xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <linux/static_key.h>
27 #include <net/tcp.h>
28 #include <net/inet_common.h>
29 #include <net/xfrm.h>
30 #include <net/busy_poll.h>
31 
32 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
33 {
34 	if (seq == s_win)
35 		return true;
36 	if (after(end_seq, s_win) && before(seq, e_win))
37 		return true;
38 	return seq == e_win && seq == end_seq;
39 }
40 
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
43 				  const struct sk_buff *skb, int mib_idx)
44 {
45 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
46 
47 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
48 				  &tcptw->tw_last_oow_ack_time)) {
49 		/* Send ACK. Note, we do not put the bucket,
50 		 * it will be released by caller.
51 		 */
52 		return TCP_TW_ACK;
53 	}
54 
55 	/* We are rate-limiting, so just release the tw sock and drop skb. */
56 	inet_twsk_put(tw);
57 	return TCP_TW_SUCCESS;
58 }
59 
60 /*
61  * * Main purpose of TIME-WAIT state is to close connection gracefully,
62  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63  *   (and, probably, tail of data) and one or more our ACKs are lost.
64  * * What is TIME-WAIT timeout? It is associated with maximal packet
65  *   lifetime in the internet, which results in wrong conclusion, that
66  *   it is set to catch "old duplicate segments" wandering out of their path.
67  *   It is not quite correct. This timeout is calculated so that it exceeds
68  *   maximal retransmission timeout enough to allow to lose one (or more)
69  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
70  * * When TIME-WAIT socket receives RST, it means that another end
71  *   finally closed and we are allowed to kill TIME-WAIT too.
72  * * Second purpose of TIME-WAIT is catching old duplicate segments.
73  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
74  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75  * * If we invented some more clever way to catch duplicates
76  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
77  *
78  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80  * from the very beginning.
81  *
82  * NOTE. With recycling (and later with fin-wait-2) TW bucket
83  * is _not_ stateless. It means, that strictly speaking we must
84  * spinlock it. I do not want! Well, probability of misbehaviour
85  * is ridiculously low and, seems, we could use some mb() tricks
86  * to avoid misread sequence numbers, states etc.  --ANK
87  *
88  * We don't need to initialize tmp_out.sack_ok as we don't use the results
89  */
90 enum tcp_tw_status
91 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
92 			   const struct tcphdr *th)
93 {
94 	struct tcp_options_received tmp_opt;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 
98 	tmp_opt.saw_tstamp = 0;
99 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101 
102 		if (tmp_opt.saw_tstamp) {
103 			if (tmp_opt.rcv_tsecr)
104 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return tcp_timewait_check_oow_rate_limit(
120 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121 
122 		if (th->rst)
123 			goto kill;
124 
125 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126 			return TCP_TW_RST;
127 
128 		/* Dup ACK? */
129 		if (!th->ack ||
130 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132 			inet_twsk_put(tw);
133 			return TCP_TW_SUCCESS;
134 		}
135 
136 		/* New data or FIN. If new data arrive after half-duplex close,
137 		 * reset.
138 		 */
139 		if (!th->fin ||
140 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141 			return TCP_TW_RST;
142 
143 		/* FIN arrived, enter true time-wait state. */
144 		tw->tw_substate	  = TCP_TIME_WAIT;
145 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146 		if (tmp_opt.saw_tstamp) {
147 			tcptw->tw_ts_recent_stamp = get_seconds();
148 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149 		}
150 
151 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152 		return TCP_TW_ACK;
153 	}
154 
155 	/*
156 	 *	Now real TIME-WAIT state.
157 	 *
158 	 *	RFC 1122:
159 	 *	"When a connection is [...] on TIME-WAIT state [...]
160 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161 	 *	reopen the connection directly, if it:
162 	 *
163 	 *	(1)  assigns its initial sequence number for the new
164 	 *	connection to be larger than the largest sequence
165 	 *	number it used on the previous connection incarnation,
166 	 *	and
167 	 *
168 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169 	 *	to be an old duplicate".
170 	 */
171 
172 	if (!paws_reject &&
173 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175 		/* In window segment, it may be only reset or bare ack. */
176 
177 		if (th->rst) {
178 			/* This is TIME_WAIT assassination, in two flavors.
179 			 * Oh well... nobody has a sufficient solution to this
180 			 * protocol bug yet.
181 			 */
182 			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183 kill:
184 				inet_twsk_deschedule_put(tw);
185 				return TCP_TW_SUCCESS;
186 			}
187 		}
188 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189 
190 		if (tmp_opt.saw_tstamp) {
191 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
192 			tcptw->tw_ts_recent_stamp = get_seconds();
193 		}
194 
195 		inet_twsk_put(tw);
196 		return TCP_TW_SUCCESS;
197 	}
198 
199 	/* Out of window segment.
200 
201 	   All the segments are ACKed immediately.
202 
203 	   The only exception is new SYN. We accept it, if it is
204 	   not old duplicate and we are not in danger to be killed
205 	   by delayed old duplicates. RFC check is that it has
206 	   newer sequence number works at rates <40Mbit/sec.
207 	   However, if paws works, it is reliable AND even more,
208 	   we even may relax silly seq space cutoff.
209 
210 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
211 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
212 	   we must return socket to time-wait state. It is not good,
213 	   but not fatal yet.
214 	 */
215 
216 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
217 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
218 	     (tmp_opt.saw_tstamp &&
219 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
220 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
221 		if (isn == 0)
222 			isn++;
223 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
224 		return TCP_TW_SYN;
225 	}
226 
227 	if (paws_reject)
228 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
229 
230 	if (!th->rst) {
231 		/* In this case we must reset the TIMEWAIT timer.
232 		 *
233 		 * If it is ACKless SYN it may be both old duplicate
234 		 * and new good SYN with random sequence number <rcv_nxt.
235 		 * Do not reschedule in the last case.
236 		 */
237 		if (paws_reject || th->ack)
238 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
239 
240 		return tcp_timewait_check_oow_rate_limit(
241 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
242 	}
243 	inet_twsk_put(tw);
244 	return TCP_TW_SUCCESS;
245 }
246 EXPORT_SYMBOL(tcp_timewait_state_process);
247 
248 /*
249  * Move a socket to time-wait or dead fin-wait-2 state.
250  */
251 void tcp_time_wait(struct sock *sk, int state, int timeo)
252 {
253 	const struct inet_connection_sock *icsk = inet_csk(sk);
254 	const struct tcp_sock *tp = tcp_sk(sk);
255 	struct inet_timewait_sock *tw;
256 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
257 
258 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
259 
260 	if (tw) {
261 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
262 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
263 		struct inet_sock *inet = inet_sk(sk);
264 
265 		tw->tw_transparent	= inet->transparent;
266 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
267 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
268 		tcptw->tw_snd_nxt	= tp->snd_nxt;
269 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
270 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
271 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
272 		tcptw->tw_ts_offset	= tp->tsoffset;
273 		tcptw->tw_last_oow_ack_time = 0;
274 
275 #if IS_ENABLED(CONFIG_IPV6)
276 		if (tw->tw_family == PF_INET6) {
277 			struct ipv6_pinfo *np = inet6_sk(sk);
278 
279 			tw->tw_v6_daddr = sk->sk_v6_daddr;
280 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
281 			tw->tw_tclass = np->tclass;
282 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
283 			tw->tw_ipv6only = sk->sk_ipv6only;
284 		}
285 #endif
286 
287 #ifdef CONFIG_TCP_MD5SIG
288 		/*
289 		 * The timewait bucket does not have the key DB from the
290 		 * sock structure. We just make a quick copy of the
291 		 * md5 key being used (if indeed we are using one)
292 		 * so the timewait ack generating code has the key.
293 		 */
294 		do {
295 			struct tcp_md5sig_key *key;
296 			tcptw->tw_md5_key = NULL;
297 			key = tp->af_specific->md5_lookup(sk, sk);
298 			if (key) {
299 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
300 				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
301 			}
302 		} while (0);
303 #endif
304 
305 		/* Get the TIME_WAIT timeout firing. */
306 		if (timeo < rto)
307 			timeo = rto;
308 
309 		tw->tw_timeout = TCP_TIMEWAIT_LEN;
310 		if (state == TCP_TIME_WAIT)
311 			timeo = TCP_TIMEWAIT_LEN;
312 
313 		/* tw_timer is pinned, so we need to make sure BH are disabled
314 		 * in following section, otherwise timer handler could run before
315 		 * we complete the initialization.
316 		 */
317 		local_bh_disable();
318 		inet_twsk_schedule(tw, timeo);
319 		/* Linkage updates.
320 		 * Note that access to tw after this point is illegal.
321 		 */
322 		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
323 		local_bh_enable();
324 	} else {
325 		/* Sorry, if we're out of memory, just CLOSE this
326 		 * socket up.  We've got bigger problems than
327 		 * non-graceful socket closings.
328 		 */
329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
330 	}
331 
332 	tcp_update_metrics(sk);
333 	tcp_done(sk);
334 }
335 EXPORT_SYMBOL(tcp_time_wait);
336 
337 void tcp_twsk_destructor(struct sock *sk)
338 {
339 #ifdef CONFIG_TCP_MD5SIG
340 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
341 
342 	if (twsk->tw_md5_key)
343 		kfree_rcu(twsk->tw_md5_key, rcu);
344 #endif
345 }
346 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
347 
348 /* Warning : This function is called without sk_listener being locked.
349  * Be sure to read socket fields once, as their value could change under us.
350  */
351 void tcp_openreq_init_rwin(struct request_sock *req,
352 			   const struct sock *sk_listener,
353 			   const struct dst_entry *dst)
354 {
355 	struct inet_request_sock *ireq = inet_rsk(req);
356 	const struct tcp_sock *tp = tcp_sk(sk_listener);
357 	int full_space = tcp_full_space(sk_listener);
358 	u32 window_clamp;
359 	__u8 rcv_wscale;
360 	u32 rcv_wnd;
361 	int mss;
362 
363 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
364 	window_clamp = READ_ONCE(tp->window_clamp);
365 	/* Set this up on the first call only */
366 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
367 
368 	/* limit the window selection if the user enforce a smaller rx buffer */
369 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
370 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
371 		req->rsk_window_clamp = full_space;
372 
373 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
374 	if (rcv_wnd == 0)
375 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
376 	else if (full_space < rcv_wnd * mss)
377 		full_space = rcv_wnd * mss;
378 
379 	/* tcp_full_space because it is guaranteed to be the first packet */
380 	tcp_select_initial_window(sk_listener, full_space,
381 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
382 		&req->rsk_rcv_wnd,
383 		&req->rsk_window_clamp,
384 		ireq->wscale_ok,
385 		&rcv_wscale,
386 		rcv_wnd);
387 	ireq->rcv_wscale = rcv_wscale;
388 }
389 EXPORT_SYMBOL(tcp_openreq_init_rwin);
390 
391 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
392 				  const struct request_sock *req)
393 {
394 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
395 }
396 
397 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
398 {
399 	struct inet_connection_sock *icsk = inet_csk(sk);
400 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
401 	bool ca_got_dst = false;
402 
403 	if (ca_key != TCP_CA_UNSPEC) {
404 		const struct tcp_congestion_ops *ca;
405 
406 		rcu_read_lock();
407 		ca = tcp_ca_find_key(ca_key);
408 		if (likely(ca && try_module_get(ca->owner))) {
409 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
410 			icsk->icsk_ca_ops = ca;
411 			ca_got_dst = true;
412 		}
413 		rcu_read_unlock();
414 	}
415 
416 	/* If no valid choice made yet, assign current system default ca. */
417 	if (!ca_got_dst &&
418 	    (!icsk->icsk_ca_setsockopt ||
419 	     !try_module_get(icsk->icsk_ca_ops->owner)))
420 		tcp_assign_congestion_control(sk);
421 
422 	tcp_set_ca_state(sk, TCP_CA_Open);
423 }
424 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
425 
426 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
427 				    struct request_sock *req,
428 				    struct tcp_sock *newtp)
429 {
430 #if IS_ENABLED(CONFIG_SMC)
431 	struct inet_request_sock *ireq;
432 
433 	if (static_branch_unlikely(&tcp_have_smc)) {
434 		ireq = inet_rsk(req);
435 		if (oldtp->syn_smc && !ireq->smc_ok)
436 			newtp->syn_smc = 0;
437 	}
438 #endif
439 }
440 
441 /* This is not only more efficient than what we used to do, it eliminates
442  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
443  *
444  * Actually, we could lots of memory writes here. tp of listening
445  * socket contains all necessary default parameters.
446  */
447 struct sock *tcp_create_openreq_child(const struct sock *sk,
448 				      struct request_sock *req,
449 				      struct sk_buff *skb)
450 {
451 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
452 
453 	if (newsk) {
454 		const struct inet_request_sock *ireq = inet_rsk(req);
455 		struct tcp_request_sock *treq = tcp_rsk(req);
456 		struct inet_connection_sock *newicsk = inet_csk(newsk);
457 		struct tcp_sock *newtp = tcp_sk(newsk);
458 		struct tcp_sock *oldtp = tcp_sk(sk);
459 
460 		smc_check_reset_syn_req(oldtp, req, newtp);
461 
462 		/* Now setup tcp_sock */
463 		newtp->pred_flags = 0;
464 
465 		newtp->rcv_wup = newtp->copied_seq =
466 		newtp->rcv_nxt = treq->rcv_isn + 1;
467 		newtp->segs_in = 1;
468 
469 		newtp->snd_sml = newtp->snd_una =
470 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
471 
472 		INIT_LIST_HEAD(&newtp->tsq_node);
473 		INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
474 
475 		tcp_init_wl(newtp, treq->rcv_isn);
476 
477 		newtp->srtt_us = 0;
478 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
479 		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
480 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
481 		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
482 
483 		newtp->packets_out = 0;
484 		newtp->retrans_out = 0;
485 		newtp->sacked_out = 0;
486 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
487 		newtp->tlp_high_seq = 0;
488 		newtp->lsndtime = tcp_jiffies32;
489 		newsk->sk_txhash = treq->txhash;
490 		newtp->last_oow_ack_time = 0;
491 		newtp->total_retrans = req->num_retrans;
492 
493 		/* So many TCP implementations out there (incorrectly) count the
494 		 * initial SYN frame in their delayed-ACK and congestion control
495 		 * algorithms that we must have the following bandaid to talk
496 		 * efficiently to them.  -DaveM
497 		 */
498 		newtp->snd_cwnd = TCP_INIT_CWND;
499 		newtp->snd_cwnd_cnt = 0;
500 
501 		/* There's a bubble in the pipe until at least the first ACK. */
502 		newtp->app_limited = ~0U;
503 
504 		tcp_init_xmit_timers(newsk);
505 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
506 
507 		newtp->rx_opt.saw_tstamp = 0;
508 
509 		newtp->rx_opt.dsack = 0;
510 		newtp->rx_opt.num_sacks = 0;
511 
512 		newtp->urg_data = 0;
513 
514 		if (sock_flag(newsk, SOCK_KEEPOPEN))
515 			inet_csk_reset_keepalive_timer(newsk,
516 						       keepalive_time_when(newtp));
517 
518 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
519 		newtp->rx_opt.sack_ok = ireq->sack_ok;
520 		newtp->window_clamp = req->rsk_window_clamp;
521 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
522 		newtp->rcv_wnd = req->rsk_rcv_wnd;
523 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
524 		if (newtp->rx_opt.wscale_ok) {
525 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
526 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
527 		} else {
528 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
529 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
530 		}
531 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
532 				  newtp->rx_opt.snd_wscale);
533 		newtp->max_window = newtp->snd_wnd;
534 
535 		if (newtp->rx_opt.tstamp_ok) {
536 			newtp->rx_opt.ts_recent = req->ts_recent;
537 			newtp->rx_opt.ts_recent_stamp = get_seconds();
538 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
539 		} else {
540 			newtp->rx_opt.ts_recent_stamp = 0;
541 			newtp->tcp_header_len = sizeof(struct tcphdr);
542 		}
543 		newtp->tsoffset = treq->ts_off;
544 #ifdef CONFIG_TCP_MD5SIG
545 		newtp->md5sig_info = NULL;	/*XXX*/
546 		if (newtp->af_specific->md5_lookup(sk, newsk))
547 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
548 #endif
549 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
550 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
551 		newtp->rx_opt.mss_clamp = req->mss;
552 		tcp_ecn_openreq_child(newtp, req);
553 		newtp->fastopen_req = NULL;
554 		newtp->fastopen_rsk = NULL;
555 		newtp->syn_data_acked = 0;
556 		newtp->rack.mstamp = 0;
557 		newtp->rack.advanced = 0;
558 		newtp->rack.reo_wnd_steps = 1;
559 		newtp->rack.last_delivered = 0;
560 		newtp->rack.reo_wnd_persist = 0;
561 		newtp->rack.dsack_seen = 0;
562 
563 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
564 	}
565 	return newsk;
566 }
567 EXPORT_SYMBOL(tcp_create_openreq_child);
568 
569 /*
570  * Process an incoming packet for SYN_RECV sockets represented as a
571  * request_sock. Normally sk is the listener socket but for TFO it
572  * points to the child socket.
573  *
574  * XXX (TFO) - The current impl contains a special check for ack
575  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
576  *
577  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
578  */
579 
580 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
581 			   struct request_sock *req,
582 			   bool fastopen, bool *req_stolen)
583 {
584 	struct tcp_options_received tmp_opt;
585 	struct sock *child;
586 	const struct tcphdr *th = tcp_hdr(skb);
587 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
588 	bool paws_reject = false;
589 	bool own_req;
590 
591 	tmp_opt.saw_tstamp = 0;
592 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
593 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
594 
595 		if (tmp_opt.saw_tstamp) {
596 			tmp_opt.ts_recent = req->ts_recent;
597 			if (tmp_opt.rcv_tsecr)
598 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
599 			/* We do not store true stamp, but it is not required,
600 			 * it can be estimated (approximately)
601 			 * from another data.
602 			 */
603 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
604 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
605 		}
606 	}
607 
608 	/* Check for pure retransmitted SYN. */
609 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
610 	    flg == TCP_FLAG_SYN &&
611 	    !paws_reject) {
612 		/*
613 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
614 		 * this case on figure 6 and figure 8, but formal
615 		 * protocol description says NOTHING.
616 		 * To be more exact, it says that we should send ACK,
617 		 * because this segment (at least, if it has no data)
618 		 * is out of window.
619 		 *
620 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
621 		 *  describe SYN-RECV state. All the description
622 		 *  is wrong, we cannot believe to it and should
623 		 *  rely only on common sense and implementation
624 		 *  experience.
625 		 *
626 		 * Enforce "SYN-ACK" according to figure 8, figure 6
627 		 * of RFC793, fixed by RFC1122.
628 		 *
629 		 * Note that even if there is new data in the SYN packet
630 		 * they will be thrown away too.
631 		 *
632 		 * Reset timer after retransmitting SYNACK, similar to
633 		 * the idea of fast retransmit in recovery.
634 		 */
635 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
636 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
637 					  &tcp_rsk(req)->last_oow_ack_time) &&
638 
639 		    !inet_rtx_syn_ack(sk, req)) {
640 			unsigned long expires = jiffies;
641 
642 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
643 				       TCP_RTO_MAX);
644 			if (!fastopen)
645 				mod_timer_pending(&req->rsk_timer, expires);
646 			else
647 				req->rsk_timer.expires = expires;
648 		}
649 		return NULL;
650 	}
651 
652 	/* Further reproduces section "SEGMENT ARRIVES"
653 	   for state SYN-RECEIVED of RFC793.
654 	   It is broken, however, it does not work only
655 	   when SYNs are crossed.
656 
657 	   You would think that SYN crossing is impossible here, since
658 	   we should have a SYN_SENT socket (from connect()) on our end,
659 	   but this is not true if the crossed SYNs were sent to both
660 	   ends by a malicious third party.  We must defend against this,
661 	   and to do that we first verify the ACK (as per RFC793, page
662 	   36) and reset if it is invalid.  Is this a true full defense?
663 	   To convince ourselves, let us consider a way in which the ACK
664 	   test can still pass in this 'malicious crossed SYNs' case.
665 	   Malicious sender sends identical SYNs (and thus identical sequence
666 	   numbers) to both A and B:
667 
668 		A: gets SYN, seq=7
669 		B: gets SYN, seq=7
670 
671 	   By our good fortune, both A and B select the same initial
672 	   send sequence number of seven :-)
673 
674 		A: sends SYN|ACK, seq=7, ack_seq=8
675 		B: sends SYN|ACK, seq=7, ack_seq=8
676 
677 	   So we are now A eating this SYN|ACK, ACK test passes.  So
678 	   does sequence test, SYN is truncated, and thus we consider
679 	   it a bare ACK.
680 
681 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
682 	   bare ACK.  Otherwise, we create an established connection.  Both
683 	   ends (listening sockets) accept the new incoming connection and try
684 	   to talk to each other. 8-)
685 
686 	   Note: This case is both harmless, and rare.  Possibility is about the
687 	   same as us discovering intelligent life on another plant tomorrow.
688 
689 	   But generally, we should (RFC lies!) to accept ACK
690 	   from SYNACK both here and in tcp_rcv_state_process().
691 	   tcp_rcv_state_process() does not, hence, we do not too.
692 
693 	   Note that the case is absolutely generic:
694 	   we cannot optimize anything here without
695 	   violating protocol. All the checks must be made
696 	   before attempt to create socket.
697 	 */
698 
699 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
700 	 *                  and the incoming segment acknowledges something not yet
701 	 *                  sent (the segment carries an unacceptable ACK) ...
702 	 *                  a reset is sent."
703 	 *
704 	 * Invalid ACK: reset will be sent by listening socket.
705 	 * Note that the ACK validity check for a Fast Open socket is done
706 	 * elsewhere and is checked directly against the child socket rather
707 	 * than req because user data may have been sent out.
708 	 */
709 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
710 	    (TCP_SKB_CB(skb)->ack_seq !=
711 	     tcp_rsk(req)->snt_isn + 1))
712 		return sk;
713 
714 	/* Also, it would be not so bad idea to check rcv_tsecr, which
715 	 * is essentially ACK extension and too early or too late values
716 	 * should cause reset in unsynchronized states.
717 	 */
718 
719 	/* RFC793: "first check sequence number". */
720 
721 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
722 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
723 		/* Out of window: send ACK and drop. */
724 		if (!(flg & TCP_FLAG_RST) &&
725 		    !tcp_oow_rate_limited(sock_net(sk), skb,
726 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
727 					  &tcp_rsk(req)->last_oow_ack_time))
728 			req->rsk_ops->send_ack(sk, skb, req);
729 		if (paws_reject)
730 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
731 		return NULL;
732 	}
733 
734 	/* In sequence, PAWS is OK. */
735 
736 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
737 		req->ts_recent = tmp_opt.rcv_tsval;
738 
739 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
740 		/* Truncate SYN, it is out of window starting
741 		   at tcp_rsk(req)->rcv_isn + 1. */
742 		flg &= ~TCP_FLAG_SYN;
743 	}
744 
745 	/* RFC793: "second check the RST bit" and
746 	 *	   "fourth, check the SYN bit"
747 	 */
748 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
749 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
750 		goto embryonic_reset;
751 	}
752 
753 	/* ACK sequence verified above, just make sure ACK is
754 	 * set.  If ACK not set, just silently drop the packet.
755 	 *
756 	 * XXX (TFO) - if we ever allow "data after SYN", the
757 	 * following check needs to be removed.
758 	 */
759 	if (!(flg & TCP_FLAG_ACK))
760 		return NULL;
761 
762 	/* For Fast Open no more processing is needed (sk is the
763 	 * child socket).
764 	 */
765 	if (fastopen)
766 		return sk;
767 
768 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
769 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
770 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
771 		inet_rsk(req)->acked = 1;
772 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
773 		return NULL;
774 	}
775 
776 	/* OK, ACK is valid, create big socket and
777 	 * feed this segment to it. It will repeat all
778 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
779 	 * ESTABLISHED STATE. If it will be dropped after
780 	 * socket is created, wait for troubles.
781 	 */
782 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
783 							 req, &own_req);
784 	if (!child)
785 		goto listen_overflow;
786 
787 	sock_rps_save_rxhash(child, skb);
788 	tcp_synack_rtt_meas(child, req);
789 	*req_stolen = !own_req;
790 	return inet_csk_complete_hashdance(sk, child, req, own_req);
791 
792 listen_overflow:
793 	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
794 		inet_rsk(req)->acked = 1;
795 		return NULL;
796 	}
797 
798 embryonic_reset:
799 	if (!(flg & TCP_FLAG_RST)) {
800 		/* Received a bad SYN pkt - for TFO We try not to reset
801 		 * the local connection unless it's really necessary to
802 		 * avoid becoming vulnerable to outside attack aiming at
803 		 * resetting legit local connections.
804 		 */
805 		req->rsk_ops->send_reset(sk, skb);
806 	} else if (fastopen) { /* received a valid RST pkt */
807 		reqsk_fastopen_remove(sk, req, true);
808 		tcp_reset(sk);
809 	}
810 	if (!fastopen) {
811 		inet_csk_reqsk_queue_drop(sk, req);
812 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
813 	}
814 	return NULL;
815 }
816 EXPORT_SYMBOL(tcp_check_req);
817 
818 /*
819  * Queue segment on the new socket if the new socket is active,
820  * otherwise we just shortcircuit this and continue with
821  * the new socket.
822  *
823  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
824  * when entering. But other states are possible due to a race condition
825  * where after __inet_lookup_established() fails but before the listener
826  * locked is obtained, other packets cause the same connection to
827  * be created.
828  */
829 
830 int tcp_child_process(struct sock *parent, struct sock *child,
831 		      struct sk_buff *skb)
832 {
833 	int ret = 0;
834 	int state = child->sk_state;
835 
836 	/* record NAPI ID of child */
837 	sk_mark_napi_id(child, skb);
838 
839 	tcp_segs_in(tcp_sk(child), skb);
840 	if (!sock_owned_by_user(child)) {
841 		ret = tcp_rcv_state_process(child, skb);
842 		/* Wakeup parent, send SIGIO */
843 		if (state == TCP_SYN_RECV && child->sk_state != state)
844 			parent->sk_data_ready(parent);
845 	} else {
846 		/* Alas, it is possible again, because we do lookup
847 		 * in main socket hash table and lock on listening
848 		 * socket does not protect us more.
849 		 */
850 		__sk_add_backlog(child, skb);
851 	}
852 
853 	bh_unlock_sock(child);
854 	sock_put(child);
855 	return ret;
856 }
857 EXPORT_SYMBOL(tcp_child_process);
858