xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision b0f85fa11aefc4f3e03306b4cd47f113bd57dcba)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.hashinfo	= &tcp_hashinfo,
38 };
39 EXPORT_SYMBOL_GPL(tcp_death_row);
40 
41 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
42 {
43 	if (seq == s_win)
44 		return true;
45 	if (after(end_seq, s_win) && before(seq, e_win))
46 		return true;
47 	return seq == e_win && seq == end_seq;
48 }
49 
50 static enum tcp_tw_status
51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
52 				  const struct sk_buff *skb, int mib_idx)
53 {
54 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
55 
56 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
57 				  &tcptw->tw_last_oow_ack_time)) {
58 		/* Send ACK. Note, we do not put the bucket,
59 		 * it will be released by caller.
60 		 */
61 		return TCP_TW_ACK;
62 	}
63 
64 	/* We are rate-limiting, so just release the tw sock and drop skb. */
65 	inet_twsk_put(tw);
66 	return TCP_TW_SUCCESS;
67 }
68 
69 /*
70  * * Main purpose of TIME-WAIT state is to close connection gracefully,
71  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72  *   (and, probably, tail of data) and one or more our ACKs are lost.
73  * * What is TIME-WAIT timeout? It is associated with maximal packet
74  *   lifetime in the internet, which results in wrong conclusion, that
75  *   it is set to catch "old duplicate segments" wandering out of their path.
76  *   It is not quite correct. This timeout is calculated so that it exceeds
77  *   maximal retransmission timeout enough to allow to lose one (or more)
78  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
79  * * When TIME-WAIT socket receives RST, it means that another end
80  *   finally closed and we are allowed to kill TIME-WAIT too.
81  * * Second purpose of TIME-WAIT is catching old duplicate segments.
82  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
83  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84  * * If we invented some more clever way to catch duplicates
85  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86  *
87  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89  * from the very beginning.
90  *
91  * NOTE. With recycling (and later with fin-wait-2) TW bucket
92  * is _not_ stateless. It means, that strictly speaking we must
93  * spinlock it. I do not want! Well, probability of misbehaviour
94  * is ridiculously low and, seems, we could use some mb() tricks
95  * to avoid misread sequence numbers, states etc.  --ANK
96  *
97  * We don't need to initialize tmp_out.sack_ok as we don't use the results
98  */
99 enum tcp_tw_status
100 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
101 			   const struct tcphdr *th)
102 {
103 	struct tcp_options_received tmp_opt;
104 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
105 	bool paws_reject = false;
106 
107 	tmp_opt.saw_tstamp = 0;
108 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
109 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
110 
111 		if (tmp_opt.saw_tstamp) {
112 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
113 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
114 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
115 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
116 		}
117 	}
118 
119 	if (tw->tw_substate == TCP_FIN_WAIT2) {
120 		/* Just repeat all the checks of tcp_rcv_state_process() */
121 
122 		/* Out of window, send ACK */
123 		if (paws_reject ||
124 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
125 				   tcptw->tw_rcv_nxt,
126 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
127 			return tcp_timewait_check_oow_rate_limit(
128 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
129 
130 		if (th->rst)
131 			goto kill;
132 
133 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
134 			goto kill_with_rst;
135 
136 		/* Dup ACK? */
137 		if (!th->ack ||
138 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
139 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
140 			inet_twsk_put(tw);
141 			return TCP_TW_SUCCESS;
142 		}
143 
144 		/* New data or FIN. If new data arrive after half-duplex close,
145 		 * reset.
146 		 */
147 		if (!th->fin ||
148 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
149 kill_with_rst:
150 			inet_twsk_deschedule_put(tw);
151 			return TCP_TW_RST;
152 		}
153 
154 		/* FIN arrived, enter true time-wait state. */
155 		tw->tw_substate	  = TCP_TIME_WAIT;
156 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
157 		if (tmp_opt.saw_tstamp) {
158 			tcptw->tw_ts_recent_stamp = get_seconds();
159 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
160 		}
161 
162 		if (tcp_death_row.sysctl_tw_recycle &&
163 		    tcptw->tw_ts_recent_stamp &&
164 		    tcp_tw_remember_stamp(tw))
165 			inet_twsk_reschedule(tw, tw->tw_timeout);
166 		else
167 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
168 		return TCP_TW_ACK;
169 	}
170 
171 	/*
172 	 *	Now real TIME-WAIT state.
173 	 *
174 	 *	RFC 1122:
175 	 *	"When a connection is [...] on TIME-WAIT state [...]
176 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
177 	 *	reopen the connection directly, if it:
178 	 *
179 	 *	(1)  assigns its initial sequence number for the new
180 	 *	connection to be larger than the largest sequence
181 	 *	number it used on the previous connection incarnation,
182 	 *	and
183 	 *
184 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
185 	 *	to be an old duplicate".
186 	 */
187 
188 	if (!paws_reject &&
189 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
190 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
191 		/* In window segment, it may be only reset or bare ack. */
192 
193 		if (th->rst) {
194 			/* This is TIME_WAIT assassination, in two flavors.
195 			 * Oh well... nobody has a sufficient solution to this
196 			 * protocol bug yet.
197 			 */
198 			if (sysctl_tcp_rfc1337 == 0) {
199 kill:
200 				inet_twsk_deschedule_put(tw);
201 				return TCP_TW_SUCCESS;
202 			}
203 		}
204 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
205 
206 		if (tmp_opt.saw_tstamp) {
207 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
208 			tcptw->tw_ts_recent_stamp = get_seconds();
209 		}
210 
211 		inet_twsk_put(tw);
212 		return TCP_TW_SUCCESS;
213 	}
214 
215 	/* Out of window segment.
216 
217 	   All the segments are ACKed immediately.
218 
219 	   The only exception is new SYN. We accept it, if it is
220 	   not old duplicate and we are not in danger to be killed
221 	   by delayed old duplicates. RFC check is that it has
222 	   newer sequence number works at rates <40Mbit/sec.
223 	   However, if paws works, it is reliable AND even more,
224 	   we even may relax silly seq space cutoff.
225 
226 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
227 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
228 	   we must return socket to time-wait state. It is not good,
229 	   but not fatal yet.
230 	 */
231 
232 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
233 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
234 	     (tmp_opt.saw_tstamp &&
235 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
236 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
237 		if (isn == 0)
238 			isn++;
239 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
240 		return TCP_TW_SYN;
241 	}
242 
243 	if (paws_reject)
244 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
245 
246 	if (!th->rst) {
247 		/* In this case we must reset the TIMEWAIT timer.
248 		 *
249 		 * If it is ACKless SYN it may be both old duplicate
250 		 * and new good SYN with random sequence number <rcv_nxt.
251 		 * Do not reschedule in the last case.
252 		 */
253 		if (paws_reject || th->ack)
254 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
255 
256 		return tcp_timewait_check_oow_rate_limit(
257 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
258 	}
259 	inet_twsk_put(tw);
260 	return TCP_TW_SUCCESS;
261 }
262 EXPORT_SYMBOL(tcp_timewait_state_process);
263 
264 /*
265  * Move a socket to time-wait or dead fin-wait-2 state.
266  */
267 void tcp_time_wait(struct sock *sk, int state, int timeo)
268 {
269 	const struct inet_connection_sock *icsk = inet_csk(sk);
270 	const struct tcp_sock *tp = tcp_sk(sk);
271 	struct inet_timewait_sock *tw;
272 	bool recycle_ok = false;
273 
274 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
275 		recycle_ok = tcp_remember_stamp(sk);
276 
277 	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
278 
279 	if (tw) {
280 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 		struct inet_sock *inet = inet_sk(sk);
283 
284 		tw->tw_transparent	= inet->transparent;
285 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287 		tcptw->tw_snd_nxt	= tp->snd_nxt;
288 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 		tcptw->tw_ts_offset	= tp->tsoffset;
292 		tcptw->tw_last_oow_ack_time = 0;
293 
294 #if IS_ENABLED(CONFIG_IPV6)
295 		if (tw->tw_family == PF_INET6) {
296 			struct ipv6_pinfo *np = inet6_sk(sk);
297 
298 			tw->tw_v6_daddr = sk->sk_v6_daddr;
299 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
300 			tw->tw_tclass = np->tclass;
301 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
302 			tw->tw_ipv6only = sk->sk_ipv6only;
303 		}
304 #endif
305 
306 #ifdef CONFIG_TCP_MD5SIG
307 		/*
308 		 * The timewait bucket does not have the key DB from the
309 		 * sock structure. We just make a quick copy of the
310 		 * md5 key being used (if indeed we are using one)
311 		 * so the timewait ack generating code has the key.
312 		 */
313 		do {
314 			struct tcp_md5sig_key *key;
315 			tcptw->tw_md5_key = NULL;
316 			key = tp->af_specific->md5_lookup(sk, sk);
317 			if (key) {
318 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
319 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
320 					BUG();
321 			}
322 		} while (0);
323 #endif
324 
325 		/* Get the TIME_WAIT timeout firing. */
326 		if (timeo < rto)
327 			timeo = rto;
328 
329 		if (recycle_ok) {
330 			tw->tw_timeout = rto;
331 		} else {
332 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
333 			if (state == TCP_TIME_WAIT)
334 				timeo = TCP_TIMEWAIT_LEN;
335 		}
336 
337 		inet_twsk_schedule(tw, timeo);
338 		/* Linkage updates. */
339 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
340 		inet_twsk_put(tw);
341 	} else {
342 		/* Sorry, if we're out of memory, just CLOSE this
343 		 * socket up.  We've got bigger problems than
344 		 * non-graceful socket closings.
345 		 */
346 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 	}
348 
349 	tcp_update_metrics(sk);
350 	tcp_done(sk);
351 }
352 
353 void tcp_twsk_destructor(struct sock *sk)
354 {
355 #ifdef CONFIG_TCP_MD5SIG
356 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357 
358 	if (twsk->tw_md5_key)
359 		kfree_rcu(twsk->tw_md5_key, rcu);
360 #endif
361 }
362 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
363 
364 /* Warning : This function is called without sk_listener being locked.
365  * Be sure to read socket fields once, as their value could change under us.
366  */
367 void tcp_openreq_init_rwin(struct request_sock *req,
368 			   const struct sock *sk_listener,
369 			   const struct dst_entry *dst)
370 {
371 	struct inet_request_sock *ireq = inet_rsk(req);
372 	const struct tcp_sock *tp = tcp_sk(sk_listener);
373 	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
374 	int full_space = tcp_full_space(sk_listener);
375 	int mss = dst_metric_advmss(dst);
376 	u32 window_clamp;
377 	__u8 rcv_wscale;
378 
379 	if (user_mss && user_mss < mss)
380 		mss = user_mss;
381 
382 	window_clamp = READ_ONCE(tp->window_clamp);
383 	/* Set this up on the first call only */
384 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
385 
386 	/* limit the window selection if the user enforce a smaller rx buffer */
387 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
388 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
389 		req->rsk_window_clamp = full_space;
390 
391 	/* tcp_full_space because it is guaranteed to be the first packet */
392 	tcp_select_initial_window(full_space,
393 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
394 		&req->rsk_rcv_wnd,
395 		&req->rsk_window_clamp,
396 		ireq->wscale_ok,
397 		&rcv_wscale,
398 		dst_metric(dst, RTAX_INITRWND));
399 	ireq->rcv_wscale = rcv_wscale;
400 }
401 EXPORT_SYMBOL(tcp_openreq_init_rwin);
402 
403 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
404 				  const struct request_sock *req)
405 {
406 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
407 }
408 
409 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
413 	bool ca_got_dst = false;
414 
415 	if (ca_key != TCP_CA_UNSPEC) {
416 		const struct tcp_congestion_ops *ca;
417 
418 		rcu_read_lock();
419 		ca = tcp_ca_find_key(ca_key);
420 		if (likely(ca && try_module_get(ca->owner))) {
421 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
422 			icsk->icsk_ca_ops = ca;
423 			ca_got_dst = true;
424 		}
425 		rcu_read_unlock();
426 	}
427 
428 	/* If no valid choice made yet, assign current system default ca. */
429 	if (!ca_got_dst &&
430 	    (!icsk->icsk_ca_setsockopt ||
431 	     !try_module_get(icsk->icsk_ca_ops->owner)))
432 		tcp_assign_congestion_control(sk);
433 
434 	tcp_set_ca_state(sk, TCP_CA_Open);
435 }
436 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
437 
438 /* This is not only more efficient than what we used to do, it eliminates
439  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
440  *
441  * Actually, we could lots of memory writes here. tp of listening
442  * socket contains all necessary default parameters.
443  */
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 				      struct request_sock *req,
446 				      struct sk_buff *skb)
447 {
448 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
449 
450 	if (newsk) {
451 		const struct inet_request_sock *ireq = inet_rsk(req);
452 		struct tcp_request_sock *treq = tcp_rsk(req);
453 		struct inet_connection_sock *newicsk = inet_csk(newsk);
454 		struct tcp_sock *newtp = tcp_sk(newsk);
455 
456 		/* Now setup tcp_sock */
457 		newtp->pred_flags = 0;
458 
459 		newtp->rcv_wup = newtp->copied_seq =
460 		newtp->rcv_nxt = treq->rcv_isn + 1;
461 		newtp->segs_in = 0;
462 
463 		newtp->snd_sml = newtp->snd_una =
464 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
465 
466 		tcp_prequeue_init(newtp);
467 		INIT_LIST_HEAD(&newtp->tsq_node);
468 
469 		tcp_init_wl(newtp, treq->rcv_isn);
470 
471 		newtp->srtt_us = 0;
472 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
473 		newtp->rtt_min[0].rtt = ~0U;
474 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
475 
476 		newtp->packets_out = 0;
477 		newtp->retrans_out = 0;
478 		newtp->sacked_out = 0;
479 		newtp->fackets_out = 0;
480 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
481 		tcp_enable_early_retrans(newtp);
482 		newtp->tlp_high_seq = 0;
483 		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
484 		newsk->sk_txhash = treq->txhash;
485 		newtp->last_oow_ack_time = 0;
486 		newtp->total_retrans = req->num_retrans;
487 
488 		/* So many TCP implementations out there (incorrectly) count the
489 		 * initial SYN frame in their delayed-ACK and congestion control
490 		 * algorithms that we must have the following bandaid to talk
491 		 * efficiently to them.  -DaveM
492 		 */
493 		newtp->snd_cwnd = TCP_INIT_CWND;
494 		newtp->snd_cwnd_cnt = 0;
495 
496 		tcp_init_xmit_timers(newsk);
497 		__skb_queue_head_init(&newtp->out_of_order_queue);
498 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
499 
500 		newtp->rx_opt.saw_tstamp = 0;
501 
502 		newtp->rx_opt.dsack = 0;
503 		newtp->rx_opt.num_sacks = 0;
504 
505 		newtp->urg_data = 0;
506 
507 		if (sock_flag(newsk, SOCK_KEEPOPEN))
508 			inet_csk_reset_keepalive_timer(newsk,
509 						       keepalive_time_when(newtp));
510 
511 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
512 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
513 			if (sysctl_tcp_fack)
514 				tcp_enable_fack(newtp);
515 		}
516 		newtp->window_clamp = req->rsk_window_clamp;
517 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
518 		newtp->rcv_wnd = req->rsk_rcv_wnd;
519 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
520 		if (newtp->rx_opt.wscale_ok) {
521 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
522 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
523 		} else {
524 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
525 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
526 		}
527 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
528 				  newtp->rx_opt.snd_wscale);
529 		newtp->max_window = newtp->snd_wnd;
530 
531 		if (newtp->rx_opt.tstamp_ok) {
532 			newtp->rx_opt.ts_recent = req->ts_recent;
533 			newtp->rx_opt.ts_recent_stamp = get_seconds();
534 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
535 		} else {
536 			newtp->rx_opt.ts_recent_stamp = 0;
537 			newtp->tcp_header_len = sizeof(struct tcphdr);
538 		}
539 		newtp->tsoffset = 0;
540 #ifdef CONFIG_TCP_MD5SIG
541 		newtp->md5sig_info = NULL;	/*XXX*/
542 		if (newtp->af_specific->md5_lookup(sk, newsk))
543 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
544 #endif
545 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
546 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
547 		newtp->rx_opt.mss_clamp = req->mss;
548 		tcp_ecn_openreq_child(newtp, req);
549 		newtp->fastopen_rsk = NULL;
550 		newtp->syn_data_acked = 0;
551 		newtp->rack.mstamp.v64 = 0;
552 		newtp->rack.advanced = 0;
553 
554 		newtp->saved_syn = req->saved_syn;
555 		req->saved_syn = NULL;
556 
557 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
558 	}
559 	return newsk;
560 }
561 EXPORT_SYMBOL(tcp_create_openreq_child);
562 
563 /*
564  * Process an incoming packet for SYN_RECV sockets represented as a
565  * request_sock. Normally sk is the listener socket but for TFO it
566  * points to the child socket.
567  *
568  * XXX (TFO) - The current impl contains a special check for ack
569  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
570  *
571  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
572  */
573 
574 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
575 			   struct request_sock *req,
576 			   bool fastopen)
577 {
578 	struct tcp_options_received tmp_opt;
579 	struct sock *child;
580 	const struct tcphdr *th = tcp_hdr(skb);
581 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
582 	bool paws_reject = false;
583 	bool own_req;
584 
585 	tmp_opt.saw_tstamp = 0;
586 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
587 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
588 
589 		if (tmp_opt.saw_tstamp) {
590 			tmp_opt.ts_recent = req->ts_recent;
591 			/* We do not store true stamp, but it is not required,
592 			 * it can be estimated (approximately)
593 			 * from another data.
594 			 */
595 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
596 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
597 		}
598 	}
599 
600 	/* Check for pure retransmitted SYN. */
601 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
602 	    flg == TCP_FLAG_SYN &&
603 	    !paws_reject) {
604 		/*
605 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
606 		 * this case on figure 6 and figure 8, but formal
607 		 * protocol description says NOTHING.
608 		 * To be more exact, it says that we should send ACK,
609 		 * because this segment (at least, if it has no data)
610 		 * is out of window.
611 		 *
612 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
613 		 *  describe SYN-RECV state. All the description
614 		 *  is wrong, we cannot believe to it and should
615 		 *  rely only on common sense and implementation
616 		 *  experience.
617 		 *
618 		 * Enforce "SYN-ACK" according to figure 8, figure 6
619 		 * of RFC793, fixed by RFC1122.
620 		 *
621 		 * Note that even if there is new data in the SYN packet
622 		 * they will be thrown away too.
623 		 *
624 		 * Reset timer after retransmitting SYNACK, similar to
625 		 * the idea of fast retransmit in recovery.
626 		 */
627 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
628 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
629 					  &tcp_rsk(req)->last_oow_ack_time) &&
630 
631 		    !inet_rtx_syn_ack(sk, req)) {
632 			unsigned long expires = jiffies;
633 
634 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
635 				       TCP_RTO_MAX);
636 			if (!fastopen)
637 				mod_timer_pending(&req->rsk_timer, expires);
638 			else
639 				req->rsk_timer.expires = expires;
640 		}
641 		return NULL;
642 	}
643 
644 	/* Further reproduces section "SEGMENT ARRIVES"
645 	   for state SYN-RECEIVED of RFC793.
646 	   It is broken, however, it does not work only
647 	   when SYNs are crossed.
648 
649 	   You would think that SYN crossing is impossible here, since
650 	   we should have a SYN_SENT socket (from connect()) on our end,
651 	   but this is not true if the crossed SYNs were sent to both
652 	   ends by a malicious third party.  We must defend against this,
653 	   and to do that we first verify the ACK (as per RFC793, page
654 	   36) and reset if it is invalid.  Is this a true full defense?
655 	   To convince ourselves, let us consider a way in which the ACK
656 	   test can still pass in this 'malicious crossed SYNs' case.
657 	   Malicious sender sends identical SYNs (and thus identical sequence
658 	   numbers) to both A and B:
659 
660 		A: gets SYN, seq=7
661 		B: gets SYN, seq=7
662 
663 	   By our good fortune, both A and B select the same initial
664 	   send sequence number of seven :-)
665 
666 		A: sends SYN|ACK, seq=7, ack_seq=8
667 		B: sends SYN|ACK, seq=7, ack_seq=8
668 
669 	   So we are now A eating this SYN|ACK, ACK test passes.  So
670 	   does sequence test, SYN is truncated, and thus we consider
671 	   it a bare ACK.
672 
673 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
674 	   bare ACK.  Otherwise, we create an established connection.  Both
675 	   ends (listening sockets) accept the new incoming connection and try
676 	   to talk to each other. 8-)
677 
678 	   Note: This case is both harmless, and rare.  Possibility is about the
679 	   same as us discovering intelligent life on another plant tomorrow.
680 
681 	   But generally, we should (RFC lies!) to accept ACK
682 	   from SYNACK both here and in tcp_rcv_state_process().
683 	   tcp_rcv_state_process() does not, hence, we do not too.
684 
685 	   Note that the case is absolutely generic:
686 	   we cannot optimize anything here without
687 	   violating protocol. All the checks must be made
688 	   before attempt to create socket.
689 	 */
690 
691 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
692 	 *                  and the incoming segment acknowledges something not yet
693 	 *                  sent (the segment carries an unacceptable ACK) ...
694 	 *                  a reset is sent."
695 	 *
696 	 * Invalid ACK: reset will be sent by listening socket.
697 	 * Note that the ACK validity check for a Fast Open socket is done
698 	 * elsewhere and is checked directly against the child socket rather
699 	 * than req because user data may have been sent out.
700 	 */
701 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
702 	    (TCP_SKB_CB(skb)->ack_seq !=
703 	     tcp_rsk(req)->snt_isn + 1))
704 		return sk;
705 
706 	/* Also, it would be not so bad idea to check rcv_tsecr, which
707 	 * is essentially ACK extension and too early or too late values
708 	 * should cause reset in unsynchronized states.
709 	 */
710 
711 	/* RFC793: "first check sequence number". */
712 
713 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
714 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
715 		/* Out of window: send ACK and drop. */
716 		if (!(flg & TCP_FLAG_RST))
717 			req->rsk_ops->send_ack(sk, skb, req);
718 		if (paws_reject)
719 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
720 		return NULL;
721 	}
722 
723 	/* In sequence, PAWS is OK. */
724 
725 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
726 		req->ts_recent = tmp_opt.rcv_tsval;
727 
728 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
729 		/* Truncate SYN, it is out of window starting
730 		   at tcp_rsk(req)->rcv_isn + 1. */
731 		flg &= ~TCP_FLAG_SYN;
732 	}
733 
734 	/* RFC793: "second check the RST bit" and
735 	 *	   "fourth, check the SYN bit"
736 	 */
737 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
738 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
739 		goto embryonic_reset;
740 	}
741 
742 	/* ACK sequence verified above, just make sure ACK is
743 	 * set.  If ACK not set, just silently drop the packet.
744 	 *
745 	 * XXX (TFO) - if we ever allow "data after SYN", the
746 	 * following check needs to be removed.
747 	 */
748 	if (!(flg & TCP_FLAG_ACK))
749 		return NULL;
750 
751 	/* For Fast Open no more processing is needed (sk is the
752 	 * child socket).
753 	 */
754 	if (fastopen)
755 		return sk;
756 
757 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
758 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
759 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
760 		inet_rsk(req)->acked = 1;
761 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
762 		return NULL;
763 	}
764 
765 	/* OK, ACK is valid, create big socket and
766 	 * feed this segment to it. It will repeat all
767 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
768 	 * ESTABLISHED STATE. If it will be dropped after
769 	 * socket is created, wait for troubles.
770 	 */
771 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
772 							 req, &own_req);
773 	if (!child)
774 		goto listen_overflow;
775 
776 	sock_rps_save_rxhash(child, skb);
777 	tcp_synack_rtt_meas(child, req);
778 	return inet_csk_complete_hashdance(sk, child, req, own_req);
779 
780 listen_overflow:
781 	if (!sysctl_tcp_abort_on_overflow) {
782 		inet_rsk(req)->acked = 1;
783 		return NULL;
784 	}
785 
786 embryonic_reset:
787 	if (!(flg & TCP_FLAG_RST)) {
788 		/* Received a bad SYN pkt - for TFO We try not to reset
789 		 * the local connection unless it's really necessary to
790 		 * avoid becoming vulnerable to outside attack aiming at
791 		 * resetting legit local connections.
792 		 */
793 		req->rsk_ops->send_reset(sk, skb);
794 	} else if (fastopen) { /* received a valid RST pkt */
795 		reqsk_fastopen_remove(sk, req, true);
796 		tcp_reset(sk);
797 	}
798 	if (!fastopen) {
799 		inet_csk_reqsk_queue_drop(sk, req);
800 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
801 	}
802 	return NULL;
803 }
804 EXPORT_SYMBOL(tcp_check_req);
805 
806 /*
807  * Queue segment on the new socket if the new socket is active,
808  * otherwise we just shortcircuit this and continue with
809  * the new socket.
810  *
811  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
812  * when entering. But other states are possible due to a race condition
813  * where after __inet_lookup_established() fails but before the listener
814  * locked is obtained, other packets cause the same connection to
815  * be created.
816  */
817 
818 int tcp_child_process(struct sock *parent, struct sock *child,
819 		      struct sk_buff *skb)
820 {
821 	int ret = 0;
822 	int state = child->sk_state;
823 
824 	if (!sock_owned_by_user(child)) {
825 		ret = tcp_rcv_state_process(child, skb);
826 		/* Wakeup parent, send SIGIO */
827 		if (state == TCP_SYN_RECV && child->sk_state != state)
828 			parent->sk_data_ready(parent);
829 	} else {
830 		/* Alas, it is possible again, because we do lookup
831 		 * in main socket hash table and lock on listening
832 		 * socket does not protect us more.
833 		 */
834 		__sk_add_backlog(child, skb);
835 	}
836 
837 	bh_unlock_sock(child);
838 	sock_put(child);
839 	return ret;
840 }
841 EXPORT_SYMBOL(tcp_child_process);
842