else { 2259 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2260 ~(TCPHDR_FIN|TCPHDR_PSH); 2261 if (!skb_shinfo(skb)->nr_frags) { 2262 skb_pull(skb, copy); 2263 } else { 2264 __pskb_trim_head(skb, copy); 2265 tcp_set_skb_tso_segs(skb, mss_now); 2266 } 2267 TCP_SKB_CB(skb)->seq += copy; 2268 } 2269 2270 len += copy; 2271 2272 if (len >= probe_size) 2273 break; 2274 } 2275 tcp_init_tso_segs(nskb, nskb->len); 2276 2277 /* We're ready to send. If this fails, the probe will 2278 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2279 */ 2280 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2281 /* Decrement cwnd here because we are sending 2282 * effectively two packets. */ 2283 tp->snd_cwnd--; 2284 tcp_event_new_data_sent(sk, nskb); 2285 2286 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2287 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2288 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2289 2290 return 1; 2291 } 2292 2293 return -1; 2294 } 2295 2296 static bool tcp_pacing_check(struct sock *sk) 2297 { 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 2300 if (!tcp_needs_internal_pacing(sk)) 2301 return false; 2302 2303 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2304 return false; 2305 2306 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2307 hrtimer_start(&tp->pacing_timer, 2308 ns_to_ktime(tp->tcp_wstamp_ns), 2309 HRTIMER_MODE_ABS_PINNED_SOFT); 2310 sock_hold(sk); 2311 } 2312 return true; 2313 } 2314 2315 /* TCP Small Queues : 2316 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2317 * (These limits are doubled for retransmits) 2318 * This allows for : 2319 * - better RTT estimation and ACK scheduling 2320 * - faster recovery 2321 * - high rates 2322 * Alas, some drivers / subsystems require a fair amount 2323 * of queued bytes to ensure line rate. 2324 * One example is wifi aggregation (802.11 AMPDU) 2325 */ 2326 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2327 unsigned int factor) 2328 { 2329 unsigned long limit; 2330 2331 limit = max_t(unsigned long, 2332 2 * skb->truesize, 2333 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2334 if (sk->sk_pacing_status == SK_PACING_NONE) 2335 limit = min_t(unsigned long, limit, 2336 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2337 limit <<= factor; 2338 2339 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2340 tcp_sk(sk)->tcp_tx_delay) { 2341 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2342 2343 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2344 * approximate our needs assuming an ~100% skb->truesize overhead. 2345 * USEC_PER_SEC is approximated by 2^20. 2346 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2347 */ 2348 extra_bytes >>= (20 - 1); 2349 limit += extra_bytes; 2350 } 2351 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2352 /* Always send skb if rtx queue is empty. 2353 * No need to wait for TX completion to call us back, 2354 * after softirq/tasklet schedule. 2355 * This helps when TX completions are delayed too much. 2356 */ 2357 if (tcp_rtx_queue_empty(sk)) 2358 return false; 2359 2360 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2361 /* It is possible TX completion already happened 2362 * before we set TSQ_THROTTLED, so we must 2363 * test again the condition. 2364 */ 2365 smp_mb__after_atomic(); 2366 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2367 return true; 2368 } 2369 return false; 2370 } 2371 2372 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2373 { 2374 const u32 now = tcp_jiffies32; 2375 enum tcp_chrono old = tp->chrono_type; 2376 2377 if (old > TCP_CHRONO_UNSPEC) 2378 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2379 tp->chrono_start = now; 2380 tp->chrono_type = new; 2381 } 2382 2383 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2384 { 2385 struct tcp_sock *tp = tcp_sk(sk); 2386 2387 /* If there are multiple conditions worthy of tracking in a 2388 * chronograph then the highest priority enum takes precedence 2389 * over the other conditions. So that if something "more interesting" 2390 * starts happening, stop the previous chrono and start a new one. 2391 */ 2392 if (type > tp->chrono_type) 2393 tcp_chrono_set(tp, type); 2394 } 2395 2396 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 2400 2401 /* There are multiple conditions worthy of tracking in a 2402 * chronograph, so that the highest priority enum takes 2403 * precedence over the other conditions (see tcp_chrono_start). 2404 * If a condition stops, we only stop chrono tracking if 2405 * it's the "most interesting" or current chrono we are 2406 * tracking and starts busy chrono if we have pending data. 2407 */ 2408 if (tcp_rtx_and_write_queues_empty(sk)) 2409 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2410 else if (type == tp->chrono_type) 2411 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2412 } 2413 2414 /* This routine writes packets to the network. It advances the 2415 * send_head. This happens as incoming acks open up the remote 2416 * window for us. 2417 * 2418 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2419 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2420 * account rare use of URG, this is not a big flaw. 2421 * 2422 * Send at most one packet when push_one > 0. Temporarily ignore 2423 * cwnd limit to force at most one packet out when push_one == 2. 2424 2425 * Returns true, if no segments are in flight and we have queued segments, 2426 * but cannot send anything now because of SWS or another problem. 2427 */ 2428 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2429 int push_one, gfp_t gfp) 2430 { 2431 struct tcp_sock *tp = tcp_sk(sk); 2432 struct sk_buff *skb; 2433 unsigned int tso_segs, sent_pkts; 2434 int cwnd_quota; 2435 int result; 2436 bool is_cwnd_limited = false, is_rwnd_limited = false; 2437 u32 max_segs; 2438 2439 sent_pkts = 0; 2440 2441 tcp_mstamp_refresh(tp); 2442 if (!push_one) { 2443 /* Do MTU probing. */ 2444 result = tcp_mtu_probe(sk); 2445 if (!result) { 2446 return false; 2447 } else if (result > 0) { 2448 sent_pkts = 1; 2449 } 2450 } 2451 2452 max_segs = tcp_tso_segs(sk, mss_now); 2453 while ((skb = tcp_send_head(sk))) { 2454 unsigned int limit; 2455 2456 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2457 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2458 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2459 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2460 tcp_init_tso_segs(skb, mss_now); 2461 goto repair; /* Skip network transmission */ 2462 } 2463 2464 if (tcp_pacing_check(sk)) 2465 break; 2466 2467 tso_segs = tcp_init_tso_segs(skb, mss_now); 2468 BUG_ON(!tso_segs); 2469 2470 cwnd_quota = tcp_cwnd_test(tp, skb); 2471 if (!cwnd_quota) { 2472 if (push_one == 2) 2473 /* Force out a loss probe pkt. */ 2474 cwnd_quota = 1; 2475 else 2476 break; 2477 } 2478 2479 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2480 is_rwnd_limited = true; 2481 break; 2482 } 2483 2484 if (tso_segs == 1) { 2485 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2486 (tcp_skb_is_last(sk, skb) ? 2487 nonagle : TCP_NAGLE_PUSH)))) 2488 break; 2489 } else { 2490 if (!push_one && 2491 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2492 &is_rwnd_limited, max_segs)) 2493 break; 2494 } 2495 2496 limit = mss_now; 2497 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2498 limit = tcp_mss_split_point(sk, skb, mss_now, 2499 min_t(unsigned int, 2500 cwnd_quota, 2501 max_segs), 2502 nonagle); 2503 2504 if (skb->len > limit && 2505 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2506 break; 2507 2508 if (tcp_small_queue_check(sk, skb, 0)) 2509 break; 2510 2511 /* Argh, we hit an empty skb(), presumably a thread 2512 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2513 * We do not want to send a pure-ack packet and have 2514 * a strange looking rtx queue with empty packet(s). 2515 */ 2516 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2517 break; 2518 2519 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2520 break; 2521 2522 repair: 2523 /* Advance the send_head. This one is sent out. 2524 * This call will increment packets_out. 2525 */ 2526 tcp_event_new_data_sent(sk, skb); 2527 2528 tcp_minshall_update(tp, mss_now, skb); 2529 sent_pkts += tcp_skb_pcount(skb); 2530 2531 if (push_one) 2532 break; 2533 } 2534 2535 if (is_rwnd_limited) 2536 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2537 else 2538 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2539 2540 if (likely(sent_pkts)) { 2541 if (tcp_in_cwnd_reduction(sk)) 2542 tp->prr_out += sent_pkts; 2543 2544 /* Send one loss probe per tail loss episode. */ 2545 if (push_one != 2) 2546 tcp_schedule_loss_probe(sk, false); 2547 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2548 tcp_cwnd_validate(sk, is_cwnd_limited); 2549 return false; 2550 } 2551 return !tp->packets_out && !tcp_write_queue_empty(sk); 2552 } 2553 2554 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2555 { 2556 struct inet_connection_sock *icsk = inet_csk(sk); 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 u32 timeout, rto_delta_us; 2559 int early_retrans; 2560 2561 /* Don't do any loss probe on a Fast Open connection before 3WHS 2562 * finishes. 2563 */ 2564 if (rcu_access_pointer(tp->fastopen_rsk)) 2565 return false; 2566 2567 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2568 /* Schedule a loss probe in 2*RTT for SACK capable connections 2569 * not in loss recovery, that are either limited by cwnd or application. 2570 */ 2571 if ((early_retrans != 3 && early_retrans != 4) || 2572 !tp->packets_out || !tcp_is_sack(tp) || 2573 (icsk->icsk_ca_state != TCP_CA_Open && 2574 icsk->icsk_ca_state != TCP_CA_CWR)) 2575 return false; 2576 2577 /* Probe timeout is 2*rtt. Add minimum RTO to account 2578 * for delayed ack when there's one outstanding packet. If no RTT 2579 * sample is available then probe after TCP_TIMEOUT_INIT. 2580 */ 2581 if (tp->srtt_us) { 2582 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2583 if (tp->packets_out == 1) 2584 timeout += TCP_RTO_MIN; 2585 else 2586 timeout += TCP_TIMEOUT_MIN; 2587 } else { 2588 timeout = TCP_TIMEOUT_INIT; 2589 } 2590 2591 /* If the RTO formula yields an earlier time, then use that time. */ 2592 rto_delta_us = advancing_rto ? 2593 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2594 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2595 if (rto_delta_us > 0) 2596 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2597 2598 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2599 return true; 2600 } 2601 2602 /* Thanks to skb fast clones, we can detect if a prior transmit of 2603 * a packet is still in a qdisc or driver queue. 2604 * In this case, there is very little point doing a retransmit ! 2605 */ 2606 static bool skb_still_in_host_queue(const struct sock *sk, 2607 const struct sk_buff *skb) 2608 { 2609 if (unlikely(skb_fclone_busy(sk, skb))) { 2610 NET_INC_STATS(sock_net(sk), 2611 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2612 return true; 2613 } 2614 return false; 2615 } 2616 2617 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2618 * retransmit the last segment. 2619 */ 2620 void tcp_send_loss_probe(struct sock *sk) 2621 { 2622 struct tcp_sock *tp = tcp_sk(sk); 2623 struct sk_buff *skb; 2624 int pcount; 2625 int mss = tcp_current_mss(sk); 2626 2627 skb = tcp_send_head(sk); 2628 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2629 pcount = tp->packets_out; 2630 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2631 if (tp->packets_out > pcount) 2632 goto probe_sent; 2633 goto rearm_timer; 2634 } 2635 skb = skb_rb_last(&sk->tcp_rtx_queue); 2636 if (unlikely(!skb)) { 2637 WARN_ONCE(tp->packets_out, 2638 "invalid inflight: %u state %u cwnd %u mss %d\n", 2639 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2640 inet_csk(sk)->icsk_pending = 0; 2641 return; 2642 } 2643 2644 /* At most one outstanding TLP retransmission. */ 2645 if (tp->tlp_high_seq) 2646 goto rearm_timer; 2647 2648 if (skb_still_in_host_queue(sk, skb)) 2649 goto rearm_timer; 2650 2651 pcount = tcp_skb_pcount(skb); 2652 if (WARN_ON(!pcount)) 2653 goto rearm_timer; 2654 2655 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2656 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2657 (pcount - 1) * mss, mss, 2658 GFP_ATOMIC))) 2659 goto rearm_timer; 2660 skb = skb_rb_next(skb); 2661 } 2662 2663 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2664 goto rearm_timer; 2665 2666 if (__tcp_retransmit_skb(sk, skb, 1)) 2667 goto rearm_timer; 2668 2669 /* Record snd_nxt for loss detection. */ 2670 tp->tlp_high_seq = tp->snd_nxt; 2671 2672 probe_sent: 2673 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2674 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2675 inet_csk(sk)->icsk_pending = 0; 2676 rearm_timer: 2677 tcp_rearm_rto(sk); 2678 } 2679 2680 /* Push out any pending frames which were held back due to 2681 * TCP_CORK or attempt at coalescing tiny packets. 2682 * The socket must be locked by the caller. 2683 */ 2684 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2685 int nonagle) 2686 { 2687 /* If we are closed, the bytes will have to remain here. 2688 * In time closedown will finish, we empty the write queue and 2689 * all will be happy. 2690 */ 2691 if (unlikely(sk->sk_state == TCP_CLOSE)) 2692 return; 2693 2694 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2695 sk_gfp_mask(sk, GFP_ATOMIC))) 2696 tcp_check_probe_timer(sk); 2697 } 2698 2699 /* Send _single_ skb sitting at the send head. This function requires 2700 * true push pending frames to setup probe timer etc. 2701 */ 2702 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2703 { 2704 struct sk_buff *skb = tcp_send_head(sk); 2705 2706 BUG_ON(!skb || skb->len < mss_now); 2707 2708 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2709 } 2710 2711 /* This function returns the amount that we can raise the 2712 * usable window based on the following constraints 2713 * 2714 * 1. The window can never be shrunk once it is offered (RFC 793) 2715 * 2. We limit memory per socket 2716 * 2717 * RFC 1122: 2718 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2719 * RECV.NEXT + RCV.WIN fixed until: 2720 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2721 * 2722 * i.e. don't raise the right edge of the window until you can raise 2723 * it at least MSS bytes. 2724 * 2725 * Unfortunately, the recommended algorithm breaks header prediction, 2726 * since header prediction assumes th->window stays fixed. 2727 * 2728 * Strictly speaking, keeping th->window fixed violates the receiver 2729 * side SWS prevention criteria. The problem is that under this rule 2730 * a stream of single byte packets will cause the right side of the 2731 * window to always advance by a single byte. 2732 * 2733 * Of course, if the sender implements sender side SWS prevention 2734 * then this will not be a problem. 2735 * 2736 * BSD seems to make the following compromise: 2737 * 2738 * If the free space is less than the 1/4 of the maximum 2739 * space available and the free space is less than 1/2 mss, 2740 * then set the window to 0. 2741 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2742 * Otherwise, just prevent the window from shrinking 2743 * and from being larger than the largest representable value. 2744 * 2745 * This prevents incremental opening of the window in the regime 2746 * where TCP is limited by the speed of the reader side taking 2747 * data out of the TCP receive queue. It does nothing about 2748 * those cases where the window is constrained on the sender side 2749 * because the pipeline is full. 2750 * 2751 * BSD also seems to "accidentally" limit itself to windows that are a 2752 * multiple of MSS, at least until the free space gets quite small. 2753 * This would appear to be a side effect of the mbuf implementation. 2754 * Combining these two algorithms results in the observed behavior 2755 * of having a fixed window size at almost all times. 2756 * 2757 * Below we obtain similar behavior by forcing the offered window to 2758 * a multiple of the mss when it is feasible to do so. 2759 * 2760 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2761 * Regular options like TIMESTAMP are taken into account. 2762 */ 2763 u32 __tcp_select_window(struct sock *sk) 2764 { 2765 struct inet_connection_sock *icsk = inet_csk(sk); 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 /* MSS for the peer's data. Previous versions used mss_clamp 2768 * here. I don't know if the value based on our guesses 2769 * of peer's MSS is better for the performance. It's more correct 2770 * but may be worse for the performance because of rcv_mss 2771 * fluctuations. --SAW 1998/11/1 2772 */ 2773 int mss = icsk->icsk_ack.rcv_mss; 2774 int free_space = tcp_space(sk); 2775 int allowed_space = tcp_full_space(sk); 2776 int full_space, window; 2777 2778 if (sk_is_mptcp(sk)) 2779 mptcp_space(sk, &free_space, &allowed_space); 2780 2781 full_space = min_t(int, tp->window_clamp, allowed_space); 2782 2783 if (unlikely(mss > full_space)) { 2784 mss = full_space; 2785 if (mss <= 0) 2786 return 0; 2787 } 2788 if (free_space < (full_space >> 1)) { 2789 icsk->icsk_ack.quick = 0; 2790 2791 if (tcp_under_memory_pressure(sk)) 2792 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2793 4U * tp->advmss); 2794 2795 /* free_space might become our new window, make sure we don't 2796 * increase it due to wscale. 2797 */ 2798 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2799 2800 /* if free space is less than mss estimate, or is below 1/16th 2801 * of the maximum allowed, try to move to zero-window, else 2802 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2803 * new incoming data is dropped due to memory limits. 2804 * With large window, mss test triggers way too late in order 2805 * to announce zero window in time before rmem limit kicks in. 2806 */ 2807 if (free_space < (allowed_space >> 4) || free_space < mss) 2808 return 0; 2809 } 2810 2811 if (free_space > tp->rcv_ssthresh) 2812 free_space = tp->rcv_ssthresh; 2813 2814 /* Don't do rounding if we are using window scaling, since the 2815 * scaled window will not line up with the MSS boundary anyway. 2816 */ 2817 if (tp->rx_opt.rcv_wscale) { 2818 window = free_space; 2819 2820 /* Advertise enough space so that it won't get scaled away. 2821 * Import case: prevent zero window announcement if 2822 * 1<<rcv_wscale > mss. 2823 */ 2824 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2825 } else { 2826 window = tp->rcv_wnd; 2827 /* Get the largest window that is a nice multiple of mss. 2828 * Window clamp already applied above. 2829 * If our current window offering is within 1 mss of the 2830 * free space we just keep it. This prevents the divide 2831 * and multiply from happening most of the time. 2832 * We also don't do any window rounding when the free space 2833 * is too small. 2834 */ 2835 if (window <= free_space - mss || window > free_space) 2836 window = rounddown(free_space, mss); 2837 else if (mss == full_space && 2838 free_space > window + (full_space >> 1)) 2839 window = free_space; 2840 } 2841 2842 return window; 2843 } 2844 2845 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2846 const struct sk_buff *next_skb) 2847 { 2848 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2849 const struct skb_shared_info *next_shinfo = 2850 skb_shinfo(next_skb); 2851 struct skb_shared_info *shinfo = skb_shinfo(skb); 2852 2853 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2854 shinfo->tskey = next_shinfo->tskey; 2855 TCP_SKB_CB(skb)->txstamp_ack |= 2856 TCP_SKB_CB(next_skb)->txstamp_ack; 2857 } 2858 } 2859 2860 /* Collapses two adjacent SKB's during retransmission. */ 2861 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2862 { 2863 struct tcp_sock *tp = tcp_sk(sk); 2864 struct sk_buff *next_skb = skb_rb_next(skb); 2865 int next_skb_size; 2866 2867 next_skb_size = next_skb->len; 2868 2869 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2870 2871 if (next_skb_size) { 2872 if (next_skb_size <= skb_availroom(skb)) 2873 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2874 next_skb_size); 2875 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2876 return false; 2877 } 2878 tcp_highest_sack_replace(sk, next_skb, skb); 2879 2880 /* Update sequence range on original skb. */ 2881 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2882 2883 /* Merge over control information. This moves PSH/FIN etc. over */ 2884 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2885 2886 /* All done, get rid of second SKB and account for it so 2887 * packet counting does not break. 2888 */ 2889 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2890 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2891 2892 /* changed transmit queue under us so clear hints */ 2893 tcp_clear_retrans_hints_partial(tp); 2894 if (next_skb == tp->retransmit_skb_hint) 2895 tp->retransmit_skb_hint = skb; 2896 2897 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2898 2899 tcp_skb_collapse_tstamp(skb, next_skb); 2900 2901 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2902 return true; 2903 } 2904 2905 /* Check if coalescing SKBs is legal. */ 2906 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2907 { 2908 if (tcp_skb_pcount(skb) > 1) 2909 return false; 2910 if (skb_cloned(skb)) 2911 return false; 2912 /* Some heuristics for collapsing over SACK'd could be invented */ 2913 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2914 return false; 2915 2916 return true; 2917 } 2918 2919 /* Collapse packets in the retransmit queue to make to create 2920 * less packets on the wire. This is only done on retransmission. 2921 */ 2922 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2923 int space) 2924 { 2925 struct tcp_sock *tp = tcp_sk(sk); 2926 struct sk_buff *skb = to, *tmp; 2927 bool first = true; 2928 2929 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2930 return; 2931 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2932 return; 2933 2934 skb_rbtree_walk_from_safe(skb, tmp) { 2935 if (!tcp_can_collapse(sk, skb)) 2936 break; 2937 2938 if (!tcp_skb_can_collapse(to, skb)) 2939 break; 2940 2941 space -= skb->len; 2942 2943 if (first) { 2944 first = false; 2945 continue; 2946 } 2947 2948 if (space < 0) 2949 break; 2950 2951 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2952 break; 2953 2954 if (!tcp_collapse_retrans(sk, to)) 2955 break; 2956 } 2957 } 2958 2959 /* This retransmits one SKB. Policy decisions and retransmit queue 2960 * state updates are done by the caller. Returns non-zero if an 2961 * error occurred which prevented the send. 2962 */ 2963 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2964 { 2965 struct inet_connection_sock *icsk = inet_csk(sk); 2966 struct tcp_sock *tp = tcp_sk(sk); 2967 unsigned int cur_mss; 2968 int diff, len, err; 2969 2970 2971 /* Inconclusive MTU probe */ 2972 if (icsk->icsk_mtup.probe_size) 2973 icsk->icsk_mtup.probe_size = 0; 2974 2975 /* Do not sent more than we queued. 1/4 is reserved for possible 2976 * copying overhead: fragmentation, tunneling, mangling etc. 2977 */ 2978 if (refcount_read(&sk->sk_wmem_alloc) > 2979 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2980 sk->sk_sndbuf)) 2981 return -EAGAIN; 2982 2983 if (skb_still_in_host_queue(sk, skb)) 2984 return -EBUSY; 2985 2986 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2987 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2988 WARN_ON_ONCE(1); 2989 return -EINVAL; 2990 } 2991 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2992 return -ENOMEM; 2993 } 2994 2995 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2996 return -EHOSTUNREACH; /* Routing failure or similar. */ 2997 2998 cur_mss = tcp_current_mss(sk); 2999 3000 /* If receiver has shrunk his window, and skb is out of 3001 * new window, do not retransmit it. The exception is the 3002 * case, when window is shrunk to zero. In this case 3003 * our retransmit serves as a zero window probe. 3004 */ 3005 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 3006 TCP_SKB_CB(skb)->seq != tp->snd_una) 3007 return -EAGAIN; 3008 3009 len = cur_mss * segs; 3010 if (skb->len > len) { 3011 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3012 cur_mss, GFP_ATOMIC)) 3013 return -ENOMEM; /* We'll try again later. */ 3014 } else { 3015 if (skb_unclone(skb, GFP_ATOMIC)) 3016 return -ENOMEM; 3017 3018 diff = tcp_skb_pcount(skb); 3019 tcp_set_skb_tso_segs(skb, cur_mss); 3020 diff -= tcp_skb_pcount(skb); 3021 if (diff) 3022 tcp_adjust_pcount(sk, skb, diff); 3023 if (skb->len < cur_mss) 3024 tcp_retrans_try_collapse(sk, skb, cur_mss); 3025 } 3026 3027 /* RFC3168, section 6.1.1.1. ECN fallback */ 3028 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3029 tcp_ecn_clear_syn(sk, skb); 3030 3031 /* Update global and local TCP statistics. */ 3032 segs = tcp_skb_pcount(skb); 3033 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3034 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3035 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3036 tp->total_retrans += segs; 3037 tp->bytes_retrans += skb->len; 3038 3039 /* make sure skb->data is aligned on arches that require it 3040 * and check if ack-trimming & collapsing extended the headroom 3041 * beyond what csum_start can cover. 3042 */ 3043 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3044 skb_headroom(skb) >= 0xFFFF)) { 3045 struct sk_buff *nskb; 3046 3047 tcp_skb_tsorted_save(skb) { 3048 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3049 if (nskb) { 3050 nskb->dev = NULL; 3051 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3052 } else { 3053 err = -ENOBUFS; 3054 } 3055 } tcp_skb_tsorted_restore(skb); 3056 3057 if (!err) { 3058 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3059 tcp_rate_skb_sent(sk, skb); 3060 } 3061 } else { 3062 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3063 } 3064 3065 /* To avoid taking spuriously low RTT samples based on a timestamp 3066 * for a transmit that never happened, always mark EVER_RETRANS 3067 */ 3068 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3069 3070 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3071 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3072 TCP_SKB_CB(skb)->seq, segs, err); 3073 3074 if (likely(!err)) { 3075 trace_tcp_retransmit_skb(sk, skb); 3076 } else if (err != -EBUSY) { 3077 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3078 } 3079 return err; 3080 } 3081 3082 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3083 { 3084 struct tcp_sock *tp = tcp_sk(sk); 3085 int err = __tcp_retransmit_skb(sk, skb, segs); 3086 3087 if (err == 0) { 3088 #if FASTRETRANS_DEBUG > 0 3089 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3090 net_dbg_ratelimited("retrans_out leaked\n"); 3091 } 3092 #endif 3093 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3094 tp->retrans_out += tcp_skb_pcount(skb); 3095 } 3096 3097 /* Save stamp of the first (attempted) retransmit. */ 3098 if (!tp->retrans_stamp) 3099 tp->retrans_stamp = tcp_skb_timestamp(skb); 3100 3101 if (tp->undo_retrans < 0) 3102 tp->undo_retrans = 0; 3103 tp->undo_retrans += tcp_skb_pcount(skb); 3104 return err; 3105 } 3106 3107 /* This gets called after a retransmit timeout, and the initially 3108 * retransmitted data is acknowledged. It tries to continue 3109 * resending the rest of the retransmit queue, until either 3110 * we've sent it all or the congestion window limit is reached. 3111 */ 3112 void tcp_xmit_retransmit_queue(struct sock *sk) 3113 { 3114 const struct inet_connection_sock *icsk = inet_csk(sk); 3115 struct sk_buff *skb, *rtx_head, *hole = NULL; 3116 struct tcp_sock *tp = tcp_sk(sk); 3117 bool rearm_timer = false; 3118 u32 max_segs; 3119 int mib_idx; 3120 3121 if (!tp->packets_out) 3122 return; 3123 3124 rtx_head = tcp_rtx_queue_head(sk); 3125 skb = tp->retransmit_skb_hint ?: rtx_head; 3126 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3127 skb_rbtree_walk_from(skb) { 3128 __u8 sacked; 3129 int segs; 3130 3131 if (tcp_pacing_check(sk)) 3132 break; 3133 3134 /* we could do better than to assign each time */ 3135 if (!hole) 3136 tp->retransmit_skb_hint = skb; 3137 3138 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3139 if (segs <= 0) 3140 break; 3141 sacked = TCP_SKB_CB(skb)->sacked; 3142 /* In case tcp_shift_skb_data() have aggregated large skbs, 3143 * we need to make sure not sending too bigs TSO packets 3144 */ 3145 segs = min_t(int, segs, max_segs); 3146 3147 if (tp->retrans_out >= tp->lost_out) { 3148 break; 3149 } else if (!(sacked & TCPCB_LOST)) { 3150 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3151 hole = skb; 3152 continue; 3153 3154 } else { 3155 if (icsk->icsk_ca_state != TCP_CA_Loss) 3156 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3157 else 3158 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3159 } 3160 3161 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3162 continue; 3163 3164 if (tcp_small_queue_check(sk, skb, 1)) 3165 break; 3166 3167 if (tcp_retransmit_skb(sk, skb, segs)) 3168 break; 3169 3170 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3171 3172 if (tcp_in_cwnd_reduction(sk)) 3173 tp->prr_out += tcp_skb_pcount(skb); 3174 3175 if (skb == rtx_head && 3176 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3177 rearm_timer = true; 3178 3179 } 3180 if (rearm_timer) 3181 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3182 inet_csk(sk)->icsk_rto, 3183 TCP_RTO_MAX); 3184 } 3185 3186 /* We allow to exceed memory limits for FIN packets to expedite 3187 * connection tear down and (memory) recovery. 3188 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3189 * or even be forced to close flow without any FIN. 3190 * In general, we want to allow one skb per socket to avoid hangs 3191 * with edge trigger epoll() 3192 */ 3193 void sk_forced_mem_schedule(struct sock *sk, int size) 3194 { 3195 int amt; 3196 3197 if (size <= sk->sk_forward_alloc) 3198 return; 3199 amt = sk_mem_pages(size); 3200 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3201 sk_memory_allocated_add(sk, amt); 3202 3203 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3204 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3205 } 3206 3207 /* Send a FIN. The caller locks the socket for us. 3208 * We should try to send a FIN packet really hard, but eventually give up. 3209 */ 3210 void tcp_send_fin(struct sock *sk) 3211 { 3212 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3213 struct tcp_sock *tp = tcp_sk(sk); 3214 3215 /* Optimization, tack on the FIN if we have one skb in write queue and 3216 * this skb was not yet sent, or we are under memory pressure. 3217 * Note: in the latter case, FIN packet will be sent after a timeout, 3218 * as TCP stack thinks it has already been transmitted. 3219 */ 3220 tskb = tail; 3221 if (!tskb && tcp_under_memory_pressure(sk)) 3222 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3223 3224 if (tskb) { 3225 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3226 TCP_SKB_CB(tskb)->end_seq++; 3227 tp->write_seq++; 3228 if (!tail) { 3229 /* This means tskb was already sent. 3230 * Pretend we included the FIN on previous transmit. 3231 * We need to set tp->snd_nxt to the value it would have 3232 * if FIN had been sent. This is because retransmit path 3233 * does not change tp->snd_nxt. 3234 */ 3235 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3236 return; 3237 } 3238 } else { 3239 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3240 if (unlikely(!skb)) 3241 return; 3242 3243 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3244 skb_reserve(skb, MAX_TCP_HEADER); 3245 sk_forced_mem_schedule(sk, skb->truesize); 3246 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3247 tcp_init_nondata_skb(skb, tp->write_seq, 3248 TCPHDR_ACK | TCPHDR_FIN); 3249 tcp_queue_skb(sk, skb); 3250 } 3251 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3252 } 3253 3254 /* We get here when a process closes a file descriptor (either due to 3255 * an explicit close() or as a byproduct of exit()'ing) and there 3256 * was unread data in the receive queue. This behavior is recommended 3257 * by RFC 2525, section 2.17. -DaveM 3258 */ 3259 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3260 { 3261 struct sk_buff *skb; 3262 3263 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3264 3265 /* NOTE: No TCP options attached and we never retransmit this. */ 3266 skb = alloc_skb(MAX_TCP_HEADER, priority); 3267 if (!skb) { 3268 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3269 return; 3270 } 3271 3272 /* Reserve space for headers and prepare control bits. */ 3273 skb_reserve(skb, MAX_TCP_HEADER); 3274 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3275 TCPHDR_ACK | TCPHDR_RST); 3276 tcp_mstamp_refresh(tcp_sk(sk)); 3277 /* Send it off. */ 3278 if (tcp_transmit_skb(sk, skb, 0, priority)) 3279 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3280 3281 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3282 * skb here is different to the troublesome skb, so use NULL 3283 */ 3284 trace_tcp_send_reset(sk, NULL); 3285 } 3286 3287 /* Send a crossed SYN-ACK during socket establishment. 3288 * WARNING: This routine must only be called when we have already sent 3289 * a SYN packet that crossed the incoming SYN that caused this routine 3290 * to get called. If this assumption fails then the initial rcv_wnd 3291 * and rcv_wscale values will not be correct. 3292 */ 3293 int tcp_send_synack(struct sock *sk) 3294 { 3295 struct sk_buff *skb; 3296 3297 skb = tcp_rtx_queue_head(sk); 3298 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3299 pr_err("%s: wrong queue state\n", __func__); 3300 return -EFAULT; 3301 } 3302 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3303 if (skb_cloned(skb)) { 3304 struct sk_buff *nskb; 3305 3306 tcp_skb_tsorted_save(skb) { 3307 nskb = skb_copy(skb, GFP_ATOMIC); 3308 } tcp_skb_tsorted_restore(skb); 3309 if (!nskb) 3310 return -ENOMEM; 3311 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3312 tcp_highest_sack_replace(sk, skb, nskb); 3313 tcp_rtx_queue_unlink_and_free(skb, sk); 3314 __skb_header_release(nskb); 3315 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3316 sk_wmem_queued_add(sk, nskb->truesize); 3317 sk_mem_charge(sk, nskb->truesize); 3318 skb = nskb; 3319 } 3320 3321 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3322 tcp_ecn_send_synack(sk, skb); 3323 } 3324 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3325 } 3326 3327 /** 3328 * tcp_make_synack - Prepare a SYN-ACK. 3329 * sk: listener socket 3330 * dst: dst entry attached to the SYNACK 3331 * req: request_sock pointer 3332 * 3333 * Allocate one skb and build a SYNACK packet. 3334 * @dst is consumed : Caller should not use it again. 3335 */ 3336 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3337 struct request_sock *req, 3338 struct tcp_fastopen_cookie *foc, 3339 enum tcp_synack_type synack_type) 3340 { 3341 struct inet_request_sock *ireq = inet_rsk(req); 3342 const struct tcp_sock *tp = tcp_sk(sk); 3343 struct tcp_md5sig_key *md5 = NULL; 3344 struct tcp_out_options opts; 3345 struct sk_buff *skb; 3346 int tcp_header_size; 3347 struct tcphdr *th; 3348 int mss; 3349 u64 now; 3350 3351 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3352 if (unlikely(!skb)) { 3353 dst_release(dst); 3354 return NULL; 3355 } 3356 /* Reserve space for headers. */ 3357 skb_reserve(skb, MAX_TCP_HEADER); 3358 3359 switch (synack_type) { 3360 case TCP_SYNACK_NORMAL: 3361 skb_set_owner_w(skb, req_to_sk(req)); 3362 break; 3363 case TCP_SYNACK_COOKIE: 3364 /* Under synflood, we do not attach skb to a socket, 3365 * to avoid false sharing. 3366 */ 3367 break; 3368 case TCP_SYNACK_FASTOPEN: 3369 /* sk is a const pointer, because we want to express multiple 3370 * cpu might call us concurrently. 3371 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3372 */ 3373 skb_set_owner_w(skb, (struct sock *)sk); 3374 break; 3375 } 3376 skb_dst_set(skb, dst); 3377 3378 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3379 3380 memset(&opts, 0, sizeof(opts)); 3381 now = tcp_clock_ns(); 3382 #ifdef CONFIG_SYN_COOKIES 3383 if (unlikely(req->cookie_ts)) 3384 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3385 else 3386 #endif 3387 { 3388 skb->skb_mstamp_ns = now; 3389 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3390 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3391 } 3392 3393 #ifdef CONFIG_TCP_MD5SIG 3394 rcu_read_lock(); 3395 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3396 #endif 3397 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3398 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3399 foc, synack_type) + sizeof(*th); 3400 3401 skb_push(skb, tcp_header_size); 3402 skb_reset_transport_header(skb); 3403 3404 th = (struct tcphdr *)skb->data; 3405 memset(th, 0, sizeof(struct tcphdr)); 3406 th->syn = 1; 3407 th->ack = 1; 3408 tcp_ecn_make_synack(req, th); 3409 th->source = htons(ireq->ir_num); 3410 th->dest = ireq->ir_rmt_port; 3411 skb->mark = ireq->ir_mark; 3412 skb->ip_summed = CHECKSUM_PARTIAL; 3413 th->seq = htonl(tcp_rsk(req)->snt_isn); 3414 /* XXX data is queued and acked as is. No buffer/window check */ 3415 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3416 3417 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3418 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3419 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3420 th->doff = (tcp_header_size >> 2); 3421 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3422 3423 #ifdef CONFIG_TCP_MD5SIG 3424 /* Okay, we have all we need - do the md5 hash if needed */ 3425 if (md5) 3426 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3427 md5, req_to_sk(req), skb); 3428 rcu_read_unlock(); 3429 #endif 3430 3431 skb->skb_mstamp_ns = now; 3432 tcp_add_tx_delay(skb, tp); 3433 3434 return skb; 3435 } 3436 EXPORT_SYMBOL(tcp_make_synack); 3437 3438 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3439 { 3440 struct inet_connection_sock *icsk = inet_csk(sk); 3441 const struct tcp_congestion_ops *ca; 3442 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3443 3444 if (ca_key == TCP_CA_UNSPEC) 3445 return; 3446 3447 rcu_read_lock(); 3448 ca = tcp_ca_find_key(ca_key); 3449 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3450 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3451 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3452 icsk->icsk_ca_ops = ca; 3453 } 3454 rcu_read_unlock(); 3455 } 3456 3457 /* Do all connect socket setups that can be done AF independent. */ 3458 static void tcp_connect_init(struct sock *sk) 3459 { 3460 const struct dst_entry *dst = __sk_dst_get(sk); 3461 struct tcp_sock *tp = tcp_sk(sk); 3462 __u8 rcv_wscale; 3463 u32 rcv_wnd; 3464 3465 /* We'll fix this up when we get a response from the other end. 3466 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3467 */ 3468 tp->tcp_header_len = sizeof(struct tcphdr); 3469 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3470 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3471 3472 #ifdef CONFIG_TCP_MD5SIG 3473 if (tp->af_specific->md5_lookup(sk, sk)) 3474 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3475 #endif 3476 3477 /* If user gave his TCP_MAXSEG, record it to clamp */ 3478 if (tp->rx_opt.user_mss) 3479 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3480 tp->max_window = 0; 3481 tcp_mtup_init(sk); 3482 tcp_sync_mss(sk, dst_mtu(dst)); 3483 3484 tcp_ca_dst_init(sk, dst); 3485 3486 if (!tp->window_clamp) 3487 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3488 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3489 3490 tcp_initialize_rcv_mss(sk); 3491 3492 /* limit the window selection if the user enforce a smaller rx buffer */ 3493 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3494 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3495 tp->window_clamp = tcp_full_space(sk); 3496 3497 rcv_wnd = tcp_rwnd_init_bpf(sk); 3498 if (rcv_wnd == 0) 3499 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3500 3501 tcp_select_initial_window(sk, tcp_full_space(sk), 3502 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3503 &tp->rcv_wnd, 3504 &tp->window_clamp, 3505 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3506 &rcv_wscale, 3507 rcv_wnd); 3508 3509 tp->rx_opt.rcv_wscale = rcv_wscale; 3510 tp->rcv_ssthresh = tp->rcv_wnd; 3511 3512 sk->sk_err = 0; 3513 sock_reset_flag(sk, SOCK_DONE); 3514 tp->snd_wnd = 0; 3515 tcp_init_wl(tp, 0); 3516 tcp_write_queue_purge(sk); 3517 tp->snd_una = tp->write_seq; 3518 tp->snd_sml = tp->write_seq; 3519 tp->snd_up = tp->write_seq; 3520 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3521 3522 if (likely(!tp->repair)) 3523 tp->rcv_nxt = 0; 3524 else 3525 tp->rcv_tstamp = tcp_jiffies32; 3526 tp->rcv_wup = tp->rcv_nxt; 3527 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3528 3529 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3530 inet_csk(sk)->icsk_retransmits = 0; 3531 tcp_clear_retrans(tp); 3532 } 3533 3534 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3535 { 3536 struct tcp_sock *tp = tcp_sk(sk); 3537 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3538 3539 tcb->end_seq += skb->len; 3540 __skb_header_release(skb); 3541 sk_wmem_queued_add(sk, skb->truesize); 3542 sk_mem_charge(sk, skb->truesize); 3543 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3544 tp->packets_out += tcp_skb_pcount(skb); 3545 } 3546 3547 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3548 * queue a data-only packet after the regular SYN, such that regular SYNs 3549 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3550 * only the SYN sequence, the data are retransmitted in the first ACK. 3551 * If cookie is not cached or other error occurs, falls back to send a 3552 * regular SYN with Fast Open cookie request option. 3553 */ 3554 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3555 { 3556 struct tcp_sock *tp = tcp_sk(sk); 3557 struct tcp_fastopen_request *fo = tp->fastopen_req; 3558 int space, err = 0; 3559 struct sk_buff *syn_data; 3560 3561 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3562 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3563 goto fallback; 3564 3565 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3566 * user-MSS. Reserve maximum option space for middleboxes that add 3567 * private TCP options. The cost is reduced data space in SYN :( 3568 */ 3569 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3570 3571 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3572 MAX_TCP_OPTION_SPACE; 3573 3574 space = min_t(size_t, space, fo->size); 3575 3576 /* limit to order-0 allocations */ 3577 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3578 3579 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3580 if (!syn_data) 3581 goto fallback; 3582 syn_data->ip_summed = CHECKSUM_PARTIAL; 3583 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3584 if (space) { 3585 int copied = copy_from_iter(skb_put(syn_data, space), space, 3586 &fo->data->msg_iter); 3587 if (unlikely(!copied)) { 3588 tcp_skb_tsorted_anchor_cleanup(syn_data); 3589 kfree_skb(syn_data); 3590 goto fallback; 3591 } 3592 if (copied != space) { 3593 skb_trim(syn_data, copied); 3594 space = copied; 3595 } 3596 skb_zcopy_set(syn_data, fo->uarg, NULL); 3597 } 3598 /* No more data pending in inet_wait_for_connect() */ 3599 if (space == fo->size) 3600 fo->data = NULL; 3601 fo->copied = space; 3602 3603 tcp_connect_queue_skb(sk, syn_data); 3604 if (syn_data->len) 3605 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3606 3607 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3608 3609 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3610 3611 /* Now full SYN+DATA was cloned and sent (or not), 3612 * remove the SYN from the original skb (syn_data) 3613 * we keep in write queue in case of a retransmit, as we 3614 * also have the SYN packet (with no data) in the same queue. 3615 */ 3616 TCP_SKB_CB(syn_data)->seq++; 3617 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3618 if (!err) { 3619 tp->syn_data = (fo->copied > 0); 3620 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3622 goto done; 3623 } 3624 3625 /* data was not sent, put it in write_queue */ 3626 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3627 tp->packets_out -= tcp_skb_pcount(syn_data); 3628 3629 fallback: 3630 /* Send a regular SYN with Fast Open cookie request option */ 3631 if (fo->cookie.len > 0) 3632 fo->cookie.len = 0; 3633 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3634 if (err) 3635 tp->syn_fastopen = 0; 3636 done: 3637 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3638 return err; 3639 } 3640 3641 /* Build a SYN and send it off. */ 3642 int tcp_connect(struct sock *sk) 3643 { 3644 struct tcp_sock *tp = tcp_sk(sk); 3645 struct sk_buff *buff; 3646 int err; 3647 3648 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3649 3650 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3651 return -EHOSTUNREACH; /* Routing failure or similar. */ 3652 3653 tcp_connect_init(sk); 3654 3655 if (unlikely(tp->repair)) { 3656 tcp_finish_connect(sk, NULL); 3657 return 0; 3658 } 3659 3660 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3661 if (unlikely(!buff)) 3662 return -ENOBUFS; 3663 3664 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3665 tcp_mstamp_refresh(tp); 3666 tp->retrans_stamp = tcp_time_stamp(tp); 3667 tcp_connect_queue_skb(sk, buff); 3668 tcp_ecn_send_syn(sk, buff); 3669 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3670 3671 /* Send off SYN; include data in Fast Open. */ 3672 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3673 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3674 if (err == -ECONNREFUSED) 3675 return err; 3676 3677 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3678 * in order to make this packet get counted in tcpOutSegs. 3679 */ 3680 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3681 tp->pushed_seq = tp->write_seq; 3682 buff = tcp_send_head(sk); 3683 if (unlikely(buff)) { 3684 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3685 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3686 } 3687 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3688 3689 /* Timer for repeating the SYN until an answer. */ 3690 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3691 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3692 return 0; 3693 } 3694 EXPORT_SYMBOL(tcp_connect); 3695 3696 /* Send out a delayed ack, the caller does the policy checking 3697 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3698 * for details. 3699 */ 3700 void tcp_send_delayed_ack(struct sock *sk) 3701 { 3702 struct inet_connection_sock *icsk = inet_csk(sk); 3703 int ato = icsk->icsk_ack.ato; 3704 unsigned long timeout; 3705 3706 if (ato > TCP_DELACK_MIN) { 3707 const struct tcp_sock *tp = tcp_sk(sk); 3708 int max_ato = HZ / 2; 3709 3710 if (inet_csk_in_pingpong_mode(sk) || 3711 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3712 max_ato = TCP_DELACK_MAX; 3713 3714 /* Slow path, intersegment interval is "high". */ 3715 3716 /* If some rtt estimate is known, use it to bound delayed ack. 3717 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3718 * directly. 3719 */ 3720 if (tp->srtt_us) { 3721 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3722 TCP_DELACK_MIN); 3723 3724 if (rtt < max_ato) 3725 max_ato = rtt; 3726 } 3727 3728 ato = min(ato, max_ato); 3729 } 3730 3731 /* Stay within the limit we were given */ 3732 timeout = jiffies + ato; 3733 3734 /* Use new timeout only if there wasn't a older one earlier. */ 3735 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3736 /* If delack timer was blocked or is about to expire, 3737 * send ACK now. 3738 */ 3739 if (icsk->icsk_ack.blocked || 3740 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3741 tcp_send_ack(sk); 3742 return; 3743 } 3744 3745 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3746 timeout = icsk->icsk_ack.timeout; 3747 } 3748 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3749 icsk->icsk_ack.timeout = timeout; 3750 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3751 } 3752 3753 /* This routine sends an ack and also updates the window. */ 3754 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3755 { 3756 struct sk_buff *buff; 3757 3758 /* If we have been reset, we may not send again. */ 3759 if (sk->sk_state == TCP_CLOSE) 3760 return; 3761 3762 /* We are not putting this on the write queue, so 3763 * tcp_transmit_skb() will set the ownership to this 3764 * sock. 3765 */ 3766 buff = alloc_skb(MAX_TCP_HEADER, 3767 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3768 if (unlikely(!buff)) { 3769 inet_csk_schedule_ack(sk); 3770 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3771 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3772 TCP_DELACK_MAX, TCP_RTO_MAX); 3773 return; 3774 } 3775 3776 /* Reserve space for headers and prepare control bits. */ 3777 skb_reserve(buff, MAX_TCP_HEADER); 3778 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3779 3780 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3781 * too much. 3782 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3783 */ 3784 skb_set_tcp_pure_ack(buff); 3785 3786 /* Send it off, this clears delayed acks for us. */ 3787 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3788 } 3789 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3790 3791 void tcp_send_ack(struct sock *sk) 3792 { 3793 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3794 } 3795 3796 /* This routine sends a packet with an out of date sequence 3797 * number. It assumes the other end will try to ack it. 3798 * 3799 * Question: what should we make while urgent mode? 3800 * 4.4BSD forces sending single byte of data. We cannot send 3801 * out of window data, because we have SND.NXT==SND.MAX... 3802 * 3803 * Current solution: to send TWO zero-length segments in urgent mode: 3804 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3805 * out-of-date with SND.UNA-1 to probe window. 3806 */ 3807 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3808 { 3809 struct tcp_sock *tp = tcp_sk(sk); 3810 struct sk_buff *skb; 3811 3812 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3813 skb = alloc_skb(MAX_TCP_HEADER, 3814 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3815 if (!skb) 3816 return -1; 3817 3818 /* Reserve space for headers and set control bits. */ 3819 skb_reserve(skb, MAX_TCP_HEADER); 3820 /* Use a previous sequence. This should cause the other 3821 * end to send an ack. Don't queue or clone SKB, just 3822 * send it. 3823 */ 3824 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3825 NET_INC_STATS(sock_net(sk), mib); 3826 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3827 } 3828 3829 /* Called from setsockopt( ... TCP_REPAIR ) */ 3830 void tcp_send_window_probe(struct sock *sk) 3831 { 3832 if (sk->sk_state == TCP_ESTABLISHED) { 3833 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3834 tcp_mstamp_refresh(tcp_sk(sk)); 3835 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3836 } 3837 } 3838 3839 /* Initiate keepalive or window probe from timer. */ 3840 int tcp_write_wakeup(struct sock *sk, int mib) 3841 { 3842 struct tcp_sock *tp = tcp_sk(sk); 3843 struct sk_buff *skb; 3844 3845 if (sk->sk_state == TCP_CLOSE) 3846 return -1; 3847 3848 skb = tcp_send_head(sk); 3849 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3850 int err; 3851 unsigned int mss = tcp_current_mss(sk); 3852 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3853 3854 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3855 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3856 3857 /* We are probing the opening of a window 3858 * but the window size is != 0 3859 * must have been a result SWS avoidance ( sender ) 3860 */ 3861 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3862 skb->len > mss) { 3863 seg_size = min(seg_size, mss); 3864 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3865 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3866 skb, seg_size, mss, GFP_ATOMIC)) 3867 return -1; 3868 } else if (!tcp_skb_pcount(skb)) 3869 tcp_set_skb_tso_segs(skb, mss); 3870 3871 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3872 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3873 if (!err) 3874 tcp_event_new_data_sent(sk, skb); 3875 return err; 3876 } else { 3877 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3878 tcp_xmit_probe_skb(sk, 1, mib); 3879 return tcp_xmit_probe_skb(sk, 0, mib); 3880 } 3881 } 3882 3883 /* A window probe timeout has occurred. If window is not closed send 3884 * a partial packet else a zero probe. 3885 */ 3886 void tcp_send_probe0(struct sock *sk) 3887 { 3888 struct inet_connection_sock *icsk = inet_csk(sk); 3889 struct tcp_sock *tp = tcp_sk(sk); 3890 struct net *net = sock_net(sk); 3891 unsigned long timeout; 3892 int err; 3893 3894 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3895 3896 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3897 /* Cancel probe timer, if it is not required. */ 3898 icsk->icsk_probes_out = 0; 3899 icsk->icsk_backoff = 0; 3900 return; 3901 } 3902 3903 icsk->icsk_probes_out++; 3904 if (err <= 0) { 3905 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3906 icsk->icsk_backoff++; 3907 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3908 } else { 3909 /* If packet was not sent due to local congestion, 3910 * Let senders fight for local resources conservatively. 3911 */ 3912 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3913 } 3914 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 3915 } 3916 3917 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3918 { 3919 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3920 struct flowi fl; 3921 int res; 3922 3923 tcp_rsk(req)->txhash = net_tx_rndhash(); 3924 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3925 if (!res) { 3926 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3927 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3928 if (unlikely(tcp_passive_fastopen(sk))) 3929 tcp_sk(sk)->total_retrans++; 3930 trace_tcp_retransmit_synack(sk, req); 3931 } 3932 return res; 3933 } 3934 EXPORT_SYMBOL(tcp_rtx_synack); 3935