1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_time_stamp; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_time_stamp; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 185 u32 tcp_default_init_rwnd(u32 mss) 186 { 187 /* Initial receive window should be twice of TCP_INIT_CWND to 188 * enable proper sending of new unsent data during fast recovery 189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 190 * limit when mss is larger than 1460. 191 */ 192 u32 init_rwnd = TCP_INIT_CWND * 2; 193 194 if (mss > 1460) 195 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 196 return init_rwnd; 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (sysctl_tcp_workaround_signed_windows) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = space; 234 235 (*rcv_wscale) = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window */ 238 space = max_t(u32, space, sysctl_tcp_rmem[2]); 239 space = max_t(u32, space, sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 /* If we advertise zero window, disable fast path. */ 299 if (new_win == 0) { 300 tp->pred_flags = 0; 301 if (old_win) 302 NET_INC_STATS(sock_net(sk), 303 LINUX_MIB_TCPTOZEROWINDOWADV); 304 } else if (old_win == 0) { 305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 306 } 307 308 return new_win; 309 } 310 311 /* Packet ECN state for a SYN-ACK */ 312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 313 { 314 const struct tcp_sock *tp = tcp_sk(sk); 315 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 317 if (!(tp->ecn_flags & TCP_ECN_OK)) 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 319 else if (tcp_ca_needs_ecn(sk)) 320 INET_ECN_xmit(sk); 321 } 322 323 /* Packet ECN state for a SYN. */ 324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 325 { 326 struct tcp_sock *tp = tcp_sk(sk); 327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 328 tcp_ca_needs_ecn(sk); 329 330 if (!use_ecn) { 331 const struct dst_entry *dst = __sk_dst_get(sk); 332 333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 334 use_ecn = true; 335 } 336 337 tp->ecn_flags = 0; 338 339 if (use_ecn) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk)) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 348 { 349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 350 /* tp->ecn_flags are cleared at a later point in time when 351 * SYN ACK is ultimatively being received. 352 */ 353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 354 } 355 356 static void 357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 358 { 359 if (inet_rsk(req)->ecn_ok) 360 th->ece = 1; 361 } 362 363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 364 * be sent. 365 */ 366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 367 struct tcphdr *th, int tcp_header_len) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tp->ecn_flags & TCP_ECN_OK) { 372 /* Not-retransmitted data segment: set ECT and inject CWR. */ 373 if (skb->len != tcp_header_len && 374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 375 INET_ECN_xmit(sk); 376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 378 th->cwr = 1; 379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 380 } 381 } else if (!tcp_ca_needs_ecn(sk)) { 382 /* ACK or retransmitted segment: clear ECT|CE */ 383 INET_ECN_dontxmit(sk); 384 } 385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 386 th->ece = 1; 387 } 388 } 389 390 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 391 * auto increment end seqno. 392 */ 393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 394 { 395 skb->ip_summed = CHECKSUM_PARTIAL; 396 skb->csum = 0; 397 398 TCP_SKB_CB(skb)->tcp_flags = flags; 399 TCP_SKB_CB(skb)->sacked = 0; 400 401 tcp_skb_pcount_set(skb, 1); 402 403 TCP_SKB_CB(skb)->seq = seq; 404 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 405 seq++; 406 TCP_SKB_CB(skb)->end_seq = seq; 407 } 408 409 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 410 { 411 return tp->snd_una != tp->snd_up; 412 } 413 414 #define OPTION_SACK_ADVERTISE (1 << 0) 415 #define OPTION_TS (1 << 1) 416 #define OPTION_MD5 (1 << 2) 417 #define OPTION_WSCALE (1 << 3) 418 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 419 420 struct tcp_out_options { 421 u16 options; /* bit field of OPTION_* */ 422 u16 mss; /* 0 to disable */ 423 u8 ws; /* window scale, 0 to disable */ 424 u8 num_sack_blocks; /* number of SACK blocks to include */ 425 u8 hash_size; /* bytes in hash_location */ 426 __u8 *hash_location; /* temporary pointer, overloaded */ 427 __u32 tsval, tsecr; /* need to include OPTION_TS */ 428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 429 }; 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operability perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 if (unlikely(OPTION_MD5 & options)) { 450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 452 /* overload cookie hash location */ 453 opts->hash_location = (__u8 *)ptr; 454 ptr += 4; 455 } 456 457 if (unlikely(opts->mss)) { 458 *ptr++ = htonl((TCPOPT_MSS << 24) | 459 (TCPOLEN_MSS << 16) | 460 opts->mss); 461 } 462 463 if (likely(OPTION_TS & options)) { 464 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 466 (TCPOLEN_SACK_PERM << 16) | 467 (TCPOPT_TIMESTAMP << 8) | 468 TCPOLEN_TIMESTAMP); 469 options &= ~OPTION_SACK_ADVERTISE; 470 } else { 471 *ptr++ = htonl((TCPOPT_NOP << 24) | 472 (TCPOPT_NOP << 16) | 473 (TCPOPT_TIMESTAMP << 8) | 474 TCPOLEN_TIMESTAMP); 475 } 476 *ptr++ = htonl(opts->tsval); 477 *ptr++ = htonl(opts->tsecr); 478 } 479 480 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_SACK_PERM << 8) | 484 TCPOLEN_SACK_PERM); 485 } 486 487 if (unlikely(OPTION_WSCALE & options)) { 488 *ptr++ = htonl((TCPOPT_NOP << 24) | 489 (TCPOPT_WINDOW << 16) | 490 (TCPOLEN_WINDOW << 8) | 491 opts->ws); 492 } 493 494 if (unlikely(opts->num_sack_blocks)) { 495 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 496 tp->duplicate_sack : tp->selective_acks; 497 int this_sack; 498 499 *ptr++ = htonl((TCPOPT_NOP << 24) | 500 (TCPOPT_NOP << 16) | 501 (TCPOPT_SACK << 8) | 502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 503 TCPOLEN_SACK_PERBLOCK))); 504 505 for (this_sack = 0; this_sack < opts->num_sack_blocks; 506 ++this_sack) { 507 *ptr++ = htonl(sp[this_sack].start_seq); 508 *ptr++ = htonl(sp[this_sack].end_seq); 509 } 510 511 tp->rx_opt.dsack = 0; 512 } 513 514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 516 u8 *p = (u8 *)ptr; 517 u32 len; /* Fast Open option length */ 518 519 if (foc->exp) { 520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 522 TCPOPT_FASTOPEN_MAGIC); 523 p += TCPOLEN_EXP_FASTOPEN_BASE; 524 } else { 525 len = TCPOLEN_FASTOPEN_BASE + foc->len; 526 *p++ = TCPOPT_FASTOPEN; 527 *p++ = len; 528 } 529 530 memcpy(p, foc->val, foc->len); 531 if ((len & 3) == 2) { 532 p[foc->len] = TCPOPT_NOP; 533 p[foc->len + 1] = TCPOPT_NOP; 534 } 535 ptr += (len + 3) >> 2; 536 } 537 } 538 539 /* Compute TCP options for SYN packets. This is not the final 540 * network wire format yet. 541 */ 542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 543 struct tcp_out_options *opts, 544 struct tcp_md5sig_key **md5) 545 { 546 struct tcp_sock *tp = tcp_sk(sk); 547 unsigned int remaining = MAX_TCP_OPTION_SPACE; 548 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 549 550 #ifdef CONFIG_TCP_MD5SIG 551 *md5 = tp->af_specific->md5_lookup(sk, sk); 552 if (*md5) { 553 opts->options |= OPTION_MD5; 554 remaining -= TCPOLEN_MD5SIG_ALIGNED; 555 } 556 #else 557 *md5 = NULL; 558 #endif 559 560 /* We always get an MSS option. The option bytes which will be seen in 561 * normal data packets should timestamps be used, must be in the MSS 562 * advertised. But we subtract them from tp->mss_cache so that 563 * calculations in tcp_sendmsg are simpler etc. So account for this 564 * fact here if necessary. If we don't do this correctly, as a 565 * receiver we won't recognize data packets as being full sized when we 566 * should, and thus we won't abide by the delayed ACK rules correctly. 567 * SACKs don't matter, we never delay an ACK when we have any of those 568 * going out. */ 569 opts->mss = tcp_advertise_mss(sk); 570 remaining -= TCPOLEN_MSS_ALIGNED; 571 572 if (likely(sysctl_tcp_timestamps && !*md5)) { 573 opts->options |= OPTION_TS; 574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 575 opts->tsecr = tp->rx_opt.ts_recent; 576 remaining -= TCPOLEN_TSTAMP_ALIGNED; 577 } 578 if (likely(sysctl_tcp_window_scaling)) { 579 opts->ws = tp->rx_opt.rcv_wscale; 580 opts->options |= OPTION_WSCALE; 581 remaining -= TCPOLEN_WSCALE_ALIGNED; 582 } 583 if (likely(sysctl_tcp_sack)) { 584 opts->options |= OPTION_SACK_ADVERTISE; 585 if (unlikely(!(OPTION_TS & opts->options))) 586 remaining -= TCPOLEN_SACKPERM_ALIGNED; 587 } 588 589 if (fastopen && fastopen->cookie.len >= 0) { 590 u32 need = fastopen->cookie.len; 591 592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 593 TCPOLEN_FASTOPEN_BASE; 594 need = (need + 3) & ~3U; /* Align to 32 bits */ 595 if (remaining >= need) { 596 opts->options |= OPTION_FAST_OPEN_COOKIE; 597 opts->fastopen_cookie = &fastopen->cookie; 598 remaining -= need; 599 tp->syn_fastopen = 1; 600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 601 } 602 } 603 604 return MAX_TCP_OPTION_SPACE - remaining; 605 } 606 607 /* Set up TCP options for SYN-ACKs. */ 608 static unsigned int tcp_synack_options(struct request_sock *req, 609 unsigned int mss, struct sk_buff *skb, 610 struct tcp_out_options *opts, 611 const struct tcp_md5sig_key *md5, 612 struct tcp_fastopen_cookie *foc) 613 { 614 struct inet_request_sock *ireq = inet_rsk(req); 615 unsigned int remaining = MAX_TCP_OPTION_SPACE; 616 617 #ifdef CONFIG_TCP_MD5SIG 618 if (md5) { 619 opts->options |= OPTION_MD5; 620 remaining -= TCPOLEN_MD5SIG_ALIGNED; 621 622 /* We can't fit any SACK blocks in a packet with MD5 + TS 623 * options. There was discussion about disabling SACK 624 * rather than TS in order to fit in better with old, 625 * buggy kernels, but that was deemed to be unnecessary. 626 */ 627 ireq->tstamp_ok &= !ireq->sack_ok; 628 } 629 #endif 630 631 /* We always send an MSS option. */ 632 opts->mss = mss; 633 remaining -= TCPOLEN_MSS_ALIGNED; 634 635 if (likely(ireq->wscale_ok)) { 636 opts->ws = ireq->rcv_wscale; 637 opts->options |= OPTION_WSCALE; 638 remaining -= TCPOLEN_WSCALE_ALIGNED; 639 } 640 if (likely(ireq->tstamp_ok)) { 641 opts->options |= OPTION_TS; 642 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 643 opts->tsecr = req->ts_recent; 644 remaining -= TCPOLEN_TSTAMP_ALIGNED; 645 } 646 if (likely(ireq->sack_ok)) { 647 opts->options |= OPTION_SACK_ADVERTISE; 648 if (unlikely(!ireq->tstamp_ok)) 649 remaining -= TCPOLEN_SACKPERM_ALIGNED; 650 } 651 if (foc != NULL && foc->len >= 0) { 652 u32 need = foc->len; 653 654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 655 TCPOLEN_FASTOPEN_BASE; 656 need = (need + 3) & ~3U; /* Align to 32 bits */ 657 if (remaining >= need) { 658 opts->options |= OPTION_FAST_OPEN_COOKIE; 659 opts->fastopen_cookie = foc; 660 remaining -= need; 661 } 662 } 663 664 return MAX_TCP_OPTION_SPACE - remaining; 665 } 666 667 /* Compute TCP options for ESTABLISHED sockets. This is not the 668 * final wire format yet. 669 */ 670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 671 struct tcp_out_options *opts, 672 struct tcp_md5sig_key **md5) 673 { 674 struct tcp_sock *tp = tcp_sk(sk); 675 unsigned int size = 0; 676 unsigned int eff_sacks; 677 678 opts->options = 0; 679 680 #ifdef CONFIG_TCP_MD5SIG 681 *md5 = tp->af_specific->md5_lookup(sk, sk); 682 if (unlikely(*md5)) { 683 opts->options |= OPTION_MD5; 684 size += TCPOLEN_MD5SIG_ALIGNED; 685 } 686 #else 687 *md5 = NULL; 688 #endif 689 690 if (likely(tp->rx_opt.tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 693 opts->tsecr = tp->rx_opt.ts_recent; 694 size += TCPOLEN_TSTAMP_ALIGNED; 695 } 696 697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 698 if (unlikely(eff_sacks)) { 699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 700 opts->num_sack_blocks = 701 min_t(unsigned int, eff_sacks, 702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 703 TCPOLEN_SACK_PERBLOCK); 704 size += TCPOLEN_SACK_BASE_ALIGNED + 705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 706 } 707 708 return size; 709 } 710 711 712 /* TCP SMALL QUEUES (TSQ) 713 * 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 715 * to reduce RTT and bufferbloat. 716 * We do this using a special skb destructor (tcp_wfree). 717 * 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 719 * needs to be reallocated in a driver. 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 721 * 722 * Since transmit from skb destructor is forbidden, we use a tasklet 723 * to process all sockets that eventually need to send more skbs. 724 * We use one tasklet per cpu, with its own queue of sockets. 725 */ 726 struct tsq_tasklet { 727 struct tasklet_struct tasklet; 728 struct list_head head; /* queue of tcp sockets */ 729 }; 730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 731 732 static void tcp_tsq_handler(struct sock *sk) 733 { 734 if ((1 << sk->sk_state) & 735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 737 struct tcp_sock *tp = tcp_sk(sk); 738 739 if (tp->lost_out > tp->retrans_out && 740 tp->snd_cwnd > tcp_packets_in_flight(tp)) 741 tcp_xmit_retransmit_queue(sk); 742 743 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 744 0, GFP_ATOMIC); 745 } 746 } 747 /* 748 * One tasklet per cpu tries to send more skbs. 749 * We run in tasklet context but need to disable irqs when 750 * transferring tsq->head because tcp_wfree() might 751 * interrupt us (non NAPI drivers) 752 */ 753 static void tcp_tasklet_func(unsigned long data) 754 { 755 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 756 LIST_HEAD(list); 757 unsigned long flags; 758 struct list_head *q, *n; 759 struct tcp_sock *tp; 760 struct sock *sk; 761 762 local_irq_save(flags); 763 list_splice_init(&tsq->head, &list); 764 local_irq_restore(flags); 765 766 list_for_each_safe(q, n, &list) { 767 tp = list_entry(q, struct tcp_sock, tsq_node); 768 list_del(&tp->tsq_node); 769 770 sk = (struct sock *)tp; 771 smp_mb__before_atomic(); 772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 773 774 if (!sk->sk_lock.owned && 775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 776 bh_lock_sock(sk); 777 if (!sock_owned_by_user(sk)) { 778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 779 tcp_tsq_handler(sk); 780 } 781 bh_unlock_sock(sk); 782 } 783 784 sk_free(sk); 785 } 786 } 787 788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 789 TCPF_WRITE_TIMER_DEFERRED | \ 790 TCPF_DELACK_TIMER_DEFERRED | \ 791 TCPF_MTU_REDUCED_DEFERRED) 792 /** 793 * tcp_release_cb - tcp release_sock() callback 794 * @sk: socket 795 * 796 * called from release_sock() to perform protocol dependent 797 * actions before socket release. 798 */ 799 void tcp_release_cb(struct sock *sk) 800 { 801 unsigned long flags, nflags; 802 803 /* perform an atomic operation only if at least one flag is set */ 804 do { 805 flags = sk->sk_tsq_flags; 806 if (!(flags & TCP_DEFERRED_ALL)) 807 return; 808 nflags = flags & ~TCP_DEFERRED_ALL; 809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 810 811 if (flags & TCPF_TSQ_DEFERRED) 812 tcp_tsq_handler(sk); 813 814 /* Here begins the tricky part : 815 * We are called from release_sock() with : 816 * 1) BH disabled 817 * 2) sk_lock.slock spinlock held 818 * 3) socket owned by us (sk->sk_lock.owned == 1) 819 * 820 * But following code is meant to be called from BH handlers, 821 * so we should keep BH disabled, but early release socket ownership 822 */ 823 sock_release_ownership(sk); 824 825 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 826 tcp_write_timer_handler(sk); 827 __sock_put(sk); 828 } 829 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 830 tcp_delack_timer_handler(sk); 831 __sock_put(sk); 832 } 833 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 835 __sock_put(sk); 836 } 837 } 838 EXPORT_SYMBOL(tcp_release_cb); 839 840 void __init tcp_tasklet_init(void) 841 { 842 int i; 843 844 for_each_possible_cpu(i) { 845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 846 847 INIT_LIST_HEAD(&tsq->head); 848 tasklet_init(&tsq->tasklet, 849 tcp_tasklet_func, 850 (unsigned long)tsq); 851 } 852 } 853 854 /* 855 * Write buffer destructor automatically called from kfree_skb. 856 * We can't xmit new skbs from this context, as we might already 857 * hold qdisc lock. 858 */ 859 void tcp_wfree(struct sk_buff *skb) 860 { 861 struct sock *sk = skb->sk; 862 struct tcp_sock *tp = tcp_sk(sk); 863 unsigned long flags, nval, oval; 864 int wmem; 865 866 /* Keep one reference on sk_wmem_alloc. 867 * Will be released by sk_free() from here or tcp_tasklet_func() 868 */ 869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 870 871 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 872 * Wait until our queues (qdisc + devices) are drained. 873 * This gives : 874 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 875 * - chance for incoming ACK (processed by another cpu maybe) 876 * to migrate this flow (skb->ooo_okay will be eventually set) 877 */ 878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 879 goto out; 880 881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 882 struct tsq_tasklet *tsq; 883 bool empty; 884 885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 886 goto out; 887 888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 890 if (nval != oval) 891 continue; 892 893 /* queue this socket to tasklet queue */ 894 local_irq_save(flags); 895 tsq = this_cpu_ptr(&tsq_tasklet); 896 empty = list_empty(&tsq->head); 897 list_add(&tp->tsq_node, &tsq->head); 898 if (empty) 899 tasklet_schedule(&tsq->tasklet); 900 local_irq_restore(flags); 901 return; 902 } 903 out: 904 sk_free(sk); 905 } 906 907 /* This routine actually transmits TCP packets queued in by 908 * tcp_do_sendmsg(). This is used by both the initial 909 * transmission and possible later retransmissions. 910 * All SKB's seen here are completely headerless. It is our 911 * job to build the TCP header, and pass the packet down to 912 * IP so it can do the same plus pass the packet off to the 913 * device. 914 * 915 * We are working here with either a clone of the original 916 * SKB, or a fresh unique copy made by the retransmit engine. 917 */ 918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 919 gfp_t gfp_mask) 920 { 921 const struct inet_connection_sock *icsk = inet_csk(sk); 922 struct inet_sock *inet; 923 struct tcp_sock *tp; 924 struct tcp_skb_cb *tcb; 925 struct tcp_out_options opts; 926 unsigned int tcp_options_size, tcp_header_size; 927 struct tcp_md5sig_key *md5; 928 struct tcphdr *th; 929 int err; 930 931 BUG_ON(!skb || !tcp_skb_pcount(skb)); 932 tp = tcp_sk(sk); 933 934 if (clone_it) { 935 skb_mstamp_get(&skb->skb_mstamp); 936 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 937 - tp->snd_una; 938 tcp_rate_skb_sent(sk, skb); 939 940 if (unlikely(skb_cloned(skb))) 941 skb = pskb_copy(skb, gfp_mask); 942 else 943 skb = skb_clone(skb, gfp_mask); 944 if (unlikely(!skb)) 945 return -ENOBUFS; 946 } 947 948 inet = inet_sk(sk); 949 tcb = TCP_SKB_CB(skb); 950 memset(&opts, 0, sizeof(opts)); 951 952 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 953 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 954 else 955 tcp_options_size = tcp_established_options(sk, skb, &opts, 956 &md5); 957 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 958 959 /* if no packet is in qdisc/device queue, then allow XPS to select 960 * another queue. We can be called from tcp_tsq_handler() 961 * which holds one reference to sk_wmem_alloc. 962 * 963 * TODO: Ideally, in-flight pure ACK packets should not matter here. 964 * One way to get this would be to set skb->truesize = 2 on them. 965 */ 966 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 967 968 /* If we had to use memory reserve to allocate this skb, 969 * this might cause drops if packet is looped back : 970 * Other socket might not have SOCK_MEMALLOC. 971 * Packets not looped back do not care about pfmemalloc. 972 */ 973 skb->pfmemalloc = 0; 974 975 skb_push(skb, tcp_header_size); 976 skb_reset_transport_header(skb); 977 978 skb_orphan(skb); 979 skb->sk = sk; 980 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 981 skb_set_hash_from_sk(skb, sk); 982 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 983 984 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 985 986 /* Build TCP header and checksum it. */ 987 th = (struct tcphdr *)skb->data; 988 th->source = inet->inet_sport; 989 th->dest = inet->inet_dport; 990 th->seq = htonl(tcb->seq); 991 th->ack_seq = htonl(tp->rcv_nxt); 992 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 993 tcb->tcp_flags); 994 995 th->check = 0; 996 th->urg_ptr = 0; 997 998 /* The urg_mode check is necessary during a below snd_una win probe */ 999 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1000 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1001 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1002 th->urg = 1; 1003 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1004 th->urg_ptr = htons(0xFFFF); 1005 th->urg = 1; 1006 } 1007 } 1008 1009 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1010 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1011 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1012 th->window = htons(tcp_select_window(sk)); 1013 tcp_ecn_send(sk, skb, th, tcp_header_size); 1014 } else { 1015 /* RFC1323: The window in SYN & SYN/ACK segments 1016 * is never scaled. 1017 */ 1018 th->window = htons(min(tp->rcv_wnd, 65535U)); 1019 } 1020 #ifdef CONFIG_TCP_MD5SIG 1021 /* Calculate the MD5 hash, as we have all we need now */ 1022 if (md5) { 1023 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1024 tp->af_specific->calc_md5_hash(opts.hash_location, 1025 md5, sk, skb); 1026 } 1027 #endif 1028 1029 icsk->icsk_af_ops->send_check(sk, skb); 1030 1031 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1032 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1033 1034 if (skb->len != tcp_header_size) { 1035 tcp_event_data_sent(tp, sk); 1036 tp->data_segs_out += tcp_skb_pcount(skb); 1037 } 1038 1039 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1040 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1041 tcp_skb_pcount(skb)); 1042 1043 tp->segs_out += tcp_skb_pcount(skb); 1044 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1045 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1046 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1047 1048 /* Our usage of tstamp should remain private */ 1049 skb->tstamp = 0; 1050 1051 /* Cleanup our debris for IP stacks */ 1052 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1053 sizeof(struct inet6_skb_parm))); 1054 1055 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1056 1057 if (likely(err <= 0)) 1058 return err; 1059 1060 tcp_enter_cwr(sk); 1061 1062 return net_xmit_eval(err); 1063 } 1064 1065 /* This routine just queues the buffer for sending. 1066 * 1067 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1068 * otherwise socket can stall. 1069 */ 1070 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1071 { 1072 struct tcp_sock *tp = tcp_sk(sk); 1073 1074 /* Advance write_seq and place onto the write_queue. */ 1075 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1076 __skb_header_release(skb); 1077 tcp_add_write_queue_tail(sk, skb); 1078 sk->sk_wmem_queued += skb->truesize; 1079 sk_mem_charge(sk, skb->truesize); 1080 } 1081 1082 /* Initialize TSO segments for a packet. */ 1083 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1084 { 1085 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1086 /* Avoid the costly divide in the normal 1087 * non-TSO case. 1088 */ 1089 tcp_skb_pcount_set(skb, 1); 1090 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1091 } else { 1092 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1093 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1094 } 1095 } 1096 1097 /* When a modification to fackets out becomes necessary, we need to check 1098 * skb is counted to fackets_out or not. 1099 */ 1100 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1101 int decr) 1102 { 1103 struct tcp_sock *tp = tcp_sk(sk); 1104 1105 if (!tp->sacked_out || tcp_is_reno(tp)) 1106 return; 1107 1108 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1109 tp->fackets_out -= decr; 1110 } 1111 1112 /* Pcount in the middle of the write queue got changed, we need to do various 1113 * tweaks to fix counters 1114 */ 1115 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1116 { 1117 struct tcp_sock *tp = tcp_sk(sk); 1118 1119 tp->packets_out -= decr; 1120 1121 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1122 tp->sacked_out -= decr; 1123 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1124 tp->retrans_out -= decr; 1125 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1126 tp->lost_out -= decr; 1127 1128 /* Reno case is special. Sigh... */ 1129 if (tcp_is_reno(tp) && decr > 0) 1130 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1131 1132 tcp_adjust_fackets_out(sk, skb, decr); 1133 1134 if (tp->lost_skb_hint && 1135 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1136 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1137 tp->lost_cnt_hint -= decr; 1138 1139 tcp_verify_left_out(tp); 1140 } 1141 1142 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1143 { 1144 return TCP_SKB_CB(skb)->txstamp_ack || 1145 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1146 } 1147 1148 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1149 { 1150 struct skb_shared_info *shinfo = skb_shinfo(skb); 1151 1152 if (unlikely(tcp_has_tx_tstamp(skb)) && 1153 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1154 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1155 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1156 1157 shinfo->tx_flags &= ~tsflags; 1158 shinfo2->tx_flags |= tsflags; 1159 swap(shinfo->tskey, shinfo2->tskey); 1160 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1161 TCP_SKB_CB(skb)->txstamp_ack = 0; 1162 } 1163 } 1164 1165 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1166 { 1167 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1168 TCP_SKB_CB(skb)->eor = 0; 1169 } 1170 1171 /* Function to create two new TCP segments. Shrinks the given segment 1172 * to the specified size and appends a new segment with the rest of the 1173 * packet to the list. This won't be called frequently, I hope. 1174 * Remember, these are still headerless SKBs at this point. 1175 */ 1176 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1177 unsigned int mss_now, gfp_t gfp) 1178 { 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 struct sk_buff *buff; 1181 int nsize, old_factor; 1182 int nlen; 1183 u8 flags; 1184 1185 if (WARN_ON(len > skb->len)) 1186 return -EINVAL; 1187 1188 nsize = skb_headlen(skb) - len; 1189 if (nsize < 0) 1190 nsize = 0; 1191 1192 if (skb_unclone(skb, gfp)) 1193 return -ENOMEM; 1194 1195 /* Get a new skb... force flag on. */ 1196 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1197 if (!buff) 1198 return -ENOMEM; /* We'll just try again later. */ 1199 1200 sk->sk_wmem_queued += buff->truesize; 1201 sk_mem_charge(sk, buff->truesize); 1202 nlen = skb->len - len - nsize; 1203 buff->truesize += nlen; 1204 skb->truesize -= nlen; 1205 1206 /* Correct the sequence numbers. */ 1207 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1208 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1209 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1210 1211 /* PSH and FIN should only be set in the second packet. */ 1212 flags = TCP_SKB_CB(skb)->tcp_flags; 1213 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1214 TCP_SKB_CB(buff)->tcp_flags = flags; 1215 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1216 tcp_skb_fragment_eor(skb, buff); 1217 1218 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1219 /* Copy and checksum data tail into the new buffer. */ 1220 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1221 skb_put(buff, nsize), 1222 nsize, 0); 1223 1224 skb_trim(skb, len); 1225 1226 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1227 } else { 1228 skb->ip_summed = CHECKSUM_PARTIAL; 1229 skb_split(skb, buff, len); 1230 } 1231 1232 buff->ip_summed = skb->ip_summed; 1233 1234 buff->tstamp = skb->tstamp; 1235 tcp_fragment_tstamp(skb, buff); 1236 1237 old_factor = tcp_skb_pcount(skb); 1238 1239 /* Fix up tso_factor for both original and new SKB. */ 1240 tcp_set_skb_tso_segs(skb, mss_now); 1241 tcp_set_skb_tso_segs(buff, mss_now); 1242 1243 /* Update delivered info for the new segment */ 1244 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1245 1246 /* If this packet has been sent out already, we must 1247 * adjust the various packet counters. 1248 */ 1249 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1250 int diff = old_factor - tcp_skb_pcount(skb) - 1251 tcp_skb_pcount(buff); 1252 1253 if (diff) 1254 tcp_adjust_pcount(sk, skb, diff); 1255 } 1256 1257 /* Link BUFF into the send queue. */ 1258 __skb_header_release(buff); 1259 tcp_insert_write_queue_after(skb, buff, sk); 1260 1261 return 0; 1262 } 1263 1264 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1265 * eventually). The difference is that pulled data not copied, but 1266 * immediately discarded. 1267 */ 1268 static int __pskb_trim_head(struct sk_buff *skb, int len) 1269 { 1270 struct skb_shared_info *shinfo; 1271 int i, k, eat; 1272 1273 eat = min_t(int, len, skb_headlen(skb)); 1274 if (eat) { 1275 __skb_pull(skb, eat); 1276 len -= eat; 1277 if (!len) 1278 return 0; 1279 } 1280 eat = len; 1281 k = 0; 1282 shinfo = skb_shinfo(skb); 1283 for (i = 0; i < shinfo->nr_frags; i++) { 1284 int size = skb_frag_size(&shinfo->frags[i]); 1285 1286 if (size <= eat) { 1287 skb_frag_unref(skb, i); 1288 eat -= size; 1289 } else { 1290 shinfo->frags[k] = shinfo->frags[i]; 1291 if (eat) { 1292 shinfo->frags[k].page_offset += eat; 1293 skb_frag_size_sub(&shinfo->frags[k], eat); 1294 eat = 0; 1295 } 1296 k++; 1297 } 1298 } 1299 shinfo->nr_frags = k; 1300 1301 skb_reset_tail_pointer(skb); 1302 skb->data_len -= len; 1303 skb->len = skb->data_len; 1304 return len; 1305 } 1306 1307 /* Remove acked data from a packet in the transmit queue. */ 1308 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1309 { 1310 u32 delta_truesize; 1311 1312 if (skb_unclone(skb, GFP_ATOMIC)) 1313 return -ENOMEM; 1314 1315 delta_truesize = __pskb_trim_head(skb, len); 1316 1317 TCP_SKB_CB(skb)->seq += len; 1318 skb->ip_summed = CHECKSUM_PARTIAL; 1319 1320 if (delta_truesize) { 1321 skb->truesize -= delta_truesize; 1322 sk->sk_wmem_queued -= delta_truesize; 1323 sk_mem_uncharge(sk, delta_truesize); 1324 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1325 } 1326 1327 /* Any change of skb->len requires recalculation of tso factor. */ 1328 if (tcp_skb_pcount(skb) > 1) 1329 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1330 1331 return 0; 1332 } 1333 1334 /* Calculate MSS not accounting any TCP options. */ 1335 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1336 { 1337 const struct tcp_sock *tp = tcp_sk(sk); 1338 const struct inet_connection_sock *icsk = inet_csk(sk); 1339 int mss_now; 1340 1341 /* Calculate base mss without TCP options: 1342 It is MMS_S - sizeof(tcphdr) of rfc1122 1343 */ 1344 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1345 1346 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1347 if (icsk->icsk_af_ops->net_frag_header_len) { 1348 const struct dst_entry *dst = __sk_dst_get(sk); 1349 1350 if (dst && dst_allfrag(dst)) 1351 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1352 } 1353 1354 /* Clamp it (mss_clamp does not include tcp options) */ 1355 if (mss_now > tp->rx_opt.mss_clamp) 1356 mss_now = tp->rx_opt.mss_clamp; 1357 1358 /* Now subtract optional transport overhead */ 1359 mss_now -= icsk->icsk_ext_hdr_len; 1360 1361 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1362 if (mss_now < 48) 1363 mss_now = 48; 1364 return mss_now; 1365 } 1366 1367 /* Calculate MSS. Not accounting for SACKs here. */ 1368 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1369 { 1370 /* Subtract TCP options size, not including SACKs */ 1371 return __tcp_mtu_to_mss(sk, pmtu) - 1372 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1373 } 1374 1375 /* Inverse of above */ 1376 int tcp_mss_to_mtu(struct sock *sk, int mss) 1377 { 1378 const struct tcp_sock *tp = tcp_sk(sk); 1379 const struct inet_connection_sock *icsk = inet_csk(sk); 1380 int mtu; 1381 1382 mtu = mss + 1383 tp->tcp_header_len + 1384 icsk->icsk_ext_hdr_len + 1385 icsk->icsk_af_ops->net_header_len; 1386 1387 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1388 if (icsk->icsk_af_ops->net_frag_header_len) { 1389 const struct dst_entry *dst = __sk_dst_get(sk); 1390 1391 if (dst && dst_allfrag(dst)) 1392 mtu += icsk->icsk_af_ops->net_frag_header_len; 1393 } 1394 return mtu; 1395 } 1396 EXPORT_SYMBOL(tcp_mss_to_mtu); 1397 1398 /* MTU probing init per socket */ 1399 void tcp_mtup_init(struct sock *sk) 1400 { 1401 struct tcp_sock *tp = tcp_sk(sk); 1402 struct inet_connection_sock *icsk = inet_csk(sk); 1403 struct net *net = sock_net(sk); 1404 1405 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1406 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1407 icsk->icsk_af_ops->net_header_len; 1408 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1409 icsk->icsk_mtup.probe_size = 0; 1410 if (icsk->icsk_mtup.enabled) 1411 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1412 } 1413 EXPORT_SYMBOL(tcp_mtup_init); 1414 1415 /* This function synchronize snd mss to current pmtu/exthdr set. 1416 1417 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1418 for TCP options, but includes only bare TCP header. 1419 1420 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1421 It is minimum of user_mss and mss received with SYN. 1422 It also does not include TCP options. 1423 1424 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1425 1426 tp->mss_cache is current effective sending mss, including 1427 all tcp options except for SACKs. It is evaluated, 1428 taking into account current pmtu, but never exceeds 1429 tp->rx_opt.mss_clamp. 1430 1431 NOTE1. rfc1122 clearly states that advertised MSS 1432 DOES NOT include either tcp or ip options. 1433 1434 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1435 are READ ONLY outside this function. --ANK (980731) 1436 */ 1437 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1438 { 1439 struct tcp_sock *tp = tcp_sk(sk); 1440 struct inet_connection_sock *icsk = inet_csk(sk); 1441 int mss_now; 1442 1443 if (icsk->icsk_mtup.search_high > pmtu) 1444 icsk->icsk_mtup.search_high = pmtu; 1445 1446 mss_now = tcp_mtu_to_mss(sk, pmtu); 1447 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1448 1449 /* And store cached results */ 1450 icsk->icsk_pmtu_cookie = pmtu; 1451 if (icsk->icsk_mtup.enabled) 1452 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1453 tp->mss_cache = mss_now; 1454 1455 return mss_now; 1456 } 1457 EXPORT_SYMBOL(tcp_sync_mss); 1458 1459 /* Compute the current effective MSS, taking SACKs and IP options, 1460 * and even PMTU discovery events into account. 1461 */ 1462 unsigned int tcp_current_mss(struct sock *sk) 1463 { 1464 const struct tcp_sock *tp = tcp_sk(sk); 1465 const struct dst_entry *dst = __sk_dst_get(sk); 1466 u32 mss_now; 1467 unsigned int header_len; 1468 struct tcp_out_options opts; 1469 struct tcp_md5sig_key *md5; 1470 1471 mss_now = tp->mss_cache; 1472 1473 if (dst) { 1474 u32 mtu = dst_mtu(dst); 1475 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1476 mss_now = tcp_sync_mss(sk, mtu); 1477 } 1478 1479 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1480 sizeof(struct tcphdr); 1481 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1482 * some common options. If this is an odd packet (because we have SACK 1483 * blocks etc) then our calculated header_len will be different, and 1484 * we have to adjust mss_now correspondingly */ 1485 if (header_len != tp->tcp_header_len) { 1486 int delta = (int) header_len - tp->tcp_header_len; 1487 mss_now -= delta; 1488 } 1489 1490 return mss_now; 1491 } 1492 1493 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1494 * As additional protections, we do not touch cwnd in retransmission phases, 1495 * and if application hit its sndbuf limit recently. 1496 */ 1497 static void tcp_cwnd_application_limited(struct sock *sk) 1498 { 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 1501 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1502 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1503 /* Limited by application or receiver window. */ 1504 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1505 u32 win_used = max(tp->snd_cwnd_used, init_win); 1506 if (win_used < tp->snd_cwnd) { 1507 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1508 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1509 } 1510 tp->snd_cwnd_used = 0; 1511 } 1512 tp->snd_cwnd_stamp = tcp_time_stamp; 1513 } 1514 1515 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1516 { 1517 struct tcp_sock *tp = tcp_sk(sk); 1518 1519 /* Track the maximum number of outstanding packets in each 1520 * window, and remember whether we were cwnd-limited then. 1521 */ 1522 if (!before(tp->snd_una, tp->max_packets_seq) || 1523 tp->packets_out > tp->max_packets_out) { 1524 tp->max_packets_out = tp->packets_out; 1525 tp->max_packets_seq = tp->snd_nxt; 1526 tp->is_cwnd_limited = is_cwnd_limited; 1527 } 1528 1529 if (tcp_is_cwnd_limited(sk)) { 1530 /* Network is feed fully. */ 1531 tp->snd_cwnd_used = 0; 1532 tp->snd_cwnd_stamp = tcp_time_stamp; 1533 } else { 1534 /* Network starves. */ 1535 if (tp->packets_out > tp->snd_cwnd_used) 1536 tp->snd_cwnd_used = tp->packets_out; 1537 1538 if (sysctl_tcp_slow_start_after_idle && 1539 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1540 tcp_cwnd_application_limited(sk); 1541 1542 /* The following conditions together indicate the starvation 1543 * is caused by insufficient sender buffer: 1544 * 1) just sent some data (see tcp_write_xmit) 1545 * 2) not cwnd limited (this else condition) 1546 * 3) no more data to send (null tcp_send_head ) 1547 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1548 */ 1549 if (!tcp_send_head(sk) && sk->sk_socket && 1550 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1551 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1552 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1553 } 1554 } 1555 1556 /* Minshall's variant of the Nagle send check. */ 1557 static bool tcp_minshall_check(const struct tcp_sock *tp) 1558 { 1559 return after(tp->snd_sml, tp->snd_una) && 1560 !after(tp->snd_sml, tp->snd_nxt); 1561 } 1562 1563 /* Update snd_sml if this skb is under mss 1564 * Note that a TSO packet might end with a sub-mss segment 1565 * The test is really : 1566 * if ((skb->len % mss) != 0) 1567 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1568 * But we can avoid doing the divide again given we already have 1569 * skb_pcount = skb->len / mss_now 1570 */ 1571 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1572 const struct sk_buff *skb) 1573 { 1574 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1575 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1576 } 1577 1578 /* Return false, if packet can be sent now without violation Nagle's rules: 1579 * 1. It is full sized. (provided by caller in %partial bool) 1580 * 2. Or it contains FIN. (already checked by caller) 1581 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1582 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1583 * With Minshall's modification: all sent small packets are ACKed. 1584 */ 1585 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1586 int nonagle) 1587 { 1588 return partial && 1589 ((nonagle & TCP_NAGLE_CORK) || 1590 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1591 } 1592 1593 /* Return how many segs we'd like on a TSO packet, 1594 * to send one TSO packet per ms 1595 */ 1596 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1597 int min_tso_segs) 1598 { 1599 u32 bytes, segs; 1600 1601 bytes = min(sk->sk_pacing_rate >> 10, 1602 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1603 1604 /* Goal is to send at least one packet per ms, 1605 * not one big TSO packet every 100 ms. 1606 * This preserves ACK clocking and is consistent 1607 * with tcp_tso_should_defer() heuristic. 1608 */ 1609 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1610 1611 return min_t(u32, segs, sk->sk_gso_max_segs); 1612 } 1613 EXPORT_SYMBOL(tcp_tso_autosize); 1614 1615 /* Return the number of segments we want in the skb we are transmitting. 1616 * See if congestion control module wants to decide; otherwise, autosize. 1617 */ 1618 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1619 { 1620 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1621 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1622 1623 return tso_segs ? : 1624 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1625 } 1626 1627 /* Returns the portion of skb which can be sent right away */ 1628 static unsigned int tcp_mss_split_point(const struct sock *sk, 1629 const struct sk_buff *skb, 1630 unsigned int mss_now, 1631 unsigned int max_segs, 1632 int nonagle) 1633 { 1634 const struct tcp_sock *tp = tcp_sk(sk); 1635 u32 partial, needed, window, max_len; 1636 1637 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1638 max_len = mss_now * max_segs; 1639 1640 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1641 return max_len; 1642 1643 needed = min(skb->len, window); 1644 1645 if (max_len <= needed) 1646 return max_len; 1647 1648 partial = needed % mss_now; 1649 /* If last segment is not a full MSS, check if Nagle rules allow us 1650 * to include this last segment in this skb. 1651 * Otherwise, we'll split the skb at last MSS boundary 1652 */ 1653 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1654 return needed - partial; 1655 1656 return needed; 1657 } 1658 1659 /* Can at least one segment of SKB be sent right now, according to the 1660 * congestion window rules? If so, return how many segments are allowed. 1661 */ 1662 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1663 const struct sk_buff *skb) 1664 { 1665 u32 in_flight, cwnd, halfcwnd; 1666 1667 /* Don't be strict about the congestion window for the final FIN. */ 1668 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1669 tcp_skb_pcount(skb) == 1) 1670 return 1; 1671 1672 in_flight = tcp_packets_in_flight(tp); 1673 cwnd = tp->snd_cwnd; 1674 if (in_flight >= cwnd) 1675 return 0; 1676 1677 /* For better scheduling, ensure we have at least 1678 * 2 GSO packets in flight. 1679 */ 1680 halfcwnd = max(cwnd >> 1, 1U); 1681 return min(halfcwnd, cwnd - in_flight); 1682 } 1683 1684 /* Initialize TSO state of a skb. 1685 * This must be invoked the first time we consider transmitting 1686 * SKB onto the wire. 1687 */ 1688 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1689 { 1690 int tso_segs = tcp_skb_pcount(skb); 1691 1692 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1693 tcp_set_skb_tso_segs(skb, mss_now); 1694 tso_segs = tcp_skb_pcount(skb); 1695 } 1696 return tso_segs; 1697 } 1698 1699 1700 /* Return true if the Nagle test allows this packet to be 1701 * sent now. 1702 */ 1703 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1704 unsigned int cur_mss, int nonagle) 1705 { 1706 /* Nagle rule does not apply to frames, which sit in the middle of the 1707 * write_queue (they have no chances to get new data). 1708 * 1709 * This is implemented in the callers, where they modify the 'nonagle' 1710 * argument based upon the location of SKB in the send queue. 1711 */ 1712 if (nonagle & TCP_NAGLE_PUSH) 1713 return true; 1714 1715 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1716 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1717 return true; 1718 1719 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1720 return true; 1721 1722 return false; 1723 } 1724 1725 /* Does at least the first segment of SKB fit into the send window? */ 1726 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1727 const struct sk_buff *skb, 1728 unsigned int cur_mss) 1729 { 1730 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1731 1732 if (skb->len > cur_mss) 1733 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1734 1735 return !after(end_seq, tcp_wnd_end(tp)); 1736 } 1737 1738 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1739 * should be put on the wire right now. If so, it returns the number of 1740 * packets allowed by the congestion window. 1741 */ 1742 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1743 unsigned int cur_mss, int nonagle) 1744 { 1745 const struct tcp_sock *tp = tcp_sk(sk); 1746 unsigned int cwnd_quota; 1747 1748 tcp_init_tso_segs(skb, cur_mss); 1749 1750 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1751 return 0; 1752 1753 cwnd_quota = tcp_cwnd_test(tp, skb); 1754 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1755 cwnd_quota = 0; 1756 1757 return cwnd_quota; 1758 } 1759 1760 /* Test if sending is allowed right now. */ 1761 bool tcp_may_send_now(struct sock *sk) 1762 { 1763 const struct tcp_sock *tp = tcp_sk(sk); 1764 struct sk_buff *skb = tcp_send_head(sk); 1765 1766 return skb && 1767 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1768 (tcp_skb_is_last(sk, skb) ? 1769 tp->nonagle : TCP_NAGLE_PUSH)); 1770 } 1771 1772 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1773 * which is put after SKB on the list. It is very much like 1774 * tcp_fragment() except that it may make several kinds of assumptions 1775 * in order to speed up the splitting operation. In particular, we 1776 * know that all the data is in scatter-gather pages, and that the 1777 * packet has never been sent out before (and thus is not cloned). 1778 */ 1779 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1780 unsigned int mss_now, gfp_t gfp) 1781 { 1782 struct sk_buff *buff; 1783 int nlen = skb->len - len; 1784 u8 flags; 1785 1786 /* All of a TSO frame must be composed of paged data. */ 1787 if (skb->len != skb->data_len) 1788 return tcp_fragment(sk, skb, len, mss_now, gfp); 1789 1790 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1791 if (unlikely(!buff)) 1792 return -ENOMEM; 1793 1794 sk->sk_wmem_queued += buff->truesize; 1795 sk_mem_charge(sk, buff->truesize); 1796 buff->truesize += nlen; 1797 skb->truesize -= nlen; 1798 1799 /* Correct the sequence numbers. */ 1800 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1801 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1802 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1803 1804 /* PSH and FIN should only be set in the second packet. */ 1805 flags = TCP_SKB_CB(skb)->tcp_flags; 1806 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1807 TCP_SKB_CB(buff)->tcp_flags = flags; 1808 1809 /* This packet was never sent out yet, so no SACK bits. */ 1810 TCP_SKB_CB(buff)->sacked = 0; 1811 1812 tcp_skb_fragment_eor(skb, buff); 1813 1814 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1815 skb_split(skb, buff, len); 1816 tcp_fragment_tstamp(skb, buff); 1817 1818 /* Fix up tso_factor for both original and new SKB. */ 1819 tcp_set_skb_tso_segs(skb, mss_now); 1820 tcp_set_skb_tso_segs(buff, mss_now); 1821 1822 /* Link BUFF into the send queue. */ 1823 __skb_header_release(buff); 1824 tcp_insert_write_queue_after(skb, buff, sk); 1825 1826 return 0; 1827 } 1828 1829 /* Try to defer sending, if possible, in order to minimize the amount 1830 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1831 * 1832 * This algorithm is from John Heffner. 1833 */ 1834 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1835 bool *is_cwnd_limited, u32 max_segs) 1836 { 1837 const struct inet_connection_sock *icsk = inet_csk(sk); 1838 u32 age, send_win, cong_win, limit, in_flight; 1839 struct tcp_sock *tp = tcp_sk(sk); 1840 struct skb_mstamp now; 1841 struct sk_buff *head; 1842 int win_divisor; 1843 1844 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1845 goto send_now; 1846 1847 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1848 goto send_now; 1849 1850 /* Avoid bursty behavior by allowing defer 1851 * only if the last write was recent. 1852 */ 1853 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1854 goto send_now; 1855 1856 in_flight = tcp_packets_in_flight(tp); 1857 1858 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1859 1860 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1861 1862 /* From in_flight test above, we know that cwnd > in_flight. */ 1863 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1864 1865 limit = min(send_win, cong_win); 1866 1867 /* If a full-sized TSO skb can be sent, do it. */ 1868 if (limit >= max_segs * tp->mss_cache) 1869 goto send_now; 1870 1871 /* Middle in queue won't get any more data, full sendable already? */ 1872 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1873 goto send_now; 1874 1875 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1876 if (win_divisor) { 1877 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1878 1879 /* If at least some fraction of a window is available, 1880 * just use it. 1881 */ 1882 chunk /= win_divisor; 1883 if (limit >= chunk) 1884 goto send_now; 1885 } else { 1886 /* Different approach, try not to defer past a single 1887 * ACK. Receiver should ACK every other full sized 1888 * frame, so if we have space for more than 3 frames 1889 * then send now. 1890 */ 1891 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1892 goto send_now; 1893 } 1894 1895 head = tcp_write_queue_head(sk); 1896 skb_mstamp_get(&now); 1897 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1898 /* If next ACK is likely to come too late (half srtt), do not defer */ 1899 if (age < (tp->srtt_us >> 4)) 1900 goto send_now; 1901 1902 /* Ok, it looks like it is advisable to defer. */ 1903 1904 if (cong_win < send_win && cong_win <= skb->len) 1905 *is_cwnd_limited = true; 1906 1907 return true; 1908 1909 send_now: 1910 return false; 1911 } 1912 1913 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1914 { 1915 struct inet_connection_sock *icsk = inet_csk(sk); 1916 struct tcp_sock *tp = tcp_sk(sk); 1917 struct net *net = sock_net(sk); 1918 u32 interval; 1919 s32 delta; 1920 1921 interval = net->ipv4.sysctl_tcp_probe_interval; 1922 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1923 if (unlikely(delta >= interval * HZ)) { 1924 int mss = tcp_current_mss(sk); 1925 1926 /* Update current search range */ 1927 icsk->icsk_mtup.probe_size = 0; 1928 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1929 sizeof(struct tcphdr) + 1930 icsk->icsk_af_ops->net_header_len; 1931 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1932 1933 /* Update probe time stamp */ 1934 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1935 } 1936 } 1937 1938 /* Create a new MTU probe if we are ready. 1939 * MTU probe is regularly attempting to increase the path MTU by 1940 * deliberately sending larger packets. This discovers routing 1941 * changes resulting in larger path MTUs. 1942 * 1943 * Returns 0 if we should wait to probe (no cwnd available), 1944 * 1 if a probe was sent, 1945 * -1 otherwise 1946 */ 1947 static int tcp_mtu_probe(struct sock *sk) 1948 { 1949 struct inet_connection_sock *icsk = inet_csk(sk); 1950 struct tcp_sock *tp = tcp_sk(sk); 1951 struct sk_buff *skb, *nskb, *next; 1952 struct net *net = sock_net(sk); 1953 int probe_size; 1954 int size_needed; 1955 int copy, len; 1956 int mss_now; 1957 int interval; 1958 1959 /* Not currently probing/verifying, 1960 * not in recovery, 1961 * have enough cwnd, and 1962 * not SACKing (the variable headers throw things off) 1963 */ 1964 if (likely(!icsk->icsk_mtup.enabled || 1965 icsk->icsk_mtup.probe_size || 1966 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1967 tp->snd_cwnd < 11 || 1968 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 1969 return -1; 1970 1971 /* Use binary search for probe_size between tcp_mss_base, 1972 * and current mss_clamp. if (search_high - search_low) 1973 * smaller than a threshold, backoff from probing. 1974 */ 1975 mss_now = tcp_current_mss(sk); 1976 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1977 icsk->icsk_mtup.search_low) >> 1); 1978 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1979 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1980 /* When misfortune happens, we are reprobing actively, 1981 * and then reprobe timer has expired. We stick with current 1982 * probing process by not resetting search range to its orignal. 1983 */ 1984 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1985 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1986 /* Check whether enough time has elaplased for 1987 * another round of probing. 1988 */ 1989 tcp_mtu_check_reprobe(sk); 1990 return -1; 1991 } 1992 1993 /* Have enough data in the send queue to probe? */ 1994 if (tp->write_seq - tp->snd_nxt < size_needed) 1995 return -1; 1996 1997 if (tp->snd_wnd < size_needed) 1998 return -1; 1999 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2000 return 0; 2001 2002 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2003 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2004 if (!tcp_packets_in_flight(tp)) 2005 return -1; 2006 else 2007 return 0; 2008 } 2009 2010 /* We're allowed to probe. Build it now. */ 2011 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2012 if (!nskb) 2013 return -1; 2014 sk->sk_wmem_queued += nskb->truesize; 2015 sk_mem_charge(sk, nskb->truesize); 2016 2017 skb = tcp_send_head(sk); 2018 2019 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2020 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2021 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2022 TCP_SKB_CB(nskb)->sacked = 0; 2023 nskb->csum = 0; 2024 nskb->ip_summed = skb->ip_summed; 2025 2026 tcp_insert_write_queue_before(nskb, skb, sk); 2027 2028 len = 0; 2029 tcp_for_write_queue_from_safe(skb, next, sk) { 2030 copy = min_t(int, skb->len, probe_size - len); 2031 if (nskb->ip_summed) { 2032 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2033 } else { 2034 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2035 skb_put(nskb, copy), 2036 copy, 0); 2037 nskb->csum = csum_block_add(nskb->csum, csum, len); 2038 } 2039 2040 if (skb->len <= copy) { 2041 /* We've eaten all the data from this skb. 2042 * Throw it away. */ 2043 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2044 tcp_unlink_write_queue(skb, sk); 2045 sk_wmem_free_skb(sk, skb); 2046 } else { 2047 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2048 ~(TCPHDR_FIN|TCPHDR_PSH); 2049 if (!skb_shinfo(skb)->nr_frags) { 2050 skb_pull(skb, copy); 2051 if (skb->ip_summed != CHECKSUM_PARTIAL) 2052 skb->csum = csum_partial(skb->data, 2053 skb->len, 0); 2054 } else { 2055 __pskb_trim_head(skb, copy); 2056 tcp_set_skb_tso_segs(skb, mss_now); 2057 } 2058 TCP_SKB_CB(skb)->seq += copy; 2059 } 2060 2061 len += copy; 2062 2063 if (len >= probe_size) 2064 break; 2065 } 2066 tcp_init_tso_segs(nskb, nskb->len); 2067 2068 /* We're ready to send. If this fails, the probe will 2069 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2070 */ 2071 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2072 /* Decrement cwnd here because we are sending 2073 * effectively two packets. */ 2074 tp->snd_cwnd--; 2075 tcp_event_new_data_sent(sk, nskb); 2076 2077 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2078 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2079 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2080 2081 return 1; 2082 } 2083 2084 return -1; 2085 } 2086 2087 /* TCP Small Queues : 2088 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2089 * (These limits are doubled for retransmits) 2090 * This allows for : 2091 * - better RTT estimation and ACK scheduling 2092 * - faster recovery 2093 * - high rates 2094 * Alas, some drivers / subsystems require a fair amount 2095 * of queued bytes to ensure line rate. 2096 * One example is wifi aggregation (802.11 AMPDU) 2097 */ 2098 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2099 unsigned int factor) 2100 { 2101 unsigned int limit; 2102 2103 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2104 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2105 limit <<= factor; 2106 2107 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2108 /* Always send the 1st or 2nd skb in write queue. 2109 * No need to wait for TX completion to call us back, 2110 * after softirq/tasklet schedule. 2111 * This helps when TX completions are delayed too much. 2112 */ 2113 if (skb == sk->sk_write_queue.next || 2114 skb->prev == sk->sk_write_queue.next) 2115 return false; 2116 2117 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2118 /* It is possible TX completion already happened 2119 * before we set TSQ_THROTTLED, so we must 2120 * test again the condition. 2121 */ 2122 smp_mb__after_atomic(); 2123 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2124 return true; 2125 } 2126 return false; 2127 } 2128 2129 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2130 { 2131 const u32 now = tcp_time_stamp; 2132 2133 if (tp->chrono_type > TCP_CHRONO_UNSPEC) 2134 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start; 2135 tp->chrono_start = now; 2136 tp->chrono_type = new; 2137 } 2138 2139 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2140 { 2141 struct tcp_sock *tp = tcp_sk(sk); 2142 2143 /* If there are multiple conditions worthy of tracking in a 2144 * chronograph then the highest priority enum takes precedence 2145 * over the other conditions. So that if something "more interesting" 2146 * starts happening, stop the previous chrono and start a new one. 2147 */ 2148 if (type > tp->chrono_type) 2149 tcp_chrono_set(tp, type); 2150 } 2151 2152 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2153 { 2154 struct tcp_sock *tp = tcp_sk(sk); 2155 2156 2157 /* There are multiple conditions worthy of tracking in a 2158 * chronograph, so that the highest priority enum takes 2159 * precedence over the other conditions (see tcp_chrono_start). 2160 * If a condition stops, we only stop chrono tracking if 2161 * it's the "most interesting" or current chrono we are 2162 * tracking and starts busy chrono if we have pending data. 2163 */ 2164 if (tcp_write_queue_empty(sk)) 2165 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2166 else if (type == tp->chrono_type) 2167 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2168 } 2169 2170 /* This routine writes packets to the network. It advances the 2171 * send_head. This happens as incoming acks open up the remote 2172 * window for us. 2173 * 2174 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2175 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2176 * account rare use of URG, this is not a big flaw. 2177 * 2178 * Send at most one packet when push_one > 0. Temporarily ignore 2179 * cwnd limit to force at most one packet out when push_one == 2. 2180 2181 * Returns true, if no segments are in flight and we have queued segments, 2182 * but cannot send anything now because of SWS or another problem. 2183 */ 2184 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2185 int push_one, gfp_t gfp) 2186 { 2187 struct tcp_sock *tp = tcp_sk(sk); 2188 struct sk_buff *skb; 2189 unsigned int tso_segs, sent_pkts; 2190 int cwnd_quota; 2191 int result; 2192 bool is_cwnd_limited = false, is_rwnd_limited = false; 2193 u32 max_segs; 2194 2195 sent_pkts = 0; 2196 2197 if (!push_one) { 2198 /* Do MTU probing. */ 2199 result = tcp_mtu_probe(sk); 2200 if (!result) { 2201 return false; 2202 } else if (result > 0) { 2203 sent_pkts = 1; 2204 } 2205 } 2206 2207 max_segs = tcp_tso_segs(sk, mss_now); 2208 while ((skb = tcp_send_head(sk))) { 2209 unsigned int limit; 2210 2211 tso_segs = tcp_init_tso_segs(skb, mss_now); 2212 BUG_ON(!tso_segs); 2213 2214 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2215 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2216 skb_mstamp_get(&skb->skb_mstamp); 2217 goto repair; /* Skip network transmission */ 2218 } 2219 2220 cwnd_quota = tcp_cwnd_test(tp, skb); 2221 if (!cwnd_quota) { 2222 if (push_one == 2) 2223 /* Force out a loss probe pkt. */ 2224 cwnd_quota = 1; 2225 else 2226 break; 2227 } 2228 2229 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2230 is_rwnd_limited = true; 2231 break; 2232 } 2233 2234 if (tso_segs == 1) { 2235 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2236 (tcp_skb_is_last(sk, skb) ? 2237 nonagle : TCP_NAGLE_PUSH)))) 2238 break; 2239 } else { 2240 if (!push_one && 2241 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2242 max_segs)) 2243 break; 2244 } 2245 2246 limit = mss_now; 2247 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2248 limit = tcp_mss_split_point(sk, skb, mss_now, 2249 min_t(unsigned int, 2250 cwnd_quota, 2251 max_segs), 2252 nonagle); 2253 2254 if (skb->len > limit && 2255 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2256 break; 2257 2258 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2259 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2260 if (tcp_small_queue_check(sk, skb, 0)) 2261 break; 2262 2263 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2264 break; 2265 2266 repair: 2267 /* Advance the send_head. This one is sent out. 2268 * This call will increment packets_out. 2269 */ 2270 tcp_event_new_data_sent(sk, skb); 2271 2272 tcp_minshall_update(tp, mss_now, skb); 2273 sent_pkts += tcp_skb_pcount(skb); 2274 2275 if (push_one) 2276 break; 2277 } 2278 2279 if (is_rwnd_limited) 2280 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2281 else 2282 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2283 2284 if (likely(sent_pkts)) { 2285 if (tcp_in_cwnd_reduction(sk)) 2286 tp->prr_out += sent_pkts; 2287 2288 /* Send one loss probe per tail loss episode. */ 2289 if (push_one != 2) 2290 tcp_schedule_loss_probe(sk); 2291 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2292 tcp_cwnd_validate(sk, is_cwnd_limited); 2293 return false; 2294 } 2295 return !tp->packets_out && tcp_send_head(sk); 2296 } 2297 2298 bool tcp_schedule_loss_probe(struct sock *sk) 2299 { 2300 struct inet_connection_sock *icsk = inet_csk(sk); 2301 struct tcp_sock *tp = tcp_sk(sk); 2302 u32 timeout, tlp_time_stamp, rto_time_stamp; 2303 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2304 2305 /* No consecutive loss probes. */ 2306 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2307 tcp_rearm_rto(sk); 2308 return false; 2309 } 2310 /* Don't do any loss probe on a Fast Open connection before 3WHS 2311 * finishes. 2312 */ 2313 if (tp->fastopen_rsk) 2314 return false; 2315 2316 /* TLP is only scheduled when next timer event is RTO. */ 2317 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2318 return false; 2319 2320 /* Schedule a loss probe in 2*RTT for SACK capable connections 2321 * in Open state, that are either limited by cwnd or application. 2322 */ 2323 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2324 !tp->packets_out || !tcp_is_sack(tp) || 2325 icsk->icsk_ca_state != TCP_CA_Open) 2326 return false; 2327 2328 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2329 tcp_send_head(sk)) 2330 return false; 2331 2332 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2333 * for delayed ack when there's one outstanding packet. If no RTT 2334 * sample is available then probe after TCP_TIMEOUT_INIT. 2335 */ 2336 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2337 if (tp->packets_out == 1) 2338 timeout = max_t(u32, timeout, 2339 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2340 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2341 2342 /* If RTO is shorter, just schedule TLP in its place. */ 2343 tlp_time_stamp = tcp_time_stamp + timeout; 2344 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2345 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2346 s32 delta = rto_time_stamp - tcp_time_stamp; 2347 if (delta > 0) 2348 timeout = delta; 2349 } 2350 2351 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2352 TCP_RTO_MAX); 2353 return true; 2354 } 2355 2356 /* Thanks to skb fast clones, we can detect if a prior transmit of 2357 * a packet is still in a qdisc or driver queue. 2358 * In this case, there is very little point doing a retransmit ! 2359 */ 2360 static bool skb_still_in_host_queue(const struct sock *sk, 2361 const struct sk_buff *skb) 2362 { 2363 if (unlikely(skb_fclone_busy(sk, skb))) { 2364 NET_INC_STATS(sock_net(sk), 2365 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2366 return true; 2367 } 2368 return false; 2369 } 2370 2371 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2372 * retransmit the last segment. 2373 */ 2374 void tcp_send_loss_probe(struct sock *sk) 2375 { 2376 struct tcp_sock *tp = tcp_sk(sk); 2377 struct sk_buff *skb; 2378 int pcount; 2379 int mss = tcp_current_mss(sk); 2380 2381 skb = tcp_send_head(sk); 2382 if (skb) { 2383 if (tcp_snd_wnd_test(tp, skb, mss)) { 2384 pcount = tp->packets_out; 2385 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2386 if (tp->packets_out > pcount) 2387 goto probe_sent; 2388 goto rearm_timer; 2389 } 2390 skb = tcp_write_queue_prev(sk, skb); 2391 } else { 2392 skb = tcp_write_queue_tail(sk); 2393 } 2394 2395 /* At most one outstanding TLP retransmission. */ 2396 if (tp->tlp_high_seq) 2397 goto rearm_timer; 2398 2399 /* Retransmit last segment. */ 2400 if (WARN_ON(!skb)) 2401 goto rearm_timer; 2402 2403 if (skb_still_in_host_queue(sk, skb)) 2404 goto rearm_timer; 2405 2406 pcount = tcp_skb_pcount(skb); 2407 if (WARN_ON(!pcount)) 2408 goto rearm_timer; 2409 2410 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2411 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2412 GFP_ATOMIC))) 2413 goto rearm_timer; 2414 skb = tcp_write_queue_next(sk, skb); 2415 } 2416 2417 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2418 goto rearm_timer; 2419 2420 if (__tcp_retransmit_skb(sk, skb, 1)) 2421 goto rearm_timer; 2422 2423 /* Record snd_nxt for loss detection. */ 2424 tp->tlp_high_seq = tp->snd_nxt; 2425 2426 probe_sent: 2427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2428 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2429 inet_csk(sk)->icsk_pending = 0; 2430 rearm_timer: 2431 tcp_rearm_rto(sk); 2432 } 2433 2434 /* Push out any pending frames which were held back due to 2435 * TCP_CORK or attempt at coalescing tiny packets. 2436 * The socket must be locked by the caller. 2437 */ 2438 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2439 int nonagle) 2440 { 2441 /* If we are closed, the bytes will have to remain here. 2442 * In time closedown will finish, we empty the write queue and 2443 * all will be happy. 2444 */ 2445 if (unlikely(sk->sk_state == TCP_CLOSE)) 2446 return; 2447 2448 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2449 sk_gfp_mask(sk, GFP_ATOMIC))) 2450 tcp_check_probe_timer(sk); 2451 } 2452 2453 /* Send _single_ skb sitting at the send head. This function requires 2454 * true push pending frames to setup probe timer etc. 2455 */ 2456 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2457 { 2458 struct sk_buff *skb = tcp_send_head(sk); 2459 2460 BUG_ON(!skb || skb->len < mss_now); 2461 2462 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2463 } 2464 2465 /* This function returns the amount that we can raise the 2466 * usable window based on the following constraints 2467 * 2468 * 1. The window can never be shrunk once it is offered (RFC 793) 2469 * 2. We limit memory per socket 2470 * 2471 * RFC 1122: 2472 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2473 * RECV.NEXT + RCV.WIN fixed until: 2474 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2475 * 2476 * i.e. don't raise the right edge of the window until you can raise 2477 * it at least MSS bytes. 2478 * 2479 * Unfortunately, the recommended algorithm breaks header prediction, 2480 * since header prediction assumes th->window stays fixed. 2481 * 2482 * Strictly speaking, keeping th->window fixed violates the receiver 2483 * side SWS prevention criteria. The problem is that under this rule 2484 * a stream of single byte packets will cause the right side of the 2485 * window to always advance by a single byte. 2486 * 2487 * Of course, if the sender implements sender side SWS prevention 2488 * then this will not be a problem. 2489 * 2490 * BSD seems to make the following compromise: 2491 * 2492 * If the free space is less than the 1/4 of the maximum 2493 * space available and the free space is less than 1/2 mss, 2494 * then set the window to 0. 2495 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2496 * Otherwise, just prevent the window from shrinking 2497 * and from being larger than the largest representable value. 2498 * 2499 * This prevents incremental opening of the window in the regime 2500 * where TCP is limited by the speed of the reader side taking 2501 * data out of the TCP receive queue. It does nothing about 2502 * those cases where the window is constrained on the sender side 2503 * because the pipeline is full. 2504 * 2505 * BSD also seems to "accidentally" limit itself to windows that are a 2506 * multiple of MSS, at least until the free space gets quite small. 2507 * This would appear to be a side effect of the mbuf implementation. 2508 * Combining these two algorithms results in the observed behavior 2509 * of having a fixed window size at almost all times. 2510 * 2511 * Below we obtain similar behavior by forcing the offered window to 2512 * a multiple of the mss when it is feasible to do so. 2513 * 2514 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2515 * Regular options like TIMESTAMP are taken into account. 2516 */ 2517 u32 __tcp_select_window(struct sock *sk) 2518 { 2519 struct inet_connection_sock *icsk = inet_csk(sk); 2520 struct tcp_sock *tp = tcp_sk(sk); 2521 /* MSS for the peer's data. Previous versions used mss_clamp 2522 * here. I don't know if the value based on our guesses 2523 * of peer's MSS is better for the performance. It's more correct 2524 * but may be worse for the performance because of rcv_mss 2525 * fluctuations. --SAW 1998/11/1 2526 */ 2527 int mss = icsk->icsk_ack.rcv_mss; 2528 int free_space = tcp_space(sk); 2529 int allowed_space = tcp_full_space(sk); 2530 int full_space = min_t(int, tp->window_clamp, allowed_space); 2531 int window; 2532 2533 if (unlikely(mss > full_space)) { 2534 mss = full_space; 2535 if (mss <= 0) 2536 return 0; 2537 } 2538 if (free_space < (full_space >> 1)) { 2539 icsk->icsk_ack.quick = 0; 2540 2541 if (tcp_under_memory_pressure(sk)) 2542 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2543 4U * tp->advmss); 2544 2545 /* free_space might become our new window, make sure we don't 2546 * increase it due to wscale. 2547 */ 2548 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2549 2550 /* if free space is less than mss estimate, or is below 1/16th 2551 * of the maximum allowed, try to move to zero-window, else 2552 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2553 * new incoming data is dropped due to memory limits. 2554 * With large window, mss test triggers way too late in order 2555 * to announce zero window in time before rmem limit kicks in. 2556 */ 2557 if (free_space < (allowed_space >> 4) || free_space < mss) 2558 return 0; 2559 } 2560 2561 if (free_space > tp->rcv_ssthresh) 2562 free_space = tp->rcv_ssthresh; 2563 2564 /* Don't do rounding if we are using window scaling, since the 2565 * scaled window will not line up with the MSS boundary anyway. 2566 */ 2567 if (tp->rx_opt.rcv_wscale) { 2568 window = free_space; 2569 2570 /* Advertise enough space so that it won't get scaled away. 2571 * Import case: prevent zero window announcement if 2572 * 1<<rcv_wscale > mss. 2573 */ 2574 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2575 } else { 2576 window = tp->rcv_wnd; 2577 /* Get the largest window that is a nice multiple of mss. 2578 * Window clamp already applied above. 2579 * If our current window offering is within 1 mss of the 2580 * free space we just keep it. This prevents the divide 2581 * and multiply from happening most of the time. 2582 * We also don't do any window rounding when the free space 2583 * is too small. 2584 */ 2585 if (window <= free_space - mss || window > free_space) 2586 window = rounddown(free_space, mss); 2587 else if (mss == full_space && 2588 free_space > window + (full_space >> 1)) 2589 window = free_space; 2590 } 2591 2592 return window; 2593 } 2594 2595 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2596 const struct sk_buff *next_skb) 2597 { 2598 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2599 const struct skb_shared_info *next_shinfo = 2600 skb_shinfo(next_skb); 2601 struct skb_shared_info *shinfo = skb_shinfo(skb); 2602 2603 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2604 shinfo->tskey = next_shinfo->tskey; 2605 TCP_SKB_CB(skb)->txstamp_ack |= 2606 TCP_SKB_CB(next_skb)->txstamp_ack; 2607 } 2608 } 2609 2610 /* Collapses two adjacent SKB's during retransmission. */ 2611 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2615 int skb_size, next_skb_size; 2616 2617 skb_size = skb->len; 2618 next_skb_size = next_skb->len; 2619 2620 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2621 2622 if (next_skb_size) { 2623 if (next_skb_size <= skb_availroom(skb)) 2624 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2625 next_skb_size); 2626 else if (!skb_shift(skb, next_skb, next_skb_size)) 2627 return false; 2628 } 2629 tcp_highest_sack_combine(sk, next_skb, skb); 2630 2631 tcp_unlink_write_queue(next_skb, sk); 2632 2633 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2634 skb->ip_summed = CHECKSUM_PARTIAL; 2635 2636 if (skb->ip_summed != CHECKSUM_PARTIAL) 2637 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2638 2639 /* Update sequence range on original skb. */ 2640 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2641 2642 /* Merge over control information. This moves PSH/FIN etc. over */ 2643 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2644 2645 /* All done, get rid of second SKB and account for it so 2646 * packet counting does not break. 2647 */ 2648 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2649 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2650 2651 /* changed transmit queue under us so clear hints */ 2652 tcp_clear_retrans_hints_partial(tp); 2653 if (next_skb == tp->retransmit_skb_hint) 2654 tp->retransmit_skb_hint = skb; 2655 2656 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2657 2658 tcp_skb_collapse_tstamp(skb, next_skb); 2659 2660 sk_wmem_free_skb(sk, next_skb); 2661 return true; 2662 } 2663 2664 /* Check if coalescing SKBs is legal. */ 2665 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2666 { 2667 if (tcp_skb_pcount(skb) > 1) 2668 return false; 2669 if (skb_cloned(skb)) 2670 return false; 2671 if (skb == tcp_send_head(sk)) 2672 return false; 2673 /* Some heuristics for collapsing over SACK'd could be invented */ 2674 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2675 return false; 2676 2677 return true; 2678 } 2679 2680 /* Collapse packets in the retransmit queue to make to create 2681 * less packets on the wire. This is only done on retransmission. 2682 */ 2683 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2684 int space) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 struct sk_buff *skb = to, *tmp; 2688 bool first = true; 2689 2690 if (!sysctl_tcp_retrans_collapse) 2691 return; 2692 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2693 return; 2694 2695 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2696 if (!tcp_can_collapse(sk, skb)) 2697 break; 2698 2699 if (!tcp_skb_can_collapse_to(to)) 2700 break; 2701 2702 space -= skb->len; 2703 2704 if (first) { 2705 first = false; 2706 continue; 2707 } 2708 2709 if (space < 0) 2710 break; 2711 2712 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2713 break; 2714 2715 if (!tcp_collapse_retrans(sk, to)) 2716 break; 2717 } 2718 } 2719 2720 /* This retransmits one SKB. Policy decisions and retransmit queue 2721 * state updates are done by the caller. Returns non-zero if an 2722 * error occurred which prevented the send. 2723 */ 2724 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2725 { 2726 struct inet_connection_sock *icsk = inet_csk(sk); 2727 struct tcp_sock *tp = tcp_sk(sk); 2728 unsigned int cur_mss; 2729 int diff, len, err; 2730 2731 2732 /* Inconclusive MTU probe */ 2733 if (icsk->icsk_mtup.probe_size) 2734 icsk->icsk_mtup.probe_size = 0; 2735 2736 /* Do not sent more than we queued. 1/4 is reserved for possible 2737 * copying overhead: fragmentation, tunneling, mangling etc. 2738 */ 2739 if (atomic_read(&sk->sk_wmem_alloc) > 2740 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2741 sk->sk_sndbuf)) 2742 return -EAGAIN; 2743 2744 if (skb_still_in_host_queue(sk, skb)) 2745 return -EBUSY; 2746 2747 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2748 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2749 BUG(); 2750 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2751 return -ENOMEM; 2752 } 2753 2754 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2755 return -EHOSTUNREACH; /* Routing failure or similar. */ 2756 2757 cur_mss = tcp_current_mss(sk); 2758 2759 /* If receiver has shrunk his window, and skb is out of 2760 * new window, do not retransmit it. The exception is the 2761 * case, when window is shrunk to zero. In this case 2762 * our retransmit serves as a zero window probe. 2763 */ 2764 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2765 TCP_SKB_CB(skb)->seq != tp->snd_una) 2766 return -EAGAIN; 2767 2768 len = cur_mss * segs; 2769 if (skb->len > len) { 2770 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2771 return -ENOMEM; /* We'll try again later. */ 2772 } else { 2773 if (skb_unclone(skb, GFP_ATOMIC)) 2774 return -ENOMEM; 2775 2776 diff = tcp_skb_pcount(skb); 2777 tcp_set_skb_tso_segs(skb, cur_mss); 2778 diff -= tcp_skb_pcount(skb); 2779 if (diff) 2780 tcp_adjust_pcount(sk, skb, diff); 2781 if (skb->len < cur_mss) 2782 tcp_retrans_try_collapse(sk, skb, cur_mss); 2783 } 2784 2785 /* RFC3168, section 6.1.1.1. ECN fallback */ 2786 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2787 tcp_ecn_clear_syn(sk, skb); 2788 2789 /* Update global and local TCP statistics. */ 2790 segs = tcp_skb_pcount(skb); 2791 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2792 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2793 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2794 tp->total_retrans += segs; 2795 2796 /* make sure skb->data is aligned on arches that require it 2797 * and check if ack-trimming & collapsing extended the headroom 2798 * beyond what csum_start can cover. 2799 */ 2800 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2801 skb_headroom(skb) >= 0xFFFF)) { 2802 struct sk_buff *nskb; 2803 2804 skb_mstamp_get(&skb->skb_mstamp); 2805 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2806 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2807 -ENOBUFS; 2808 } else { 2809 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2810 } 2811 2812 if (likely(!err)) { 2813 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2814 } else if (err != -EBUSY) { 2815 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2816 } 2817 return err; 2818 } 2819 2820 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2821 { 2822 struct tcp_sock *tp = tcp_sk(sk); 2823 int err = __tcp_retransmit_skb(sk, skb, segs); 2824 2825 if (err == 0) { 2826 #if FASTRETRANS_DEBUG > 0 2827 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2828 net_dbg_ratelimited("retrans_out leaked\n"); 2829 } 2830 #endif 2831 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2832 tp->retrans_out += tcp_skb_pcount(skb); 2833 2834 /* Save stamp of the first retransmit. */ 2835 if (!tp->retrans_stamp) 2836 tp->retrans_stamp = tcp_skb_timestamp(skb); 2837 2838 } 2839 2840 if (tp->undo_retrans < 0) 2841 tp->undo_retrans = 0; 2842 tp->undo_retrans += tcp_skb_pcount(skb); 2843 return err; 2844 } 2845 2846 /* This gets called after a retransmit timeout, and the initially 2847 * retransmitted data is acknowledged. It tries to continue 2848 * resending the rest of the retransmit queue, until either 2849 * we've sent it all or the congestion window limit is reached. 2850 * If doing SACK, the first ACK which comes back for a timeout 2851 * based retransmit packet might feed us FACK information again. 2852 * If so, we use it to avoid unnecessarily retransmissions. 2853 */ 2854 void tcp_xmit_retransmit_queue(struct sock *sk) 2855 { 2856 const struct inet_connection_sock *icsk = inet_csk(sk); 2857 struct tcp_sock *tp = tcp_sk(sk); 2858 struct sk_buff *skb; 2859 struct sk_buff *hole = NULL; 2860 u32 max_segs; 2861 int mib_idx; 2862 2863 if (!tp->packets_out) 2864 return; 2865 2866 if (tp->retransmit_skb_hint) { 2867 skb = tp->retransmit_skb_hint; 2868 } else { 2869 skb = tcp_write_queue_head(sk); 2870 } 2871 2872 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2873 tcp_for_write_queue_from(skb, sk) { 2874 __u8 sacked; 2875 int segs; 2876 2877 if (skb == tcp_send_head(sk)) 2878 break; 2879 /* we could do better than to assign each time */ 2880 if (!hole) 2881 tp->retransmit_skb_hint = skb; 2882 2883 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2884 if (segs <= 0) 2885 return; 2886 sacked = TCP_SKB_CB(skb)->sacked; 2887 /* In case tcp_shift_skb_data() have aggregated large skbs, 2888 * we need to make sure not sending too bigs TSO packets 2889 */ 2890 segs = min_t(int, segs, max_segs); 2891 2892 if (tp->retrans_out >= tp->lost_out) { 2893 break; 2894 } else if (!(sacked & TCPCB_LOST)) { 2895 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2896 hole = skb; 2897 continue; 2898 2899 } else { 2900 if (icsk->icsk_ca_state != TCP_CA_Loss) 2901 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2902 else 2903 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2904 } 2905 2906 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2907 continue; 2908 2909 if (tcp_small_queue_check(sk, skb, 1)) 2910 return; 2911 2912 if (tcp_retransmit_skb(sk, skb, segs)) 2913 return; 2914 2915 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2916 2917 if (tcp_in_cwnd_reduction(sk)) 2918 tp->prr_out += tcp_skb_pcount(skb); 2919 2920 if (skb == tcp_write_queue_head(sk) && 2921 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2922 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2923 inet_csk(sk)->icsk_rto, 2924 TCP_RTO_MAX); 2925 } 2926 } 2927 2928 /* We allow to exceed memory limits for FIN packets to expedite 2929 * connection tear down and (memory) recovery. 2930 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2931 * or even be forced to close flow without any FIN. 2932 * In general, we want to allow one skb per socket to avoid hangs 2933 * with edge trigger epoll() 2934 */ 2935 void sk_forced_mem_schedule(struct sock *sk, int size) 2936 { 2937 int amt; 2938 2939 if (size <= sk->sk_forward_alloc) 2940 return; 2941 amt = sk_mem_pages(size); 2942 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2943 sk_memory_allocated_add(sk, amt); 2944 2945 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2946 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2947 } 2948 2949 /* Send a FIN. The caller locks the socket for us. 2950 * We should try to send a FIN packet really hard, but eventually give up. 2951 */ 2952 void tcp_send_fin(struct sock *sk) 2953 { 2954 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2955 struct tcp_sock *tp = tcp_sk(sk); 2956 2957 /* Optimization, tack on the FIN if we have one skb in write queue and 2958 * this skb was not yet sent, or we are under memory pressure. 2959 * Note: in the latter case, FIN packet will be sent after a timeout, 2960 * as TCP stack thinks it has already been transmitted. 2961 */ 2962 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2963 coalesce: 2964 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2965 TCP_SKB_CB(tskb)->end_seq++; 2966 tp->write_seq++; 2967 if (!tcp_send_head(sk)) { 2968 /* This means tskb was already sent. 2969 * Pretend we included the FIN on previous transmit. 2970 * We need to set tp->snd_nxt to the value it would have 2971 * if FIN had been sent. This is because retransmit path 2972 * does not change tp->snd_nxt. 2973 */ 2974 tp->snd_nxt++; 2975 return; 2976 } 2977 } else { 2978 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2979 if (unlikely(!skb)) { 2980 if (tskb) 2981 goto coalesce; 2982 return; 2983 } 2984 skb_reserve(skb, MAX_TCP_HEADER); 2985 sk_forced_mem_schedule(sk, skb->truesize); 2986 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2987 tcp_init_nondata_skb(skb, tp->write_seq, 2988 TCPHDR_ACK | TCPHDR_FIN); 2989 tcp_queue_skb(sk, skb); 2990 } 2991 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2992 } 2993 2994 /* We get here when a process closes a file descriptor (either due to 2995 * an explicit close() or as a byproduct of exit()'ing) and there 2996 * was unread data in the receive queue. This behavior is recommended 2997 * by RFC 2525, section 2.17. -DaveM 2998 */ 2999 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3000 { 3001 struct sk_buff *skb; 3002 3003 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3004 3005 /* NOTE: No TCP options attached and we never retransmit this. */ 3006 skb = alloc_skb(MAX_TCP_HEADER, priority); 3007 if (!skb) { 3008 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3009 return; 3010 } 3011 3012 /* Reserve space for headers and prepare control bits. */ 3013 skb_reserve(skb, MAX_TCP_HEADER); 3014 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3015 TCPHDR_ACK | TCPHDR_RST); 3016 skb_mstamp_get(&skb->skb_mstamp); 3017 /* Send it off. */ 3018 if (tcp_transmit_skb(sk, skb, 0, priority)) 3019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3020 } 3021 3022 /* Send a crossed SYN-ACK during socket establishment. 3023 * WARNING: This routine must only be called when we have already sent 3024 * a SYN packet that crossed the incoming SYN that caused this routine 3025 * to get called. If this assumption fails then the initial rcv_wnd 3026 * and rcv_wscale values will not be correct. 3027 */ 3028 int tcp_send_synack(struct sock *sk) 3029 { 3030 struct sk_buff *skb; 3031 3032 skb = tcp_write_queue_head(sk); 3033 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3034 pr_debug("%s: wrong queue state\n", __func__); 3035 return -EFAULT; 3036 } 3037 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3038 if (skb_cloned(skb)) { 3039 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3040 if (!nskb) 3041 return -ENOMEM; 3042 tcp_unlink_write_queue(skb, sk); 3043 __skb_header_release(nskb); 3044 __tcp_add_write_queue_head(sk, nskb); 3045 sk_wmem_free_skb(sk, skb); 3046 sk->sk_wmem_queued += nskb->truesize; 3047 sk_mem_charge(sk, nskb->truesize); 3048 skb = nskb; 3049 } 3050 3051 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3052 tcp_ecn_send_synack(sk, skb); 3053 } 3054 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3055 } 3056 3057 /** 3058 * tcp_make_synack - Prepare a SYN-ACK. 3059 * sk: listener socket 3060 * dst: dst entry attached to the SYNACK 3061 * req: request_sock pointer 3062 * 3063 * Allocate one skb and build a SYNACK packet. 3064 * @dst is consumed : Caller should not use it again. 3065 */ 3066 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3067 struct request_sock *req, 3068 struct tcp_fastopen_cookie *foc, 3069 enum tcp_synack_type synack_type) 3070 { 3071 struct inet_request_sock *ireq = inet_rsk(req); 3072 const struct tcp_sock *tp = tcp_sk(sk); 3073 struct tcp_md5sig_key *md5 = NULL; 3074 struct tcp_out_options opts; 3075 struct sk_buff *skb; 3076 int tcp_header_size; 3077 struct tcphdr *th; 3078 int mss; 3079 3080 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3081 if (unlikely(!skb)) { 3082 dst_release(dst); 3083 return NULL; 3084 } 3085 /* Reserve space for headers. */ 3086 skb_reserve(skb, MAX_TCP_HEADER); 3087 3088 switch (synack_type) { 3089 case TCP_SYNACK_NORMAL: 3090 skb_set_owner_w(skb, req_to_sk(req)); 3091 break; 3092 case TCP_SYNACK_COOKIE: 3093 /* Under synflood, we do not attach skb to a socket, 3094 * to avoid false sharing. 3095 */ 3096 break; 3097 case TCP_SYNACK_FASTOPEN: 3098 /* sk is a const pointer, because we want to express multiple 3099 * cpu might call us concurrently. 3100 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3101 */ 3102 skb_set_owner_w(skb, (struct sock *)sk); 3103 break; 3104 } 3105 skb_dst_set(skb, dst); 3106 3107 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3108 3109 memset(&opts, 0, sizeof(opts)); 3110 #ifdef CONFIG_SYN_COOKIES 3111 if (unlikely(req->cookie_ts)) 3112 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3113 else 3114 #endif 3115 skb_mstamp_get(&skb->skb_mstamp); 3116 3117 #ifdef CONFIG_TCP_MD5SIG 3118 rcu_read_lock(); 3119 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3120 #endif 3121 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3122 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3123 sizeof(*th); 3124 3125 skb_push(skb, tcp_header_size); 3126 skb_reset_transport_header(skb); 3127 3128 th = (struct tcphdr *)skb->data; 3129 memset(th, 0, sizeof(struct tcphdr)); 3130 th->syn = 1; 3131 th->ack = 1; 3132 tcp_ecn_make_synack(req, th); 3133 th->source = htons(ireq->ir_num); 3134 th->dest = ireq->ir_rmt_port; 3135 /* Setting of flags are superfluous here for callers (and ECE is 3136 * not even correctly set) 3137 */ 3138 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3139 TCPHDR_SYN | TCPHDR_ACK); 3140 3141 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3142 /* XXX data is queued and acked as is. No buffer/window check */ 3143 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3144 3145 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3146 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3147 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3148 th->doff = (tcp_header_size >> 2); 3149 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3150 3151 #ifdef CONFIG_TCP_MD5SIG 3152 /* Okay, we have all we need - do the md5 hash if needed */ 3153 if (md5) 3154 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3155 md5, req_to_sk(req), skb); 3156 rcu_read_unlock(); 3157 #endif 3158 3159 /* Do not fool tcpdump (if any), clean our debris */ 3160 skb->tstamp = 0; 3161 return skb; 3162 } 3163 EXPORT_SYMBOL(tcp_make_synack); 3164 3165 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3166 { 3167 struct inet_connection_sock *icsk = inet_csk(sk); 3168 const struct tcp_congestion_ops *ca; 3169 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3170 3171 if (ca_key == TCP_CA_UNSPEC) 3172 return; 3173 3174 rcu_read_lock(); 3175 ca = tcp_ca_find_key(ca_key); 3176 if (likely(ca && try_module_get(ca->owner))) { 3177 module_put(icsk->icsk_ca_ops->owner); 3178 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3179 icsk->icsk_ca_ops = ca; 3180 } 3181 rcu_read_unlock(); 3182 } 3183 3184 /* Do all connect socket setups that can be done AF independent. */ 3185 static void tcp_connect_init(struct sock *sk) 3186 { 3187 const struct dst_entry *dst = __sk_dst_get(sk); 3188 struct tcp_sock *tp = tcp_sk(sk); 3189 __u8 rcv_wscale; 3190 3191 /* We'll fix this up when we get a response from the other end. 3192 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3193 */ 3194 tp->tcp_header_len = sizeof(struct tcphdr) + 3195 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3196 3197 #ifdef CONFIG_TCP_MD5SIG 3198 if (tp->af_specific->md5_lookup(sk, sk)) 3199 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3200 #endif 3201 3202 /* If user gave his TCP_MAXSEG, record it to clamp */ 3203 if (tp->rx_opt.user_mss) 3204 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3205 tp->max_window = 0; 3206 tcp_mtup_init(sk); 3207 tcp_sync_mss(sk, dst_mtu(dst)); 3208 3209 tcp_ca_dst_init(sk, dst); 3210 3211 if (!tp->window_clamp) 3212 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3213 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3214 3215 tcp_initialize_rcv_mss(sk); 3216 3217 /* limit the window selection if the user enforce a smaller rx buffer */ 3218 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3219 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3220 tp->window_clamp = tcp_full_space(sk); 3221 3222 tcp_select_initial_window(tcp_full_space(sk), 3223 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3224 &tp->rcv_wnd, 3225 &tp->window_clamp, 3226 sysctl_tcp_window_scaling, 3227 &rcv_wscale, 3228 dst_metric(dst, RTAX_INITRWND)); 3229 3230 tp->rx_opt.rcv_wscale = rcv_wscale; 3231 tp->rcv_ssthresh = tp->rcv_wnd; 3232 3233 sk->sk_err = 0; 3234 sock_reset_flag(sk, SOCK_DONE); 3235 tp->snd_wnd = 0; 3236 tcp_init_wl(tp, 0); 3237 tp->snd_una = tp->write_seq; 3238 tp->snd_sml = tp->write_seq; 3239 tp->snd_up = tp->write_seq; 3240 tp->snd_nxt = tp->write_seq; 3241 3242 if (likely(!tp->repair)) 3243 tp->rcv_nxt = 0; 3244 else 3245 tp->rcv_tstamp = tcp_time_stamp; 3246 tp->rcv_wup = tp->rcv_nxt; 3247 tp->copied_seq = tp->rcv_nxt; 3248 3249 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3250 inet_csk(sk)->icsk_retransmits = 0; 3251 tcp_clear_retrans(tp); 3252 } 3253 3254 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3255 { 3256 struct tcp_sock *tp = tcp_sk(sk); 3257 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3258 3259 tcb->end_seq += skb->len; 3260 __skb_header_release(skb); 3261 __tcp_add_write_queue_tail(sk, skb); 3262 sk->sk_wmem_queued += skb->truesize; 3263 sk_mem_charge(sk, skb->truesize); 3264 tp->write_seq = tcb->end_seq; 3265 tp->packets_out += tcp_skb_pcount(skb); 3266 } 3267 3268 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3269 * queue a data-only packet after the regular SYN, such that regular SYNs 3270 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3271 * only the SYN sequence, the data are retransmitted in the first ACK. 3272 * If cookie is not cached or other error occurs, falls back to send a 3273 * regular SYN with Fast Open cookie request option. 3274 */ 3275 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3276 { 3277 struct tcp_sock *tp = tcp_sk(sk); 3278 struct tcp_fastopen_request *fo = tp->fastopen_req; 3279 int space, err = 0; 3280 struct sk_buff *syn_data; 3281 3282 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3283 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3284 goto fallback; 3285 3286 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3287 * user-MSS. Reserve maximum option space for middleboxes that add 3288 * private TCP options. The cost is reduced data space in SYN :( 3289 */ 3290 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3291 3292 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3293 MAX_TCP_OPTION_SPACE; 3294 3295 space = min_t(size_t, space, fo->size); 3296 3297 /* limit to order-0 allocations */ 3298 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3299 3300 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3301 if (!syn_data) 3302 goto fallback; 3303 syn_data->ip_summed = CHECKSUM_PARTIAL; 3304 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3305 if (space) { 3306 int copied = copy_from_iter(skb_put(syn_data, space), space, 3307 &fo->data->msg_iter); 3308 if (unlikely(!copied)) { 3309 kfree_skb(syn_data); 3310 goto fallback; 3311 } 3312 if (copied != space) { 3313 skb_trim(syn_data, copied); 3314 space = copied; 3315 } 3316 } 3317 /* No more data pending in inet_wait_for_connect() */ 3318 if (space == fo->size) 3319 fo->data = NULL; 3320 fo->copied = space; 3321 3322 tcp_connect_queue_skb(sk, syn_data); 3323 if (syn_data->len) 3324 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3325 3326 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3327 3328 syn->skb_mstamp = syn_data->skb_mstamp; 3329 3330 /* Now full SYN+DATA was cloned and sent (or not), 3331 * remove the SYN from the original skb (syn_data) 3332 * we keep in write queue in case of a retransmit, as we 3333 * also have the SYN packet (with no data) in the same queue. 3334 */ 3335 TCP_SKB_CB(syn_data)->seq++; 3336 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3337 if (!err) { 3338 tp->syn_data = (fo->copied > 0); 3339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3340 goto done; 3341 } 3342 3343 fallback: 3344 /* Send a regular SYN with Fast Open cookie request option */ 3345 if (fo->cookie.len > 0) 3346 fo->cookie.len = 0; 3347 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3348 if (err) 3349 tp->syn_fastopen = 0; 3350 done: 3351 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3352 return err; 3353 } 3354 3355 /* Build a SYN and send it off. */ 3356 int tcp_connect(struct sock *sk) 3357 { 3358 struct tcp_sock *tp = tcp_sk(sk); 3359 struct sk_buff *buff; 3360 int err; 3361 3362 tcp_connect_init(sk); 3363 3364 if (unlikely(tp->repair)) { 3365 tcp_finish_connect(sk, NULL); 3366 return 0; 3367 } 3368 3369 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3370 if (unlikely(!buff)) 3371 return -ENOBUFS; 3372 3373 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3374 tp->retrans_stamp = tcp_time_stamp; 3375 tcp_connect_queue_skb(sk, buff); 3376 tcp_ecn_send_syn(sk, buff); 3377 3378 /* Send off SYN; include data in Fast Open. */ 3379 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3380 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3381 if (err == -ECONNREFUSED) 3382 return err; 3383 3384 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3385 * in order to make this packet get counted in tcpOutSegs. 3386 */ 3387 tp->snd_nxt = tp->write_seq; 3388 tp->pushed_seq = tp->write_seq; 3389 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3390 3391 /* Timer for repeating the SYN until an answer. */ 3392 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3393 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3394 return 0; 3395 } 3396 EXPORT_SYMBOL(tcp_connect); 3397 3398 /* Send out a delayed ack, the caller does the policy checking 3399 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3400 * for details. 3401 */ 3402 void tcp_send_delayed_ack(struct sock *sk) 3403 { 3404 struct inet_connection_sock *icsk = inet_csk(sk); 3405 int ato = icsk->icsk_ack.ato; 3406 unsigned long timeout; 3407 3408 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3409 3410 if (ato > TCP_DELACK_MIN) { 3411 const struct tcp_sock *tp = tcp_sk(sk); 3412 int max_ato = HZ / 2; 3413 3414 if (icsk->icsk_ack.pingpong || 3415 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3416 max_ato = TCP_DELACK_MAX; 3417 3418 /* Slow path, intersegment interval is "high". */ 3419 3420 /* If some rtt estimate is known, use it to bound delayed ack. 3421 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3422 * directly. 3423 */ 3424 if (tp->srtt_us) { 3425 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3426 TCP_DELACK_MIN); 3427 3428 if (rtt < max_ato) 3429 max_ato = rtt; 3430 } 3431 3432 ato = min(ato, max_ato); 3433 } 3434 3435 /* Stay within the limit we were given */ 3436 timeout = jiffies + ato; 3437 3438 /* Use new timeout only if there wasn't a older one earlier. */ 3439 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3440 /* If delack timer was blocked or is about to expire, 3441 * send ACK now. 3442 */ 3443 if (icsk->icsk_ack.blocked || 3444 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3445 tcp_send_ack(sk); 3446 return; 3447 } 3448 3449 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3450 timeout = icsk->icsk_ack.timeout; 3451 } 3452 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3453 icsk->icsk_ack.timeout = timeout; 3454 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3455 } 3456 3457 /* This routine sends an ack and also updates the window. */ 3458 void tcp_send_ack(struct sock *sk) 3459 { 3460 struct sk_buff *buff; 3461 3462 /* If we have been reset, we may not send again. */ 3463 if (sk->sk_state == TCP_CLOSE) 3464 return; 3465 3466 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3467 3468 /* We are not putting this on the write queue, so 3469 * tcp_transmit_skb() will set the ownership to this 3470 * sock. 3471 */ 3472 buff = alloc_skb(MAX_TCP_HEADER, 3473 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3474 if (unlikely(!buff)) { 3475 inet_csk_schedule_ack(sk); 3476 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3478 TCP_DELACK_MAX, TCP_RTO_MAX); 3479 return; 3480 } 3481 3482 /* Reserve space for headers and prepare control bits. */ 3483 skb_reserve(buff, MAX_TCP_HEADER); 3484 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3485 3486 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3487 * too much. 3488 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3489 */ 3490 skb_set_tcp_pure_ack(buff); 3491 3492 /* Send it off, this clears delayed acks for us. */ 3493 skb_mstamp_get(&buff->skb_mstamp); 3494 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3495 } 3496 EXPORT_SYMBOL_GPL(tcp_send_ack); 3497 3498 /* This routine sends a packet with an out of date sequence 3499 * number. It assumes the other end will try to ack it. 3500 * 3501 * Question: what should we make while urgent mode? 3502 * 4.4BSD forces sending single byte of data. We cannot send 3503 * out of window data, because we have SND.NXT==SND.MAX... 3504 * 3505 * Current solution: to send TWO zero-length segments in urgent mode: 3506 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3507 * out-of-date with SND.UNA-1 to probe window. 3508 */ 3509 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3510 { 3511 struct tcp_sock *tp = tcp_sk(sk); 3512 struct sk_buff *skb; 3513 3514 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3515 skb = alloc_skb(MAX_TCP_HEADER, 3516 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3517 if (!skb) 3518 return -1; 3519 3520 /* Reserve space for headers and set control bits. */ 3521 skb_reserve(skb, MAX_TCP_HEADER); 3522 /* Use a previous sequence. This should cause the other 3523 * end to send an ack. Don't queue or clone SKB, just 3524 * send it. 3525 */ 3526 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3527 skb_mstamp_get(&skb->skb_mstamp); 3528 NET_INC_STATS(sock_net(sk), mib); 3529 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3530 } 3531 3532 void tcp_send_window_probe(struct sock *sk) 3533 { 3534 if (sk->sk_state == TCP_ESTABLISHED) { 3535 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3536 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3537 } 3538 } 3539 3540 /* Initiate keepalive or window probe from timer. */ 3541 int tcp_write_wakeup(struct sock *sk, int mib) 3542 { 3543 struct tcp_sock *tp = tcp_sk(sk); 3544 struct sk_buff *skb; 3545 3546 if (sk->sk_state == TCP_CLOSE) 3547 return -1; 3548 3549 skb = tcp_send_head(sk); 3550 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3551 int err; 3552 unsigned int mss = tcp_current_mss(sk); 3553 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3554 3555 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3556 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3557 3558 /* We are probing the opening of a window 3559 * but the window size is != 0 3560 * must have been a result SWS avoidance ( sender ) 3561 */ 3562 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3563 skb->len > mss) { 3564 seg_size = min(seg_size, mss); 3565 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3566 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3567 return -1; 3568 } else if (!tcp_skb_pcount(skb)) 3569 tcp_set_skb_tso_segs(skb, mss); 3570 3571 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3572 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3573 if (!err) 3574 tcp_event_new_data_sent(sk, skb); 3575 return err; 3576 } else { 3577 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3578 tcp_xmit_probe_skb(sk, 1, mib); 3579 return tcp_xmit_probe_skb(sk, 0, mib); 3580 } 3581 } 3582 3583 /* A window probe timeout has occurred. If window is not closed send 3584 * a partial packet else a zero probe. 3585 */ 3586 void tcp_send_probe0(struct sock *sk) 3587 { 3588 struct inet_connection_sock *icsk = inet_csk(sk); 3589 struct tcp_sock *tp = tcp_sk(sk); 3590 struct net *net = sock_net(sk); 3591 unsigned long probe_max; 3592 int err; 3593 3594 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3595 3596 if (tp->packets_out || !tcp_send_head(sk)) { 3597 /* Cancel probe timer, if it is not required. */ 3598 icsk->icsk_probes_out = 0; 3599 icsk->icsk_backoff = 0; 3600 return; 3601 } 3602 3603 if (err <= 0) { 3604 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3605 icsk->icsk_backoff++; 3606 icsk->icsk_probes_out++; 3607 probe_max = TCP_RTO_MAX; 3608 } else { 3609 /* If packet was not sent due to local congestion, 3610 * do not backoff and do not remember icsk_probes_out. 3611 * Let local senders to fight for local resources. 3612 * 3613 * Use accumulated backoff yet. 3614 */ 3615 if (!icsk->icsk_probes_out) 3616 icsk->icsk_probes_out = 1; 3617 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3618 } 3619 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3620 tcp_probe0_when(sk, probe_max), 3621 TCP_RTO_MAX); 3622 } 3623 3624 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3625 { 3626 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3627 struct flowi fl; 3628 int res; 3629 3630 tcp_rsk(req)->txhash = net_tx_rndhash(); 3631 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3632 if (!res) { 3633 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3634 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3635 if (unlikely(tcp_passive_fastopen(sk))) 3636 tcp_sk(sk)->total_retrans++; 3637 } 3638 return res; 3639 } 3640 EXPORT_SYMBOL(tcp_rtx_synack); 3641