xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 8aaaf2f3af2ae212428f4db1af34214225f5cec3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 
26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27 {
28 	if (seq == s_win)
29 		return true;
30 	if (after(end_seq, s_win) && before(seq, e_win))
31 		return true;
32 	return seq == e_win && seq == end_seq;
33 }
34 
35 static enum tcp_tw_status
36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 				  const struct sk_buff *skb, int mib_idx)
38 {
39 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40 
41 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 				  &tcptw->tw_last_oow_ack_time)) {
43 		/* Send ACK. Note, we do not put the bucket,
44 		 * it will be released by caller.
45 		 */
46 		return TCP_TW_ACK;
47 	}
48 
49 	/* We are rate-limiting, so just release the tw sock and drop skb. */
50 	inet_twsk_put(tw);
51 	return TCP_TW_SUCCESS;
52 }
53 
54 /*
55  * * Main purpose of TIME-WAIT state is to close connection gracefully,
56  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
57  *   (and, probably, tail of data) and one or more our ACKs are lost.
58  * * What is TIME-WAIT timeout? It is associated with maximal packet
59  *   lifetime in the internet, which results in wrong conclusion, that
60  *   it is set to catch "old duplicate segments" wandering out of their path.
61  *   It is not quite correct. This timeout is calculated so that it exceeds
62  *   maximal retransmission timeout enough to allow to lose one (or more)
63  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
64  * * When TIME-WAIT socket receives RST, it means that another end
65  *   finally closed and we are allowed to kill TIME-WAIT too.
66  * * Second purpose of TIME-WAIT is catching old duplicate segments.
67  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
68  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
69  * * If we invented some more clever way to catch duplicates
70  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
71  *
72  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
73  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
74  * from the very beginning.
75  *
76  * NOTE. With recycling (and later with fin-wait-2) TW bucket
77  * is _not_ stateless. It means, that strictly speaking we must
78  * spinlock it. I do not want! Well, probability of misbehaviour
79  * is ridiculously low and, seems, we could use some mb() tricks
80  * to avoid misread sequence numbers, states etc.  --ANK
81  *
82  * We don't need to initialize tmp_out.sack_ok as we don't use the results
83  */
84 enum tcp_tw_status
85 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
86 			   const struct tcphdr *th)
87 {
88 	struct tcp_options_received tmp_opt;
89 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
90 	bool paws_reject = false;
91 
92 	tmp_opt.saw_tstamp = 0;
93 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
94 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
95 
96 		if (tmp_opt.saw_tstamp) {
97 			if (tmp_opt.rcv_tsecr)
98 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
99 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102 		}
103 	}
104 
105 	if (tw->tw_substate == TCP_FIN_WAIT2) {
106 		/* Just repeat all the checks of tcp_rcv_state_process() */
107 
108 		/* Out of window, send ACK */
109 		if (paws_reject ||
110 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111 				   tcptw->tw_rcv_nxt,
112 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113 			return tcp_timewait_check_oow_rate_limit(
114 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115 
116 		if (th->rst)
117 			goto kill;
118 
119 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120 			return TCP_TW_RST;
121 
122 		/* Dup ACK? */
123 		if (!th->ack ||
124 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126 			inet_twsk_put(tw);
127 			return TCP_TW_SUCCESS;
128 		}
129 
130 		/* New data or FIN. If new data arrive after half-duplex close,
131 		 * reset.
132 		 */
133 		if (!th->fin ||
134 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135 			return TCP_TW_RST;
136 
137 		/* FIN arrived, enter true time-wait state. */
138 		tw->tw_substate	  = TCP_TIME_WAIT;
139 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140 		if (tmp_opt.saw_tstamp) {
141 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
143 		}
144 
145 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146 		return TCP_TW_ACK;
147 	}
148 
149 	/*
150 	 *	Now real TIME-WAIT state.
151 	 *
152 	 *	RFC 1122:
153 	 *	"When a connection is [...] on TIME-WAIT state [...]
154 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155 	 *	reopen the connection directly, if it:
156 	 *
157 	 *	(1)  assigns its initial sequence number for the new
158 	 *	connection to be larger than the largest sequence
159 	 *	number it used on the previous connection incarnation,
160 	 *	and
161 	 *
162 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163 	 *	to be an old duplicate".
164 	 */
165 
166 	if (!paws_reject &&
167 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169 		/* In window segment, it may be only reset or bare ack. */
170 
171 		if (th->rst) {
172 			/* This is TIME_WAIT assassination, in two flavors.
173 			 * Oh well... nobody has a sufficient solution to this
174 			 * protocol bug yet.
175 			 */
176 			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
177 kill:
178 				inet_twsk_deschedule_put(tw);
179 				return TCP_TW_SUCCESS;
180 			}
181 		} else {
182 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183 		}
184 
185 		if (tmp_opt.saw_tstamp) {
186 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188 		}
189 
190 		inet_twsk_put(tw);
191 		return TCP_TW_SUCCESS;
192 	}
193 
194 	/* Out of window segment.
195 
196 	   All the segments are ACKed immediately.
197 
198 	   The only exception is new SYN. We accept it, if it is
199 	   not old duplicate and we are not in danger to be killed
200 	   by delayed old duplicates. RFC check is that it has
201 	   newer sequence number works at rates <40Mbit/sec.
202 	   However, if paws works, it is reliable AND even more,
203 	   we even may relax silly seq space cutoff.
204 
205 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207 	   we must return socket to time-wait state. It is not good,
208 	   but not fatal yet.
209 	 */
210 
211 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213 	     (tmp_opt.saw_tstamp &&
214 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216 		if (isn == 0)
217 			isn++;
218 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219 		return TCP_TW_SYN;
220 	}
221 
222 	if (paws_reject)
223 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224 
225 	if (!th->rst) {
226 		/* In this case we must reset the TIMEWAIT timer.
227 		 *
228 		 * If it is ACKless SYN it may be both old duplicate
229 		 * and new good SYN with random sequence number <rcv_nxt.
230 		 * Do not reschedule in the last case.
231 		 */
232 		if (paws_reject || th->ack)
233 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234 
235 		return tcp_timewait_check_oow_rate_limit(
236 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237 	}
238 	inet_twsk_put(tw);
239 	return TCP_TW_SUCCESS;
240 }
241 EXPORT_SYMBOL(tcp_timewait_state_process);
242 
243 /*
244  * Move a socket to time-wait or dead fin-wait-2 state.
245  */
246 void tcp_time_wait(struct sock *sk, int state, int timeo)
247 {
248 	const struct inet_connection_sock *icsk = inet_csk(sk);
249 	const struct tcp_sock *tp = tcp_sk(sk);
250 	struct inet_timewait_sock *tw;
251 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252 
253 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
254 
255 	if (tw) {
256 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
257 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
258 		struct inet_sock *inet = inet_sk(sk);
259 
260 		tw->tw_transparent	= inet->transparent;
261 		tw->tw_mark		= sk->sk_mark;
262 		tw->tw_priority		= sk->sk_priority;
263 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
264 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
265 		tcptw->tw_snd_nxt	= tp->snd_nxt;
266 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
267 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
268 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
269 		tcptw->tw_ts_offset	= tp->tsoffset;
270 		tcptw->tw_last_oow_ack_time = 0;
271 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
272 #if IS_ENABLED(CONFIG_IPV6)
273 		if (tw->tw_family == PF_INET6) {
274 			struct ipv6_pinfo *np = inet6_sk(sk);
275 
276 			tw->tw_v6_daddr = sk->sk_v6_daddr;
277 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
278 			tw->tw_tclass = np->tclass;
279 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
280 			tw->tw_txhash = sk->sk_txhash;
281 			tw->tw_ipv6only = sk->sk_ipv6only;
282 		}
283 #endif
284 
285 #ifdef CONFIG_TCP_MD5SIG
286 		/*
287 		 * The timewait bucket does not have the key DB from the
288 		 * sock structure. We just make a quick copy of the
289 		 * md5 key being used (if indeed we are using one)
290 		 * so the timewait ack generating code has the key.
291 		 */
292 		do {
293 			tcptw->tw_md5_key = NULL;
294 			if (static_branch_unlikely(&tcp_md5_needed)) {
295 				struct tcp_md5sig_key *key;
296 
297 				key = tp->af_specific->md5_lookup(sk, sk);
298 				if (key) {
299 					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
300 					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
301 				}
302 			}
303 		} while (0);
304 #endif
305 
306 		/* Get the TIME_WAIT timeout firing. */
307 		if (timeo < rto)
308 			timeo = rto;
309 
310 		if (state == TCP_TIME_WAIT)
311 			timeo = TCP_TIMEWAIT_LEN;
312 
313 		/* tw_timer is pinned, so we need to make sure BH are disabled
314 		 * in following section, otherwise timer handler could run before
315 		 * we complete the initialization.
316 		 */
317 		local_bh_disable();
318 		inet_twsk_schedule(tw, timeo);
319 		/* Linkage updates.
320 		 * Note that access to tw after this point is illegal.
321 		 */
322 		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
323 		local_bh_enable();
324 	} else {
325 		/* Sorry, if we're out of memory, just CLOSE this
326 		 * socket up.  We've got bigger problems than
327 		 * non-graceful socket closings.
328 		 */
329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
330 	}
331 
332 	tcp_update_metrics(sk);
333 	tcp_done(sk);
334 }
335 EXPORT_SYMBOL(tcp_time_wait);
336 
337 void tcp_twsk_destructor(struct sock *sk)
338 {
339 #ifdef CONFIG_TCP_MD5SIG
340 	if (static_branch_unlikely(&tcp_md5_needed)) {
341 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
342 
343 		if (twsk->tw_md5_key)
344 			kfree_rcu(twsk->tw_md5_key, rcu);
345 	}
346 #endif
347 }
348 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
349 
350 /* Warning : This function is called without sk_listener being locked.
351  * Be sure to read socket fields once, as their value could change under us.
352  */
353 void tcp_openreq_init_rwin(struct request_sock *req,
354 			   const struct sock *sk_listener,
355 			   const struct dst_entry *dst)
356 {
357 	struct inet_request_sock *ireq = inet_rsk(req);
358 	const struct tcp_sock *tp = tcp_sk(sk_listener);
359 	int full_space = tcp_full_space(sk_listener);
360 	u32 window_clamp;
361 	__u8 rcv_wscale;
362 	u32 rcv_wnd;
363 	int mss;
364 
365 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
366 	window_clamp = READ_ONCE(tp->window_clamp);
367 	/* Set this up on the first call only */
368 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
369 
370 	/* limit the window selection if the user enforce a smaller rx buffer */
371 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
372 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
373 		req->rsk_window_clamp = full_space;
374 
375 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
376 	if (rcv_wnd == 0)
377 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
378 	else if (full_space < rcv_wnd * mss)
379 		full_space = rcv_wnd * mss;
380 
381 	/* tcp_full_space because it is guaranteed to be the first packet */
382 	tcp_select_initial_window(sk_listener, full_space,
383 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
384 		&req->rsk_rcv_wnd,
385 		&req->rsk_window_clamp,
386 		ireq->wscale_ok,
387 		&rcv_wscale,
388 		rcv_wnd);
389 	ireq->rcv_wscale = rcv_wscale;
390 }
391 EXPORT_SYMBOL(tcp_openreq_init_rwin);
392 
393 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
394 				  const struct request_sock *req)
395 {
396 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
397 }
398 
399 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
400 {
401 	struct inet_connection_sock *icsk = inet_csk(sk);
402 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
403 	bool ca_got_dst = false;
404 
405 	if (ca_key != TCP_CA_UNSPEC) {
406 		const struct tcp_congestion_ops *ca;
407 
408 		rcu_read_lock();
409 		ca = tcp_ca_find_key(ca_key);
410 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
411 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
412 			icsk->icsk_ca_ops = ca;
413 			ca_got_dst = true;
414 		}
415 		rcu_read_unlock();
416 	}
417 
418 	/* If no valid choice made yet, assign current system default ca. */
419 	if (!ca_got_dst &&
420 	    (!icsk->icsk_ca_setsockopt ||
421 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
422 		tcp_assign_congestion_control(sk);
423 
424 	tcp_set_ca_state(sk, TCP_CA_Open);
425 }
426 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
427 
428 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
429 				    struct request_sock *req,
430 				    struct tcp_sock *newtp)
431 {
432 #if IS_ENABLED(CONFIG_SMC)
433 	struct inet_request_sock *ireq;
434 
435 	if (static_branch_unlikely(&tcp_have_smc)) {
436 		ireq = inet_rsk(req);
437 		if (oldtp->syn_smc && !ireq->smc_ok)
438 			newtp->syn_smc = 0;
439 	}
440 #endif
441 }
442 
443 /* This is not only more efficient than what we used to do, it eliminates
444  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
445  *
446  * Actually, we could lots of memory writes here. tp of listening
447  * socket contains all necessary default parameters.
448  */
449 struct sock *tcp_create_openreq_child(const struct sock *sk,
450 				      struct request_sock *req,
451 				      struct sk_buff *skb)
452 {
453 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
454 	const struct inet_request_sock *ireq = inet_rsk(req);
455 	struct tcp_request_sock *treq = tcp_rsk(req);
456 	struct inet_connection_sock *newicsk;
457 	struct tcp_sock *oldtp, *newtp;
458 	u32 seq;
459 
460 	if (!newsk)
461 		return NULL;
462 
463 	newicsk = inet_csk(newsk);
464 	newtp = tcp_sk(newsk);
465 	oldtp = tcp_sk(sk);
466 
467 	smc_check_reset_syn_req(oldtp, req, newtp);
468 
469 	/* Now setup tcp_sock */
470 	newtp->pred_flags = 0;
471 
472 	seq = treq->rcv_isn + 1;
473 	newtp->rcv_wup = seq;
474 	WRITE_ONCE(newtp->copied_seq, seq);
475 	WRITE_ONCE(newtp->rcv_nxt, seq);
476 	newtp->segs_in = 1;
477 
478 	seq = treq->snt_isn + 1;
479 	newtp->snd_sml = newtp->snd_una = seq;
480 	WRITE_ONCE(newtp->snd_nxt, seq);
481 	newtp->snd_up = seq;
482 
483 	INIT_LIST_HEAD(&newtp->tsq_node);
484 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
485 
486 	tcp_init_wl(newtp, treq->rcv_isn);
487 
488 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
489 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
490 
491 	newtp->lsndtime = tcp_jiffies32;
492 	newsk->sk_txhash = treq->txhash;
493 	newtp->total_retrans = req->num_retrans;
494 
495 	tcp_init_xmit_timers(newsk);
496 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
497 
498 	if (sock_flag(newsk, SOCK_KEEPOPEN))
499 		inet_csk_reset_keepalive_timer(newsk,
500 					       keepalive_time_when(newtp));
501 
502 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
503 	newtp->rx_opt.sack_ok = ireq->sack_ok;
504 	newtp->window_clamp = req->rsk_window_clamp;
505 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
506 	newtp->rcv_wnd = req->rsk_rcv_wnd;
507 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
508 	if (newtp->rx_opt.wscale_ok) {
509 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
510 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
511 	} else {
512 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
513 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
514 	}
515 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
516 	newtp->max_window = newtp->snd_wnd;
517 
518 	if (newtp->rx_opt.tstamp_ok) {
519 		newtp->rx_opt.ts_recent = req->ts_recent;
520 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
521 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
522 	} else {
523 		newtp->rx_opt.ts_recent_stamp = 0;
524 		newtp->tcp_header_len = sizeof(struct tcphdr);
525 	}
526 	if (req->num_timeout) {
527 		newtp->undo_marker = treq->snt_isn;
528 		newtp->retrans_stamp = div_u64(treq->snt_synack,
529 					       USEC_PER_SEC / TCP_TS_HZ);
530 	}
531 	newtp->tsoffset = treq->ts_off;
532 #ifdef CONFIG_TCP_MD5SIG
533 	newtp->md5sig_info = NULL;	/*XXX*/
534 	if (newtp->af_specific->md5_lookup(sk, newsk))
535 		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
536 #endif
537 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
538 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
539 	newtp->rx_opt.mss_clamp = req->mss;
540 	tcp_ecn_openreq_child(newtp, req);
541 	newtp->fastopen_req = NULL;
542 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
543 
544 	tcp_bpf_clone(sk, newsk);
545 
546 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
547 
548 	return newsk;
549 }
550 EXPORT_SYMBOL(tcp_create_openreq_child);
551 
552 /*
553  * Process an incoming packet for SYN_RECV sockets represented as a
554  * request_sock. Normally sk is the listener socket but for TFO it
555  * points to the child socket.
556  *
557  * XXX (TFO) - The current impl contains a special check for ack
558  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
559  *
560  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
561  */
562 
563 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
564 			   struct request_sock *req,
565 			   bool fastopen, bool *req_stolen)
566 {
567 	struct tcp_options_received tmp_opt;
568 	struct sock *child;
569 	const struct tcphdr *th = tcp_hdr(skb);
570 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
571 	bool paws_reject = false;
572 	bool own_req;
573 
574 	tmp_opt.saw_tstamp = 0;
575 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
576 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
577 
578 		if (tmp_opt.saw_tstamp) {
579 			tmp_opt.ts_recent = req->ts_recent;
580 			if (tmp_opt.rcv_tsecr)
581 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
582 			/* We do not store true stamp, but it is not required,
583 			 * it can be estimated (approximately)
584 			 * from another data.
585 			 */
586 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
587 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
588 		}
589 	}
590 
591 	/* Check for pure retransmitted SYN. */
592 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
593 	    flg == TCP_FLAG_SYN &&
594 	    !paws_reject) {
595 		/*
596 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597 		 * this case on figure 6 and figure 8, but formal
598 		 * protocol description says NOTHING.
599 		 * To be more exact, it says that we should send ACK,
600 		 * because this segment (at least, if it has no data)
601 		 * is out of window.
602 		 *
603 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604 		 *  describe SYN-RECV state. All the description
605 		 *  is wrong, we cannot believe to it and should
606 		 *  rely only on common sense and implementation
607 		 *  experience.
608 		 *
609 		 * Enforce "SYN-ACK" according to figure 8, figure 6
610 		 * of RFC793, fixed by RFC1122.
611 		 *
612 		 * Note that even if there is new data in the SYN packet
613 		 * they will be thrown away too.
614 		 *
615 		 * Reset timer after retransmitting SYNACK, similar to
616 		 * the idea of fast retransmit in recovery.
617 		 */
618 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
619 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
620 					  &tcp_rsk(req)->last_oow_ack_time) &&
621 
622 		    !inet_rtx_syn_ack(sk, req)) {
623 			unsigned long expires = jiffies;
624 
625 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
626 				       TCP_RTO_MAX);
627 			if (!fastopen)
628 				mod_timer_pending(&req->rsk_timer, expires);
629 			else
630 				req->rsk_timer.expires = expires;
631 		}
632 		return NULL;
633 	}
634 
635 	/* Further reproduces section "SEGMENT ARRIVES"
636 	   for state SYN-RECEIVED of RFC793.
637 	   It is broken, however, it does not work only
638 	   when SYNs are crossed.
639 
640 	   You would think that SYN crossing is impossible here, since
641 	   we should have a SYN_SENT socket (from connect()) on our end,
642 	   but this is not true if the crossed SYNs were sent to both
643 	   ends by a malicious third party.  We must defend against this,
644 	   and to do that we first verify the ACK (as per RFC793, page
645 	   36) and reset if it is invalid.  Is this a true full defense?
646 	   To convince ourselves, let us consider a way in which the ACK
647 	   test can still pass in this 'malicious crossed SYNs' case.
648 	   Malicious sender sends identical SYNs (and thus identical sequence
649 	   numbers) to both A and B:
650 
651 		A: gets SYN, seq=7
652 		B: gets SYN, seq=7
653 
654 	   By our good fortune, both A and B select the same initial
655 	   send sequence number of seven :-)
656 
657 		A: sends SYN|ACK, seq=7, ack_seq=8
658 		B: sends SYN|ACK, seq=7, ack_seq=8
659 
660 	   So we are now A eating this SYN|ACK, ACK test passes.  So
661 	   does sequence test, SYN is truncated, and thus we consider
662 	   it a bare ACK.
663 
664 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
665 	   bare ACK.  Otherwise, we create an established connection.  Both
666 	   ends (listening sockets) accept the new incoming connection and try
667 	   to talk to each other. 8-)
668 
669 	   Note: This case is both harmless, and rare.  Possibility is about the
670 	   same as us discovering intelligent life on another plant tomorrow.
671 
672 	   But generally, we should (RFC lies!) to accept ACK
673 	   from SYNACK both here and in tcp_rcv_state_process().
674 	   tcp_rcv_state_process() does not, hence, we do not too.
675 
676 	   Note that the case is absolutely generic:
677 	   we cannot optimize anything here without
678 	   violating protocol. All the checks must be made
679 	   before attempt to create socket.
680 	 */
681 
682 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
683 	 *                  and the incoming segment acknowledges something not yet
684 	 *                  sent (the segment carries an unacceptable ACK) ...
685 	 *                  a reset is sent."
686 	 *
687 	 * Invalid ACK: reset will be sent by listening socket.
688 	 * Note that the ACK validity check for a Fast Open socket is done
689 	 * elsewhere and is checked directly against the child socket rather
690 	 * than req because user data may have been sent out.
691 	 */
692 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
693 	    (TCP_SKB_CB(skb)->ack_seq !=
694 	     tcp_rsk(req)->snt_isn + 1))
695 		return sk;
696 
697 	/* Also, it would be not so bad idea to check rcv_tsecr, which
698 	 * is essentially ACK extension and too early or too late values
699 	 * should cause reset in unsynchronized states.
700 	 */
701 
702 	/* RFC793: "first check sequence number". */
703 
704 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
705 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
706 		/* Out of window: send ACK and drop. */
707 		if (!(flg & TCP_FLAG_RST) &&
708 		    !tcp_oow_rate_limited(sock_net(sk), skb,
709 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
710 					  &tcp_rsk(req)->last_oow_ack_time))
711 			req->rsk_ops->send_ack(sk, skb, req);
712 		if (paws_reject)
713 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
714 		return NULL;
715 	}
716 
717 	/* In sequence, PAWS is OK. */
718 
719 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
720 		req->ts_recent = tmp_opt.rcv_tsval;
721 
722 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
723 		/* Truncate SYN, it is out of window starting
724 		   at tcp_rsk(req)->rcv_isn + 1. */
725 		flg &= ~TCP_FLAG_SYN;
726 	}
727 
728 	/* RFC793: "second check the RST bit" and
729 	 *	   "fourth, check the SYN bit"
730 	 */
731 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
732 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
733 		goto embryonic_reset;
734 	}
735 
736 	/* ACK sequence verified above, just make sure ACK is
737 	 * set.  If ACK not set, just silently drop the packet.
738 	 *
739 	 * XXX (TFO) - if we ever allow "data after SYN", the
740 	 * following check needs to be removed.
741 	 */
742 	if (!(flg & TCP_FLAG_ACK))
743 		return NULL;
744 
745 	/* For Fast Open no more processing is needed (sk is the
746 	 * child socket).
747 	 */
748 	if (fastopen)
749 		return sk;
750 
751 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
752 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
753 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
754 		inet_rsk(req)->acked = 1;
755 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
756 		return NULL;
757 	}
758 
759 	/* OK, ACK is valid, create big socket and
760 	 * feed this segment to it. It will repeat all
761 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
762 	 * ESTABLISHED STATE. If it will be dropped after
763 	 * socket is created, wait for troubles.
764 	 */
765 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
766 							 req, &own_req);
767 	if (!child)
768 		goto listen_overflow;
769 
770 	if (own_req && rsk_drop_req(req)) {
771 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
772 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
773 		return child;
774 	}
775 
776 	sock_rps_save_rxhash(child, skb);
777 	tcp_synack_rtt_meas(child, req);
778 	*req_stolen = !own_req;
779 	return inet_csk_complete_hashdance(sk, child, req, own_req);
780 
781 listen_overflow:
782 	if (sk != req->rsk_listener)
783 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
784 
785 	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
786 		inet_rsk(req)->acked = 1;
787 		return NULL;
788 	}
789 
790 embryonic_reset:
791 	if (!(flg & TCP_FLAG_RST)) {
792 		/* Received a bad SYN pkt - for TFO We try not to reset
793 		 * the local connection unless it's really necessary to
794 		 * avoid becoming vulnerable to outside attack aiming at
795 		 * resetting legit local connections.
796 		 */
797 		req->rsk_ops->send_reset(sk, skb);
798 	} else if (fastopen) { /* received a valid RST pkt */
799 		reqsk_fastopen_remove(sk, req, true);
800 		tcp_reset(sk, skb);
801 	}
802 	if (!fastopen) {
803 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
804 
805 		if (unlinked)
806 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
807 		*req_stolen = !unlinked;
808 	}
809 	return NULL;
810 }
811 EXPORT_SYMBOL(tcp_check_req);
812 
813 /*
814  * Queue segment on the new socket if the new socket is active,
815  * otherwise we just shortcircuit this and continue with
816  * the new socket.
817  *
818  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
819  * when entering. But other states are possible due to a race condition
820  * where after __inet_lookup_established() fails but before the listener
821  * locked is obtained, other packets cause the same connection to
822  * be created.
823  */
824 
825 int tcp_child_process(struct sock *parent, struct sock *child,
826 		      struct sk_buff *skb)
827 	__releases(&((child)->sk_lock.slock))
828 {
829 	int ret = 0;
830 	int state = child->sk_state;
831 
832 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
833 	sk_mark_napi_id_set(child, skb);
834 
835 	tcp_segs_in(tcp_sk(child), skb);
836 	if (!sock_owned_by_user(child)) {
837 		ret = tcp_rcv_state_process(child, skb);
838 		/* Wakeup parent, send SIGIO */
839 		if (state == TCP_SYN_RECV && child->sk_state != state)
840 			parent->sk_data_ready(parent);
841 	} else {
842 		/* Alas, it is possible again, because we do lookup
843 		 * in main socket hash table and lock on listening
844 		 * socket does not protect us more.
845 		 */
846 		__sk_add_backlog(child, skb);
847 	}
848 
849 	bh_unlock_sock(child);
850 	sock_put(child);
851 	return ret;
852 }
853 EXPORT_SYMBOL(tcp_child_process);
854