xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <linux/static_key.h>
27 #include <net/tcp.h>
28 #include <net/inet_common.h>
29 #include <net/xfrm.h>
30 #include <net/busy_poll.h>
31 
32 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
33 {
34 	if (seq == s_win)
35 		return true;
36 	if (after(end_seq, s_win) && before(seq, e_win))
37 		return true;
38 	return seq == e_win && seq == end_seq;
39 }
40 
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
43 				  const struct sk_buff *skb, int mib_idx)
44 {
45 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
46 
47 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
48 				  &tcptw->tw_last_oow_ack_time)) {
49 		/* Send ACK. Note, we do not put the bucket,
50 		 * it will be released by caller.
51 		 */
52 		return TCP_TW_ACK;
53 	}
54 
55 	/* We are rate-limiting, so just release the tw sock and drop skb. */
56 	inet_twsk_put(tw);
57 	return TCP_TW_SUCCESS;
58 }
59 
60 /*
61  * * Main purpose of TIME-WAIT state is to close connection gracefully,
62  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63  *   (and, probably, tail of data) and one or more our ACKs are lost.
64  * * What is TIME-WAIT timeout? It is associated with maximal packet
65  *   lifetime in the internet, which results in wrong conclusion, that
66  *   it is set to catch "old duplicate segments" wandering out of their path.
67  *   It is not quite correct. This timeout is calculated so that it exceeds
68  *   maximal retransmission timeout enough to allow to lose one (or more)
69  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
70  * * When TIME-WAIT socket receives RST, it means that another end
71  *   finally closed and we are allowed to kill TIME-WAIT too.
72  * * Second purpose of TIME-WAIT is catching old duplicate segments.
73  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
74  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75  * * If we invented some more clever way to catch duplicates
76  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
77  *
78  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80  * from the very beginning.
81  *
82  * NOTE. With recycling (and later with fin-wait-2) TW bucket
83  * is _not_ stateless. It means, that strictly speaking we must
84  * spinlock it. I do not want! Well, probability of misbehaviour
85  * is ridiculously low and, seems, we could use some mb() tricks
86  * to avoid misread sequence numbers, states etc.  --ANK
87  *
88  * We don't need to initialize tmp_out.sack_ok as we don't use the results
89  */
90 enum tcp_tw_status
91 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
92 			   const struct tcphdr *th)
93 {
94 	struct tcp_options_received tmp_opt;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 
98 	tmp_opt.saw_tstamp = 0;
99 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101 
102 		if (tmp_opt.saw_tstamp) {
103 			if (tmp_opt.rcv_tsecr)
104 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return tcp_timewait_check_oow_rate_limit(
120 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121 
122 		if (th->rst)
123 			goto kill;
124 
125 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126 			return TCP_TW_RST;
127 
128 		/* Dup ACK? */
129 		if (!th->ack ||
130 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132 			inet_twsk_put(tw);
133 			return TCP_TW_SUCCESS;
134 		}
135 
136 		/* New data or FIN. If new data arrive after half-duplex close,
137 		 * reset.
138 		 */
139 		if (!th->fin ||
140 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141 			return TCP_TW_RST;
142 
143 		/* FIN arrived, enter true time-wait state. */
144 		tw->tw_substate	  = TCP_TIME_WAIT;
145 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146 		if (tmp_opt.saw_tstamp) {
147 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
148 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149 		}
150 
151 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152 		return TCP_TW_ACK;
153 	}
154 
155 	/*
156 	 *	Now real TIME-WAIT state.
157 	 *
158 	 *	RFC 1122:
159 	 *	"When a connection is [...] on TIME-WAIT state [...]
160 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161 	 *	reopen the connection directly, if it:
162 	 *
163 	 *	(1)  assigns its initial sequence number for the new
164 	 *	connection to be larger than the largest sequence
165 	 *	number it used on the previous connection incarnation,
166 	 *	and
167 	 *
168 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169 	 *	to be an old duplicate".
170 	 */
171 
172 	if (!paws_reject &&
173 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175 		/* In window segment, it may be only reset or bare ack. */
176 
177 		if (th->rst) {
178 			/* This is TIME_WAIT assassination, in two flavors.
179 			 * Oh well... nobody has a sufficient solution to this
180 			 * protocol bug yet.
181 			 */
182 			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183 kill:
184 				inet_twsk_deschedule_put(tw);
185 				return TCP_TW_SUCCESS;
186 			}
187 		} else {
188 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189 		}
190 
191 		if (tmp_opt.saw_tstamp) {
192 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
193 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
194 		}
195 
196 		inet_twsk_put(tw);
197 		return TCP_TW_SUCCESS;
198 	}
199 
200 	/* Out of window segment.
201 
202 	   All the segments are ACKed immediately.
203 
204 	   The only exception is new SYN. We accept it, if it is
205 	   not old duplicate and we are not in danger to be killed
206 	   by delayed old duplicates. RFC check is that it has
207 	   newer sequence number works at rates <40Mbit/sec.
208 	   However, if paws works, it is reliable AND even more,
209 	   we even may relax silly seq space cutoff.
210 
211 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
212 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
213 	   we must return socket to time-wait state. It is not good,
214 	   but not fatal yet.
215 	 */
216 
217 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
218 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
219 	     (tmp_opt.saw_tstamp &&
220 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
221 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
222 		if (isn == 0)
223 			isn++;
224 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
225 		return TCP_TW_SYN;
226 	}
227 
228 	if (paws_reject)
229 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
230 
231 	if (!th->rst) {
232 		/* In this case we must reset the TIMEWAIT timer.
233 		 *
234 		 * If it is ACKless SYN it may be both old duplicate
235 		 * and new good SYN with random sequence number <rcv_nxt.
236 		 * Do not reschedule in the last case.
237 		 */
238 		if (paws_reject || th->ack)
239 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
240 
241 		return tcp_timewait_check_oow_rate_limit(
242 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
243 	}
244 	inet_twsk_put(tw);
245 	return TCP_TW_SUCCESS;
246 }
247 EXPORT_SYMBOL(tcp_timewait_state_process);
248 
249 /*
250  * Move a socket to time-wait or dead fin-wait-2 state.
251  */
252 void tcp_time_wait(struct sock *sk, int state, int timeo)
253 {
254 	const struct inet_connection_sock *icsk = inet_csk(sk);
255 	const struct tcp_sock *tp = tcp_sk(sk);
256 	struct inet_timewait_sock *tw;
257 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
258 
259 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
260 
261 	if (tw) {
262 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
263 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
264 		struct inet_sock *inet = inet_sk(sk);
265 
266 		tw->tw_transparent	= inet->transparent;
267 		tw->tw_mark		= sk->sk_mark;
268 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
269 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
270 		tcptw->tw_snd_nxt	= tp->snd_nxt;
271 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
272 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
273 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
274 		tcptw->tw_ts_offset	= tp->tsoffset;
275 		tcptw->tw_last_oow_ack_time = 0;
276 
277 #if IS_ENABLED(CONFIG_IPV6)
278 		if (tw->tw_family == PF_INET6) {
279 			struct ipv6_pinfo *np = inet6_sk(sk);
280 
281 			tw->tw_v6_daddr = sk->sk_v6_daddr;
282 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
283 			tw->tw_tclass = np->tclass;
284 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
285 			tw->tw_ipv6only = sk->sk_ipv6only;
286 		}
287 #endif
288 
289 #ifdef CONFIG_TCP_MD5SIG
290 		/*
291 		 * The timewait bucket does not have the key DB from the
292 		 * sock structure. We just make a quick copy of the
293 		 * md5 key being used (if indeed we are using one)
294 		 * so the timewait ack generating code has the key.
295 		 */
296 		do {
297 			struct tcp_md5sig_key *key;
298 			tcptw->tw_md5_key = NULL;
299 			key = tp->af_specific->md5_lookup(sk, sk);
300 			if (key) {
301 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
302 				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
303 			}
304 		} while (0);
305 #endif
306 
307 		/* Get the TIME_WAIT timeout firing. */
308 		if (timeo < rto)
309 			timeo = rto;
310 
311 		if (state == TCP_TIME_WAIT)
312 			timeo = TCP_TIMEWAIT_LEN;
313 
314 		/* tw_timer is pinned, so we need to make sure BH are disabled
315 		 * in following section, otherwise timer handler could run before
316 		 * we complete the initialization.
317 		 */
318 		local_bh_disable();
319 		inet_twsk_schedule(tw, timeo);
320 		/* Linkage updates.
321 		 * Note that access to tw after this point is illegal.
322 		 */
323 		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
324 		local_bh_enable();
325 	} else {
326 		/* Sorry, if we're out of memory, just CLOSE this
327 		 * socket up.  We've got bigger problems than
328 		 * non-graceful socket closings.
329 		 */
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
331 	}
332 
333 	tcp_update_metrics(sk);
334 	tcp_done(sk);
335 }
336 EXPORT_SYMBOL(tcp_time_wait);
337 
338 void tcp_twsk_destructor(struct sock *sk)
339 {
340 #ifdef CONFIG_TCP_MD5SIG
341 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
342 
343 	if (twsk->tw_md5_key)
344 		kfree_rcu(twsk->tw_md5_key, rcu);
345 #endif
346 }
347 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
348 
349 /* Warning : This function is called without sk_listener being locked.
350  * Be sure to read socket fields once, as their value could change under us.
351  */
352 void tcp_openreq_init_rwin(struct request_sock *req,
353 			   const struct sock *sk_listener,
354 			   const struct dst_entry *dst)
355 {
356 	struct inet_request_sock *ireq = inet_rsk(req);
357 	const struct tcp_sock *tp = tcp_sk(sk_listener);
358 	int full_space = tcp_full_space(sk_listener);
359 	u32 window_clamp;
360 	__u8 rcv_wscale;
361 	u32 rcv_wnd;
362 	int mss;
363 
364 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
365 	window_clamp = READ_ONCE(tp->window_clamp);
366 	/* Set this up on the first call only */
367 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
368 
369 	/* limit the window selection if the user enforce a smaller rx buffer */
370 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
371 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
372 		req->rsk_window_clamp = full_space;
373 
374 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
375 	if (rcv_wnd == 0)
376 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
377 	else if (full_space < rcv_wnd * mss)
378 		full_space = rcv_wnd * mss;
379 
380 	/* tcp_full_space because it is guaranteed to be the first packet */
381 	tcp_select_initial_window(sk_listener, full_space,
382 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
383 		&req->rsk_rcv_wnd,
384 		&req->rsk_window_clamp,
385 		ireq->wscale_ok,
386 		&rcv_wscale,
387 		rcv_wnd);
388 	ireq->rcv_wscale = rcv_wscale;
389 }
390 EXPORT_SYMBOL(tcp_openreq_init_rwin);
391 
392 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
393 				  const struct request_sock *req)
394 {
395 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
396 }
397 
398 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
399 {
400 	struct inet_connection_sock *icsk = inet_csk(sk);
401 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
402 	bool ca_got_dst = false;
403 
404 	if (ca_key != TCP_CA_UNSPEC) {
405 		const struct tcp_congestion_ops *ca;
406 
407 		rcu_read_lock();
408 		ca = tcp_ca_find_key(ca_key);
409 		if (likely(ca && try_module_get(ca->owner))) {
410 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
411 			icsk->icsk_ca_ops = ca;
412 			ca_got_dst = true;
413 		}
414 		rcu_read_unlock();
415 	}
416 
417 	/* If no valid choice made yet, assign current system default ca. */
418 	if (!ca_got_dst &&
419 	    (!icsk->icsk_ca_setsockopt ||
420 	     !try_module_get(icsk->icsk_ca_ops->owner)))
421 		tcp_assign_congestion_control(sk);
422 
423 	tcp_set_ca_state(sk, TCP_CA_Open);
424 }
425 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
426 
427 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
428 				    struct request_sock *req,
429 				    struct tcp_sock *newtp)
430 {
431 #if IS_ENABLED(CONFIG_SMC)
432 	struct inet_request_sock *ireq;
433 
434 	if (static_branch_unlikely(&tcp_have_smc)) {
435 		ireq = inet_rsk(req);
436 		if (oldtp->syn_smc && !ireq->smc_ok)
437 			newtp->syn_smc = 0;
438 	}
439 #endif
440 }
441 
442 /* This is not only more efficient than what we used to do, it eliminates
443  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
444  *
445  * Actually, we could lots of memory writes here. tp of listening
446  * socket contains all necessary default parameters.
447  */
448 struct sock *tcp_create_openreq_child(const struct sock *sk,
449 				      struct request_sock *req,
450 				      struct sk_buff *skb)
451 {
452 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
453 	const struct inet_request_sock *ireq = inet_rsk(req);
454 	struct tcp_request_sock *treq = tcp_rsk(req);
455 	struct inet_connection_sock *newicsk;
456 	struct tcp_sock *oldtp, *newtp;
457 
458 	if (!newsk)
459 		return NULL;
460 
461 	newicsk = inet_csk(newsk);
462 	newtp = tcp_sk(newsk);
463 	oldtp = tcp_sk(sk);
464 
465 	smc_check_reset_syn_req(oldtp, req, newtp);
466 
467 	/* Now setup tcp_sock */
468 	newtp->pred_flags = 0;
469 
470 	newtp->rcv_wup = newtp->copied_seq =
471 	newtp->rcv_nxt = treq->rcv_isn + 1;
472 	newtp->segs_in = 1;
473 
474 	newtp->snd_sml = newtp->snd_una =
475 	newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
476 
477 	INIT_LIST_HEAD(&newtp->tsq_node);
478 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
479 
480 	tcp_init_wl(newtp, treq->rcv_isn);
481 
482 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
483 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
484 
485 	newtp->lsndtime = tcp_jiffies32;
486 	newsk->sk_txhash = treq->txhash;
487 	newtp->total_retrans = req->num_retrans;
488 
489 	tcp_init_xmit_timers(newsk);
490 	newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
491 
492 	if (sock_flag(newsk, SOCK_KEEPOPEN))
493 		inet_csk_reset_keepalive_timer(newsk,
494 					       keepalive_time_when(newtp));
495 
496 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
497 	newtp->rx_opt.sack_ok = ireq->sack_ok;
498 	newtp->window_clamp = req->rsk_window_clamp;
499 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
500 	newtp->rcv_wnd = req->rsk_rcv_wnd;
501 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
502 	if (newtp->rx_opt.wscale_ok) {
503 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
504 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
505 	} else {
506 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
507 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
508 	}
509 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
510 	newtp->max_window = newtp->snd_wnd;
511 
512 	if (newtp->rx_opt.tstamp_ok) {
513 		newtp->rx_opt.ts_recent = req->ts_recent;
514 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
515 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
516 	} else {
517 		newtp->rx_opt.ts_recent_stamp = 0;
518 		newtp->tcp_header_len = sizeof(struct tcphdr);
519 	}
520 	newtp->tsoffset = treq->ts_off;
521 #ifdef CONFIG_TCP_MD5SIG
522 	newtp->md5sig_info = NULL;	/*XXX*/
523 	if (newtp->af_specific->md5_lookup(sk, newsk))
524 		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
525 #endif
526 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
527 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
528 	newtp->rx_opt.mss_clamp = req->mss;
529 	tcp_ecn_openreq_child(newtp, req);
530 	newtp->fastopen_req = NULL;
531 	newtp->fastopen_rsk = NULL;
532 
533 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
534 
535 	return newsk;
536 }
537 EXPORT_SYMBOL(tcp_create_openreq_child);
538 
539 /*
540  * Process an incoming packet for SYN_RECV sockets represented as a
541  * request_sock. Normally sk is the listener socket but for TFO it
542  * points to the child socket.
543  *
544  * XXX (TFO) - The current impl contains a special check for ack
545  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
546  *
547  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
548  */
549 
550 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
551 			   struct request_sock *req,
552 			   bool fastopen, bool *req_stolen)
553 {
554 	struct tcp_options_received tmp_opt;
555 	struct sock *child;
556 	const struct tcphdr *th = tcp_hdr(skb);
557 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
558 	bool paws_reject = false;
559 	bool own_req;
560 
561 	tmp_opt.saw_tstamp = 0;
562 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
563 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
564 
565 		if (tmp_opt.saw_tstamp) {
566 			tmp_opt.ts_recent = req->ts_recent;
567 			if (tmp_opt.rcv_tsecr)
568 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
569 			/* We do not store true stamp, but it is not required,
570 			 * it can be estimated (approximately)
571 			 * from another data.
572 			 */
573 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
574 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
575 		}
576 	}
577 
578 	/* Check for pure retransmitted SYN. */
579 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
580 	    flg == TCP_FLAG_SYN &&
581 	    !paws_reject) {
582 		/*
583 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
584 		 * this case on figure 6 and figure 8, but formal
585 		 * protocol description says NOTHING.
586 		 * To be more exact, it says that we should send ACK,
587 		 * because this segment (at least, if it has no data)
588 		 * is out of window.
589 		 *
590 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
591 		 *  describe SYN-RECV state. All the description
592 		 *  is wrong, we cannot believe to it and should
593 		 *  rely only on common sense and implementation
594 		 *  experience.
595 		 *
596 		 * Enforce "SYN-ACK" according to figure 8, figure 6
597 		 * of RFC793, fixed by RFC1122.
598 		 *
599 		 * Note that even if there is new data in the SYN packet
600 		 * they will be thrown away too.
601 		 *
602 		 * Reset timer after retransmitting SYNACK, similar to
603 		 * the idea of fast retransmit in recovery.
604 		 */
605 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
606 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
607 					  &tcp_rsk(req)->last_oow_ack_time) &&
608 
609 		    !inet_rtx_syn_ack(sk, req)) {
610 			unsigned long expires = jiffies;
611 
612 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
613 				       TCP_RTO_MAX);
614 			if (!fastopen)
615 				mod_timer_pending(&req->rsk_timer, expires);
616 			else
617 				req->rsk_timer.expires = expires;
618 		}
619 		return NULL;
620 	}
621 
622 	/* Further reproduces section "SEGMENT ARRIVES"
623 	   for state SYN-RECEIVED of RFC793.
624 	   It is broken, however, it does not work only
625 	   when SYNs are crossed.
626 
627 	   You would think that SYN crossing is impossible here, since
628 	   we should have a SYN_SENT socket (from connect()) on our end,
629 	   but this is not true if the crossed SYNs were sent to both
630 	   ends by a malicious third party.  We must defend against this,
631 	   and to do that we first verify the ACK (as per RFC793, page
632 	   36) and reset if it is invalid.  Is this a true full defense?
633 	   To convince ourselves, let us consider a way in which the ACK
634 	   test can still pass in this 'malicious crossed SYNs' case.
635 	   Malicious sender sends identical SYNs (and thus identical sequence
636 	   numbers) to both A and B:
637 
638 		A: gets SYN, seq=7
639 		B: gets SYN, seq=7
640 
641 	   By our good fortune, both A and B select the same initial
642 	   send sequence number of seven :-)
643 
644 		A: sends SYN|ACK, seq=7, ack_seq=8
645 		B: sends SYN|ACK, seq=7, ack_seq=8
646 
647 	   So we are now A eating this SYN|ACK, ACK test passes.  So
648 	   does sequence test, SYN is truncated, and thus we consider
649 	   it a bare ACK.
650 
651 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
652 	   bare ACK.  Otherwise, we create an established connection.  Both
653 	   ends (listening sockets) accept the new incoming connection and try
654 	   to talk to each other. 8-)
655 
656 	   Note: This case is both harmless, and rare.  Possibility is about the
657 	   same as us discovering intelligent life on another plant tomorrow.
658 
659 	   But generally, we should (RFC lies!) to accept ACK
660 	   from SYNACK both here and in tcp_rcv_state_process().
661 	   tcp_rcv_state_process() does not, hence, we do not too.
662 
663 	   Note that the case is absolutely generic:
664 	   we cannot optimize anything here without
665 	   violating protocol. All the checks must be made
666 	   before attempt to create socket.
667 	 */
668 
669 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
670 	 *                  and the incoming segment acknowledges something not yet
671 	 *                  sent (the segment carries an unacceptable ACK) ...
672 	 *                  a reset is sent."
673 	 *
674 	 * Invalid ACK: reset will be sent by listening socket.
675 	 * Note that the ACK validity check for a Fast Open socket is done
676 	 * elsewhere and is checked directly against the child socket rather
677 	 * than req because user data may have been sent out.
678 	 */
679 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
680 	    (TCP_SKB_CB(skb)->ack_seq !=
681 	     tcp_rsk(req)->snt_isn + 1))
682 		return sk;
683 
684 	/* Also, it would be not so bad idea to check rcv_tsecr, which
685 	 * is essentially ACK extension and too early or too late values
686 	 * should cause reset in unsynchronized states.
687 	 */
688 
689 	/* RFC793: "first check sequence number". */
690 
691 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
692 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
693 		/* Out of window: send ACK and drop. */
694 		if (!(flg & TCP_FLAG_RST) &&
695 		    !tcp_oow_rate_limited(sock_net(sk), skb,
696 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
697 					  &tcp_rsk(req)->last_oow_ack_time))
698 			req->rsk_ops->send_ack(sk, skb, req);
699 		if (paws_reject)
700 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
701 		return NULL;
702 	}
703 
704 	/* In sequence, PAWS is OK. */
705 
706 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
707 		req->ts_recent = tmp_opt.rcv_tsval;
708 
709 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
710 		/* Truncate SYN, it is out of window starting
711 		   at tcp_rsk(req)->rcv_isn + 1. */
712 		flg &= ~TCP_FLAG_SYN;
713 	}
714 
715 	/* RFC793: "second check the RST bit" and
716 	 *	   "fourth, check the SYN bit"
717 	 */
718 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
719 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
720 		goto embryonic_reset;
721 	}
722 
723 	/* ACK sequence verified above, just make sure ACK is
724 	 * set.  If ACK not set, just silently drop the packet.
725 	 *
726 	 * XXX (TFO) - if we ever allow "data after SYN", the
727 	 * following check needs to be removed.
728 	 */
729 	if (!(flg & TCP_FLAG_ACK))
730 		return NULL;
731 
732 	/* For Fast Open no more processing is needed (sk is the
733 	 * child socket).
734 	 */
735 	if (fastopen)
736 		return sk;
737 
738 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
739 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
740 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
741 		inet_rsk(req)->acked = 1;
742 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
743 		return NULL;
744 	}
745 
746 	/* OK, ACK is valid, create big socket and
747 	 * feed this segment to it. It will repeat all
748 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
749 	 * ESTABLISHED STATE. If it will be dropped after
750 	 * socket is created, wait for troubles.
751 	 */
752 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
753 							 req, &own_req);
754 	if (!child)
755 		goto listen_overflow;
756 
757 	sock_rps_save_rxhash(child, skb);
758 	tcp_synack_rtt_meas(child, req);
759 	*req_stolen = !own_req;
760 	return inet_csk_complete_hashdance(sk, child, req, own_req);
761 
762 listen_overflow:
763 	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
764 		inet_rsk(req)->acked = 1;
765 		return NULL;
766 	}
767 
768 embryonic_reset:
769 	if (!(flg & TCP_FLAG_RST)) {
770 		/* Received a bad SYN pkt - for TFO We try not to reset
771 		 * the local connection unless it's really necessary to
772 		 * avoid becoming vulnerable to outside attack aiming at
773 		 * resetting legit local connections.
774 		 */
775 		req->rsk_ops->send_reset(sk, skb);
776 	} else if (fastopen) { /* received a valid RST pkt */
777 		reqsk_fastopen_remove(sk, req, true);
778 		tcp_reset(sk);
779 	}
780 	if (!fastopen) {
781 		inet_csk_reqsk_queue_drop(sk, req);
782 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
783 	}
784 	return NULL;
785 }
786 EXPORT_SYMBOL(tcp_check_req);
787 
788 /*
789  * Queue segment on the new socket if the new socket is active,
790  * otherwise we just shortcircuit this and continue with
791  * the new socket.
792  *
793  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
794  * when entering. But other states are possible due to a race condition
795  * where after __inet_lookup_established() fails but before the listener
796  * locked is obtained, other packets cause the same connection to
797  * be created.
798  */
799 
800 int tcp_child_process(struct sock *parent, struct sock *child,
801 		      struct sk_buff *skb)
802 {
803 	int ret = 0;
804 	int state = child->sk_state;
805 
806 	/* record NAPI ID of child */
807 	sk_mark_napi_id(child, skb);
808 
809 	tcp_segs_in(tcp_sk(child), skb);
810 	if (!sock_owned_by_user(child)) {
811 		ret = tcp_rcv_state_process(child, skb);
812 		/* Wakeup parent, send SIGIO */
813 		if (state == TCP_SYN_RECV && child->sk_state != state)
814 			parent->sk_data_ready(parent);
815 	} else {
816 		/* Alas, it is possible again, because we do lookup
817 		 * in main socket hash table and lock on listening
818 		 * socket does not protect us more.
819 		 */
820 		__sk_add_backlog(child, skb);
821 	}
822 
823 	bh_unlock_sock(child);
824 	sock_put(child);
825 	return ret;
826 }
827 EXPORT_SYMBOL(tcp_child_process);
828