xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/sysctl.h>
26 #include <linux/workqueue.h>
27 #include <linux/static_key.h>
28 #include <net/tcp.h>
29 #include <net/inet_common.h>
30 #include <net/xfrm.h>
31 #include <net/busy_poll.h>
32 
33 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
34 {
35 	if (seq == s_win)
36 		return true;
37 	if (after(end_seq, s_win) && before(seq, e_win))
38 		return true;
39 	return seq == e_win && seq == end_seq;
40 }
41 
42 static enum tcp_tw_status
43 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
44 				  const struct sk_buff *skb, int mib_idx)
45 {
46 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
47 
48 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
49 				  &tcptw->tw_last_oow_ack_time)) {
50 		/* Send ACK. Note, we do not put the bucket,
51 		 * it will be released by caller.
52 		 */
53 		return TCP_TW_ACK;
54 	}
55 
56 	/* We are rate-limiting, so just release the tw sock and drop skb. */
57 	inet_twsk_put(tw);
58 	return TCP_TW_SUCCESS;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 	bool paws_reject = false;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			if (tmp_opt.rcv_tsecr)
105 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109 		}
110 	}
111 
112 	if (tw->tw_substate == TCP_FIN_WAIT2) {
113 		/* Just repeat all the checks of tcp_rcv_state_process() */
114 
115 		/* Out of window, send ACK */
116 		if (paws_reject ||
117 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118 				   tcptw->tw_rcv_nxt,
119 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120 			return tcp_timewait_check_oow_rate_limit(
121 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122 
123 		if (th->rst)
124 			goto kill;
125 
126 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127 			return TCP_TW_RST;
128 
129 		/* Dup ACK? */
130 		if (!th->ack ||
131 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133 			inet_twsk_put(tw);
134 			return TCP_TW_SUCCESS;
135 		}
136 
137 		/* New data or FIN. If new data arrive after half-duplex close,
138 		 * reset.
139 		 */
140 		if (!th->fin ||
141 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142 			return TCP_TW_RST;
143 
144 		/* FIN arrived, enter true time-wait state. */
145 		tw->tw_substate	  = TCP_TIME_WAIT;
146 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 		if (tmp_opt.saw_tstamp) {
148 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
149 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150 		}
151 
152 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
153 		return TCP_TW_ACK;
154 	}
155 
156 	/*
157 	 *	Now real TIME-WAIT state.
158 	 *
159 	 *	RFC 1122:
160 	 *	"When a connection is [...] on TIME-WAIT state [...]
161 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
162 	 *	reopen the connection directly, if it:
163 	 *
164 	 *	(1)  assigns its initial sequence number for the new
165 	 *	connection to be larger than the largest sequence
166 	 *	number it used on the previous connection incarnation,
167 	 *	and
168 	 *
169 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
170 	 *	to be an old duplicate".
171 	 */
172 
173 	if (!paws_reject &&
174 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176 		/* In window segment, it may be only reset or bare ack. */
177 
178 		if (th->rst) {
179 			/* This is TIME_WAIT assassination, in two flavors.
180 			 * Oh well... nobody has a sufficient solution to this
181 			 * protocol bug yet.
182 			 */
183 			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
184 kill:
185 				inet_twsk_deschedule_put(tw);
186 				return TCP_TW_SUCCESS;
187 			}
188 		} else {
189 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190 		}
191 
192 		if (tmp_opt.saw_tstamp) {
193 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
194 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
195 		}
196 
197 		inet_twsk_put(tw);
198 		return TCP_TW_SUCCESS;
199 	}
200 
201 	/* Out of window segment.
202 
203 	   All the segments are ACKed immediately.
204 
205 	   The only exception is new SYN. We accept it, if it is
206 	   not old duplicate and we are not in danger to be killed
207 	   by delayed old duplicates. RFC check is that it has
208 	   newer sequence number works at rates <40Mbit/sec.
209 	   However, if paws works, it is reliable AND even more,
210 	   we even may relax silly seq space cutoff.
211 
212 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
213 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
214 	   we must return socket to time-wait state. It is not good,
215 	   but not fatal yet.
216 	 */
217 
218 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
219 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
220 	     (tmp_opt.saw_tstamp &&
221 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
222 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
223 		if (isn == 0)
224 			isn++;
225 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
226 		return TCP_TW_SYN;
227 	}
228 
229 	if (paws_reject)
230 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
231 
232 	if (!th->rst) {
233 		/* In this case we must reset the TIMEWAIT timer.
234 		 *
235 		 * If it is ACKless SYN it may be both old duplicate
236 		 * and new good SYN with random sequence number <rcv_nxt.
237 		 * Do not reschedule in the last case.
238 		 */
239 		if (paws_reject || th->ack)
240 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
241 
242 		return tcp_timewait_check_oow_rate_limit(
243 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
244 	}
245 	inet_twsk_put(tw);
246 	return TCP_TW_SUCCESS;
247 }
248 EXPORT_SYMBOL(tcp_timewait_state_process);
249 
250 /*
251  * Move a socket to time-wait or dead fin-wait-2 state.
252  */
253 void tcp_time_wait(struct sock *sk, int state, int timeo)
254 {
255 	const struct inet_connection_sock *icsk = inet_csk(sk);
256 	const struct tcp_sock *tp = tcp_sk(sk);
257 	struct inet_timewait_sock *tw;
258 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
259 
260 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
261 
262 	if (tw) {
263 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
264 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
265 		struct inet_sock *inet = inet_sk(sk);
266 
267 		tw->tw_transparent	= inet->transparent;
268 		tw->tw_mark		= sk->sk_mark;
269 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
270 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
271 		tcptw->tw_snd_nxt	= tp->snd_nxt;
272 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
273 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
274 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
275 		tcptw->tw_ts_offset	= tp->tsoffset;
276 		tcptw->tw_last_oow_ack_time = 0;
277 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
278 #if IS_ENABLED(CONFIG_IPV6)
279 		if (tw->tw_family == PF_INET6) {
280 			struct ipv6_pinfo *np = inet6_sk(sk);
281 
282 			tw->tw_v6_daddr = sk->sk_v6_daddr;
283 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
284 			tw->tw_tclass = np->tclass;
285 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
286 			tw->tw_txhash = sk->sk_txhash;
287 			tw->tw_ipv6only = sk->sk_ipv6only;
288 		}
289 #endif
290 
291 #ifdef CONFIG_TCP_MD5SIG
292 		/*
293 		 * The timewait bucket does not have the key DB from the
294 		 * sock structure. We just make a quick copy of the
295 		 * md5 key being used (if indeed we are using one)
296 		 * so the timewait ack generating code has the key.
297 		 */
298 		do {
299 			tcptw->tw_md5_key = NULL;
300 			if (static_branch_unlikely(&tcp_md5_needed)) {
301 				struct tcp_md5sig_key *key;
302 
303 				key = tp->af_specific->md5_lookup(sk, sk);
304 				if (key) {
305 					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
306 					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
307 				}
308 			}
309 		} while (0);
310 #endif
311 
312 		/* Get the TIME_WAIT timeout firing. */
313 		if (timeo < rto)
314 			timeo = rto;
315 
316 		if (state == TCP_TIME_WAIT)
317 			timeo = TCP_TIMEWAIT_LEN;
318 
319 		/* tw_timer is pinned, so we need to make sure BH are disabled
320 		 * in following section, otherwise timer handler could run before
321 		 * we complete the initialization.
322 		 */
323 		local_bh_disable();
324 		inet_twsk_schedule(tw, timeo);
325 		/* Linkage updates.
326 		 * Note that access to tw after this point is illegal.
327 		 */
328 		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
329 		local_bh_enable();
330 	} else {
331 		/* Sorry, if we're out of memory, just CLOSE this
332 		 * socket up.  We've got bigger problems than
333 		 * non-graceful socket closings.
334 		 */
335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
336 	}
337 
338 	tcp_update_metrics(sk);
339 	tcp_done(sk);
340 }
341 EXPORT_SYMBOL(tcp_time_wait);
342 
343 void tcp_twsk_destructor(struct sock *sk)
344 {
345 #ifdef CONFIG_TCP_MD5SIG
346 	if (static_branch_unlikely(&tcp_md5_needed)) {
347 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
348 
349 		if (twsk->tw_md5_key)
350 			kfree_rcu(twsk->tw_md5_key, rcu);
351 	}
352 #endif
353 }
354 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
355 
356 /* Warning : This function is called without sk_listener being locked.
357  * Be sure to read socket fields once, as their value could change under us.
358  */
359 void tcp_openreq_init_rwin(struct request_sock *req,
360 			   const struct sock *sk_listener,
361 			   const struct dst_entry *dst)
362 {
363 	struct inet_request_sock *ireq = inet_rsk(req);
364 	const struct tcp_sock *tp = tcp_sk(sk_listener);
365 	int full_space = tcp_full_space(sk_listener);
366 	u32 window_clamp;
367 	__u8 rcv_wscale;
368 	u32 rcv_wnd;
369 	int mss;
370 
371 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
372 	window_clamp = READ_ONCE(tp->window_clamp);
373 	/* Set this up on the first call only */
374 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
375 
376 	/* limit the window selection if the user enforce a smaller rx buffer */
377 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
378 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
379 		req->rsk_window_clamp = full_space;
380 
381 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
382 	if (rcv_wnd == 0)
383 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
384 	else if (full_space < rcv_wnd * mss)
385 		full_space = rcv_wnd * mss;
386 
387 	/* tcp_full_space because it is guaranteed to be the first packet */
388 	tcp_select_initial_window(sk_listener, full_space,
389 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
390 		&req->rsk_rcv_wnd,
391 		&req->rsk_window_clamp,
392 		ireq->wscale_ok,
393 		&rcv_wscale,
394 		rcv_wnd);
395 	ireq->rcv_wscale = rcv_wscale;
396 }
397 EXPORT_SYMBOL(tcp_openreq_init_rwin);
398 
399 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
400 				  const struct request_sock *req)
401 {
402 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
403 }
404 
405 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
406 {
407 	struct inet_connection_sock *icsk = inet_csk(sk);
408 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
409 	bool ca_got_dst = false;
410 
411 	if (ca_key != TCP_CA_UNSPEC) {
412 		const struct tcp_congestion_ops *ca;
413 
414 		rcu_read_lock();
415 		ca = tcp_ca_find_key(ca_key);
416 		if (likely(ca && try_module_get(ca->owner))) {
417 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
418 			icsk->icsk_ca_ops = ca;
419 			ca_got_dst = true;
420 		}
421 		rcu_read_unlock();
422 	}
423 
424 	/* If no valid choice made yet, assign current system default ca. */
425 	if (!ca_got_dst &&
426 	    (!icsk->icsk_ca_setsockopt ||
427 	     !try_module_get(icsk->icsk_ca_ops->owner)))
428 		tcp_assign_congestion_control(sk);
429 
430 	tcp_set_ca_state(sk, TCP_CA_Open);
431 }
432 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
433 
434 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
435 				    struct request_sock *req,
436 				    struct tcp_sock *newtp)
437 {
438 #if IS_ENABLED(CONFIG_SMC)
439 	struct inet_request_sock *ireq;
440 
441 	if (static_branch_unlikely(&tcp_have_smc)) {
442 		ireq = inet_rsk(req);
443 		if (oldtp->syn_smc && !ireq->smc_ok)
444 			newtp->syn_smc = 0;
445 	}
446 #endif
447 }
448 
449 /* This is not only more efficient than what we used to do, it eliminates
450  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
451  *
452  * Actually, we could lots of memory writes here. tp of listening
453  * socket contains all necessary default parameters.
454  */
455 struct sock *tcp_create_openreq_child(const struct sock *sk,
456 				      struct request_sock *req,
457 				      struct sk_buff *skb)
458 {
459 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
460 	const struct inet_request_sock *ireq = inet_rsk(req);
461 	struct tcp_request_sock *treq = tcp_rsk(req);
462 	struct inet_connection_sock *newicsk;
463 	struct tcp_sock *oldtp, *newtp;
464 
465 	if (!newsk)
466 		return NULL;
467 
468 	newicsk = inet_csk(newsk);
469 	newtp = tcp_sk(newsk);
470 	oldtp = tcp_sk(sk);
471 
472 	smc_check_reset_syn_req(oldtp, req, newtp);
473 
474 	/* Now setup tcp_sock */
475 	newtp->pred_flags = 0;
476 
477 	newtp->rcv_wup = newtp->copied_seq =
478 	newtp->rcv_nxt = treq->rcv_isn + 1;
479 	newtp->segs_in = 1;
480 
481 	newtp->snd_sml = newtp->snd_una =
482 	newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
483 
484 	INIT_LIST_HEAD(&newtp->tsq_node);
485 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
486 
487 	tcp_init_wl(newtp, treq->rcv_isn);
488 
489 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
490 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
491 
492 	newtp->lsndtime = tcp_jiffies32;
493 	newsk->sk_txhash = treq->txhash;
494 	newtp->total_retrans = req->num_retrans;
495 
496 	tcp_init_xmit_timers(newsk);
497 	newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
498 
499 	if (sock_flag(newsk, SOCK_KEEPOPEN))
500 		inet_csk_reset_keepalive_timer(newsk,
501 					       keepalive_time_when(newtp));
502 
503 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
504 	newtp->rx_opt.sack_ok = ireq->sack_ok;
505 	newtp->window_clamp = req->rsk_window_clamp;
506 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
507 	newtp->rcv_wnd = req->rsk_rcv_wnd;
508 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
509 	if (newtp->rx_opt.wscale_ok) {
510 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
511 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
512 	} else {
513 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
514 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
515 	}
516 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
517 	newtp->max_window = newtp->snd_wnd;
518 
519 	if (newtp->rx_opt.tstamp_ok) {
520 		newtp->rx_opt.ts_recent = req->ts_recent;
521 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
522 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
523 	} else {
524 		newtp->rx_opt.ts_recent_stamp = 0;
525 		newtp->tcp_header_len = sizeof(struct tcphdr);
526 	}
527 	if (req->num_timeout) {
528 		newtp->undo_marker = treq->snt_isn;
529 		newtp->retrans_stamp = div_u64(treq->snt_synack,
530 					       USEC_PER_SEC / TCP_TS_HZ);
531 	}
532 	newtp->tsoffset = treq->ts_off;
533 #ifdef CONFIG_TCP_MD5SIG
534 	newtp->md5sig_info = NULL;	/*XXX*/
535 	if (newtp->af_specific->md5_lookup(sk, newsk))
536 		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
537 #endif
538 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
539 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
540 	newtp->rx_opt.mss_clamp = req->mss;
541 	tcp_ecn_openreq_child(newtp, req);
542 	newtp->fastopen_req = NULL;
543 	newtp->fastopen_rsk = NULL;
544 
545 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
546 
547 	return newsk;
548 }
549 EXPORT_SYMBOL(tcp_create_openreq_child);
550 
551 /*
552  * Process an incoming packet for SYN_RECV sockets represented as a
553  * request_sock. Normally sk is the listener socket but for TFO it
554  * points to the child socket.
555  *
556  * XXX (TFO) - The current impl contains a special check for ack
557  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
558  *
559  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
560  */
561 
562 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
563 			   struct request_sock *req,
564 			   bool fastopen, bool *req_stolen)
565 {
566 	struct tcp_options_received tmp_opt;
567 	struct sock *child;
568 	const struct tcphdr *th = tcp_hdr(skb);
569 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
570 	bool paws_reject = false;
571 	bool own_req;
572 
573 	tmp_opt.saw_tstamp = 0;
574 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
575 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
576 
577 		if (tmp_opt.saw_tstamp) {
578 			tmp_opt.ts_recent = req->ts_recent;
579 			if (tmp_opt.rcv_tsecr)
580 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
581 			/* We do not store true stamp, but it is not required,
582 			 * it can be estimated (approximately)
583 			 * from another data.
584 			 */
585 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
586 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
587 		}
588 	}
589 
590 	/* Check for pure retransmitted SYN. */
591 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
592 	    flg == TCP_FLAG_SYN &&
593 	    !paws_reject) {
594 		/*
595 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
596 		 * this case on figure 6 and figure 8, but formal
597 		 * protocol description says NOTHING.
598 		 * To be more exact, it says that we should send ACK,
599 		 * because this segment (at least, if it has no data)
600 		 * is out of window.
601 		 *
602 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
603 		 *  describe SYN-RECV state. All the description
604 		 *  is wrong, we cannot believe to it and should
605 		 *  rely only on common sense and implementation
606 		 *  experience.
607 		 *
608 		 * Enforce "SYN-ACK" according to figure 8, figure 6
609 		 * of RFC793, fixed by RFC1122.
610 		 *
611 		 * Note that even if there is new data in the SYN packet
612 		 * they will be thrown away too.
613 		 *
614 		 * Reset timer after retransmitting SYNACK, similar to
615 		 * the idea of fast retransmit in recovery.
616 		 */
617 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
618 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
619 					  &tcp_rsk(req)->last_oow_ack_time) &&
620 
621 		    !inet_rtx_syn_ack(sk, req)) {
622 			unsigned long expires = jiffies;
623 
624 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
625 				       TCP_RTO_MAX);
626 			if (!fastopen)
627 				mod_timer_pending(&req->rsk_timer, expires);
628 			else
629 				req->rsk_timer.expires = expires;
630 		}
631 		return NULL;
632 	}
633 
634 	/* Further reproduces section "SEGMENT ARRIVES"
635 	   for state SYN-RECEIVED of RFC793.
636 	   It is broken, however, it does not work only
637 	   when SYNs are crossed.
638 
639 	   You would think that SYN crossing is impossible here, since
640 	   we should have a SYN_SENT socket (from connect()) on our end,
641 	   but this is not true if the crossed SYNs were sent to both
642 	   ends by a malicious third party.  We must defend against this,
643 	   and to do that we first verify the ACK (as per RFC793, page
644 	   36) and reset if it is invalid.  Is this a true full defense?
645 	   To convince ourselves, let us consider a way in which the ACK
646 	   test can still pass in this 'malicious crossed SYNs' case.
647 	   Malicious sender sends identical SYNs (and thus identical sequence
648 	   numbers) to both A and B:
649 
650 		A: gets SYN, seq=7
651 		B: gets SYN, seq=7
652 
653 	   By our good fortune, both A and B select the same initial
654 	   send sequence number of seven :-)
655 
656 		A: sends SYN|ACK, seq=7, ack_seq=8
657 		B: sends SYN|ACK, seq=7, ack_seq=8
658 
659 	   So we are now A eating this SYN|ACK, ACK test passes.  So
660 	   does sequence test, SYN is truncated, and thus we consider
661 	   it a bare ACK.
662 
663 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
664 	   bare ACK.  Otherwise, we create an established connection.  Both
665 	   ends (listening sockets) accept the new incoming connection and try
666 	   to talk to each other. 8-)
667 
668 	   Note: This case is both harmless, and rare.  Possibility is about the
669 	   same as us discovering intelligent life on another plant tomorrow.
670 
671 	   But generally, we should (RFC lies!) to accept ACK
672 	   from SYNACK both here and in tcp_rcv_state_process().
673 	   tcp_rcv_state_process() does not, hence, we do not too.
674 
675 	   Note that the case is absolutely generic:
676 	   we cannot optimize anything here without
677 	   violating protocol. All the checks must be made
678 	   before attempt to create socket.
679 	 */
680 
681 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
682 	 *                  and the incoming segment acknowledges something not yet
683 	 *                  sent (the segment carries an unacceptable ACK) ...
684 	 *                  a reset is sent."
685 	 *
686 	 * Invalid ACK: reset will be sent by listening socket.
687 	 * Note that the ACK validity check for a Fast Open socket is done
688 	 * elsewhere and is checked directly against the child socket rather
689 	 * than req because user data may have been sent out.
690 	 */
691 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
692 	    (TCP_SKB_CB(skb)->ack_seq !=
693 	     tcp_rsk(req)->snt_isn + 1))
694 		return sk;
695 
696 	/* Also, it would be not so bad idea to check rcv_tsecr, which
697 	 * is essentially ACK extension and too early or too late values
698 	 * should cause reset in unsynchronized states.
699 	 */
700 
701 	/* RFC793: "first check sequence number". */
702 
703 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
704 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
705 		/* Out of window: send ACK and drop. */
706 		if (!(flg & TCP_FLAG_RST) &&
707 		    !tcp_oow_rate_limited(sock_net(sk), skb,
708 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
709 					  &tcp_rsk(req)->last_oow_ack_time))
710 			req->rsk_ops->send_ack(sk, skb, req);
711 		if (paws_reject)
712 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
713 		return NULL;
714 	}
715 
716 	/* In sequence, PAWS is OK. */
717 
718 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
719 		req->ts_recent = tmp_opt.rcv_tsval;
720 
721 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
722 		/* Truncate SYN, it is out of window starting
723 		   at tcp_rsk(req)->rcv_isn + 1. */
724 		flg &= ~TCP_FLAG_SYN;
725 	}
726 
727 	/* RFC793: "second check the RST bit" and
728 	 *	   "fourth, check the SYN bit"
729 	 */
730 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
731 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
732 		goto embryonic_reset;
733 	}
734 
735 	/* ACK sequence verified above, just make sure ACK is
736 	 * set.  If ACK not set, just silently drop the packet.
737 	 *
738 	 * XXX (TFO) - if we ever allow "data after SYN", the
739 	 * following check needs to be removed.
740 	 */
741 	if (!(flg & TCP_FLAG_ACK))
742 		return NULL;
743 
744 	/* For Fast Open no more processing is needed (sk is the
745 	 * child socket).
746 	 */
747 	if (fastopen)
748 		return sk;
749 
750 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
751 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
752 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
753 		inet_rsk(req)->acked = 1;
754 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
755 		return NULL;
756 	}
757 
758 	/* OK, ACK is valid, create big socket and
759 	 * feed this segment to it. It will repeat all
760 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
761 	 * ESTABLISHED STATE. If it will be dropped after
762 	 * socket is created, wait for troubles.
763 	 */
764 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
765 							 req, &own_req);
766 	if (!child)
767 		goto listen_overflow;
768 
769 	sock_rps_save_rxhash(child, skb);
770 	tcp_synack_rtt_meas(child, req);
771 	*req_stolen = !own_req;
772 	return inet_csk_complete_hashdance(sk, child, req, own_req);
773 
774 listen_overflow:
775 	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
776 		inet_rsk(req)->acked = 1;
777 		return NULL;
778 	}
779 
780 embryonic_reset:
781 	if (!(flg & TCP_FLAG_RST)) {
782 		/* Received a bad SYN pkt - for TFO We try not to reset
783 		 * the local connection unless it's really necessary to
784 		 * avoid becoming vulnerable to outside attack aiming at
785 		 * resetting legit local connections.
786 		 */
787 		req->rsk_ops->send_reset(sk, skb);
788 	} else if (fastopen) { /* received a valid RST pkt */
789 		reqsk_fastopen_remove(sk, req, true);
790 		tcp_reset(sk);
791 	}
792 	if (!fastopen) {
793 		inet_csk_reqsk_queue_drop(sk, req);
794 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
795 	}
796 	return NULL;
797 }
798 EXPORT_SYMBOL(tcp_check_req);
799 
800 /*
801  * Queue segment on the new socket if the new socket is active,
802  * otherwise we just shortcircuit this and continue with
803  * the new socket.
804  *
805  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
806  * when entering. But other states are possible due to a race condition
807  * where after __inet_lookup_established() fails but before the listener
808  * locked is obtained, other packets cause the same connection to
809  * be created.
810  */
811 
812 int tcp_child_process(struct sock *parent, struct sock *child,
813 		      struct sk_buff *skb)
814 {
815 	int ret = 0;
816 	int state = child->sk_state;
817 
818 	/* record NAPI ID of child */
819 	sk_mark_napi_id(child, skb);
820 
821 	tcp_segs_in(tcp_sk(child), skb);
822 	if (!sock_owned_by_user(child)) {
823 		ret = tcp_rcv_state_process(child, skb);
824 		/* Wakeup parent, send SIGIO */
825 		if (state == TCP_SYN_RECV && child->sk_state != state)
826 			parent->sk_data_ready(parent);
827 	} else {
828 		/* Alas, it is possible again, because we do lookup
829 		 * in main socket hash table and lock on listening
830 		 * socket does not protect us more.
831 		 */
832 		__sk_add_backlog(child, skb);
833 	}
834 
835 	bh_unlock_sock(child);
836 	sock_put(child);
837 	return ret;
838 }
839 EXPORT_SYMBOL(tcp_child_process);
840