xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision e63c7a0979f28bb13e06b981765dd514c01c075b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.hashinfo	= &tcp_hashinfo,
38 };
39 EXPORT_SYMBOL_GPL(tcp_death_row);
40 
41 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
42 {
43 	if (seq == s_win)
44 		return true;
45 	if (after(end_seq, s_win) && before(seq, e_win))
46 		return true;
47 	return seq == e_win && seq == end_seq;
48 }
49 
50 static enum tcp_tw_status
51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
52 				  const struct sk_buff *skb, int mib_idx)
53 {
54 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
55 
56 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
57 				  &tcptw->tw_last_oow_ack_time)) {
58 		/* Send ACK. Note, we do not put the bucket,
59 		 * it will be released by caller.
60 		 */
61 		return TCP_TW_ACK;
62 	}
63 
64 	/* We are rate-limiting, so just release the tw sock and drop skb. */
65 	inet_twsk_put(tw);
66 	return TCP_TW_SUCCESS;
67 }
68 
69 /*
70  * * Main purpose of TIME-WAIT state is to close connection gracefully,
71  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72  *   (and, probably, tail of data) and one or more our ACKs are lost.
73  * * What is TIME-WAIT timeout? It is associated with maximal packet
74  *   lifetime in the internet, which results in wrong conclusion, that
75  *   it is set to catch "old duplicate segments" wandering out of their path.
76  *   It is not quite correct. This timeout is calculated so that it exceeds
77  *   maximal retransmission timeout enough to allow to lose one (or more)
78  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
79  * * When TIME-WAIT socket receives RST, it means that another end
80  *   finally closed and we are allowed to kill TIME-WAIT too.
81  * * Second purpose of TIME-WAIT is catching old duplicate segments.
82  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
83  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84  * * If we invented some more clever way to catch duplicates
85  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86  *
87  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89  * from the very beginning.
90  *
91  * NOTE. With recycling (and later with fin-wait-2) TW bucket
92  * is _not_ stateless. It means, that strictly speaking we must
93  * spinlock it. I do not want! Well, probability of misbehaviour
94  * is ridiculously low and, seems, we could use some mb() tricks
95  * to avoid misread sequence numbers, states etc.  --ANK
96  *
97  * We don't need to initialize tmp_out.sack_ok as we don't use the results
98  */
99 enum tcp_tw_status
100 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
101 			   const struct tcphdr *th)
102 {
103 	struct tcp_options_received tmp_opt;
104 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
105 	bool paws_reject = false;
106 
107 	tmp_opt.saw_tstamp = 0;
108 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
109 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
110 
111 		if (tmp_opt.saw_tstamp) {
112 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
113 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
114 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
115 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
116 		}
117 	}
118 
119 	if (tw->tw_substate == TCP_FIN_WAIT2) {
120 		/* Just repeat all the checks of tcp_rcv_state_process() */
121 
122 		/* Out of window, send ACK */
123 		if (paws_reject ||
124 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
125 				   tcptw->tw_rcv_nxt,
126 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
127 			return tcp_timewait_check_oow_rate_limit(
128 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
129 
130 		if (th->rst)
131 			goto kill;
132 
133 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
134 			goto kill_with_rst;
135 
136 		/* Dup ACK? */
137 		if (!th->ack ||
138 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
139 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
140 			inet_twsk_put(tw);
141 			return TCP_TW_SUCCESS;
142 		}
143 
144 		/* New data or FIN. If new data arrive after half-duplex close,
145 		 * reset.
146 		 */
147 		if (!th->fin ||
148 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
149 kill_with_rst:
150 			inet_twsk_deschedule_put(tw);
151 			return TCP_TW_RST;
152 		}
153 
154 		/* FIN arrived, enter true time-wait state. */
155 		tw->tw_substate	  = TCP_TIME_WAIT;
156 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
157 		if (tmp_opt.saw_tstamp) {
158 			tcptw->tw_ts_recent_stamp = get_seconds();
159 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
160 		}
161 
162 		if (tcp_death_row.sysctl_tw_recycle &&
163 		    tcptw->tw_ts_recent_stamp &&
164 		    tcp_tw_remember_stamp(tw))
165 			inet_twsk_schedule(tw, tw->tw_timeout);
166 		else
167 			inet_twsk_schedule(tw, TCP_TIMEWAIT_LEN);
168 		return TCP_TW_ACK;
169 	}
170 
171 	/*
172 	 *	Now real TIME-WAIT state.
173 	 *
174 	 *	RFC 1122:
175 	 *	"When a connection is [...] on TIME-WAIT state [...]
176 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
177 	 *	reopen the connection directly, if it:
178 	 *
179 	 *	(1)  assigns its initial sequence number for the new
180 	 *	connection to be larger than the largest sequence
181 	 *	number it used on the previous connection incarnation,
182 	 *	and
183 	 *
184 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
185 	 *	to be an old duplicate".
186 	 */
187 
188 	if (!paws_reject &&
189 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
190 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
191 		/* In window segment, it may be only reset or bare ack. */
192 
193 		if (th->rst) {
194 			/* This is TIME_WAIT assassination, in two flavors.
195 			 * Oh well... nobody has a sufficient solution to this
196 			 * protocol bug yet.
197 			 */
198 			if (sysctl_tcp_rfc1337 == 0) {
199 kill:
200 				inet_twsk_deschedule_put(tw);
201 				return TCP_TW_SUCCESS;
202 			}
203 		}
204 		inet_twsk_schedule(tw, TCP_TIMEWAIT_LEN);
205 
206 		if (tmp_opt.saw_tstamp) {
207 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
208 			tcptw->tw_ts_recent_stamp = get_seconds();
209 		}
210 
211 		inet_twsk_put(tw);
212 		return TCP_TW_SUCCESS;
213 	}
214 
215 	/* Out of window segment.
216 
217 	   All the segments are ACKed immediately.
218 
219 	   The only exception is new SYN. We accept it, if it is
220 	   not old duplicate and we are not in danger to be killed
221 	   by delayed old duplicates. RFC check is that it has
222 	   newer sequence number works at rates <40Mbit/sec.
223 	   However, if paws works, it is reliable AND even more,
224 	   we even may relax silly seq space cutoff.
225 
226 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
227 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
228 	   we must return socket to time-wait state. It is not good,
229 	   but not fatal yet.
230 	 */
231 
232 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
233 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
234 	     (tmp_opt.saw_tstamp &&
235 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
236 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
237 		if (isn == 0)
238 			isn++;
239 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
240 		return TCP_TW_SYN;
241 	}
242 
243 	if (paws_reject)
244 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
245 
246 	if (!th->rst) {
247 		/* In this case we must reset the TIMEWAIT timer.
248 		 *
249 		 * If it is ACKless SYN it may be both old duplicate
250 		 * and new good SYN with random sequence number <rcv_nxt.
251 		 * Do not reschedule in the last case.
252 		 */
253 		if (paws_reject || th->ack)
254 			inet_twsk_schedule(tw, TCP_TIMEWAIT_LEN);
255 
256 		return tcp_timewait_check_oow_rate_limit(
257 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
258 	}
259 	inet_twsk_put(tw);
260 	return TCP_TW_SUCCESS;
261 }
262 EXPORT_SYMBOL(tcp_timewait_state_process);
263 
264 /*
265  * Move a socket to time-wait or dead fin-wait-2 state.
266  */
267 void tcp_time_wait(struct sock *sk, int state, int timeo)
268 {
269 	const struct inet_connection_sock *icsk = inet_csk(sk);
270 	const struct tcp_sock *tp = tcp_sk(sk);
271 	struct inet_timewait_sock *tw;
272 	bool recycle_ok = false;
273 
274 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
275 		recycle_ok = tcp_remember_stamp(sk);
276 
277 	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
278 
279 	if (tw) {
280 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 		struct inet_sock *inet = inet_sk(sk);
283 
284 		tw->tw_transparent	= inet->transparent;
285 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287 		tcptw->tw_snd_nxt	= tp->snd_nxt;
288 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 		tcptw->tw_ts_offset	= tp->tsoffset;
292 		tcptw->tw_last_oow_ack_time = 0;
293 
294 #if IS_ENABLED(CONFIG_IPV6)
295 		if (tw->tw_family == PF_INET6) {
296 			struct ipv6_pinfo *np = inet6_sk(sk);
297 
298 			tw->tw_v6_daddr = sk->sk_v6_daddr;
299 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
300 			tw->tw_tclass = np->tclass;
301 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
302 			tw->tw_ipv6only = sk->sk_ipv6only;
303 		}
304 #endif
305 
306 #ifdef CONFIG_TCP_MD5SIG
307 		/*
308 		 * The timewait bucket does not have the key DB from the
309 		 * sock structure. We just make a quick copy of the
310 		 * md5 key being used (if indeed we are using one)
311 		 * so the timewait ack generating code has the key.
312 		 */
313 		do {
314 			struct tcp_md5sig_key *key;
315 			tcptw->tw_md5_key = NULL;
316 			key = tp->af_specific->md5_lookup(sk, sk);
317 			if (key) {
318 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
319 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
320 					BUG();
321 			}
322 		} while (0);
323 #endif
324 
325 		/* Linkage updates. */
326 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
327 
328 		/* Get the TIME_WAIT timeout firing. */
329 		if (timeo < rto)
330 			timeo = rto;
331 
332 		if (recycle_ok) {
333 			tw->tw_timeout = rto;
334 		} else {
335 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
336 			if (state == TCP_TIME_WAIT)
337 				timeo = TCP_TIMEWAIT_LEN;
338 		}
339 
340 		inet_twsk_schedule(tw, timeo);
341 		inet_twsk_put(tw);
342 	} else {
343 		/* Sorry, if we're out of memory, just CLOSE this
344 		 * socket up.  We've got bigger problems than
345 		 * non-graceful socket closings.
346 		 */
347 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
348 	}
349 
350 	tcp_update_metrics(sk);
351 	tcp_done(sk);
352 }
353 
354 void tcp_twsk_destructor(struct sock *sk)
355 {
356 #ifdef CONFIG_TCP_MD5SIG
357 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
358 
359 	if (twsk->tw_md5_key)
360 		kfree_rcu(twsk->tw_md5_key, rcu);
361 #endif
362 }
363 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
364 
365 void tcp_openreq_init_rwin(struct request_sock *req,
366 			   struct sock *sk, struct dst_entry *dst)
367 {
368 	struct inet_request_sock *ireq = inet_rsk(req);
369 	struct tcp_sock *tp = tcp_sk(sk);
370 	__u8 rcv_wscale;
371 	int mss = dst_metric_advmss(dst);
372 
373 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
374 		mss = tp->rx_opt.user_mss;
375 
376 	/* Set this up on the first call only */
377 	req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
378 
379 	/* limit the window selection if the user enforce a smaller rx buffer */
380 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
381 	    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
382 		req->window_clamp = tcp_full_space(sk);
383 
384 	/* tcp_full_space because it is guaranteed to be the first packet */
385 	tcp_select_initial_window(tcp_full_space(sk),
386 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
387 		&req->rcv_wnd,
388 		&req->window_clamp,
389 		ireq->wscale_ok,
390 		&rcv_wscale,
391 		dst_metric(dst, RTAX_INITRWND));
392 	ireq->rcv_wscale = rcv_wscale;
393 }
394 EXPORT_SYMBOL(tcp_openreq_init_rwin);
395 
396 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
397 				  const struct request_sock *req)
398 {
399 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
400 }
401 
402 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
403 {
404 	struct inet_connection_sock *icsk = inet_csk(sk);
405 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
406 	bool ca_got_dst = false;
407 
408 	if (ca_key != TCP_CA_UNSPEC) {
409 		const struct tcp_congestion_ops *ca;
410 
411 		rcu_read_lock();
412 		ca = tcp_ca_find_key(ca_key);
413 		if (likely(ca && try_module_get(ca->owner))) {
414 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
415 			icsk->icsk_ca_ops = ca;
416 			ca_got_dst = true;
417 		}
418 		rcu_read_unlock();
419 	}
420 
421 	/* If no valid choice made yet, assign current system default ca. */
422 	if (!ca_got_dst &&
423 	    (!icsk->icsk_ca_setsockopt ||
424 	     !try_module_get(icsk->icsk_ca_ops->owner)))
425 		tcp_assign_congestion_control(sk);
426 
427 	tcp_set_ca_state(sk, TCP_CA_Open);
428 }
429 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
430 
431 /* This is not only more efficient than what we used to do, it eliminates
432  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
433  *
434  * Actually, we could lots of memory writes here. tp of listening
435  * socket contains all necessary default parameters.
436  */
437 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
438 {
439 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
440 
441 	if (newsk) {
442 		const struct inet_request_sock *ireq = inet_rsk(req);
443 		struct tcp_request_sock *treq = tcp_rsk(req);
444 		struct inet_connection_sock *newicsk = inet_csk(newsk);
445 		struct tcp_sock *newtp = tcp_sk(newsk);
446 
447 		/* Now setup tcp_sock */
448 		newtp->pred_flags = 0;
449 
450 		newtp->rcv_wup = newtp->copied_seq =
451 		newtp->rcv_nxt = treq->rcv_isn + 1;
452 		newtp->segs_in = 0;
453 
454 		newtp->snd_sml = newtp->snd_una =
455 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
456 
457 		tcp_prequeue_init(newtp);
458 		INIT_LIST_HEAD(&newtp->tsq_node);
459 
460 		tcp_init_wl(newtp, treq->rcv_isn);
461 
462 		newtp->srtt_us = 0;
463 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
464 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
465 
466 		newtp->packets_out = 0;
467 		newtp->retrans_out = 0;
468 		newtp->sacked_out = 0;
469 		newtp->fackets_out = 0;
470 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
471 		tcp_enable_early_retrans(newtp);
472 		newtp->tlp_high_seq = 0;
473 		newtp->lsndtime = treq->snt_synack;
474 		newtp->last_oow_ack_time = 0;
475 		newtp->total_retrans = req->num_retrans;
476 
477 		/* So many TCP implementations out there (incorrectly) count the
478 		 * initial SYN frame in their delayed-ACK and congestion control
479 		 * algorithms that we must have the following bandaid to talk
480 		 * efficiently to them.  -DaveM
481 		 */
482 		newtp->snd_cwnd = TCP_INIT_CWND;
483 		newtp->snd_cwnd_cnt = 0;
484 
485 		tcp_init_xmit_timers(newsk);
486 		__skb_queue_head_init(&newtp->out_of_order_queue);
487 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
488 
489 		newtp->rx_opt.saw_tstamp = 0;
490 
491 		newtp->rx_opt.dsack = 0;
492 		newtp->rx_opt.num_sacks = 0;
493 
494 		newtp->urg_data = 0;
495 
496 		if (sock_flag(newsk, SOCK_KEEPOPEN))
497 			inet_csk_reset_keepalive_timer(newsk,
498 						       keepalive_time_when(newtp));
499 
500 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
501 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
502 			if (sysctl_tcp_fack)
503 				tcp_enable_fack(newtp);
504 		}
505 		newtp->window_clamp = req->window_clamp;
506 		newtp->rcv_ssthresh = req->rcv_wnd;
507 		newtp->rcv_wnd = req->rcv_wnd;
508 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
509 		if (newtp->rx_opt.wscale_ok) {
510 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
511 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
512 		} else {
513 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
514 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
515 		}
516 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
517 				  newtp->rx_opt.snd_wscale);
518 		newtp->max_window = newtp->snd_wnd;
519 
520 		if (newtp->rx_opt.tstamp_ok) {
521 			newtp->rx_opt.ts_recent = req->ts_recent;
522 			newtp->rx_opt.ts_recent_stamp = get_seconds();
523 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
524 		} else {
525 			newtp->rx_opt.ts_recent_stamp = 0;
526 			newtp->tcp_header_len = sizeof(struct tcphdr);
527 		}
528 		newtp->tsoffset = 0;
529 #ifdef CONFIG_TCP_MD5SIG
530 		newtp->md5sig_info = NULL;	/*XXX*/
531 		if (newtp->af_specific->md5_lookup(sk, newsk))
532 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
533 #endif
534 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
535 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
536 		newtp->rx_opt.mss_clamp = req->mss;
537 		tcp_ecn_openreq_child(newtp, req);
538 		newtp->fastopen_rsk = NULL;
539 		newtp->syn_data_acked = 0;
540 
541 		newtp->saved_syn = req->saved_syn;
542 		req->saved_syn = NULL;
543 
544 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
545 	}
546 	return newsk;
547 }
548 EXPORT_SYMBOL(tcp_create_openreq_child);
549 
550 /*
551  * Process an incoming packet for SYN_RECV sockets represented as a
552  * request_sock. Normally sk is the listener socket but for TFO it
553  * points to the child socket.
554  *
555  * XXX (TFO) - The current impl contains a special check for ack
556  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
557  *
558  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
559  */
560 
561 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
562 			   struct request_sock *req,
563 			   bool fastopen)
564 {
565 	struct tcp_options_received tmp_opt;
566 	struct sock *child;
567 	const struct tcphdr *th = tcp_hdr(skb);
568 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
569 	bool paws_reject = false;
570 
571 	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
572 
573 	tmp_opt.saw_tstamp = 0;
574 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
575 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
576 
577 		if (tmp_opt.saw_tstamp) {
578 			tmp_opt.ts_recent = req->ts_recent;
579 			/* We do not store true stamp, but it is not required,
580 			 * it can be estimated (approximately)
581 			 * from another data.
582 			 */
583 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
584 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
585 		}
586 	}
587 
588 	/* Check for pure retransmitted SYN. */
589 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
590 	    flg == TCP_FLAG_SYN &&
591 	    !paws_reject) {
592 		/*
593 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
594 		 * this case on figure 6 and figure 8, but formal
595 		 * protocol description says NOTHING.
596 		 * To be more exact, it says that we should send ACK,
597 		 * because this segment (at least, if it has no data)
598 		 * is out of window.
599 		 *
600 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
601 		 *  describe SYN-RECV state. All the description
602 		 *  is wrong, we cannot believe to it and should
603 		 *  rely only on common sense and implementation
604 		 *  experience.
605 		 *
606 		 * Enforce "SYN-ACK" according to figure 8, figure 6
607 		 * of RFC793, fixed by RFC1122.
608 		 *
609 		 * Note that even if there is new data in the SYN packet
610 		 * they will be thrown away too.
611 		 *
612 		 * Reset timer after retransmitting SYNACK, similar to
613 		 * the idea of fast retransmit in recovery.
614 		 */
615 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
616 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
617 					  &tcp_rsk(req)->last_oow_ack_time) &&
618 
619 		    !inet_rtx_syn_ack(sk, req)) {
620 			unsigned long expires = jiffies;
621 
622 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
623 				       TCP_RTO_MAX);
624 			if (!fastopen)
625 				mod_timer_pending(&req->rsk_timer, expires);
626 			else
627 				req->rsk_timer.expires = expires;
628 		}
629 		return NULL;
630 	}
631 
632 	/* Further reproduces section "SEGMENT ARRIVES"
633 	   for state SYN-RECEIVED of RFC793.
634 	   It is broken, however, it does not work only
635 	   when SYNs are crossed.
636 
637 	   You would think that SYN crossing is impossible here, since
638 	   we should have a SYN_SENT socket (from connect()) on our end,
639 	   but this is not true if the crossed SYNs were sent to both
640 	   ends by a malicious third party.  We must defend against this,
641 	   and to do that we first verify the ACK (as per RFC793, page
642 	   36) and reset if it is invalid.  Is this a true full defense?
643 	   To convince ourselves, let us consider a way in which the ACK
644 	   test can still pass in this 'malicious crossed SYNs' case.
645 	   Malicious sender sends identical SYNs (and thus identical sequence
646 	   numbers) to both A and B:
647 
648 		A: gets SYN, seq=7
649 		B: gets SYN, seq=7
650 
651 	   By our good fortune, both A and B select the same initial
652 	   send sequence number of seven :-)
653 
654 		A: sends SYN|ACK, seq=7, ack_seq=8
655 		B: sends SYN|ACK, seq=7, ack_seq=8
656 
657 	   So we are now A eating this SYN|ACK, ACK test passes.  So
658 	   does sequence test, SYN is truncated, and thus we consider
659 	   it a bare ACK.
660 
661 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
662 	   bare ACK.  Otherwise, we create an established connection.  Both
663 	   ends (listening sockets) accept the new incoming connection and try
664 	   to talk to each other. 8-)
665 
666 	   Note: This case is both harmless, and rare.  Possibility is about the
667 	   same as us discovering intelligent life on another plant tomorrow.
668 
669 	   But generally, we should (RFC lies!) to accept ACK
670 	   from SYNACK both here and in tcp_rcv_state_process().
671 	   tcp_rcv_state_process() does not, hence, we do not too.
672 
673 	   Note that the case is absolutely generic:
674 	   we cannot optimize anything here without
675 	   violating protocol. All the checks must be made
676 	   before attempt to create socket.
677 	 */
678 
679 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
680 	 *                  and the incoming segment acknowledges something not yet
681 	 *                  sent (the segment carries an unacceptable ACK) ...
682 	 *                  a reset is sent."
683 	 *
684 	 * Invalid ACK: reset will be sent by listening socket.
685 	 * Note that the ACK validity check for a Fast Open socket is done
686 	 * elsewhere and is checked directly against the child socket rather
687 	 * than req because user data may have been sent out.
688 	 */
689 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
690 	    (TCP_SKB_CB(skb)->ack_seq !=
691 	     tcp_rsk(req)->snt_isn + 1))
692 		return sk;
693 
694 	/* Also, it would be not so bad idea to check rcv_tsecr, which
695 	 * is essentially ACK extension and too early or too late values
696 	 * should cause reset in unsynchronized states.
697 	 */
698 
699 	/* RFC793: "first check sequence number". */
700 
701 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
702 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
703 		/* Out of window: send ACK and drop. */
704 		if (!(flg & TCP_FLAG_RST))
705 			req->rsk_ops->send_ack(sk, skb, req);
706 		if (paws_reject)
707 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
708 		return NULL;
709 	}
710 
711 	/* In sequence, PAWS is OK. */
712 
713 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
714 		req->ts_recent = tmp_opt.rcv_tsval;
715 
716 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
717 		/* Truncate SYN, it is out of window starting
718 		   at tcp_rsk(req)->rcv_isn + 1. */
719 		flg &= ~TCP_FLAG_SYN;
720 	}
721 
722 	/* RFC793: "second check the RST bit" and
723 	 *	   "fourth, check the SYN bit"
724 	 */
725 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
726 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
727 		goto embryonic_reset;
728 	}
729 
730 	/* ACK sequence verified above, just make sure ACK is
731 	 * set.  If ACK not set, just silently drop the packet.
732 	 *
733 	 * XXX (TFO) - if we ever allow "data after SYN", the
734 	 * following check needs to be removed.
735 	 */
736 	if (!(flg & TCP_FLAG_ACK))
737 		return NULL;
738 
739 	/* For Fast Open no more processing is needed (sk is the
740 	 * child socket).
741 	 */
742 	if (fastopen)
743 		return sk;
744 
745 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
746 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
747 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
748 		inet_rsk(req)->acked = 1;
749 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
750 		return NULL;
751 	}
752 
753 	/* OK, ACK is valid, create big socket and
754 	 * feed this segment to it. It will repeat all
755 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
756 	 * ESTABLISHED STATE. If it will be dropped after
757 	 * socket is created, wait for troubles.
758 	 */
759 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
760 	if (!child)
761 		goto listen_overflow;
762 
763 	inet_csk_reqsk_queue_drop(sk, req);
764 	inet_csk_reqsk_queue_add(sk, req, child);
765 	/* Warning: caller must not call reqsk_put(req);
766 	 * child stole last reference on it.
767 	 */
768 	return child;
769 
770 listen_overflow:
771 	if (!sysctl_tcp_abort_on_overflow) {
772 		inet_rsk(req)->acked = 1;
773 		return NULL;
774 	}
775 
776 embryonic_reset:
777 	if (!(flg & TCP_FLAG_RST)) {
778 		/* Received a bad SYN pkt - for TFO We try not to reset
779 		 * the local connection unless it's really necessary to
780 		 * avoid becoming vulnerable to outside attack aiming at
781 		 * resetting legit local connections.
782 		 */
783 		req->rsk_ops->send_reset(sk, skb);
784 	} else if (fastopen) { /* received a valid RST pkt */
785 		reqsk_fastopen_remove(sk, req, true);
786 		tcp_reset(sk);
787 	}
788 	if (!fastopen) {
789 		inet_csk_reqsk_queue_drop(sk, req);
790 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
791 	}
792 	return NULL;
793 }
794 EXPORT_SYMBOL(tcp_check_req);
795 
796 /*
797  * Queue segment on the new socket if the new socket is active,
798  * otherwise we just shortcircuit this and continue with
799  * the new socket.
800  *
801  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
802  * when entering. But other states are possible due to a race condition
803  * where after __inet_lookup_established() fails but before the listener
804  * locked is obtained, other packets cause the same connection to
805  * be created.
806  */
807 
808 int tcp_child_process(struct sock *parent, struct sock *child,
809 		      struct sk_buff *skb)
810 {
811 	int ret = 0;
812 	int state = child->sk_state;
813 
814 	if (!sock_owned_by_user(child)) {
815 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
816 					    skb->len);
817 		/* Wakeup parent, send SIGIO */
818 		if (state == TCP_SYN_RECV && child->sk_state != state)
819 			parent->sk_data_ready(parent);
820 	} else {
821 		/* Alas, it is possible again, because we do lookup
822 		 * in main socket hash table and lock on listening
823 		 * socket does not protect us more.
824 		 */
825 		__sk_add_backlog(child, skb);
826 	}
827 
828 	bh_unlock_sock(child);
829 	sock_put(child);
830 	return ret;
831 }
832 EXPORT_SYMBOL(tcp_child_process);
833