xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 87c2ce3b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 #include <linux/config.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/sysctl.h>
27 #include <linux/workqueue.h>
28 #include <net/tcp.h>
29 #include <net/inet_common.h>
30 #include <net/xfrm.h>
31 
32 #ifdef CONFIG_SYSCTL
33 #define SYNC_INIT 0 /* let the user enable it */
34 #else
35 #define SYNC_INIT 1
36 #endif
37 
38 int sysctl_tcp_syncookies = SYNC_INIT;
39 int sysctl_tcp_abort_on_overflow;
40 
41 struct inet_timewait_death_row tcp_death_row = {
42 	.sysctl_max_tw_buckets = NR_FILE * 2,
43 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
44 	.death_lock	= SPIN_LOCK_UNLOCKED,
45 	.hashinfo	= &tcp_hashinfo,
46 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
47 					    (unsigned long)&tcp_death_row),
48 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
49 					     inet_twdr_twkill_work,
50 					     &tcp_death_row),
51 /* Short-time timewait calendar */
52 
53 	.twcal_hand	= -1,
54 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
55 					    (unsigned long)&tcp_death_row),
56 };
57 
58 EXPORT_SYMBOL_GPL(tcp_death_row);
59 
60 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
61 {
62 	if (seq == s_win)
63 		return 1;
64 	if (after(end_seq, s_win) && before(seq, e_win))
65 		return 1;
66 	return (seq == e_win && seq == end_seq);
67 }
68 
69 /*
70  * * Main purpose of TIME-WAIT state is to close connection gracefully,
71  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72  *   (and, probably, tail of data) and one or more our ACKs are lost.
73  * * What is TIME-WAIT timeout? It is associated with maximal packet
74  *   lifetime in the internet, which results in wrong conclusion, that
75  *   it is set to catch "old duplicate segments" wandering out of their path.
76  *   It is not quite correct. This timeout is calculated so that it exceeds
77  *   maximal retransmission timeout enough to allow to lose one (or more)
78  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
79  * * When TIME-WAIT socket receives RST, it means that another end
80  *   finally closed and we are allowed to kill TIME-WAIT too.
81  * * Second purpose of TIME-WAIT is catching old duplicate segments.
82  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
83  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84  * * If we invented some more clever way to catch duplicates
85  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86  *
87  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89  * from the very beginning.
90  *
91  * NOTE. With recycling (and later with fin-wait-2) TW bucket
92  * is _not_ stateless. It means, that strictly speaking we must
93  * spinlock it. I do not want! Well, probability of misbehaviour
94  * is ridiculously low and, seems, we could use some mb() tricks
95  * to avoid misread sequence numbers, states etc.  --ANK
96  */
97 enum tcp_tw_status
98 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
99 			   const struct tcphdr *th)
100 {
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	struct tcp_options_received tmp_opt;
103 	int paws_reject = 0;
104 
105 	tmp_opt.saw_tstamp = 0;
106 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
107 		tcp_parse_options(skb, &tmp_opt, 0);
108 
109 		if (tmp_opt.saw_tstamp) {
110 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
113 		}
114 	}
115 
116 	if (tw->tw_substate == TCP_FIN_WAIT2) {
117 		/* Just repeat all the checks of tcp_rcv_state_process() */
118 
119 		/* Out of window, send ACK */
120 		if (paws_reject ||
121 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122 				   tcptw->tw_rcv_nxt,
123 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124 			return TCP_TW_ACK;
125 
126 		if (th->rst)
127 			goto kill;
128 
129 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
130 			goto kill_with_rst;
131 
132 		/* Dup ACK? */
133 		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
134 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
135 			inet_twsk_put(tw);
136 			return TCP_TW_SUCCESS;
137 		}
138 
139 		/* New data or FIN. If new data arrive after half-duplex close,
140 		 * reset.
141 		 */
142 		if (!th->fin ||
143 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
144 kill_with_rst:
145 			inet_twsk_deschedule(tw, &tcp_death_row);
146 			inet_twsk_put(tw);
147 			return TCP_TW_RST;
148 		}
149 
150 		/* FIN arrived, enter true time-wait state. */
151 		tw->tw_substate	  = TCP_TIME_WAIT;
152 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
153 		if (tmp_opt.saw_tstamp) {
154 			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
155 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156 		}
157 
158 		/* I am shamed, but failed to make it more elegant.
159 		 * Yes, it is direct reference to IP, which is impossible
160 		 * to generalize to IPv6. Taking into account that IPv6
161 		 * do not understand recycling in any case, it not
162 		 * a big problem in practice. --ANK */
163 		if (tw->tw_family == AF_INET &&
164 		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
165 		    tcp_v4_tw_remember_stamp(tw))
166 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
167 					   TCP_TIMEWAIT_LEN);
168 		else
169 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
170 					   TCP_TIMEWAIT_LEN);
171 		return TCP_TW_ACK;
172 	}
173 
174 	/*
175 	 *	Now real TIME-WAIT state.
176 	 *
177 	 *	RFC 1122:
178 	 *	"When a connection is [...] on TIME-WAIT state [...]
179 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
180 	 *	reopen the connection directly, if it:
181 	 *
182 	 *	(1)  assigns its initial sequence number for the new
183 	 *	connection to be larger than the largest sequence
184 	 *	number it used on the previous connection incarnation,
185 	 *	and
186 	 *
187 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
188 	 *	to be an old duplicate".
189 	 */
190 
191 	if (!paws_reject &&
192 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
193 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
194 		/* In window segment, it may be only reset or bare ack. */
195 
196 		if (th->rst) {
197 			/* This is TIME_WAIT assassination, in two flavors.
198 			 * Oh well... nobody has a sufficient solution to this
199 			 * protocol bug yet.
200 			 */
201 			if (sysctl_tcp_rfc1337 == 0) {
202 kill:
203 				inet_twsk_deschedule(tw, &tcp_death_row);
204 				inet_twsk_put(tw);
205 				return TCP_TW_SUCCESS;
206 			}
207 		}
208 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209 				   TCP_TIMEWAIT_LEN);
210 
211 		if (tmp_opt.saw_tstamp) {
212 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
213 			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
214 		}
215 
216 		inet_twsk_put(tw);
217 		return TCP_TW_SUCCESS;
218 	}
219 
220 	/* Out of window segment.
221 
222 	   All the segments are ACKed immediately.
223 
224 	   The only exception is new SYN. We accept it, if it is
225 	   not old duplicate and we are not in danger to be killed
226 	   by delayed old duplicates. RFC check is that it has
227 	   newer sequence number works at rates <40Mbit/sec.
228 	   However, if paws works, it is reliable AND even more,
229 	   we even may relax silly seq space cutoff.
230 
231 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
232 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
233 	   we must return socket to time-wait state. It is not good,
234 	   but not fatal yet.
235 	 */
236 
237 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
238 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
239 	     (tmp_opt.saw_tstamp &&
240 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
241 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
242 		if (isn == 0)
243 			isn++;
244 		TCP_SKB_CB(skb)->when = isn;
245 		return TCP_TW_SYN;
246 	}
247 
248 	if (paws_reject)
249 		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
250 
251 	if(!th->rst) {
252 		/* In this case we must reset the TIMEWAIT timer.
253 		 *
254 		 * If it is ACKless SYN it may be both old duplicate
255 		 * and new good SYN with random sequence number <rcv_nxt.
256 		 * Do not reschedule in the last case.
257 		 */
258 		if (paws_reject || th->ack)
259 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
260 					   TCP_TIMEWAIT_LEN);
261 
262 		/* Send ACK. Note, we do not put the bucket,
263 		 * it will be released by caller.
264 		 */
265 		return TCP_TW_ACK;
266 	}
267 	inet_twsk_put(tw);
268 	return TCP_TW_SUCCESS;
269 }
270 
271 /*
272  * Move a socket to time-wait or dead fin-wait-2 state.
273  */
274 void tcp_time_wait(struct sock *sk, int state, int timeo)
275 {
276 	struct inet_timewait_sock *tw = NULL;
277 	const struct inet_connection_sock *icsk = inet_csk(sk);
278 	const struct tcp_sock *tp = tcp_sk(sk);
279 	int recycle_ok = 0;
280 
281 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
282 		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
283 
284 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
285 		tw = inet_twsk_alloc(sk, state);
286 
287 	if (tw != NULL) {
288 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
289 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
290 
291 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
292 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
293 		tcptw->tw_snd_nxt	= tp->snd_nxt;
294 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
295 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
296 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
297 
298 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
299 		if (tw->tw_family == PF_INET6) {
300 			struct ipv6_pinfo *np = inet6_sk(sk);
301 			struct inet6_timewait_sock *tw6;
302 
303 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
304 			tw6 = inet6_twsk((struct sock *)tw);
305 			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
306 			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
307 			tw->tw_ipv6only = np->ipv6only;
308 		}
309 #endif
310 		/* Linkage updates. */
311 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
312 
313 		/* Get the TIME_WAIT timeout firing. */
314 		if (timeo < rto)
315 			timeo = rto;
316 
317 		if (recycle_ok) {
318 			tw->tw_timeout = rto;
319 		} else {
320 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
321 			if (state == TCP_TIME_WAIT)
322 				timeo = TCP_TIMEWAIT_LEN;
323 		}
324 
325 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
326 				   TCP_TIMEWAIT_LEN);
327 		inet_twsk_put(tw);
328 	} else {
329 		/* Sorry, if we're out of memory, just CLOSE this
330 		 * socket up.  We've got bigger problems than
331 		 * non-graceful socket closings.
332 		 */
333 		if (net_ratelimit())
334 			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
335 	}
336 
337 	tcp_update_metrics(sk);
338 	tcp_done(sk);
339 }
340 
341 /* This is not only more efficient than what we used to do, it eliminates
342  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
343  *
344  * Actually, we could lots of memory writes here. tp of listening
345  * socket contains all necessary default parameters.
346  */
347 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
348 {
349 	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
350 
351 	if (newsk != NULL) {
352 		const struct inet_request_sock *ireq = inet_rsk(req);
353 		struct tcp_request_sock *treq = tcp_rsk(req);
354 		struct inet_connection_sock *newicsk = inet_csk(sk);
355 		struct tcp_sock *newtp;
356 
357 		/* Now setup tcp_sock */
358 		newtp = tcp_sk(newsk);
359 		newtp->pred_flags = 0;
360 		newtp->rcv_nxt = treq->rcv_isn + 1;
361 		newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
362 
363 		tcp_prequeue_init(newtp);
364 
365 		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
366 
367 		newtp->srtt = 0;
368 		newtp->mdev = TCP_TIMEOUT_INIT;
369 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
370 
371 		newtp->packets_out = 0;
372 		newtp->left_out = 0;
373 		newtp->retrans_out = 0;
374 		newtp->sacked_out = 0;
375 		newtp->fackets_out = 0;
376 		newtp->snd_ssthresh = 0x7fffffff;
377 
378 		/* So many TCP implementations out there (incorrectly) count the
379 		 * initial SYN frame in their delayed-ACK and congestion control
380 		 * algorithms that we must have the following bandaid to talk
381 		 * efficiently to them.  -DaveM
382 		 */
383 		newtp->snd_cwnd = 2;
384 		newtp->snd_cwnd_cnt = 0;
385 		newtp->bytes_acked = 0;
386 
387 		newtp->frto_counter = 0;
388 		newtp->frto_highmark = 0;
389 
390 		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
391 
392 		tcp_set_ca_state(newsk, TCP_CA_Open);
393 		tcp_init_xmit_timers(newsk);
394 		skb_queue_head_init(&newtp->out_of_order_queue);
395 		newtp->rcv_wup = treq->rcv_isn + 1;
396 		newtp->write_seq = treq->snt_isn + 1;
397 		newtp->pushed_seq = newtp->write_seq;
398 		newtp->copied_seq = treq->rcv_isn + 1;
399 
400 		newtp->rx_opt.saw_tstamp = 0;
401 
402 		newtp->rx_opt.dsack = 0;
403 		newtp->rx_opt.eff_sacks = 0;
404 
405 		newtp->rx_opt.num_sacks = 0;
406 		newtp->urg_data = 0;
407 
408 		if (sock_flag(newsk, SOCK_KEEPOPEN))
409 			inet_csk_reset_keepalive_timer(newsk,
410 						       keepalive_time_when(newtp));
411 
412 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
413 		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
414 			if (sysctl_tcp_fack)
415 				newtp->rx_opt.sack_ok |= 2;
416 		}
417 		newtp->window_clamp = req->window_clamp;
418 		newtp->rcv_ssthresh = req->rcv_wnd;
419 		newtp->rcv_wnd = req->rcv_wnd;
420 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
421 		if (newtp->rx_opt.wscale_ok) {
422 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
423 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
424 		} else {
425 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
426 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
427 		}
428 		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
429 		newtp->max_window = newtp->snd_wnd;
430 
431 		if (newtp->rx_opt.tstamp_ok) {
432 			newtp->rx_opt.ts_recent = req->ts_recent;
433 			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
434 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
435 		} else {
436 			newtp->rx_opt.ts_recent_stamp = 0;
437 			newtp->tcp_header_len = sizeof(struct tcphdr);
438 		}
439 		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
440 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
441 		newtp->rx_opt.mss_clamp = req->mss;
442 		TCP_ECN_openreq_child(newtp, req);
443 		if (newtp->ecn_flags&TCP_ECN_OK)
444 			sock_set_flag(newsk, SOCK_NO_LARGESEND);
445 
446 		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
447 	}
448 	return newsk;
449 }
450 
451 /*
452  *	Process an incoming packet for SYN_RECV sockets represented
453  *	as a request_sock.
454  */
455 
456 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
457 			   struct request_sock *req,
458 			   struct request_sock **prev)
459 {
460 	struct tcphdr *th = skb->h.th;
461 	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
462 	int paws_reject = 0;
463 	struct tcp_options_received tmp_opt;
464 	struct sock *child;
465 
466 	tmp_opt.saw_tstamp = 0;
467 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
468 		tcp_parse_options(skb, &tmp_opt, 0);
469 
470 		if (tmp_opt.saw_tstamp) {
471 			tmp_opt.ts_recent = req->ts_recent;
472 			/* We do not store true stamp, but it is not required,
473 			 * it can be estimated (approximately)
474 			 * from another data.
475 			 */
476 			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
477 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
478 		}
479 	}
480 
481 	/* Check for pure retransmitted SYN. */
482 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
483 	    flg == TCP_FLAG_SYN &&
484 	    !paws_reject) {
485 		/*
486 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
487 		 * this case on figure 6 and figure 8, but formal
488 		 * protocol description says NOTHING.
489 		 * To be more exact, it says that we should send ACK,
490 		 * because this segment (at least, if it has no data)
491 		 * is out of window.
492 		 *
493 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
494 		 *  describe SYN-RECV state. All the description
495 		 *  is wrong, we cannot believe to it and should
496 		 *  rely only on common sense and implementation
497 		 *  experience.
498 		 *
499 		 * Enforce "SYN-ACK" according to figure 8, figure 6
500 		 * of RFC793, fixed by RFC1122.
501 		 */
502 		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
503 		return NULL;
504 	}
505 
506 	/* Further reproduces section "SEGMENT ARRIVES"
507 	   for state SYN-RECEIVED of RFC793.
508 	   It is broken, however, it does not work only
509 	   when SYNs are crossed.
510 
511 	   You would think that SYN crossing is impossible here, since
512 	   we should have a SYN_SENT socket (from connect()) on our end,
513 	   but this is not true if the crossed SYNs were sent to both
514 	   ends by a malicious third party.  We must defend against this,
515 	   and to do that we first verify the ACK (as per RFC793, page
516 	   36) and reset if it is invalid.  Is this a true full defense?
517 	   To convince ourselves, let us consider a way in which the ACK
518 	   test can still pass in this 'malicious crossed SYNs' case.
519 	   Malicious sender sends identical SYNs (and thus identical sequence
520 	   numbers) to both A and B:
521 
522 		A: gets SYN, seq=7
523 		B: gets SYN, seq=7
524 
525 	   By our good fortune, both A and B select the same initial
526 	   send sequence number of seven :-)
527 
528 		A: sends SYN|ACK, seq=7, ack_seq=8
529 		B: sends SYN|ACK, seq=7, ack_seq=8
530 
531 	   So we are now A eating this SYN|ACK, ACK test passes.  So
532 	   does sequence test, SYN is truncated, and thus we consider
533 	   it a bare ACK.
534 
535 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
536 	   bare ACK.  Otherwise, we create an established connection.  Both
537 	   ends (listening sockets) accept the new incoming connection and try
538 	   to talk to each other. 8-)
539 
540 	   Note: This case is both harmless, and rare.  Possibility is about the
541 	   same as us discovering intelligent life on another plant tomorrow.
542 
543 	   But generally, we should (RFC lies!) to accept ACK
544 	   from SYNACK both here and in tcp_rcv_state_process().
545 	   tcp_rcv_state_process() does not, hence, we do not too.
546 
547 	   Note that the case is absolutely generic:
548 	   we cannot optimize anything here without
549 	   violating protocol. All the checks must be made
550 	   before attempt to create socket.
551 	 */
552 
553 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
554 	 *                  and the incoming segment acknowledges something not yet
555 	 *                  sent (the segment carries an unacceptable ACK) ...
556 	 *                  a reset is sent."
557 	 *
558 	 * Invalid ACK: reset will be sent by listening socket
559 	 */
560 	if ((flg & TCP_FLAG_ACK) &&
561 	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
562 		return sk;
563 
564 	/* Also, it would be not so bad idea to check rcv_tsecr, which
565 	 * is essentially ACK extension and too early or too late values
566 	 * should cause reset in unsynchronized states.
567 	 */
568 
569 	/* RFC793: "first check sequence number". */
570 
571 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
572 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
573 		/* Out of window: send ACK and drop. */
574 		if (!(flg & TCP_FLAG_RST))
575 			req->rsk_ops->send_ack(skb, req);
576 		if (paws_reject)
577 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
578 		return NULL;
579 	}
580 
581 	/* In sequence, PAWS is OK. */
582 
583 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
584 			req->ts_recent = tmp_opt.rcv_tsval;
585 
586 		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
587 			/* Truncate SYN, it is out of window starting
588 			   at tcp_rsk(req)->rcv_isn + 1. */
589 			flg &= ~TCP_FLAG_SYN;
590 		}
591 
592 		/* RFC793: "second check the RST bit" and
593 		 *	   "fourth, check the SYN bit"
594 		 */
595 		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
596 			goto embryonic_reset;
597 
598 		/* ACK sequence verified above, just make sure ACK is
599 		 * set.  If ACK not set, just silently drop the packet.
600 		 */
601 		if (!(flg & TCP_FLAG_ACK))
602 			return NULL;
603 
604 		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
605 		if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
606 		    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
607 			inet_rsk(req)->acked = 1;
608 			return NULL;
609 		}
610 
611 		/* OK, ACK is valid, create big socket and
612 		 * feed this segment to it. It will repeat all
613 		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
614 		 * ESTABLISHED STATE. If it will be dropped after
615 		 * socket is created, wait for troubles.
616 		 */
617 		child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb,
618 								 req, NULL);
619 		if (child == NULL)
620 			goto listen_overflow;
621 
622 		inet_csk_reqsk_queue_unlink(sk, req, prev);
623 		inet_csk_reqsk_queue_removed(sk, req);
624 
625 		inet_csk_reqsk_queue_add(sk, req, child);
626 		return child;
627 
628 	listen_overflow:
629 		if (!sysctl_tcp_abort_on_overflow) {
630 			inet_rsk(req)->acked = 1;
631 			return NULL;
632 		}
633 
634 	embryonic_reset:
635 		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
636 		if (!(flg & TCP_FLAG_RST))
637 			req->rsk_ops->send_reset(skb);
638 
639 		inet_csk_reqsk_queue_drop(sk, req, prev);
640 		return NULL;
641 }
642 
643 /*
644  * Queue segment on the new socket if the new socket is active,
645  * otherwise we just shortcircuit this and continue with
646  * the new socket.
647  */
648 
649 int tcp_child_process(struct sock *parent, struct sock *child,
650 		      struct sk_buff *skb)
651 {
652 	int ret = 0;
653 	int state = child->sk_state;
654 
655 	if (!sock_owned_by_user(child)) {
656 		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
657 
658 		/* Wakeup parent, send SIGIO */
659 		if (state == TCP_SYN_RECV && child->sk_state != state)
660 			parent->sk_data_ready(parent, 0);
661 	} else {
662 		/* Alas, it is possible again, because we do lookup
663 		 * in main socket hash table and lock on listening
664 		 * socket does not protect us more.
665 		 */
666 		sk_add_backlog(child, skb);
667 	}
668 
669 	bh_unlock_sock(child);
670 	sock_put(child);
671 	return ret;
672 }
673 
674 EXPORT_SYMBOL(tcp_check_req);
675 EXPORT_SYMBOL(tcp_child_process);
676 EXPORT_SYMBOL(tcp_create_openreq_child);
677 EXPORT_SYMBOL(tcp_timewait_state_process);
678