xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 95e9fd10)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54 	if (seq == s_win)
55 		return true;
56 	if (after(end_seq, s_win) && before(seq, e_win))
57 		return true;
58 	return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  */
89 enum tcp_tw_status
90 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
91 			   const struct tcphdr *th)
92 {
93 	struct tcp_options_received tmp_opt;
94 	const u8 *hash_location;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 
98 	tmp_opt.saw_tstamp = 0;
99 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
101 
102 		if (tmp_opt.saw_tstamp) {
103 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
104 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
105 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
106 		}
107 	}
108 
109 	if (tw->tw_substate == TCP_FIN_WAIT2) {
110 		/* Just repeat all the checks of tcp_rcv_state_process() */
111 
112 		/* Out of window, send ACK */
113 		if (paws_reject ||
114 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
115 				   tcptw->tw_rcv_nxt,
116 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
117 			return TCP_TW_ACK;
118 
119 		if (th->rst)
120 			goto kill;
121 
122 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
123 			goto kill_with_rst;
124 
125 		/* Dup ACK? */
126 		if (!th->ack ||
127 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
128 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
129 			inet_twsk_put(tw);
130 			return TCP_TW_SUCCESS;
131 		}
132 
133 		/* New data or FIN. If new data arrive after half-duplex close,
134 		 * reset.
135 		 */
136 		if (!th->fin ||
137 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
138 kill_with_rst:
139 			inet_twsk_deschedule(tw, &tcp_death_row);
140 			inet_twsk_put(tw);
141 			return TCP_TW_RST;
142 		}
143 
144 		/* FIN arrived, enter true time-wait state. */
145 		tw->tw_substate	  = TCP_TIME_WAIT;
146 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 		if (tmp_opt.saw_tstamp) {
148 			tcptw->tw_ts_recent_stamp = get_seconds();
149 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150 		}
151 
152 		if (tcp_death_row.sysctl_tw_recycle &&
153 		    tcptw->tw_ts_recent_stamp &&
154 		    tcp_tw_remember_stamp(tw))
155 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
156 					   TCP_TIMEWAIT_LEN);
157 		else
158 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
159 					   TCP_TIMEWAIT_LEN);
160 		return TCP_TW_ACK;
161 	}
162 
163 	/*
164 	 *	Now real TIME-WAIT state.
165 	 *
166 	 *	RFC 1122:
167 	 *	"When a connection is [...] on TIME-WAIT state [...]
168 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
169 	 *	reopen the connection directly, if it:
170 	 *
171 	 *	(1)  assigns its initial sequence number for the new
172 	 *	connection to be larger than the largest sequence
173 	 *	number it used on the previous connection incarnation,
174 	 *	and
175 	 *
176 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
177 	 *	to be an old duplicate".
178 	 */
179 
180 	if (!paws_reject &&
181 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
182 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
183 		/* In window segment, it may be only reset or bare ack. */
184 
185 		if (th->rst) {
186 			/* This is TIME_WAIT assassination, in two flavors.
187 			 * Oh well... nobody has a sufficient solution to this
188 			 * protocol bug yet.
189 			 */
190 			if (sysctl_tcp_rfc1337 == 0) {
191 kill:
192 				inet_twsk_deschedule(tw, &tcp_death_row);
193 				inet_twsk_put(tw);
194 				return TCP_TW_SUCCESS;
195 			}
196 		}
197 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
198 				   TCP_TIMEWAIT_LEN);
199 
200 		if (tmp_opt.saw_tstamp) {
201 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202 			tcptw->tw_ts_recent_stamp = get_seconds();
203 		}
204 
205 		inet_twsk_put(tw);
206 		return TCP_TW_SUCCESS;
207 	}
208 
209 	/* Out of window segment.
210 
211 	   All the segments are ACKed immediately.
212 
213 	   The only exception is new SYN. We accept it, if it is
214 	   not old duplicate and we are not in danger to be killed
215 	   by delayed old duplicates. RFC check is that it has
216 	   newer sequence number works at rates <40Mbit/sec.
217 	   However, if paws works, it is reliable AND even more,
218 	   we even may relax silly seq space cutoff.
219 
220 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 	   we must return socket to time-wait state. It is not good,
223 	   but not fatal yet.
224 	 */
225 
226 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 	     (tmp_opt.saw_tstamp &&
229 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 		if (isn == 0)
232 			isn++;
233 		TCP_SKB_CB(skb)->when = isn;
234 		return TCP_TW_SYN;
235 	}
236 
237 	if (paws_reject)
238 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239 
240 	if (!th->rst) {
241 		/* In this case we must reset the TIMEWAIT timer.
242 		 *
243 		 * If it is ACKless SYN it may be both old duplicate
244 		 * and new good SYN with random sequence number <rcv_nxt.
245 		 * Do not reschedule in the last case.
246 		 */
247 		if (paws_reject || th->ack)
248 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
249 					   TCP_TIMEWAIT_LEN);
250 
251 		/* Send ACK. Note, we do not put the bucket,
252 		 * it will be released by caller.
253 		 */
254 		return TCP_TW_ACK;
255 	}
256 	inet_twsk_put(tw);
257 	return TCP_TW_SUCCESS;
258 }
259 EXPORT_SYMBOL(tcp_timewait_state_process);
260 
261 /*
262  * Move a socket to time-wait or dead fin-wait-2 state.
263  */
264 void tcp_time_wait(struct sock *sk, int state, int timeo)
265 {
266 	struct inet_timewait_sock *tw = NULL;
267 	const struct inet_connection_sock *icsk = inet_csk(sk);
268 	const struct tcp_sock *tp = tcp_sk(sk);
269 	bool recycle_ok = false;
270 
271 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
272 		recycle_ok = tcp_remember_stamp(sk);
273 
274 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
275 		tw = inet_twsk_alloc(sk, state);
276 
277 	if (tw != NULL) {
278 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
279 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
280 		struct inet_sock *inet = inet_sk(sk);
281 
282 		tw->tw_transparent	= inet->transparent;
283 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
284 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
285 		tcptw->tw_snd_nxt	= tp->snd_nxt;
286 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
287 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
288 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
289 
290 #if IS_ENABLED(CONFIG_IPV6)
291 		if (tw->tw_family == PF_INET6) {
292 			struct ipv6_pinfo *np = inet6_sk(sk);
293 			struct inet6_timewait_sock *tw6;
294 
295 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
296 			tw6 = inet6_twsk((struct sock *)tw);
297 			tw6->tw_v6_daddr = np->daddr;
298 			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
299 			tw->tw_tclass = np->tclass;
300 			tw->tw_ipv6only = np->ipv6only;
301 		}
302 #endif
303 
304 #ifdef CONFIG_TCP_MD5SIG
305 		/*
306 		 * The timewait bucket does not have the key DB from the
307 		 * sock structure. We just make a quick copy of the
308 		 * md5 key being used (if indeed we are using one)
309 		 * so the timewait ack generating code has the key.
310 		 */
311 		do {
312 			struct tcp_md5sig_key *key;
313 			tcptw->tw_md5_key = NULL;
314 			key = tp->af_specific->md5_lookup(sk, sk);
315 			if (key != NULL) {
316 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
317 				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
318 					BUG();
319 			}
320 		} while (0);
321 #endif
322 
323 		/* Linkage updates. */
324 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
325 
326 		/* Get the TIME_WAIT timeout firing. */
327 		if (timeo < rto)
328 			timeo = rto;
329 
330 		if (recycle_ok) {
331 			tw->tw_timeout = rto;
332 		} else {
333 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
334 			if (state == TCP_TIME_WAIT)
335 				timeo = TCP_TIMEWAIT_LEN;
336 		}
337 
338 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
339 				   TCP_TIMEWAIT_LEN);
340 		inet_twsk_put(tw);
341 	} else {
342 		/* Sorry, if we're out of memory, just CLOSE this
343 		 * socket up.  We've got bigger problems than
344 		 * non-graceful socket closings.
345 		 */
346 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 	}
348 
349 	tcp_update_metrics(sk);
350 	tcp_done(sk);
351 }
352 
353 void tcp_twsk_destructor(struct sock *sk)
354 {
355 #ifdef CONFIG_TCP_MD5SIG
356 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357 
358 	if (twsk->tw_md5_key) {
359 		tcp_free_md5sig_pool();
360 		kfree_rcu(twsk->tw_md5_key, rcu);
361 	}
362 #endif
363 }
364 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
365 
366 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
367 					 struct request_sock *req)
368 {
369 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
370 }
371 
372 /* This is not only more efficient than what we used to do, it eliminates
373  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
374  *
375  * Actually, we could lots of memory writes here. tp of listening
376  * socket contains all necessary default parameters.
377  */
378 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
379 {
380 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
381 
382 	if (newsk != NULL) {
383 		const struct inet_request_sock *ireq = inet_rsk(req);
384 		struct tcp_request_sock *treq = tcp_rsk(req);
385 		struct inet_connection_sock *newicsk = inet_csk(newsk);
386 		struct tcp_sock *newtp = tcp_sk(newsk);
387 		struct tcp_sock *oldtp = tcp_sk(sk);
388 		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
389 
390 		/* TCP Cookie Transactions require space for the cookie pair,
391 		 * as it differs for each connection.  There is no need to
392 		 * copy any s_data_payload stored at the original socket.
393 		 * Failure will prevent resuming the connection.
394 		 *
395 		 * Presumed copied, in order of appearance:
396 		 *	cookie_in_always, cookie_out_never
397 		 */
398 		if (oldcvp != NULL) {
399 			struct tcp_cookie_values *newcvp =
400 				kzalloc(sizeof(*newtp->cookie_values),
401 					GFP_ATOMIC);
402 
403 			if (newcvp != NULL) {
404 				kref_init(&newcvp->kref);
405 				newcvp->cookie_desired =
406 						oldcvp->cookie_desired;
407 				newtp->cookie_values = newcvp;
408 			} else {
409 				/* Not Yet Implemented */
410 				newtp->cookie_values = NULL;
411 			}
412 		}
413 
414 		/* Now setup tcp_sock */
415 		newtp->pred_flags = 0;
416 
417 		newtp->rcv_wup = newtp->copied_seq =
418 		newtp->rcv_nxt = treq->rcv_isn + 1;
419 
420 		newtp->snd_sml = newtp->snd_una =
421 		newtp->snd_nxt = newtp->snd_up =
422 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
423 
424 		tcp_prequeue_init(newtp);
425 		INIT_LIST_HEAD(&newtp->tsq_node);
426 
427 		tcp_init_wl(newtp, treq->rcv_isn);
428 
429 		newtp->srtt = 0;
430 		newtp->mdev = TCP_TIMEOUT_INIT;
431 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
432 
433 		newtp->packets_out = 0;
434 		newtp->retrans_out = 0;
435 		newtp->sacked_out = 0;
436 		newtp->fackets_out = 0;
437 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 		tcp_enable_early_retrans(newtp);
439 
440 		/* So many TCP implementations out there (incorrectly) count the
441 		 * initial SYN frame in their delayed-ACK and congestion control
442 		 * algorithms that we must have the following bandaid to talk
443 		 * efficiently to them.  -DaveM
444 		 */
445 		newtp->snd_cwnd = TCP_INIT_CWND;
446 		newtp->snd_cwnd_cnt = 0;
447 		newtp->bytes_acked = 0;
448 
449 		newtp->frto_counter = 0;
450 		newtp->frto_highmark = 0;
451 
452 		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
453 		    !try_module_get(newicsk->icsk_ca_ops->owner))
454 			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
455 
456 		tcp_set_ca_state(newsk, TCP_CA_Open);
457 		tcp_init_xmit_timers(newsk);
458 		skb_queue_head_init(&newtp->out_of_order_queue);
459 		newtp->write_seq = newtp->pushed_seq =
460 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
461 
462 		newtp->rx_opt.saw_tstamp = 0;
463 
464 		newtp->rx_opt.dsack = 0;
465 		newtp->rx_opt.num_sacks = 0;
466 
467 		newtp->urg_data = 0;
468 
469 		if (sock_flag(newsk, SOCK_KEEPOPEN))
470 			inet_csk_reset_keepalive_timer(newsk,
471 						       keepalive_time_when(newtp));
472 
473 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
474 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
475 			if (sysctl_tcp_fack)
476 				tcp_enable_fack(newtp);
477 		}
478 		newtp->window_clamp = req->window_clamp;
479 		newtp->rcv_ssthresh = req->rcv_wnd;
480 		newtp->rcv_wnd = req->rcv_wnd;
481 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
482 		if (newtp->rx_opt.wscale_ok) {
483 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
484 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
485 		} else {
486 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
487 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
488 		}
489 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
490 				  newtp->rx_opt.snd_wscale);
491 		newtp->max_window = newtp->snd_wnd;
492 
493 		if (newtp->rx_opt.tstamp_ok) {
494 			newtp->rx_opt.ts_recent = req->ts_recent;
495 			newtp->rx_opt.ts_recent_stamp = get_seconds();
496 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
497 		} else {
498 			newtp->rx_opt.ts_recent_stamp = 0;
499 			newtp->tcp_header_len = sizeof(struct tcphdr);
500 		}
501 #ifdef CONFIG_TCP_MD5SIG
502 		newtp->md5sig_info = NULL;	/*XXX*/
503 		if (newtp->af_specific->md5_lookup(sk, newsk))
504 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
505 #endif
506 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
507 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
508 		newtp->rx_opt.mss_clamp = req->mss;
509 		TCP_ECN_openreq_child(newtp, req);
510 
511 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
512 	}
513 	return newsk;
514 }
515 EXPORT_SYMBOL(tcp_create_openreq_child);
516 
517 /*
518  *	Process an incoming packet for SYN_RECV sockets represented
519  *	as a request_sock.
520  */
521 
522 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
523 			   struct request_sock *req,
524 			   struct request_sock **prev)
525 {
526 	struct tcp_options_received tmp_opt;
527 	const u8 *hash_location;
528 	struct sock *child;
529 	const struct tcphdr *th = tcp_hdr(skb);
530 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
531 	bool paws_reject = false;
532 
533 	tmp_opt.saw_tstamp = 0;
534 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
535 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
536 
537 		if (tmp_opt.saw_tstamp) {
538 			tmp_opt.ts_recent = req->ts_recent;
539 			/* We do not store true stamp, but it is not required,
540 			 * it can be estimated (approximately)
541 			 * from another data.
542 			 */
543 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
544 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
545 		}
546 	}
547 
548 	/* Check for pure retransmitted SYN. */
549 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
550 	    flg == TCP_FLAG_SYN &&
551 	    !paws_reject) {
552 		/*
553 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
554 		 * this case on figure 6 and figure 8, but formal
555 		 * protocol description says NOTHING.
556 		 * To be more exact, it says that we should send ACK,
557 		 * because this segment (at least, if it has no data)
558 		 * is out of window.
559 		 *
560 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
561 		 *  describe SYN-RECV state. All the description
562 		 *  is wrong, we cannot believe to it and should
563 		 *  rely only on common sense and implementation
564 		 *  experience.
565 		 *
566 		 * Enforce "SYN-ACK" according to figure 8, figure 6
567 		 * of RFC793, fixed by RFC1122.
568 		 */
569 		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
570 		return NULL;
571 	}
572 
573 	/* Further reproduces section "SEGMENT ARRIVES"
574 	   for state SYN-RECEIVED of RFC793.
575 	   It is broken, however, it does not work only
576 	   when SYNs are crossed.
577 
578 	   You would think that SYN crossing is impossible here, since
579 	   we should have a SYN_SENT socket (from connect()) on our end,
580 	   but this is not true if the crossed SYNs were sent to both
581 	   ends by a malicious third party.  We must defend against this,
582 	   and to do that we first verify the ACK (as per RFC793, page
583 	   36) and reset if it is invalid.  Is this a true full defense?
584 	   To convince ourselves, let us consider a way in which the ACK
585 	   test can still pass in this 'malicious crossed SYNs' case.
586 	   Malicious sender sends identical SYNs (and thus identical sequence
587 	   numbers) to both A and B:
588 
589 		A: gets SYN, seq=7
590 		B: gets SYN, seq=7
591 
592 	   By our good fortune, both A and B select the same initial
593 	   send sequence number of seven :-)
594 
595 		A: sends SYN|ACK, seq=7, ack_seq=8
596 		B: sends SYN|ACK, seq=7, ack_seq=8
597 
598 	   So we are now A eating this SYN|ACK, ACK test passes.  So
599 	   does sequence test, SYN is truncated, and thus we consider
600 	   it a bare ACK.
601 
602 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
603 	   bare ACK.  Otherwise, we create an established connection.  Both
604 	   ends (listening sockets) accept the new incoming connection and try
605 	   to talk to each other. 8-)
606 
607 	   Note: This case is both harmless, and rare.  Possibility is about the
608 	   same as us discovering intelligent life on another plant tomorrow.
609 
610 	   But generally, we should (RFC lies!) to accept ACK
611 	   from SYNACK both here and in tcp_rcv_state_process().
612 	   tcp_rcv_state_process() does not, hence, we do not too.
613 
614 	   Note that the case is absolutely generic:
615 	   we cannot optimize anything here without
616 	   violating protocol. All the checks must be made
617 	   before attempt to create socket.
618 	 */
619 
620 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
621 	 *                  and the incoming segment acknowledges something not yet
622 	 *                  sent (the segment carries an unacceptable ACK) ...
623 	 *                  a reset is sent."
624 	 *
625 	 * Invalid ACK: reset will be sent by listening socket
626 	 */
627 	if ((flg & TCP_FLAG_ACK) &&
628 	    (TCP_SKB_CB(skb)->ack_seq !=
629 	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
630 		return sk;
631 
632 	/* Also, it would be not so bad idea to check rcv_tsecr, which
633 	 * is essentially ACK extension and too early or too late values
634 	 * should cause reset in unsynchronized states.
635 	 */
636 
637 	/* RFC793: "first check sequence number". */
638 
639 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
640 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
641 		/* Out of window: send ACK and drop. */
642 		if (!(flg & TCP_FLAG_RST))
643 			req->rsk_ops->send_ack(sk, skb, req);
644 		if (paws_reject)
645 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
646 		return NULL;
647 	}
648 
649 	/* In sequence, PAWS is OK. */
650 
651 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
652 		req->ts_recent = tmp_opt.rcv_tsval;
653 
654 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
655 		/* Truncate SYN, it is out of window starting
656 		   at tcp_rsk(req)->rcv_isn + 1. */
657 		flg &= ~TCP_FLAG_SYN;
658 	}
659 
660 	/* RFC793: "second check the RST bit" and
661 	 *	   "fourth, check the SYN bit"
662 	 */
663 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
664 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
665 		goto embryonic_reset;
666 	}
667 
668 	/* ACK sequence verified above, just make sure ACK is
669 	 * set.  If ACK not set, just silently drop the packet.
670 	 */
671 	if (!(flg & TCP_FLAG_ACK))
672 		return NULL;
673 
674 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
675 	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
676 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
677 		inet_rsk(req)->acked = 1;
678 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
679 		return NULL;
680 	}
681 	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
682 		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
683 	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
684 		tcp_rsk(req)->snt_synack = 0;
685 
686 	/* OK, ACK is valid, create big socket and
687 	 * feed this segment to it. It will repeat all
688 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
689 	 * ESTABLISHED STATE. If it will be dropped after
690 	 * socket is created, wait for troubles.
691 	 */
692 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
693 	if (child == NULL)
694 		goto listen_overflow;
695 
696 	inet_csk_reqsk_queue_unlink(sk, req, prev);
697 	inet_csk_reqsk_queue_removed(sk, req);
698 
699 	inet_csk_reqsk_queue_add(sk, req, child);
700 	return child;
701 
702 listen_overflow:
703 	if (!sysctl_tcp_abort_on_overflow) {
704 		inet_rsk(req)->acked = 1;
705 		return NULL;
706 	}
707 
708 embryonic_reset:
709 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
710 	if (!(flg & TCP_FLAG_RST))
711 		req->rsk_ops->send_reset(sk, skb);
712 
713 	inet_csk_reqsk_queue_drop(sk, req, prev);
714 	return NULL;
715 }
716 EXPORT_SYMBOL(tcp_check_req);
717 
718 /*
719  * Queue segment on the new socket if the new socket is active,
720  * otherwise we just shortcircuit this and continue with
721  * the new socket.
722  */
723 
724 int tcp_child_process(struct sock *parent, struct sock *child,
725 		      struct sk_buff *skb)
726 {
727 	int ret = 0;
728 	int state = child->sk_state;
729 
730 	if (!sock_owned_by_user(child)) {
731 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
732 					    skb->len);
733 		/* Wakeup parent, send SIGIO */
734 		if (state == TCP_SYN_RECV && child->sk_state != state)
735 			parent->sk_data_ready(parent, 0);
736 	} else {
737 		/* Alas, it is possible again, because we do lookup
738 		 * in main socket hash table and lock on listening
739 		 * socket does not protect us more.
740 		 */
741 		__sk_add_backlog(child, skb);
742 	}
743 
744 	bh_unlock_sock(child);
745 	sock_put(child);
746 	return ret;
747 }
748 EXPORT_SYMBOL(tcp_child_process);
749