xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision d2ba09c1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <linux/static_key.h>
27 #include <net/tcp.h>
28 #include <net/inet_common.h>
29 #include <net/xfrm.h>
30 #include <net/busy_poll.h>
31 
32 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
33 {
34 	if (seq == s_win)
35 		return true;
36 	if (after(end_seq, s_win) && before(seq, e_win))
37 		return true;
38 	return seq == e_win && seq == end_seq;
39 }
40 
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
43 				  const struct sk_buff *skb, int mib_idx)
44 {
45 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
46 
47 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
48 				  &tcptw->tw_last_oow_ack_time)) {
49 		/* Send ACK. Note, we do not put the bucket,
50 		 * it will be released by caller.
51 		 */
52 		return TCP_TW_ACK;
53 	}
54 
55 	/* We are rate-limiting, so just release the tw sock and drop skb. */
56 	inet_twsk_put(tw);
57 	return TCP_TW_SUCCESS;
58 }
59 
60 /*
61  * * Main purpose of TIME-WAIT state is to close connection gracefully,
62  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63  *   (and, probably, tail of data) and one or more our ACKs are lost.
64  * * What is TIME-WAIT timeout? It is associated with maximal packet
65  *   lifetime in the internet, which results in wrong conclusion, that
66  *   it is set to catch "old duplicate segments" wandering out of their path.
67  *   It is not quite correct. This timeout is calculated so that it exceeds
68  *   maximal retransmission timeout enough to allow to lose one (or more)
69  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
70  * * When TIME-WAIT socket receives RST, it means that another end
71  *   finally closed and we are allowed to kill TIME-WAIT too.
72  * * Second purpose of TIME-WAIT is catching old duplicate segments.
73  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
74  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75  * * If we invented some more clever way to catch duplicates
76  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
77  *
78  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80  * from the very beginning.
81  *
82  * NOTE. With recycling (and later with fin-wait-2) TW bucket
83  * is _not_ stateless. It means, that strictly speaking we must
84  * spinlock it. I do not want! Well, probability of misbehaviour
85  * is ridiculously low and, seems, we could use some mb() tricks
86  * to avoid misread sequence numbers, states etc.  --ANK
87  *
88  * We don't need to initialize tmp_out.sack_ok as we don't use the results
89  */
90 enum tcp_tw_status
91 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
92 			   const struct tcphdr *th)
93 {
94 	struct tcp_options_received tmp_opt;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 
98 	tmp_opt.saw_tstamp = 0;
99 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101 
102 		if (tmp_opt.saw_tstamp) {
103 			if (tmp_opt.rcv_tsecr)
104 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return tcp_timewait_check_oow_rate_limit(
120 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121 
122 		if (th->rst)
123 			goto kill;
124 
125 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126 			return TCP_TW_RST;
127 
128 		/* Dup ACK? */
129 		if (!th->ack ||
130 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132 			inet_twsk_put(tw);
133 			return TCP_TW_SUCCESS;
134 		}
135 
136 		/* New data or FIN. If new data arrive after half-duplex close,
137 		 * reset.
138 		 */
139 		if (!th->fin ||
140 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141 			return TCP_TW_RST;
142 
143 		/* FIN arrived, enter true time-wait state. */
144 		tw->tw_substate	  = TCP_TIME_WAIT;
145 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146 		if (tmp_opt.saw_tstamp) {
147 			tcptw->tw_ts_recent_stamp = get_seconds();
148 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149 		}
150 
151 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152 		return TCP_TW_ACK;
153 	}
154 
155 	/*
156 	 *	Now real TIME-WAIT state.
157 	 *
158 	 *	RFC 1122:
159 	 *	"When a connection is [...] on TIME-WAIT state [...]
160 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161 	 *	reopen the connection directly, if it:
162 	 *
163 	 *	(1)  assigns its initial sequence number for the new
164 	 *	connection to be larger than the largest sequence
165 	 *	number it used on the previous connection incarnation,
166 	 *	and
167 	 *
168 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169 	 *	to be an old duplicate".
170 	 */
171 
172 	if (!paws_reject &&
173 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175 		/* In window segment, it may be only reset or bare ack. */
176 
177 		if (th->rst) {
178 			/* This is TIME_WAIT assassination, in two flavors.
179 			 * Oh well... nobody has a sufficient solution to this
180 			 * protocol bug yet.
181 			 */
182 			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183 kill:
184 				inet_twsk_deschedule_put(tw);
185 				return TCP_TW_SUCCESS;
186 			}
187 		}
188 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189 
190 		if (tmp_opt.saw_tstamp) {
191 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
192 			tcptw->tw_ts_recent_stamp = get_seconds();
193 		}
194 
195 		inet_twsk_put(tw);
196 		return TCP_TW_SUCCESS;
197 	}
198 
199 	/* Out of window segment.
200 
201 	   All the segments are ACKed immediately.
202 
203 	   The only exception is new SYN. We accept it, if it is
204 	   not old duplicate and we are not in danger to be killed
205 	   by delayed old duplicates. RFC check is that it has
206 	   newer sequence number works at rates <40Mbit/sec.
207 	   However, if paws works, it is reliable AND even more,
208 	   we even may relax silly seq space cutoff.
209 
210 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
211 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
212 	   we must return socket to time-wait state. It is not good,
213 	   but not fatal yet.
214 	 */
215 
216 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
217 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
218 	     (tmp_opt.saw_tstamp &&
219 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
220 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
221 		if (isn == 0)
222 			isn++;
223 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
224 		return TCP_TW_SYN;
225 	}
226 
227 	if (paws_reject)
228 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
229 
230 	if (!th->rst) {
231 		/* In this case we must reset the TIMEWAIT timer.
232 		 *
233 		 * If it is ACKless SYN it may be both old duplicate
234 		 * and new good SYN with random sequence number <rcv_nxt.
235 		 * Do not reschedule in the last case.
236 		 */
237 		if (paws_reject || th->ack)
238 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
239 
240 		return tcp_timewait_check_oow_rate_limit(
241 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
242 	}
243 	inet_twsk_put(tw);
244 	return TCP_TW_SUCCESS;
245 }
246 EXPORT_SYMBOL(tcp_timewait_state_process);
247 
248 /*
249  * Move a socket to time-wait or dead fin-wait-2 state.
250  */
251 void tcp_time_wait(struct sock *sk, int state, int timeo)
252 {
253 	const struct inet_connection_sock *icsk = inet_csk(sk);
254 	const struct tcp_sock *tp = tcp_sk(sk);
255 	struct inet_timewait_sock *tw;
256 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
257 
258 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
259 
260 	if (tw) {
261 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
262 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
263 		struct inet_sock *inet = inet_sk(sk);
264 
265 		tw->tw_transparent	= inet->transparent;
266 		tw->tw_mark		= sk->sk_mark;
267 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
268 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
269 		tcptw->tw_snd_nxt	= tp->snd_nxt;
270 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
271 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
272 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
273 		tcptw->tw_ts_offset	= tp->tsoffset;
274 		tcptw->tw_last_oow_ack_time = 0;
275 
276 #if IS_ENABLED(CONFIG_IPV6)
277 		if (tw->tw_family == PF_INET6) {
278 			struct ipv6_pinfo *np = inet6_sk(sk);
279 
280 			tw->tw_v6_daddr = sk->sk_v6_daddr;
281 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
282 			tw->tw_tclass = np->tclass;
283 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
284 			tw->tw_ipv6only = sk->sk_ipv6only;
285 		}
286 #endif
287 
288 #ifdef CONFIG_TCP_MD5SIG
289 		/*
290 		 * The timewait bucket does not have the key DB from the
291 		 * sock structure. We just make a quick copy of the
292 		 * md5 key being used (if indeed we are using one)
293 		 * so the timewait ack generating code has the key.
294 		 */
295 		do {
296 			struct tcp_md5sig_key *key;
297 			tcptw->tw_md5_key = NULL;
298 			key = tp->af_specific->md5_lookup(sk, sk);
299 			if (key) {
300 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
301 				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
302 			}
303 		} while (0);
304 #endif
305 
306 		/* Get the TIME_WAIT timeout firing. */
307 		if (timeo < rto)
308 			timeo = rto;
309 
310 		tw->tw_timeout = TCP_TIMEWAIT_LEN;
311 		if (state == TCP_TIME_WAIT)
312 			timeo = TCP_TIMEWAIT_LEN;
313 
314 		/* tw_timer is pinned, so we need to make sure BH are disabled
315 		 * in following section, otherwise timer handler could run before
316 		 * we complete the initialization.
317 		 */
318 		local_bh_disable();
319 		inet_twsk_schedule(tw, timeo);
320 		/* Linkage updates.
321 		 * Note that access to tw after this point is illegal.
322 		 */
323 		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
324 		local_bh_enable();
325 	} else {
326 		/* Sorry, if we're out of memory, just CLOSE this
327 		 * socket up.  We've got bigger problems than
328 		 * non-graceful socket closings.
329 		 */
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
331 	}
332 
333 	tcp_update_metrics(sk);
334 	tcp_done(sk);
335 }
336 EXPORT_SYMBOL(tcp_time_wait);
337 
338 void tcp_twsk_destructor(struct sock *sk)
339 {
340 #ifdef CONFIG_TCP_MD5SIG
341 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
342 
343 	if (twsk->tw_md5_key)
344 		kfree_rcu(twsk->tw_md5_key, rcu);
345 #endif
346 }
347 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
348 
349 /* Warning : This function is called without sk_listener being locked.
350  * Be sure to read socket fields once, as their value could change under us.
351  */
352 void tcp_openreq_init_rwin(struct request_sock *req,
353 			   const struct sock *sk_listener,
354 			   const struct dst_entry *dst)
355 {
356 	struct inet_request_sock *ireq = inet_rsk(req);
357 	const struct tcp_sock *tp = tcp_sk(sk_listener);
358 	int full_space = tcp_full_space(sk_listener);
359 	u32 window_clamp;
360 	__u8 rcv_wscale;
361 	u32 rcv_wnd;
362 	int mss;
363 
364 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
365 	window_clamp = READ_ONCE(tp->window_clamp);
366 	/* Set this up on the first call only */
367 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
368 
369 	/* limit the window selection if the user enforce a smaller rx buffer */
370 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
371 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
372 		req->rsk_window_clamp = full_space;
373 
374 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
375 	if (rcv_wnd == 0)
376 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
377 	else if (full_space < rcv_wnd * mss)
378 		full_space = rcv_wnd * mss;
379 
380 	/* tcp_full_space because it is guaranteed to be the first packet */
381 	tcp_select_initial_window(sk_listener, full_space,
382 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
383 		&req->rsk_rcv_wnd,
384 		&req->rsk_window_clamp,
385 		ireq->wscale_ok,
386 		&rcv_wscale,
387 		rcv_wnd);
388 	ireq->rcv_wscale = rcv_wscale;
389 }
390 EXPORT_SYMBOL(tcp_openreq_init_rwin);
391 
392 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
393 				  const struct request_sock *req)
394 {
395 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
396 }
397 
398 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
399 {
400 	struct inet_connection_sock *icsk = inet_csk(sk);
401 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
402 	bool ca_got_dst = false;
403 
404 	if (ca_key != TCP_CA_UNSPEC) {
405 		const struct tcp_congestion_ops *ca;
406 
407 		rcu_read_lock();
408 		ca = tcp_ca_find_key(ca_key);
409 		if (likely(ca && try_module_get(ca->owner))) {
410 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
411 			icsk->icsk_ca_ops = ca;
412 			ca_got_dst = true;
413 		}
414 		rcu_read_unlock();
415 	}
416 
417 	/* If no valid choice made yet, assign current system default ca. */
418 	if (!ca_got_dst &&
419 	    (!icsk->icsk_ca_setsockopt ||
420 	     !try_module_get(icsk->icsk_ca_ops->owner)))
421 		tcp_assign_congestion_control(sk);
422 
423 	tcp_set_ca_state(sk, TCP_CA_Open);
424 }
425 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
426 
427 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
428 				    struct request_sock *req,
429 				    struct tcp_sock *newtp)
430 {
431 #if IS_ENABLED(CONFIG_SMC)
432 	struct inet_request_sock *ireq;
433 
434 	if (static_branch_unlikely(&tcp_have_smc)) {
435 		ireq = inet_rsk(req);
436 		if (oldtp->syn_smc && !ireq->smc_ok)
437 			newtp->syn_smc = 0;
438 	}
439 #endif
440 }
441 
442 /* This is not only more efficient than what we used to do, it eliminates
443  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
444  *
445  * Actually, we could lots of memory writes here. tp of listening
446  * socket contains all necessary default parameters.
447  */
448 struct sock *tcp_create_openreq_child(const struct sock *sk,
449 				      struct request_sock *req,
450 				      struct sk_buff *skb)
451 {
452 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
453 
454 	if (newsk) {
455 		const struct inet_request_sock *ireq = inet_rsk(req);
456 		struct tcp_request_sock *treq = tcp_rsk(req);
457 		struct inet_connection_sock *newicsk = inet_csk(newsk);
458 		struct tcp_sock *newtp = tcp_sk(newsk);
459 		struct tcp_sock *oldtp = tcp_sk(sk);
460 
461 		smc_check_reset_syn_req(oldtp, req, newtp);
462 
463 		/* Now setup tcp_sock */
464 		newtp->pred_flags = 0;
465 
466 		newtp->rcv_wup = newtp->copied_seq =
467 		newtp->rcv_nxt = treq->rcv_isn + 1;
468 		newtp->segs_in = 1;
469 
470 		newtp->snd_sml = newtp->snd_una =
471 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
472 
473 		INIT_LIST_HEAD(&newtp->tsq_node);
474 		INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
475 
476 		tcp_init_wl(newtp, treq->rcv_isn);
477 
478 		newtp->srtt_us = 0;
479 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
480 		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
481 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
482 		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
483 
484 		newtp->packets_out = 0;
485 		newtp->retrans_out = 0;
486 		newtp->sacked_out = 0;
487 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
488 		newtp->tlp_high_seq = 0;
489 		newtp->lsndtime = tcp_jiffies32;
490 		newsk->sk_txhash = treq->txhash;
491 		newtp->last_oow_ack_time = 0;
492 		newtp->total_retrans = req->num_retrans;
493 
494 		/* So many TCP implementations out there (incorrectly) count the
495 		 * initial SYN frame in their delayed-ACK and congestion control
496 		 * algorithms that we must have the following bandaid to talk
497 		 * efficiently to them.  -DaveM
498 		 */
499 		newtp->snd_cwnd = TCP_INIT_CWND;
500 		newtp->snd_cwnd_cnt = 0;
501 
502 		/* There's a bubble in the pipe until at least the first ACK. */
503 		newtp->app_limited = ~0U;
504 
505 		tcp_init_xmit_timers(newsk);
506 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
507 
508 		newtp->rx_opt.saw_tstamp = 0;
509 
510 		newtp->rx_opt.dsack = 0;
511 		newtp->rx_opt.num_sacks = 0;
512 
513 		newtp->urg_data = 0;
514 
515 		if (sock_flag(newsk, SOCK_KEEPOPEN))
516 			inet_csk_reset_keepalive_timer(newsk,
517 						       keepalive_time_when(newtp));
518 
519 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
520 		newtp->rx_opt.sack_ok = ireq->sack_ok;
521 		newtp->window_clamp = req->rsk_window_clamp;
522 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
523 		newtp->rcv_wnd = req->rsk_rcv_wnd;
524 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
525 		if (newtp->rx_opt.wscale_ok) {
526 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
527 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
528 		} else {
529 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
530 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
531 		}
532 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
533 				  newtp->rx_opt.snd_wscale);
534 		newtp->max_window = newtp->snd_wnd;
535 
536 		if (newtp->rx_opt.tstamp_ok) {
537 			newtp->rx_opt.ts_recent = req->ts_recent;
538 			newtp->rx_opt.ts_recent_stamp = get_seconds();
539 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
540 		} else {
541 			newtp->rx_opt.ts_recent_stamp = 0;
542 			newtp->tcp_header_len = sizeof(struct tcphdr);
543 		}
544 		newtp->tsoffset = treq->ts_off;
545 #ifdef CONFIG_TCP_MD5SIG
546 		newtp->md5sig_info = NULL;	/*XXX*/
547 		if (newtp->af_specific->md5_lookup(sk, newsk))
548 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
549 #endif
550 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
551 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
552 		newtp->rx_opt.mss_clamp = req->mss;
553 		tcp_ecn_openreq_child(newtp, req);
554 		newtp->fastopen_req = NULL;
555 		newtp->fastopen_rsk = NULL;
556 		newtp->syn_data_acked = 0;
557 		newtp->rack.mstamp = 0;
558 		newtp->rack.advanced = 0;
559 		newtp->rack.reo_wnd_steps = 1;
560 		newtp->rack.last_delivered = 0;
561 		newtp->rack.reo_wnd_persist = 0;
562 		newtp->rack.dsack_seen = 0;
563 
564 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
565 	}
566 	return newsk;
567 }
568 EXPORT_SYMBOL(tcp_create_openreq_child);
569 
570 /*
571  * Process an incoming packet for SYN_RECV sockets represented as a
572  * request_sock. Normally sk is the listener socket but for TFO it
573  * points to the child socket.
574  *
575  * XXX (TFO) - The current impl contains a special check for ack
576  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
577  *
578  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
579  */
580 
581 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
582 			   struct request_sock *req,
583 			   bool fastopen, bool *req_stolen)
584 {
585 	struct tcp_options_received tmp_opt;
586 	struct sock *child;
587 	const struct tcphdr *th = tcp_hdr(skb);
588 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
589 	bool paws_reject = false;
590 	bool own_req;
591 
592 	tmp_opt.saw_tstamp = 0;
593 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
594 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
595 
596 		if (tmp_opt.saw_tstamp) {
597 			tmp_opt.ts_recent = req->ts_recent;
598 			if (tmp_opt.rcv_tsecr)
599 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
600 			/* We do not store true stamp, but it is not required,
601 			 * it can be estimated (approximately)
602 			 * from another data.
603 			 */
604 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
605 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
606 		}
607 	}
608 
609 	/* Check for pure retransmitted SYN. */
610 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
611 	    flg == TCP_FLAG_SYN &&
612 	    !paws_reject) {
613 		/*
614 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
615 		 * this case on figure 6 and figure 8, but formal
616 		 * protocol description says NOTHING.
617 		 * To be more exact, it says that we should send ACK,
618 		 * because this segment (at least, if it has no data)
619 		 * is out of window.
620 		 *
621 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
622 		 *  describe SYN-RECV state. All the description
623 		 *  is wrong, we cannot believe to it and should
624 		 *  rely only on common sense and implementation
625 		 *  experience.
626 		 *
627 		 * Enforce "SYN-ACK" according to figure 8, figure 6
628 		 * of RFC793, fixed by RFC1122.
629 		 *
630 		 * Note that even if there is new data in the SYN packet
631 		 * they will be thrown away too.
632 		 *
633 		 * Reset timer after retransmitting SYNACK, similar to
634 		 * the idea of fast retransmit in recovery.
635 		 */
636 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
637 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
638 					  &tcp_rsk(req)->last_oow_ack_time) &&
639 
640 		    !inet_rtx_syn_ack(sk, req)) {
641 			unsigned long expires = jiffies;
642 
643 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
644 				       TCP_RTO_MAX);
645 			if (!fastopen)
646 				mod_timer_pending(&req->rsk_timer, expires);
647 			else
648 				req->rsk_timer.expires = expires;
649 		}
650 		return NULL;
651 	}
652 
653 	/* Further reproduces section "SEGMENT ARRIVES"
654 	   for state SYN-RECEIVED of RFC793.
655 	   It is broken, however, it does not work only
656 	   when SYNs are crossed.
657 
658 	   You would think that SYN crossing is impossible here, since
659 	   we should have a SYN_SENT socket (from connect()) on our end,
660 	   but this is not true if the crossed SYNs were sent to both
661 	   ends by a malicious third party.  We must defend against this,
662 	   and to do that we first verify the ACK (as per RFC793, page
663 	   36) and reset if it is invalid.  Is this a true full defense?
664 	   To convince ourselves, let us consider a way in which the ACK
665 	   test can still pass in this 'malicious crossed SYNs' case.
666 	   Malicious sender sends identical SYNs (and thus identical sequence
667 	   numbers) to both A and B:
668 
669 		A: gets SYN, seq=7
670 		B: gets SYN, seq=7
671 
672 	   By our good fortune, both A and B select the same initial
673 	   send sequence number of seven :-)
674 
675 		A: sends SYN|ACK, seq=7, ack_seq=8
676 		B: sends SYN|ACK, seq=7, ack_seq=8
677 
678 	   So we are now A eating this SYN|ACK, ACK test passes.  So
679 	   does sequence test, SYN is truncated, and thus we consider
680 	   it a bare ACK.
681 
682 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
683 	   bare ACK.  Otherwise, we create an established connection.  Both
684 	   ends (listening sockets) accept the new incoming connection and try
685 	   to talk to each other. 8-)
686 
687 	   Note: This case is both harmless, and rare.  Possibility is about the
688 	   same as us discovering intelligent life on another plant tomorrow.
689 
690 	   But generally, we should (RFC lies!) to accept ACK
691 	   from SYNACK both here and in tcp_rcv_state_process().
692 	   tcp_rcv_state_process() does not, hence, we do not too.
693 
694 	   Note that the case is absolutely generic:
695 	   we cannot optimize anything here without
696 	   violating protocol. All the checks must be made
697 	   before attempt to create socket.
698 	 */
699 
700 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
701 	 *                  and the incoming segment acknowledges something not yet
702 	 *                  sent (the segment carries an unacceptable ACK) ...
703 	 *                  a reset is sent."
704 	 *
705 	 * Invalid ACK: reset will be sent by listening socket.
706 	 * Note that the ACK validity check for a Fast Open socket is done
707 	 * elsewhere and is checked directly against the child socket rather
708 	 * than req because user data may have been sent out.
709 	 */
710 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
711 	    (TCP_SKB_CB(skb)->ack_seq !=
712 	     tcp_rsk(req)->snt_isn + 1))
713 		return sk;
714 
715 	/* Also, it would be not so bad idea to check rcv_tsecr, which
716 	 * is essentially ACK extension and too early or too late values
717 	 * should cause reset in unsynchronized states.
718 	 */
719 
720 	/* RFC793: "first check sequence number". */
721 
722 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
723 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
724 		/* Out of window: send ACK and drop. */
725 		if (!(flg & TCP_FLAG_RST) &&
726 		    !tcp_oow_rate_limited(sock_net(sk), skb,
727 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
728 					  &tcp_rsk(req)->last_oow_ack_time))
729 			req->rsk_ops->send_ack(sk, skb, req);
730 		if (paws_reject)
731 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
732 		return NULL;
733 	}
734 
735 	/* In sequence, PAWS is OK. */
736 
737 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
738 		req->ts_recent = tmp_opt.rcv_tsval;
739 
740 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
741 		/* Truncate SYN, it is out of window starting
742 		   at tcp_rsk(req)->rcv_isn + 1. */
743 		flg &= ~TCP_FLAG_SYN;
744 	}
745 
746 	/* RFC793: "second check the RST bit" and
747 	 *	   "fourth, check the SYN bit"
748 	 */
749 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
750 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
751 		goto embryonic_reset;
752 	}
753 
754 	/* ACK sequence verified above, just make sure ACK is
755 	 * set.  If ACK not set, just silently drop the packet.
756 	 *
757 	 * XXX (TFO) - if we ever allow "data after SYN", the
758 	 * following check needs to be removed.
759 	 */
760 	if (!(flg & TCP_FLAG_ACK))
761 		return NULL;
762 
763 	/* For Fast Open no more processing is needed (sk is the
764 	 * child socket).
765 	 */
766 	if (fastopen)
767 		return sk;
768 
769 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
770 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
771 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
772 		inet_rsk(req)->acked = 1;
773 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
774 		return NULL;
775 	}
776 
777 	/* OK, ACK is valid, create big socket and
778 	 * feed this segment to it. It will repeat all
779 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
780 	 * ESTABLISHED STATE. If it will be dropped after
781 	 * socket is created, wait for troubles.
782 	 */
783 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
784 							 req, &own_req);
785 	if (!child)
786 		goto listen_overflow;
787 
788 	sock_rps_save_rxhash(child, skb);
789 	tcp_synack_rtt_meas(child, req);
790 	*req_stolen = !own_req;
791 	return inet_csk_complete_hashdance(sk, child, req, own_req);
792 
793 listen_overflow:
794 	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
795 		inet_rsk(req)->acked = 1;
796 		return NULL;
797 	}
798 
799 embryonic_reset:
800 	if (!(flg & TCP_FLAG_RST)) {
801 		/* Received a bad SYN pkt - for TFO We try not to reset
802 		 * the local connection unless it's really necessary to
803 		 * avoid becoming vulnerable to outside attack aiming at
804 		 * resetting legit local connections.
805 		 */
806 		req->rsk_ops->send_reset(sk, skb);
807 	} else if (fastopen) { /* received a valid RST pkt */
808 		reqsk_fastopen_remove(sk, req, true);
809 		tcp_reset(sk);
810 	}
811 	if (!fastopen) {
812 		inet_csk_reqsk_queue_drop(sk, req);
813 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
814 	}
815 	return NULL;
816 }
817 EXPORT_SYMBOL(tcp_check_req);
818 
819 /*
820  * Queue segment on the new socket if the new socket is active,
821  * otherwise we just shortcircuit this and continue with
822  * the new socket.
823  *
824  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
825  * when entering. But other states are possible due to a race condition
826  * where after __inet_lookup_established() fails but before the listener
827  * locked is obtained, other packets cause the same connection to
828  * be created.
829  */
830 
831 int tcp_child_process(struct sock *parent, struct sock *child,
832 		      struct sk_buff *skb)
833 {
834 	int ret = 0;
835 	int state = child->sk_state;
836 
837 	/* record NAPI ID of child */
838 	sk_mark_napi_id(child, skb);
839 
840 	tcp_segs_in(tcp_sk(child), skb);
841 	if (!sock_owned_by_user(child)) {
842 		ret = tcp_rcv_state_process(child, skb);
843 		/* Wakeup parent, send SIGIO */
844 		if (state == TCP_SYN_RECV && child->sk_state != state)
845 			parent->sk_data_ready(parent);
846 	} else {
847 		/* Alas, it is possible again, because we do lookup
848 		 * in main socket hash table and lock on listening
849 		 * socket does not protect us more.
850 		 */
851 		__sk_add_backlog(child, skb);
852 	}
853 
854 	bh_unlock_sock(child);
855 	sock_put(child);
856 	return ret;
857 }
858 EXPORT_SYMBOL(tcp_child_process);
859