xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision e5c86679)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_abort_on_overflow __read_mostly;
31 
32 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
33 {
34 	if (seq == s_win)
35 		return true;
36 	if (after(end_seq, s_win) && before(seq, e_win))
37 		return true;
38 	return seq == e_win && seq == end_seq;
39 }
40 
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
43 				  const struct sk_buff *skb, int mib_idx)
44 {
45 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
46 
47 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
48 				  &tcptw->tw_last_oow_ack_time)) {
49 		/* Send ACK. Note, we do not put the bucket,
50 		 * it will be released by caller.
51 		 */
52 		return TCP_TW_ACK;
53 	}
54 
55 	/* We are rate-limiting, so just release the tw sock and drop skb. */
56 	inet_twsk_put(tw);
57 	return TCP_TW_SUCCESS;
58 }
59 
60 /*
61  * * Main purpose of TIME-WAIT state is to close connection gracefully,
62  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63  *   (and, probably, tail of data) and one or more our ACKs are lost.
64  * * What is TIME-WAIT timeout? It is associated with maximal packet
65  *   lifetime in the internet, which results in wrong conclusion, that
66  *   it is set to catch "old duplicate segments" wandering out of their path.
67  *   It is not quite correct. This timeout is calculated so that it exceeds
68  *   maximal retransmission timeout enough to allow to lose one (or more)
69  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
70  * * When TIME-WAIT socket receives RST, it means that another end
71  *   finally closed and we are allowed to kill TIME-WAIT too.
72  * * Second purpose of TIME-WAIT is catching old duplicate segments.
73  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
74  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75  * * If we invented some more clever way to catch duplicates
76  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
77  *
78  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80  * from the very beginning.
81  *
82  * NOTE. With recycling (and later with fin-wait-2) TW bucket
83  * is _not_ stateless. It means, that strictly speaking we must
84  * spinlock it. I do not want! Well, probability of misbehaviour
85  * is ridiculously low and, seems, we could use some mb() tricks
86  * to avoid misread sequence numbers, states etc.  --ANK
87  *
88  * We don't need to initialize tmp_out.sack_ok as we don't use the results
89  */
90 enum tcp_tw_status
91 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
92 			   const struct tcphdr *th)
93 {
94 	struct tcp_options_received tmp_opt;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 	struct inet_timewait_death_row *tcp_death_row = &sock_net((struct sock*)tw)->ipv4.tcp_death_row;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			if (tmp_opt.rcv_tsecr)
105 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109 		}
110 	}
111 
112 	if (tw->tw_substate == TCP_FIN_WAIT2) {
113 		/* Just repeat all the checks of tcp_rcv_state_process() */
114 
115 		/* Out of window, send ACK */
116 		if (paws_reject ||
117 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118 				   tcptw->tw_rcv_nxt,
119 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120 			return tcp_timewait_check_oow_rate_limit(
121 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122 
123 		if (th->rst)
124 			goto kill;
125 
126 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127 			return TCP_TW_RST;
128 
129 		/* Dup ACK? */
130 		if (!th->ack ||
131 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133 			inet_twsk_put(tw);
134 			return TCP_TW_SUCCESS;
135 		}
136 
137 		/* New data or FIN. If new data arrive after half-duplex close,
138 		 * reset.
139 		 */
140 		if (!th->fin ||
141 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142 			return TCP_TW_RST;
143 
144 		/* FIN arrived, enter true time-wait state. */
145 		tw->tw_substate	  = TCP_TIME_WAIT;
146 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 		if (tmp_opt.saw_tstamp) {
148 			tcptw->tw_ts_recent_stamp = get_seconds();
149 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150 		}
151 
152 		if (tcp_death_row->sysctl_tw_recycle &&
153 		    tcptw->tw_ts_recent_stamp &&
154 		    tcp_tw_remember_stamp(tw))
155 			inet_twsk_reschedule(tw, tw->tw_timeout);
156 		else
157 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
158 		return TCP_TW_ACK;
159 	}
160 
161 	/*
162 	 *	Now real TIME-WAIT state.
163 	 *
164 	 *	RFC 1122:
165 	 *	"When a connection is [...] on TIME-WAIT state [...]
166 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
167 	 *	reopen the connection directly, if it:
168 	 *
169 	 *	(1)  assigns its initial sequence number for the new
170 	 *	connection to be larger than the largest sequence
171 	 *	number it used on the previous connection incarnation,
172 	 *	and
173 	 *
174 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
175 	 *	to be an old duplicate".
176 	 */
177 
178 	if (!paws_reject &&
179 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
180 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
181 		/* In window segment, it may be only reset or bare ack. */
182 
183 		if (th->rst) {
184 			/* This is TIME_WAIT assassination, in two flavors.
185 			 * Oh well... nobody has a sufficient solution to this
186 			 * protocol bug yet.
187 			 */
188 			if (sysctl_tcp_rfc1337 == 0) {
189 kill:
190 				inet_twsk_deschedule_put(tw);
191 				return TCP_TW_SUCCESS;
192 			}
193 		}
194 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
195 
196 		if (tmp_opt.saw_tstamp) {
197 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
198 			tcptw->tw_ts_recent_stamp = get_seconds();
199 		}
200 
201 		inet_twsk_put(tw);
202 		return TCP_TW_SUCCESS;
203 	}
204 
205 	/* Out of window segment.
206 
207 	   All the segments are ACKed immediately.
208 
209 	   The only exception is new SYN. We accept it, if it is
210 	   not old duplicate and we are not in danger to be killed
211 	   by delayed old duplicates. RFC check is that it has
212 	   newer sequence number works at rates <40Mbit/sec.
213 	   However, if paws works, it is reliable AND even more,
214 	   we even may relax silly seq space cutoff.
215 
216 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
217 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
218 	   we must return socket to time-wait state. It is not good,
219 	   but not fatal yet.
220 	 */
221 
222 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
223 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
224 	     (tmp_opt.saw_tstamp &&
225 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
226 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
227 		if (isn == 0)
228 			isn++;
229 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
230 		return TCP_TW_SYN;
231 	}
232 
233 	if (paws_reject)
234 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
235 
236 	if (!th->rst) {
237 		/* In this case we must reset the TIMEWAIT timer.
238 		 *
239 		 * If it is ACKless SYN it may be both old duplicate
240 		 * and new good SYN with random sequence number <rcv_nxt.
241 		 * Do not reschedule in the last case.
242 		 */
243 		if (paws_reject || th->ack)
244 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
245 
246 		return tcp_timewait_check_oow_rate_limit(
247 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
248 	}
249 	inet_twsk_put(tw);
250 	return TCP_TW_SUCCESS;
251 }
252 EXPORT_SYMBOL(tcp_timewait_state_process);
253 
254 /*
255  * Move a socket to time-wait or dead fin-wait-2 state.
256  */
257 void tcp_time_wait(struct sock *sk, int state, int timeo)
258 {
259 	const struct inet_connection_sock *icsk = inet_csk(sk);
260 	const struct tcp_sock *tp = tcp_sk(sk);
261 	struct inet_timewait_sock *tw;
262 	bool recycle_ok = false;
263 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
264 
265 	if (tcp_death_row->sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
266 		recycle_ok = tcp_remember_stamp(sk);
267 
268 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
269 
270 	if (tw) {
271 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
272 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
273 		struct inet_sock *inet = inet_sk(sk);
274 
275 		tw->tw_transparent	= inet->transparent;
276 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
277 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
278 		tcptw->tw_snd_nxt	= tp->snd_nxt;
279 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
280 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
281 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
282 		tcptw->tw_ts_offset	= tp->tsoffset;
283 		tcptw->tw_last_oow_ack_time = 0;
284 
285 #if IS_ENABLED(CONFIG_IPV6)
286 		if (tw->tw_family == PF_INET6) {
287 			struct ipv6_pinfo *np = inet6_sk(sk);
288 
289 			tw->tw_v6_daddr = sk->sk_v6_daddr;
290 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
291 			tw->tw_tclass = np->tclass;
292 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
293 			tw->tw_ipv6only = sk->sk_ipv6only;
294 		}
295 #endif
296 
297 #ifdef CONFIG_TCP_MD5SIG
298 		/*
299 		 * The timewait bucket does not have the key DB from the
300 		 * sock structure. We just make a quick copy of the
301 		 * md5 key being used (if indeed we are using one)
302 		 * so the timewait ack generating code has the key.
303 		 */
304 		do {
305 			struct tcp_md5sig_key *key;
306 			tcptw->tw_md5_key = NULL;
307 			key = tp->af_specific->md5_lookup(sk, sk);
308 			if (key) {
309 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
310 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
311 					BUG();
312 			}
313 		} while (0);
314 #endif
315 
316 		/* Get the TIME_WAIT timeout firing. */
317 		if (timeo < rto)
318 			timeo = rto;
319 
320 		if (recycle_ok) {
321 			tw->tw_timeout = rto;
322 		} else {
323 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
324 			if (state == TCP_TIME_WAIT)
325 				timeo = TCP_TIMEWAIT_LEN;
326 		}
327 
328 		inet_twsk_schedule(tw, timeo);
329 		/* Linkage updates. */
330 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
331 		inet_twsk_put(tw);
332 	} else {
333 		/* Sorry, if we're out of memory, just CLOSE this
334 		 * socket up.  We've got bigger problems than
335 		 * non-graceful socket closings.
336 		 */
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
338 	}
339 
340 	tcp_update_metrics(sk);
341 	tcp_done(sk);
342 }
343 
344 void tcp_twsk_destructor(struct sock *sk)
345 {
346 #ifdef CONFIG_TCP_MD5SIG
347 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
348 
349 	if (twsk->tw_md5_key)
350 		kfree_rcu(twsk->tw_md5_key, rcu);
351 #endif
352 }
353 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
354 
355 /* Warning : This function is called without sk_listener being locked.
356  * Be sure to read socket fields once, as their value could change under us.
357  */
358 void tcp_openreq_init_rwin(struct request_sock *req,
359 			   const struct sock *sk_listener,
360 			   const struct dst_entry *dst)
361 {
362 	struct inet_request_sock *ireq = inet_rsk(req);
363 	const struct tcp_sock *tp = tcp_sk(sk_listener);
364 	int full_space = tcp_full_space(sk_listener);
365 	u32 window_clamp;
366 	__u8 rcv_wscale;
367 	int mss;
368 
369 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
370 	window_clamp = READ_ONCE(tp->window_clamp);
371 	/* Set this up on the first call only */
372 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
373 
374 	/* limit the window selection if the user enforce a smaller rx buffer */
375 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
376 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
377 		req->rsk_window_clamp = full_space;
378 
379 	/* tcp_full_space because it is guaranteed to be the first packet */
380 	tcp_select_initial_window(full_space,
381 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
382 		&req->rsk_rcv_wnd,
383 		&req->rsk_window_clamp,
384 		ireq->wscale_ok,
385 		&rcv_wscale,
386 		dst_metric(dst, RTAX_INITRWND));
387 	ireq->rcv_wscale = rcv_wscale;
388 }
389 EXPORT_SYMBOL(tcp_openreq_init_rwin);
390 
391 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
392 				  const struct request_sock *req)
393 {
394 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
395 }
396 
397 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
398 {
399 	struct inet_connection_sock *icsk = inet_csk(sk);
400 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
401 	bool ca_got_dst = false;
402 
403 	if (ca_key != TCP_CA_UNSPEC) {
404 		const struct tcp_congestion_ops *ca;
405 
406 		rcu_read_lock();
407 		ca = tcp_ca_find_key(ca_key);
408 		if (likely(ca && try_module_get(ca->owner))) {
409 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
410 			icsk->icsk_ca_ops = ca;
411 			ca_got_dst = true;
412 		}
413 		rcu_read_unlock();
414 	}
415 
416 	/* If no valid choice made yet, assign current system default ca. */
417 	if (!ca_got_dst &&
418 	    (!icsk->icsk_ca_setsockopt ||
419 	     !try_module_get(icsk->icsk_ca_ops->owner)))
420 		tcp_assign_congestion_control(sk);
421 
422 	tcp_set_ca_state(sk, TCP_CA_Open);
423 }
424 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
425 
426 /* This is not only more efficient than what we used to do, it eliminates
427  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
428  *
429  * Actually, we could lots of memory writes here. tp of listening
430  * socket contains all necessary default parameters.
431  */
432 struct sock *tcp_create_openreq_child(const struct sock *sk,
433 				      struct request_sock *req,
434 				      struct sk_buff *skb)
435 {
436 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
437 
438 	if (newsk) {
439 		const struct inet_request_sock *ireq = inet_rsk(req);
440 		struct tcp_request_sock *treq = tcp_rsk(req);
441 		struct inet_connection_sock *newicsk = inet_csk(newsk);
442 		struct tcp_sock *newtp = tcp_sk(newsk);
443 
444 		/* Now setup tcp_sock */
445 		newtp->pred_flags = 0;
446 
447 		newtp->rcv_wup = newtp->copied_seq =
448 		newtp->rcv_nxt = treq->rcv_isn + 1;
449 		newtp->segs_in = 1;
450 
451 		newtp->snd_sml = newtp->snd_una =
452 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
453 
454 		tcp_prequeue_init(newtp);
455 		INIT_LIST_HEAD(&newtp->tsq_node);
456 
457 		tcp_init_wl(newtp, treq->rcv_isn);
458 
459 		newtp->srtt_us = 0;
460 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
461 		minmax_reset(&newtp->rtt_min, tcp_time_stamp, ~0U);
462 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
463 		newicsk->icsk_ack.lrcvtime = tcp_time_stamp;
464 
465 		newtp->packets_out = 0;
466 		newtp->retrans_out = 0;
467 		newtp->sacked_out = 0;
468 		newtp->fackets_out = 0;
469 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
470 		newtp->tlp_high_seq = 0;
471 		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
472 		newsk->sk_txhash = treq->txhash;
473 		newtp->last_oow_ack_time = 0;
474 		newtp->total_retrans = req->num_retrans;
475 
476 		/* So many TCP implementations out there (incorrectly) count the
477 		 * initial SYN frame in their delayed-ACK and congestion control
478 		 * algorithms that we must have the following bandaid to talk
479 		 * efficiently to them.  -DaveM
480 		 */
481 		newtp->snd_cwnd = TCP_INIT_CWND;
482 		newtp->snd_cwnd_cnt = 0;
483 
484 		/* There's a bubble in the pipe until at least the first ACK. */
485 		newtp->app_limited = ~0U;
486 
487 		tcp_init_xmit_timers(newsk);
488 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
489 
490 		newtp->rx_opt.saw_tstamp = 0;
491 
492 		newtp->rx_opt.dsack = 0;
493 		newtp->rx_opt.num_sacks = 0;
494 
495 		newtp->urg_data = 0;
496 
497 		if (sock_flag(newsk, SOCK_KEEPOPEN))
498 			inet_csk_reset_keepalive_timer(newsk,
499 						       keepalive_time_when(newtp));
500 
501 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
502 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
503 			if (sysctl_tcp_fack)
504 				tcp_enable_fack(newtp);
505 		}
506 		newtp->window_clamp = req->rsk_window_clamp;
507 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
508 		newtp->rcv_wnd = req->rsk_rcv_wnd;
509 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
510 		if (newtp->rx_opt.wscale_ok) {
511 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
512 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
513 		} else {
514 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
515 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
516 		}
517 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
518 				  newtp->rx_opt.snd_wscale);
519 		newtp->max_window = newtp->snd_wnd;
520 
521 		if (newtp->rx_opt.tstamp_ok) {
522 			newtp->rx_opt.ts_recent = req->ts_recent;
523 			newtp->rx_opt.ts_recent_stamp = get_seconds();
524 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
525 		} else {
526 			newtp->rx_opt.ts_recent_stamp = 0;
527 			newtp->tcp_header_len = sizeof(struct tcphdr);
528 		}
529 		newtp->tsoffset = treq->ts_off;
530 #ifdef CONFIG_TCP_MD5SIG
531 		newtp->md5sig_info = NULL;	/*XXX*/
532 		if (newtp->af_specific->md5_lookup(sk, newsk))
533 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
534 #endif
535 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
536 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
537 		newtp->rx_opt.mss_clamp = req->mss;
538 		tcp_ecn_openreq_child(newtp, req);
539 		newtp->fastopen_rsk = NULL;
540 		newtp->syn_data_acked = 0;
541 		newtp->rack.mstamp.v64 = 0;
542 		newtp->rack.advanced = 0;
543 
544 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
545 	}
546 	return newsk;
547 }
548 EXPORT_SYMBOL(tcp_create_openreq_child);
549 
550 /*
551  * Process an incoming packet for SYN_RECV sockets represented as a
552  * request_sock. Normally sk is the listener socket but for TFO it
553  * points to the child socket.
554  *
555  * XXX (TFO) - The current impl contains a special check for ack
556  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
557  *
558  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
559  */
560 
561 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
562 			   struct request_sock *req,
563 			   bool fastopen)
564 {
565 	struct tcp_options_received tmp_opt;
566 	struct sock *child;
567 	const struct tcphdr *th = tcp_hdr(skb);
568 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
569 	bool paws_reject = false;
570 	bool own_req;
571 
572 	tmp_opt.saw_tstamp = 0;
573 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
574 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
575 
576 		if (tmp_opt.saw_tstamp) {
577 			tmp_opt.ts_recent = req->ts_recent;
578 			if (tmp_opt.rcv_tsecr)
579 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
580 			/* We do not store true stamp, but it is not required,
581 			 * it can be estimated (approximately)
582 			 * from another data.
583 			 */
584 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
585 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
586 		}
587 	}
588 
589 	/* Check for pure retransmitted SYN. */
590 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
591 	    flg == TCP_FLAG_SYN &&
592 	    !paws_reject) {
593 		/*
594 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
595 		 * this case on figure 6 and figure 8, but formal
596 		 * protocol description says NOTHING.
597 		 * To be more exact, it says that we should send ACK,
598 		 * because this segment (at least, if it has no data)
599 		 * is out of window.
600 		 *
601 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
602 		 *  describe SYN-RECV state. All the description
603 		 *  is wrong, we cannot believe to it and should
604 		 *  rely only on common sense and implementation
605 		 *  experience.
606 		 *
607 		 * Enforce "SYN-ACK" according to figure 8, figure 6
608 		 * of RFC793, fixed by RFC1122.
609 		 *
610 		 * Note that even if there is new data in the SYN packet
611 		 * they will be thrown away too.
612 		 *
613 		 * Reset timer after retransmitting SYNACK, similar to
614 		 * the idea of fast retransmit in recovery.
615 		 */
616 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
617 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
618 					  &tcp_rsk(req)->last_oow_ack_time) &&
619 
620 		    !inet_rtx_syn_ack(sk, req)) {
621 			unsigned long expires = jiffies;
622 
623 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
624 				       TCP_RTO_MAX);
625 			if (!fastopen)
626 				mod_timer_pending(&req->rsk_timer, expires);
627 			else
628 				req->rsk_timer.expires = expires;
629 		}
630 		return NULL;
631 	}
632 
633 	/* Further reproduces section "SEGMENT ARRIVES"
634 	   for state SYN-RECEIVED of RFC793.
635 	   It is broken, however, it does not work only
636 	   when SYNs are crossed.
637 
638 	   You would think that SYN crossing is impossible here, since
639 	   we should have a SYN_SENT socket (from connect()) on our end,
640 	   but this is not true if the crossed SYNs were sent to both
641 	   ends by a malicious third party.  We must defend against this,
642 	   and to do that we first verify the ACK (as per RFC793, page
643 	   36) and reset if it is invalid.  Is this a true full defense?
644 	   To convince ourselves, let us consider a way in which the ACK
645 	   test can still pass in this 'malicious crossed SYNs' case.
646 	   Malicious sender sends identical SYNs (and thus identical sequence
647 	   numbers) to both A and B:
648 
649 		A: gets SYN, seq=7
650 		B: gets SYN, seq=7
651 
652 	   By our good fortune, both A and B select the same initial
653 	   send sequence number of seven :-)
654 
655 		A: sends SYN|ACK, seq=7, ack_seq=8
656 		B: sends SYN|ACK, seq=7, ack_seq=8
657 
658 	   So we are now A eating this SYN|ACK, ACK test passes.  So
659 	   does sequence test, SYN is truncated, and thus we consider
660 	   it a bare ACK.
661 
662 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
663 	   bare ACK.  Otherwise, we create an established connection.  Both
664 	   ends (listening sockets) accept the new incoming connection and try
665 	   to talk to each other. 8-)
666 
667 	   Note: This case is both harmless, and rare.  Possibility is about the
668 	   same as us discovering intelligent life on another plant tomorrow.
669 
670 	   But generally, we should (RFC lies!) to accept ACK
671 	   from SYNACK both here and in tcp_rcv_state_process().
672 	   tcp_rcv_state_process() does not, hence, we do not too.
673 
674 	   Note that the case is absolutely generic:
675 	   we cannot optimize anything here without
676 	   violating protocol. All the checks must be made
677 	   before attempt to create socket.
678 	 */
679 
680 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
681 	 *                  and the incoming segment acknowledges something not yet
682 	 *                  sent (the segment carries an unacceptable ACK) ...
683 	 *                  a reset is sent."
684 	 *
685 	 * Invalid ACK: reset will be sent by listening socket.
686 	 * Note that the ACK validity check for a Fast Open socket is done
687 	 * elsewhere and is checked directly against the child socket rather
688 	 * than req because user data may have been sent out.
689 	 */
690 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
691 	    (TCP_SKB_CB(skb)->ack_seq !=
692 	     tcp_rsk(req)->snt_isn + 1))
693 		return sk;
694 
695 	/* Also, it would be not so bad idea to check rcv_tsecr, which
696 	 * is essentially ACK extension and too early or too late values
697 	 * should cause reset in unsynchronized states.
698 	 */
699 
700 	/* RFC793: "first check sequence number". */
701 
702 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
703 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
704 		/* Out of window: send ACK and drop. */
705 		if (!(flg & TCP_FLAG_RST) &&
706 		    !tcp_oow_rate_limited(sock_net(sk), skb,
707 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
708 					  &tcp_rsk(req)->last_oow_ack_time))
709 			req->rsk_ops->send_ack(sk, skb, req);
710 		if (paws_reject)
711 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
712 		return NULL;
713 	}
714 
715 	/* In sequence, PAWS is OK. */
716 
717 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
718 		req->ts_recent = tmp_opt.rcv_tsval;
719 
720 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
721 		/* Truncate SYN, it is out of window starting
722 		   at tcp_rsk(req)->rcv_isn + 1. */
723 		flg &= ~TCP_FLAG_SYN;
724 	}
725 
726 	/* RFC793: "second check the RST bit" and
727 	 *	   "fourth, check the SYN bit"
728 	 */
729 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
730 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
731 		goto embryonic_reset;
732 	}
733 
734 	/* ACK sequence verified above, just make sure ACK is
735 	 * set.  If ACK not set, just silently drop the packet.
736 	 *
737 	 * XXX (TFO) - if we ever allow "data after SYN", the
738 	 * following check needs to be removed.
739 	 */
740 	if (!(flg & TCP_FLAG_ACK))
741 		return NULL;
742 
743 	/* For Fast Open no more processing is needed (sk is the
744 	 * child socket).
745 	 */
746 	if (fastopen)
747 		return sk;
748 
749 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
750 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
751 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
752 		inet_rsk(req)->acked = 1;
753 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
754 		return NULL;
755 	}
756 
757 	/* OK, ACK is valid, create big socket and
758 	 * feed this segment to it. It will repeat all
759 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
760 	 * ESTABLISHED STATE. If it will be dropped after
761 	 * socket is created, wait for troubles.
762 	 */
763 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
764 							 req, &own_req);
765 	if (!child)
766 		goto listen_overflow;
767 
768 	sock_rps_save_rxhash(child, skb);
769 	tcp_synack_rtt_meas(child, req);
770 	return inet_csk_complete_hashdance(sk, child, req, own_req);
771 
772 listen_overflow:
773 	if (!sysctl_tcp_abort_on_overflow) {
774 		inet_rsk(req)->acked = 1;
775 		return NULL;
776 	}
777 
778 embryonic_reset:
779 	if (!(flg & TCP_FLAG_RST)) {
780 		/* Received a bad SYN pkt - for TFO We try not to reset
781 		 * the local connection unless it's really necessary to
782 		 * avoid becoming vulnerable to outside attack aiming at
783 		 * resetting legit local connections.
784 		 */
785 		req->rsk_ops->send_reset(sk, skb);
786 	} else if (fastopen) { /* received a valid RST pkt */
787 		reqsk_fastopen_remove(sk, req, true);
788 		tcp_reset(sk);
789 	}
790 	if (!fastopen) {
791 		inet_csk_reqsk_queue_drop(sk, req);
792 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
793 	}
794 	return NULL;
795 }
796 EXPORT_SYMBOL(tcp_check_req);
797 
798 /*
799  * Queue segment on the new socket if the new socket is active,
800  * otherwise we just shortcircuit this and continue with
801  * the new socket.
802  *
803  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
804  * when entering. But other states are possible due to a race condition
805  * where after __inet_lookup_established() fails but before the listener
806  * locked is obtained, other packets cause the same connection to
807  * be created.
808  */
809 
810 int tcp_child_process(struct sock *parent, struct sock *child,
811 		      struct sk_buff *skb)
812 {
813 	int ret = 0;
814 	int state = child->sk_state;
815 
816 	tcp_segs_in(tcp_sk(child), skb);
817 	if (!sock_owned_by_user(child)) {
818 		ret = tcp_rcv_state_process(child, skb);
819 		/* Wakeup parent, send SIGIO */
820 		if (state == TCP_SYN_RECV && child->sk_state != state)
821 			parent->sk_data_ready(parent);
822 	} else {
823 		/* Alas, it is possible again, because we do lookup
824 		 * in main socket hash table and lock on listening
825 		 * socket does not protect us more.
826 		 */
827 		__sk_add_backlog(child, skb);
828 	}
829 
830 	bh_unlock_sock(child);
831 	sock_put(child);
832 	return ret;
833 }
834 EXPORT_SYMBOL(tcp_child_process);
835