xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision f7777dcc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54 	if (seq == s_win)
55 		return true;
56 	if (after(end_seq, s_win) && before(seq, e_win))
57 		return true;
58 	return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 	bool paws_reject = false;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return TCP_TW_ACK;
120 
121 		if (th->rst)
122 			goto kill;
123 
124 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125 			goto kill_with_rst;
126 
127 		/* Dup ACK? */
128 		if (!th->ack ||
129 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131 			inet_twsk_put(tw);
132 			return TCP_TW_SUCCESS;
133 		}
134 
135 		/* New data or FIN. If new data arrive after half-duplex close,
136 		 * reset.
137 		 */
138 		if (!th->fin ||
139 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140 kill_with_rst:
141 			inet_twsk_deschedule(tw, &tcp_death_row);
142 			inet_twsk_put(tw);
143 			return TCP_TW_RST;
144 		}
145 
146 		/* FIN arrived, enter true time-wait state. */
147 		tw->tw_substate	  = TCP_TIME_WAIT;
148 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149 		if (tmp_opt.saw_tstamp) {
150 			tcptw->tw_ts_recent_stamp = get_seconds();
151 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152 		}
153 
154 		if (tcp_death_row.sysctl_tw_recycle &&
155 		    tcptw->tw_ts_recent_stamp &&
156 		    tcp_tw_remember_stamp(tw))
157 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158 					   TCP_TIMEWAIT_LEN);
159 		else
160 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161 					   TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule(tw, &tcp_death_row);
195 				inet_twsk_put(tw);
196 				return TCP_TW_SUCCESS;
197 			}
198 		}
199 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200 				   TCP_TIMEWAIT_LEN);
201 
202 		if (tmp_opt.saw_tstamp) {
203 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204 			tcptw->tw_ts_recent_stamp = get_seconds();
205 		}
206 
207 		inet_twsk_put(tw);
208 		return TCP_TW_SUCCESS;
209 	}
210 
211 	/* Out of window segment.
212 
213 	   All the segments are ACKed immediately.
214 
215 	   The only exception is new SYN. We accept it, if it is
216 	   not old duplicate and we are not in danger to be killed
217 	   by delayed old duplicates. RFC check is that it has
218 	   newer sequence number works at rates <40Mbit/sec.
219 	   However, if paws works, it is reliable AND even more,
220 	   we even may relax silly seq space cutoff.
221 
222 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224 	   we must return socket to time-wait state. It is not good,
225 	   but not fatal yet.
226 	 */
227 
228 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230 	     (tmp_opt.saw_tstamp &&
231 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233 		if (isn == 0)
234 			isn++;
235 		TCP_SKB_CB(skb)->when = isn;
236 		return TCP_TW_SYN;
237 	}
238 
239 	if (paws_reject)
240 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241 
242 	if (!th->rst) {
243 		/* In this case we must reset the TIMEWAIT timer.
244 		 *
245 		 * If it is ACKless SYN it may be both old duplicate
246 		 * and new good SYN with random sequence number <rcv_nxt.
247 		 * Do not reschedule in the last case.
248 		 */
249 		if (paws_reject || th->ack)
250 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251 					   TCP_TIMEWAIT_LEN);
252 
253 		/* Send ACK. Note, we do not put the bucket,
254 		 * it will be released by caller.
255 		 */
256 		return TCP_TW_ACK;
257 	}
258 	inet_twsk_put(tw);
259 	return TCP_TW_SUCCESS;
260 }
261 EXPORT_SYMBOL(tcp_timewait_state_process);
262 
263 /*
264  * Move a socket to time-wait or dead fin-wait-2 state.
265  */
266 void tcp_time_wait(struct sock *sk, int state, int timeo)
267 {
268 	struct inet_timewait_sock *tw = NULL;
269 	const struct inet_connection_sock *icsk = inet_csk(sk);
270 	const struct tcp_sock *tp = tcp_sk(sk);
271 	bool recycle_ok = false;
272 
273 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274 		recycle_ok = tcp_remember_stamp(sk);
275 
276 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277 		tw = inet_twsk_alloc(sk, state);
278 
279 	if (tw != NULL) {
280 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 		struct inet_sock *inet = inet_sk(sk);
283 
284 		tw->tw_transparent	= inet->transparent;
285 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287 		tcptw->tw_snd_nxt	= tp->snd_nxt;
288 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 		tcptw->tw_ts_offset	= tp->tsoffset;
292 
293 #if IS_ENABLED(CONFIG_IPV6)
294 		if (tw->tw_family == PF_INET6) {
295 			struct ipv6_pinfo *np = inet6_sk(sk);
296 			struct inet6_timewait_sock *tw6;
297 
298 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
299 			tw6 = inet6_twsk((struct sock *)tw);
300 			tw6->tw_v6_daddr = np->daddr;
301 			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
302 			tw->tw_tclass = np->tclass;
303 			tw->tw_ipv6only = np->ipv6only;
304 		}
305 #endif
306 
307 #ifdef CONFIG_TCP_MD5SIG
308 		/*
309 		 * The timewait bucket does not have the key DB from the
310 		 * sock structure. We just make a quick copy of the
311 		 * md5 key being used (if indeed we are using one)
312 		 * so the timewait ack generating code has the key.
313 		 */
314 		do {
315 			struct tcp_md5sig_key *key;
316 			tcptw->tw_md5_key = NULL;
317 			key = tp->af_specific->md5_lookup(sk, sk);
318 			if (key != NULL) {
319 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
320 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
321 					BUG();
322 			}
323 		} while (0);
324 #endif
325 
326 		/* Linkage updates. */
327 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
328 
329 		/* Get the TIME_WAIT timeout firing. */
330 		if (timeo < rto)
331 			timeo = rto;
332 
333 		if (recycle_ok) {
334 			tw->tw_timeout = rto;
335 		} else {
336 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
337 			if (state == TCP_TIME_WAIT)
338 				timeo = TCP_TIMEWAIT_LEN;
339 		}
340 
341 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
342 				   TCP_TIMEWAIT_LEN);
343 		inet_twsk_put(tw);
344 	} else {
345 		/* Sorry, if we're out of memory, just CLOSE this
346 		 * socket up.  We've got bigger problems than
347 		 * non-graceful socket closings.
348 		 */
349 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
350 	}
351 
352 	tcp_update_metrics(sk);
353 	tcp_done(sk);
354 }
355 
356 void tcp_twsk_destructor(struct sock *sk)
357 {
358 #ifdef CONFIG_TCP_MD5SIG
359 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
360 
361 	if (twsk->tw_md5_key)
362 		kfree_rcu(twsk->tw_md5_key, rcu);
363 #endif
364 }
365 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366 
367 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
368 					 struct request_sock *req)
369 {
370 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
371 }
372 
373 /* This is not only more efficient than what we used to do, it eliminates
374  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
375  *
376  * Actually, we could lots of memory writes here. tp of listening
377  * socket contains all necessary default parameters.
378  */
379 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
380 {
381 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
382 
383 	if (newsk != NULL) {
384 		const struct inet_request_sock *ireq = inet_rsk(req);
385 		struct tcp_request_sock *treq = tcp_rsk(req);
386 		struct inet_connection_sock *newicsk = inet_csk(newsk);
387 		struct tcp_sock *newtp = tcp_sk(newsk);
388 
389 		/* Now setup tcp_sock */
390 		newtp->pred_flags = 0;
391 
392 		newtp->rcv_wup = newtp->copied_seq =
393 		newtp->rcv_nxt = treq->rcv_isn + 1;
394 
395 		newtp->snd_sml = newtp->snd_una =
396 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
397 
398 		tcp_prequeue_init(newtp);
399 		INIT_LIST_HEAD(&newtp->tsq_node);
400 
401 		tcp_init_wl(newtp, treq->rcv_isn);
402 
403 		newtp->srtt = 0;
404 		newtp->mdev = TCP_TIMEOUT_INIT;
405 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
406 
407 		newtp->packets_out = 0;
408 		newtp->retrans_out = 0;
409 		newtp->sacked_out = 0;
410 		newtp->fackets_out = 0;
411 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
412 		tcp_enable_early_retrans(newtp);
413 		newtp->tlp_high_seq = 0;
414 		newtp->lsndtime = treq->snt_synack;
415 		newtp->total_retrans = req->num_retrans;
416 
417 		/* So many TCP implementations out there (incorrectly) count the
418 		 * initial SYN frame in their delayed-ACK and congestion control
419 		 * algorithms that we must have the following bandaid to talk
420 		 * efficiently to them.  -DaveM
421 		 */
422 		newtp->snd_cwnd = TCP_INIT_CWND;
423 		newtp->snd_cwnd_cnt = 0;
424 
425 		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
426 		    !try_module_get(newicsk->icsk_ca_ops->owner))
427 			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
428 
429 		tcp_set_ca_state(newsk, TCP_CA_Open);
430 		tcp_init_xmit_timers(newsk);
431 		skb_queue_head_init(&newtp->out_of_order_queue);
432 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
433 
434 		newtp->rx_opt.saw_tstamp = 0;
435 
436 		newtp->rx_opt.dsack = 0;
437 		newtp->rx_opt.num_sacks = 0;
438 
439 		newtp->urg_data = 0;
440 
441 		if (sock_flag(newsk, SOCK_KEEPOPEN))
442 			inet_csk_reset_keepalive_timer(newsk,
443 						       keepalive_time_when(newtp));
444 
445 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
446 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
447 			if (sysctl_tcp_fack)
448 				tcp_enable_fack(newtp);
449 		}
450 		newtp->window_clamp = req->window_clamp;
451 		newtp->rcv_ssthresh = req->rcv_wnd;
452 		newtp->rcv_wnd = req->rcv_wnd;
453 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
454 		if (newtp->rx_opt.wscale_ok) {
455 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
456 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
457 		} else {
458 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
459 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
460 		}
461 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
462 				  newtp->rx_opt.snd_wscale);
463 		newtp->max_window = newtp->snd_wnd;
464 
465 		if (newtp->rx_opt.tstamp_ok) {
466 			newtp->rx_opt.ts_recent = req->ts_recent;
467 			newtp->rx_opt.ts_recent_stamp = get_seconds();
468 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
469 		} else {
470 			newtp->rx_opt.ts_recent_stamp = 0;
471 			newtp->tcp_header_len = sizeof(struct tcphdr);
472 		}
473 		newtp->tsoffset = 0;
474 #ifdef CONFIG_TCP_MD5SIG
475 		newtp->md5sig_info = NULL;	/*XXX*/
476 		if (newtp->af_specific->md5_lookup(sk, newsk))
477 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
478 #endif
479 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
480 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
481 		newtp->rx_opt.mss_clamp = req->mss;
482 		TCP_ECN_openreq_child(newtp, req);
483 		newtp->fastopen_rsk = NULL;
484 		newtp->syn_data_acked = 0;
485 
486 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
487 	}
488 	return newsk;
489 }
490 EXPORT_SYMBOL(tcp_create_openreq_child);
491 
492 /*
493  * Process an incoming packet for SYN_RECV sockets represented as a
494  * request_sock. Normally sk is the listener socket but for TFO it
495  * points to the child socket.
496  *
497  * XXX (TFO) - The current impl contains a special check for ack
498  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
499  *
500  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
501  */
502 
503 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
504 			   struct request_sock *req,
505 			   struct request_sock **prev,
506 			   bool fastopen)
507 {
508 	struct tcp_options_received tmp_opt;
509 	struct sock *child;
510 	const struct tcphdr *th = tcp_hdr(skb);
511 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
512 	bool paws_reject = false;
513 
514 	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
515 
516 	tmp_opt.saw_tstamp = 0;
517 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
518 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
519 
520 		if (tmp_opt.saw_tstamp) {
521 			tmp_opt.ts_recent = req->ts_recent;
522 			/* We do not store true stamp, but it is not required,
523 			 * it can be estimated (approximately)
524 			 * from another data.
525 			 */
526 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
527 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
528 		}
529 	}
530 
531 	/* Check for pure retransmitted SYN. */
532 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
533 	    flg == TCP_FLAG_SYN &&
534 	    !paws_reject) {
535 		/*
536 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
537 		 * this case on figure 6 and figure 8, but formal
538 		 * protocol description says NOTHING.
539 		 * To be more exact, it says that we should send ACK,
540 		 * because this segment (at least, if it has no data)
541 		 * is out of window.
542 		 *
543 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
544 		 *  describe SYN-RECV state. All the description
545 		 *  is wrong, we cannot believe to it and should
546 		 *  rely only on common sense and implementation
547 		 *  experience.
548 		 *
549 		 * Enforce "SYN-ACK" according to figure 8, figure 6
550 		 * of RFC793, fixed by RFC1122.
551 		 *
552 		 * Note that even if there is new data in the SYN packet
553 		 * they will be thrown away too.
554 		 *
555 		 * Reset timer after retransmitting SYNACK, similar to
556 		 * the idea of fast retransmit in recovery.
557 		 */
558 		if (!inet_rtx_syn_ack(sk, req))
559 			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
560 					   TCP_RTO_MAX) + jiffies;
561 		return NULL;
562 	}
563 
564 	/* Further reproduces section "SEGMENT ARRIVES"
565 	   for state SYN-RECEIVED of RFC793.
566 	   It is broken, however, it does not work only
567 	   when SYNs are crossed.
568 
569 	   You would think that SYN crossing is impossible here, since
570 	   we should have a SYN_SENT socket (from connect()) on our end,
571 	   but this is not true if the crossed SYNs were sent to both
572 	   ends by a malicious third party.  We must defend against this,
573 	   and to do that we first verify the ACK (as per RFC793, page
574 	   36) and reset if it is invalid.  Is this a true full defense?
575 	   To convince ourselves, let us consider a way in which the ACK
576 	   test can still pass in this 'malicious crossed SYNs' case.
577 	   Malicious sender sends identical SYNs (and thus identical sequence
578 	   numbers) to both A and B:
579 
580 		A: gets SYN, seq=7
581 		B: gets SYN, seq=7
582 
583 	   By our good fortune, both A and B select the same initial
584 	   send sequence number of seven :-)
585 
586 		A: sends SYN|ACK, seq=7, ack_seq=8
587 		B: sends SYN|ACK, seq=7, ack_seq=8
588 
589 	   So we are now A eating this SYN|ACK, ACK test passes.  So
590 	   does sequence test, SYN is truncated, and thus we consider
591 	   it a bare ACK.
592 
593 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
594 	   bare ACK.  Otherwise, we create an established connection.  Both
595 	   ends (listening sockets) accept the new incoming connection and try
596 	   to talk to each other. 8-)
597 
598 	   Note: This case is both harmless, and rare.  Possibility is about the
599 	   same as us discovering intelligent life on another plant tomorrow.
600 
601 	   But generally, we should (RFC lies!) to accept ACK
602 	   from SYNACK both here and in tcp_rcv_state_process().
603 	   tcp_rcv_state_process() does not, hence, we do not too.
604 
605 	   Note that the case is absolutely generic:
606 	   we cannot optimize anything here without
607 	   violating protocol. All the checks must be made
608 	   before attempt to create socket.
609 	 */
610 
611 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
612 	 *                  and the incoming segment acknowledges something not yet
613 	 *                  sent (the segment carries an unacceptable ACK) ...
614 	 *                  a reset is sent."
615 	 *
616 	 * Invalid ACK: reset will be sent by listening socket.
617 	 * Note that the ACK validity check for a Fast Open socket is done
618 	 * elsewhere and is checked directly against the child socket rather
619 	 * than req because user data may have been sent out.
620 	 */
621 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
622 	    (TCP_SKB_CB(skb)->ack_seq !=
623 	     tcp_rsk(req)->snt_isn + 1))
624 		return sk;
625 
626 	/* Also, it would be not so bad idea to check rcv_tsecr, which
627 	 * is essentially ACK extension and too early or too late values
628 	 * should cause reset in unsynchronized states.
629 	 */
630 
631 	/* RFC793: "first check sequence number". */
632 
633 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
634 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
635 		/* Out of window: send ACK and drop. */
636 		if (!(flg & TCP_FLAG_RST))
637 			req->rsk_ops->send_ack(sk, skb, req);
638 		if (paws_reject)
639 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
640 		return NULL;
641 	}
642 
643 	/* In sequence, PAWS is OK. */
644 
645 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
646 		req->ts_recent = tmp_opt.rcv_tsval;
647 
648 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
649 		/* Truncate SYN, it is out of window starting
650 		   at tcp_rsk(req)->rcv_isn + 1. */
651 		flg &= ~TCP_FLAG_SYN;
652 	}
653 
654 	/* RFC793: "second check the RST bit" and
655 	 *	   "fourth, check the SYN bit"
656 	 */
657 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
658 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
659 		goto embryonic_reset;
660 	}
661 
662 	/* ACK sequence verified above, just make sure ACK is
663 	 * set.  If ACK not set, just silently drop the packet.
664 	 *
665 	 * XXX (TFO) - if we ever allow "data after SYN", the
666 	 * following check needs to be removed.
667 	 */
668 	if (!(flg & TCP_FLAG_ACK))
669 		return NULL;
670 
671 	/* For Fast Open no more processing is needed (sk is the
672 	 * child socket).
673 	 */
674 	if (fastopen)
675 		return sk;
676 
677 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
678 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
679 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
680 		inet_rsk(req)->acked = 1;
681 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
682 		return NULL;
683 	}
684 
685 	/* OK, ACK is valid, create big socket and
686 	 * feed this segment to it. It will repeat all
687 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
688 	 * ESTABLISHED STATE. If it will be dropped after
689 	 * socket is created, wait for troubles.
690 	 */
691 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
692 	if (child == NULL)
693 		goto listen_overflow;
694 
695 	inet_csk_reqsk_queue_unlink(sk, req, prev);
696 	inet_csk_reqsk_queue_removed(sk, req);
697 
698 	inet_csk_reqsk_queue_add(sk, req, child);
699 	return child;
700 
701 listen_overflow:
702 	if (!sysctl_tcp_abort_on_overflow) {
703 		inet_rsk(req)->acked = 1;
704 		return NULL;
705 	}
706 
707 embryonic_reset:
708 	if (!(flg & TCP_FLAG_RST)) {
709 		/* Received a bad SYN pkt - for TFO We try not to reset
710 		 * the local connection unless it's really necessary to
711 		 * avoid becoming vulnerable to outside attack aiming at
712 		 * resetting legit local connections.
713 		 */
714 		req->rsk_ops->send_reset(sk, skb);
715 	} else if (fastopen) { /* received a valid RST pkt */
716 		reqsk_fastopen_remove(sk, req, true);
717 		tcp_reset(sk);
718 	}
719 	if (!fastopen) {
720 		inet_csk_reqsk_queue_drop(sk, req, prev);
721 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
722 	}
723 	return NULL;
724 }
725 EXPORT_SYMBOL(tcp_check_req);
726 
727 /*
728  * Queue segment on the new socket if the new socket is active,
729  * otherwise we just shortcircuit this and continue with
730  * the new socket.
731  *
732  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
733  * when entering. But other states are possible due to a race condition
734  * where after __inet_lookup_established() fails but before the listener
735  * locked is obtained, other packets cause the same connection to
736  * be created.
737  */
738 
739 int tcp_child_process(struct sock *parent, struct sock *child,
740 		      struct sk_buff *skb)
741 {
742 	int ret = 0;
743 	int state = child->sk_state;
744 
745 	if (!sock_owned_by_user(child)) {
746 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
747 					    skb->len);
748 		/* Wakeup parent, send SIGIO */
749 		if (state == TCP_SYN_RECV && child->sk_state != state)
750 			parent->sk_data_ready(parent, 0);
751 	} else {
752 		/* Alas, it is possible again, because we do lookup
753 		 * in main socket hash table and lock on listening
754 		 * socket does not protect us more.
755 		 */
756 		__sk_add_backlog(child, skb);
757 	}
758 
759 	bh_unlock_sock(child);
760 	sock_put(child);
761 	return ret;
762 }
763 EXPORT_SYMBOL(tcp_child_process);
764