xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision b9ccfda2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54 	if (seq == s_win)
55 		return true;
56 	if (after(end_seq, s_win) && before(seq, e_win))
57 		return true;
58 	return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  */
89 enum tcp_tw_status
90 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
91 			   const struct tcphdr *th)
92 {
93 	struct tcp_options_received tmp_opt;
94 	const u8 *hash_location;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 
98 	tmp_opt.saw_tstamp = 0;
99 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
101 
102 		if (tmp_opt.saw_tstamp) {
103 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
104 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
105 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
106 		}
107 	}
108 
109 	if (tw->tw_substate == TCP_FIN_WAIT2) {
110 		/* Just repeat all the checks of tcp_rcv_state_process() */
111 
112 		/* Out of window, send ACK */
113 		if (paws_reject ||
114 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
115 				   tcptw->tw_rcv_nxt,
116 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
117 			return TCP_TW_ACK;
118 
119 		if (th->rst)
120 			goto kill;
121 
122 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
123 			goto kill_with_rst;
124 
125 		/* Dup ACK? */
126 		if (!th->ack ||
127 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
128 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
129 			inet_twsk_put(tw);
130 			return TCP_TW_SUCCESS;
131 		}
132 
133 		/* New data or FIN. If new data arrive after half-duplex close,
134 		 * reset.
135 		 */
136 		if (!th->fin ||
137 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
138 kill_with_rst:
139 			inet_twsk_deschedule(tw, &tcp_death_row);
140 			inet_twsk_put(tw);
141 			return TCP_TW_RST;
142 		}
143 
144 		/* FIN arrived, enter true time-wait state. */
145 		tw->tw_substate	  = TCP_TIME_WAIT;
146 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 		if (tmp_opt.saw_tstamp) {
148 			tcptw->tw_ts_recent_stamp = get_seconds();
149 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150 		}
151 
152 		if (tcp_death_row.sysctl_tw_recycle &&
153 		    tcptw->tw_ts_recent_stamp &&
154 		    tcp_tw_remember_stamp(tw))
155 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
156 					   TCP_TIMEWAIT_LEN);
157 		else
158 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
159 					   TCP_TIMEWAIT_LEN);
160 		return TCP_TW_ACK;
161 	}
162 
163 	/*
164 	 *	Now real TIME-WAIT state.
165 	 *
166 	 *	RFC 1122:
167 	 *	"When a connection is [...] on TIME-WAIT state [...]
168 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
169 	 *	reopen the connection directly, if it:
170 	 *
171 	 *	(1)  assigns its initial sequence number for the new
172 	 *	connection to be larger than the largest sequence
173 	 *	number it used on the previous connection incarnation,
174 	 *	and
175 	 *
176 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
177 	 *	to be an old duplicate".
178 	 */
179 
180 	if (!paws_reject &&
181 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
182 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
183 		/* In window segment, it may be only reset or bare ack. */
184 
185 		if (th->rst) {
186 			/* This is TIME_WAIT assassination, in two flavors.
187 			 * Oh well... nobody has a sufficient solution to this
188 			 * protocol bug yet.
189 			 */
190 			if (sysctl_tcp_rfc1337 == 0) {
191 kill:
192 				inet_twsk_deschedule(tw, &tcp_death_row);
193 				inet_twsk_put(tw);
194 				return TCP_TW_SUCCESS;
195 			}
196 		}
197 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
198 				   TCP_TIMEWAIT_LEN);
199 
200 		if (tmp_opt.saw_tstamp) {
201 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202 			tcptw->tw_ts_recent_stamp = get_seconds();
203 		}
204 
205 		inet_twsk_put(tw);
206 		return TCP_TW_SUCCESS;
207 	}
208 
209 	/* Out of window segment.
210 
211 	   All the segments are ACKed immediately.
212 
213 	   The only exception is new SYN. We accept it, if it is
214 	   not old duplicate and we are not in danger to be killed
215 	   by delayed old duplicates. RFC check is that it has
216 	   newer sequence number works at rates <40Mbit/sec.
217 	   However, if paws works, it is reliable AND even more,
218 	   we even may relax silly seq space cutoff.
219 
220 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 	   we must return socket to time-wait state. It is not good,
223 	   but not fatal yet.
224 	 */
225 
226 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 	     (tmp_opt.saw_tstamp &&
229 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 		if (isn == 0)
232 			isn++;
233 		TCP_SKB_CB(skb)->when = isn;
234 		return TCP_TW_SYN;
235 	}
236 
237 	if (paws_reject)
238 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239 
240 	if (!th->rst) {
241 		/* In this case we must reset the TIMEWAIT timer.
242 		 *
243 		 * If it is ACKless SYN it may be both old duplicate
244 		 * and new good SYN with random sequence number <rcv_nxt.
245 		 * Do not reschedule in the last case.
246 		 */
247 		if (paws_reject || th->ack)
248 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
249 					   TCP_TIMEWAIT_LEN);
250 
251 		/* Send ACK. Note, we do not put the bucket,
252 		 * it will be released by caller.
253 		 */
254 		return TCP_TW_ACK;
255 	}
256 	inet_twsk_put(tw);
257 	return TCP_TW_SUCCESS;
258 }
259 EXPORT_SYMBOL(tcp_timewait_state_process);
260 
261 /*
262  * Move a socket to time-wait or dead fin-wait-2 state.
263  */
264 void tcp_time_wait(struct sock *sk, int state, int timeo)
265 {
266 	struct inet_timewait_sock *tw = NULL;
267 	const struct inet_connection_sock *icsk = inet_csk(sk);
268 	const struct tcp_sock *tp = tcp_sk(sk);
269 	bool recycle_ok = false;
270 
271 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
272 		recycle_ok = tcp_remember_stamp(sk);
273 
274 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
275 		tw = inet_twsk_alloc(sk, state);
276 
277 	if (tw != NULL) {
278 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
279 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
280 		struct inet_sock *inet = inet_sk(sk);
281 
282 		tw->tw_transparent	= inet->transparent;
283 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
284 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
285 		tcptw->tw_snd_nxt	= tp->snd_nxt;
286 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
287 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
288 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
289 
290 #if IS_ENABLED(CONFIG_IPV6)
291 		if (tw->tw_family == PF_INET6) {
292 			struct ipv6_pinfo *np = inet6_sk(sk);
293 			struct inet6_timewait_sock *tw6;
294 
295 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
296 			tw6 = inet6_twsk((struct sock *)tw);
297 			tw6->tw_v6_daddr = np->daddr;
298 			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
299 			tw->tw_tclass = np->tclass;
300 			tw->tw_ipv6only = np->ipv6only;
301 		}
302 #endif
303 
304 #ifdef CONFIG_TCP_MD5SIG
305 		/*
306 		 * The timewait bucket does not have the key DB from the
307 		 * sock structure. We just make a quick copy of the
308 		 * md5 key being used (if indeed we are using one)
309 		 * so the timewait ack generating code has the key.
310 		 */
311 		do {
312 			struct tcp_md5sig_key *key;
313 			tcptw->tw_md5_key = NULL;
314 			key = tp->af_specific->md5_lookup(sk, sk);
315 			if (key != NULL) {
316 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
317 				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
318 					BUG();
319 			}
320 		} while (0);
321 #endif
322 
323 		/* Linkage updates. */
324 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
325 
326 		/* Get the TIME_WAIT timeout firing. */
327 		if (timeo < rto)
328 			timeo = rto;
329 
330 		if (recycle_ok) {
331 			tw->tw_timeout = rto;
332 		} else {
333 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
334 			if (state == TCP_TIME_WAIT)
335 				timeo = TCP_TIMEWAIT_LEN;
336 		}
337 
338 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
339 				   TCP_TIMEWAIT_LEN);
340 		inet_twsk_put(tw);
341 	} else {
342 		/* Sorry, if we're out of memory, just CLOSE this
343 		 * socket up.  We've got bigger problems than
344 		 * non-graceful socket closings.
345 		 */
346 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 	}
348 
349 	tcp_update_metrics(sk);
350 	tcp_done(sk);
351 }
352 
353 void tcp_twsk_destructor(struct sock *sk)
354 {
355 #ifdef CONFIG_TCP_MD5SIG
356 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357 
358 	if (twsk->tw_md5_key) {
359 		tcp_free_md5sig_pool();
360 		kfree_rcu(twsk->tw_md5_key, rcu);
361 	}
362 #endif
363 }
364 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
365 
366 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
367 					 struct request_sock *req)
368 {
369 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
370 }
371 
372 /* This is not only more efficient than what we used to do, it eliminates
373  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
374  *
375  * Actually, we could lots of memory writes here. tp of listening
376  * socket contains all necessary default parameters.
377  */
378 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
379 {
380 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
381 
382 	if (newsk != NULL) {
383 		const struct inet_request_sock *ireq = inet_rsk(req);
384 		struct tcp_request_sock *treq = tcp_rsk(req);
385 		struct inet_connection_sock *newicsk = inet_csk(newsk);
386 		struct tcp_sock *newtp = tcp_sk(newsk);
387 		struct tcp_sock *oldtp = tcp_sk(sk);
388 		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
389 
390 		newsk->sk_rx_dst = dst_clone(skb_dst(skb));
391 
392 		/* TCP Cookie Transactions require space for the cookie pair,
393 		 * as it differs for each connection.  There is no need to
394 		 * copy any s_data_payload stored at the original socket.
395 		 * Failure will prevent resuming the connection.
396 		 *
397 		 * Presumed copied, in order of appearance:
398 		 *	cookie_in_always, cookie_out_never
399 		 */
400 		if (oldcvp != NULL) {
401 			struct tcp_cookie_values *newcvp =
402 				kzalloc(sizeof(*newtp->cookie_values),
403 					GFP_ATOMIC);
404 
405 			if (newcvp != NULL) {
406 				kref_init(&newcvp->kref);
407 				newcvp->cookie_desired =
408 						oldcvp->cookie_desired;
409 				newtp->cookie_values = newcvp;
410 			} else {
411 				/* Not Yet Implemented */
412 				newtp->cookie_values = NULL;
413 			}
414 		}
415 
416 		/* Now setup tcp_sock */
417 		newtp->pred_flags = 0;
418 
419 		newtp->rcv_wup = newtp->copied_seq =
420 		newtp->rcv_nxt = treq->rcv_isn + 1;
421 
422 		newtp->snd_sml = newtp->snd_una =
423 		newtp->snd_nxt = newtp->snd_up =
424 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
425 
426 		tcp_prequeue_init(newtp);
427 		INIT_LIST_HEAD(&newtp->tsq_node);
428 
429 		tcp_init_wl(newtp, treq->rcv_isn);
430 
431 		newtp->srtt = 0;
432 		newtp->mdev = TCP_TIMEOUT_INIT;
433 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
434 
435 		newtp->packets_out = 0;
436 		newtp->retrans_out = 0;
437 		newtp->sacked_out = 0;
438 		newtp->fackets_out = 0;
439 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440 		tcp_enable_early_retrans(newtp);
441 
442 		/* So many TCP implementations out there (incorrectly) count the
443 		 * initial SYN frame in their delayed-ACK and congestion control
444 		 * algorithms that we must have the following bandaid to talk
445 		 * efficiently to them.  -DaveM
446 		 */
447 		newtp->snd_cwnd = TCP_INIT_CWND;
448 		newtp->snd_cwnd_cnt = 0;
449 		newtp->bytes_acked = 0;
450 
451 		newtp->frto_counter = 0;
452 		newtp->frto_highmark = 0;
453 
454 		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
455 		    !try_module_get(newicsk->icsk_ca_ops->owner))
456 			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
457 
458 		tcp_set_ca_state(newsk, TCP_CA_Open);
459 		tcp_init_xmit_timers(newsk);
460 		skb_queue_head_init(&newtp->out_of_order_queue);
461 		newtp->write_seq = newtp->pushed_seq =
462 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
463 
464 		newtp->rx_opt.saw_tstamp = 0;
465 
466 		newtp->rx_opt.dsack = 0;
467 		newtp->rx_opt.num_sacks = 0;
468 
469 		newtp->urg_data = 0;
470 
471 		if (sock_flag(newsk, SOCK_KEEPOPEN))
472 			inet_csk_reset_keepalive_timer(newsk,
473 						       keepalive_time_when(newtp));
474 
475 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
476 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
477 			if (sysctl_tcp_fack)
478 				tcp_enable_fack(newtp);
479 		}
480 		newtp->window_clamp = req->window_clamp;
481 		newtp->rcv_ssthresh = req->rcv_wnd;
482 		newtp->rcv_wnd = req->rcv_wnd;
483 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
484 		if (newtp->rx_opt.wscale_ok) {
485 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
486 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
487 		} else {
488 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
489 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
490 		}
491 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
492 				  newtp->rx_opt.snd_wscale);
493 		newtp->max_window = newtp->snd_wnd;
494 
495 		if (newtp->rx_opt.tstamp_ok) {
496 			newtp->rx_opt.ts_recent = req->ts_recent;
497 			newtp->rx_opt.ts_recent_stamp = get_seconds();
498 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
499 		} else {
500 			newtp->rx_opt.ts_recent_stamp = 0;
501 			newtp->tcp_header_len = sizeof(struct tcphdr);
502 		}
503 #ifdef CONFIG_TCP_MD5SIG
504 		newtp->md5sig_info = NULL;	/*XXX*/
505 		if (newtp->af_specific->md5_lookup(sk, newsk))
506 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
507 #endif
508 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
509 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
510 		newtp->rx_opt.mss_clamp = req->mss;
511 		TCP_ECN_openreq_child(newtp, req);
512 
513 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
514 	}
515 	return newsk;
516 }
517 EXPORT_SYMBOL(tcp_create_openreq_child);
518 
519 /*
520  *	Process an incoming packet for SYN_RECV sockets represented
521  *	as a request_sock.
522  */
523 
524 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
525 			   struct request_sock *req,
526 			   struct request_sock **prev)
527 {
528 	struct tcp_options_received tmp_opt;
529 	const u8 *hash_location;
530 	struct sock *child;
531 	const struct tcphdr *th = tcp_hdr(skb);
532 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
533 	bool paws_reject = false;
534 
535 	tmp_opt.saw_tstamp = 0;
536 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
537 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
538 
539 		if (tmp_opt.saw_tstamp) {
540 			tmp_opt.ts_recent = req->ts_recent;
541 			/* We do not store true stamp, but it is not required,
542 			 * it can be estimated (approximately)
543 			 * from another data.
544 			 */
545 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
546 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
547 		}
548 	}
549 
550 	/* Check for pure retransmitted SYN. */
551 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
552 	    flg == TCP_FLAG_SYN &&
553 	    !paws_reject) {
554 		/*
555 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
556 		 * this case on figure 6 and figure 8, but formal
557 		 * protocol description says NOTHING.
558 		 * To be more exact, it says that we should send ACK,
559 		 * because this segment (at least, if it has no data)
560 		 * is out of window.
561 		 *
562 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
563 		 *  describe SYN-RECV state. All the description
564 		 *  is wrong, we cannot believe to it and should
565 		 *  rely only on common sense and implementation
566 		 *  experience.
567 		 *
568 		 * Enforce "SYN-ACK" according to figure 8, figure 6
569 		 * of RFC793, fixed by RFC1122.
570 		 */
571 		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
572 		return NULL;
573 	}
574 
575 	/* Further reproduces section "SEGMENT ARRIVES"
576 	   for state SYN-RECEIVED of RFC793.
577 	   It is broken, however, it does not work only
578 	   when SYNs are crossed.
579 
580 	   You would think that SYN crossing is impossible here, since
581 	   we should have a SYN_SENT socket (from connect()) on our end,
582 	   but this is not true if the crossed SYNs were sent to both
583 	   ends by a malicious third party.  We must defend against this,
584 	   and to do that we first verify the ACK (as per RFC793, page
585 	   36) and reset if it is invalid.  Is this a true full defense?
586 	   To convince ourselves, let us consider a way in which the ACK
587 	   test can still pass in this 'malicious crossed SYNs' case.
588 	   Malicious sender sends identical SYNs (and thus identical sequence
589 	   numbers) to both A and B:
590 
591 		A: gets SYN, seq=7
592 		B: gets SYN, seq=7
593 
594 	   By our good fortune, both A and B select the same initial
595 	   send sequence number of seven :-)
596 
597 		A: sends SYN|ACK, seq=7, ack_seq=8
598 		B: sends SYN|ACK, seq=7, ack_seq=8
599 
600 	   So we are now A eating this SYN|ACK, ACK test passes.  So
601 	   does sequence test, SYN is truncated, and thus we consider
602 	   it a bare ACK.
603 
604 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
605 	   bare ACK.  Otherwise, we create an established connection.  Both
606 	   ends (listening sockets) accept the new incoming connection and try
607 	   to talk to each other. 8-)
608 
609 	   Note: This case is both harmless, and rare.  Possibility is about the
610 	   same as us discovering intelligent life on another plant tomorrow.
611 
612 	   But generally, we should (RFC lies!) to accept ACK
613 	   from SYNACK both here and in tcp_rcv_state_process().
614 	   tcp_rcv_state_process() does not, hence, we do not too.
615 
616 	   Note that the case is absolutely generic:
617 	   we cannot optimize anything here without
618 	   violating protocol. All the checks must be made
619 	   before attempt to create socket.
620 	 */
621 
622 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
623 	 *                  and the incoming segment acknowledges something not yet
624 	 *                  sent (the segment carries an unacceptable ACK) ...
625 	 *                  a reset is sent."
626 	 *
627 	 * Invalid ACK: reset will be sent by listening socket
628 	 */
629 	if ((flg & TCP_FLAG_ACK) &&
630 	    (TCP_SKB_CB(skb)->ack_seq !=
631 	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
632 		return sk;
633 
634 	/* Also, it would be not so bad idea to check rcv_tsecr, which
635 	 * is essentially ACK extension and too early or too late values
636 	 * should cause reset in unsynchronized states.
637 	 */
638 
639 	/* RFC793: "first check sequence number". */
640 
641 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
642 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
643 		/* Out of window: send ACK and drop. */
644 		if (!(flg & TCP_FLAG_RST))
645 			req->rsk_ops->send_ack(sk, skb, req);
646 		if (paws_reject)
647 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
648 		return NULL;
649 	}
650 
651 	/* In sequence, PAWS is OK. */
652 
653 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
654 		req->ts_recent = tmp_opt.rcv_tsval;
655 
656 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
657 		/* Truncate SYN, it is out of window starting
658 		   at tcp_rsk(req)->rcv_isn + 1. */
659 		flg &= ~TCP_FLAG_SYN;
660 	}
661 
662 	/* RFC793: "second check the RST bit" and
663 	 *	   "fourth, check the SYN bit"
664 	 */
665 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
666 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
667 		goto embryonic_reset;
668 	}
669 
670 	/* ACK sequence verified above, just make sure ACK is
671 	 * set.  If ACK not set, just silently drop the packet.
672 	 */
673 	if (!(flg & TCP_FLAG_ACK))
674 		return NULL;
675 
676 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
677 	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
678 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
679 		inet_rsk(req)->acked = 1;
680 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
681 		return NULL;
682 	}
683 	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
684 		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
685 	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
686 		tcp_rsk(req)->snt_synack = 0;
687 
688 	/* OK, ACK is valid, create big socket and
689 	 * feed this segment to it. It will repeat all
690 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
691 	 * ESTABLISHED STATE. If it will be dropped after
692 	 * socket is created, wait for troubles.
693 	 */
694 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
695 	if (child == NULL)
696 		goto listen_overflow;
697 
698 	inet_csk_reqsk_queue_unlink(sk, req, prev);
699 	inet_csk_reqsk_queue_removed(sk, req);
700 
701 	inet_csk_reqsk_queue_add(sk, req, child);
702 	return child;
703 
704 listen_overflow:
705 	if (!sysctl_tcp_abort_on_overflow) {
706 		inet_rsk(req)->acked = 1;
707 		return NULL;
708 	}
709 
710 embryonic_reset:
711 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
712 	if (!(flg & TCP_FLAG_RST))
713 		req->rsk_ops->send_reset(sk, skb);
714 
715 	inet_csk_reqsk_queue_drop(sk, req, prev);
716 	return NULL;
717 }
718 EXPORT_SYMBOL(tcp_check_req);
719 
720 /*
721  * Queue segment on the new socket if the new socket is active,
722  * otherwise we just shortcircuit this and continue with
723  * the new socket.
724  */
725 
726 int tcp_child_process(struct sock *parent, struct sock *child,
727 		      struct sk_buff *skb)
728 {
729 	int ret = 0;
730 	int state = child->sk_state;
731 
732 	if (!sock_owned_by_user(child)) {
733 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
734 					    skb->len);
735 		/* Wakeup parent, send SIGIO */
736 		if (state == TCP_SYN_RECV && child->sk_state != state)
737 			parent->sk_data_ready(parent, 0);
738 	} else {
739 		/* Alas, it is possible again, because we do lookup
740 		 * in main socket hash table and lock on listening
741 		 * socket does not protect us more.
742 		 */
743 		__sk_add_backlog(child, skb);
744 	}
745 
746 	bh_unlock_sock(child);
747 	sock_put(child);
748 	return ret;
749 }
750 EXPORT_SYMBOL(tcp_child_process);
751