xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 7aacf86b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 #include <net/busy_poll.h>
30 
31 int sysctl_tcp_abort_on_overflow __read_mostly;
32 
33 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
34 {
35 	if (seq == s_win)
36 		return true;
37 	if (after(end_seq, s_win) && before(seq, e_win))
38 		return true;
39 	return seq == e_win && seq == end_seq;
40 }
41 
42 static enum tcp_tw_status
43 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
44 				  const struct sk_buff *skb, int mib_idx)
45 {
46 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
47 
48 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
49 				  &tcptw->tw_last_oow_ack_time)) {
50 		/* Send ACK. Note, we do not put the bucket,
51 		 * it will be released by caller.
52 		 */
53 		return TCP_TW_ACK;
54 	}
55 
56 	/* We are rate-limiting, so just release the tw sock and drop skb. */
57 	inet_twsk_put(tw);
58 	return TCP_TW_SUCCESS;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 	bool paws_reject = false;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			if (tmp_opt.rcv_tsecr)
105 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109 		}
110 	}
111 
112 	if (tw->tw_substate == TCP_FIN_WAIT2) {
113 		/* Just repeat all the checks of tcp_rcv_state_process() */
114 
115 		/* Out of window, send ACK */
116 		if (paws_reject ||
117 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118 				   tcptw->tw_rcv_nxt,
119 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120 			return tcp_timewait_check_oow_rate_limit(
121 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122 
123 		if (th->rst)
124 			goto kill;
125 
126 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127 			return TCP_TW_RST;
128 
129 		/* Dup ACK? */
130 		if (!th->ack ||
131 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133 			inet_twsk_put(tw);
134 			return TCP_TW_SUCCESS;
135 		}
136 
137 		/* New data or FIN. If new data arrive after half-duplex close,
138 		 * reset.
139 		 */
140 		if (!th->fin ||
141 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142 			return TCP_TW_RST;
143 
144 		/* FIN arrived, enter true time-wait state. */
145 		tw->tw_substate	  = TCP_TIME_WAIT;
146 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 		if (tmp_opt.saw_tstamp) {
148 			tcptw->tw_ts_recent_stamp = get_seconds();
149 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150 		}
151 
152 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
153 		return TCP_TW_ACK;
154 	}
155 
156 	/*
157 	 *	Now real TIME-WAIT state.
158 	 *
159 	 *	RFC 1122:
160 	 *	"When a connection is [...] on TIME-WAIT state [...]
161 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
162 	 *	reopen the connection directly, if it:
163 	 *
164 	 *	(1)  assigns its initial sequence number for the new
165 	 *	connection to be larger than the largest sequence
166 	 *	number it used on the previous connection incarnation,
167 	 *	and
168 	 *
169 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
170 	 *	to be an old duplicate".
171 	 */
172 
173 	if (!paws_reject &&
174 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176 		/* In window segment, it may be only reset or bare ack. */
177 
178 		if (th->rst) {
179 			/* This is TIME_WAIT assassination, in two flavors.
180 			 * Oh well... nobody has a sufficient solution to this
181 			 * protocol bug yet.
182 			 */
183 			if (sysctl_tcp_rfc1337 == 0) {
184 kill:
185 				inet_twsk_deschedule_put(tw);
186 				return TCP_TW_SUCCESS;
187 			}
188 		}
189 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190 
191 		if (tmp_opt.saw_tstamp) {
192 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
193 			tcptw->tw_ts_recent_stamp = get_seconds();
194 		}
195 
196 		inet_twsk_put(tw);
197 		return TCP_TW_SUCCESS;
198 	}
199 
200 	/* Out of window segment.
201 
202 	   All the segments are ACKed immediately.
203 
204 	   The only exception is new SYN. We accept it, if it is
205 	   not old duplicate and we are not in danger to be killed
206 	   by delayed old duplicates. RFC check is that it has
207 	   newer sequence number works at rates <40Mbit/sec.
208 	   However, if paws works, it is reliable AND even more,
209 	   we even may relax silly seq space cutoff.
210 
211 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
212 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
213 	   we must return socket to time-wait state. It is not good,
214 	   but not fatal yet.
215 	 */
216 
217 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
218 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
219 	     (tmp_opt.saw_tstamp &&
220 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
221 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
222 		if (isn == 0)
223 			isn++;
224 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
225 		return TCP_TW_SYN;
226 	}
227 
228 	if (paws_reject)
229 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
230 
231 	if (!th->rst) {
232 		/* In this case we must reset the TIMEWAIT timer.
233 		 *
234 		 * If it is ACKless SYN it may be both old duplicate
235 		 * and new good SYN with random sequence number <rcv_nxt.
236 		 * Do not reschedule in the last case.
237 		 */
238 		if (paws_reject || th->ack)
239 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
240 
241 		return tcp_timewait_check_oow_rate_limit(
242 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
243 	}
244 	inet_twsk_put(tw);
245 	return TCP_TW_SUCCESS;
246 }
247 EXPORT_SYMBOL(tcp_timewait_state_process);
248 
249 /*
250  * Move a socket to time-wait or dead fin-wait-2 state.
251  */
252 void tcp_time_wait(struct sock *sk, int state, int timeo)
253 {
254 	const struct inet_connection_sock *icsk = inet_csk(sk);
255 	const struct tcp_sock *tp = tcp_sk(sk);
256 	struct inet_timewait_sock *tw;
257 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
258 
259 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
260 
261 	if (tw) {
262 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
263 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
264 		struct inet_sock *inet = inet_sk(sk);
265 
266 		tw->tw_transparent	= inet->transparent;
267 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
268 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
269 		tcptw->tw_snd_nxt	= tp->snd_nxt;
270 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
271 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
272 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
273 		tcptw->tw_ts_offset	= tp->tsoffset;
274 		tcptw->tw_last_oow_ack_time = 0;
275 
276 #if IS_ENABLED(CONFIG_IPV6)
277 		if (tw->tw_family == PF_INET6) {
278 			struct ipv6_pinfo *np = inet6_sk(sk);
279 
280 			tw->tw_v6_daddr = sk->sk_v6_daddr;
281 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
282 			tw->tw_tclass = np->tclass;
283 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
284 			tw->tw_ipv6only = sk->sk_ipv6only;
285 		}
286 #endif
287 
288 #ifdef CONFIG_TCP_MD5SIG
289 		/*
290 		 * The timewait bucket does not have the key DB from the
291 		 * sock structure. We just make a quick copy of the
292 		 * md5 key being used (if indeed we are using one)
293 		 * so the timewait ack generating code has the key.
294 		 */
295 		do {
296 			struct tcp_md5sig_key *key;
297 			tcptw->tw_md5_key = NULL;
298 			key = tp->af_specific->md5_lookup(sk, sk);
299 			if (key) {
300 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
301 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
302 					BUG();
303 			}
304 		} while (0);
305 #endif
306 
307 		/* Get the TIME_WAIT timeout firing. */
308 		if (timeo < rto)
309 			timeo = rto;
310 
311 		tw->tw_timeout = TCP_TIMEWAIT_LEN;
312 		if (state == TCP_TIME_WAIT)
313 			timeo = TCP_TIMEWAIT_LEN;
314 
315 		inet_twsk_schedule(tw, timeo);
316 		/* Linkage updates. */
317 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
318 		inet_twsk_put(tw);
319 	} else {
320 		/* Sorry, if we're out of memory, just CLOSE this
321 		 * socket up.  We've got bigger problems than
322 		 * non-graceful socket closings.
323 		 */
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
325 	}
326 
327 	tcp_update_metrics(sk);
328 	tcp_done(sk);
329 }
330 
331 void tcp_twsk_destructor(struct sock *sk)
332 {
333 #ifdef CONFIG_TCP_MD5SIG
334 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
335 
336 	if (twsk->tw_md5_key)
337 		kfree_rcu(twsk->tw_md5_key, rcu);
338 #endif
339 }
340 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
341 
342 /* Warning : This function is called without sk_listener being locked.
343  * Be sure to read socket fields once, as their value could change under us.
344  */
345 void tcp_openreq_init_rwin(struct request_sock *req,
346 			   const struct sock *sk_listener,
347 			   const struct dst_entry *dst)
348 {
349 	struct inet_request_sock *ireq = inet_rsk(req);
350 	const struct tcp_sock *tp = tcp_sk(sk_listener);
351 	int full_space = tcp_full_space(sk_listener);
352 	u32 window_clamp;
353 	__u8 rcv_wscale;
354 	u32 rcv_wnd;
355 	int mss;
356 
357 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
358 	window_clamp = READ_ONCE(tp->window_clamp);
359 	/* Set this up on the first call only */
360 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
361 
362 	/* limit the window selection if the user enforce a smaller rx buffer */
363 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
364 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
365 		req->rsk_window_clamp = full_space;
366 
367 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
368 	if (rcv_wnd == 0)
369 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
370 	else if (full_space < rcv_wnd * mss)
371 		full_space = rcv_wnd * mss;
372 
373 	/* tcp_full_space because it is guaranteed to be the first packet */
374 	tcp_select_initial_window(full_space,
375 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
376 		&req->rsk_rcv_wnd,
377 		&req->rsk_window_clamp,
378 		ireq->wscale_ok,
379 		&rcv_wscale,
380 		rcv_wnd);
381 	ireq->rcv_wscale = rcv_wscale;
382 }
383 EXPORT_SYMBOL(tcp_openreq_init_rwin);
384 
385 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
386 				  const struct request_sock *req)
387 {
388 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
389 }
390 
391 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
392 {
393 	struct inet_connection_sock *icsk = inet_csk(sk);
394 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
395 	bool ca_got_dst = false;
396 
397 	if (ca_key != TCP_CA_UNSPEC) {
398 		const struct tcp_congestion_ops *ca;
399 
400 		rcu_read_lock();
401 		ca = tcp_ca_find_key(ca_key);
402 		if (likely(ca && try_module_get(ca->owner))) {
403 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
404 			icsk->icsk_ca_ops = ca;
405 			ca_got_dst = true;
406 		}
407 		rcu_read_unlock();
408 	}
409 
410 	/* If no valid choice made yet, assign current system default ca. */
411 	if (!ca_got_dst &&
412 	    (!icsk->icsk_ca_setsockopt ||
413 	     !try_module_get(icsk->icsk_ca_ops->owner)))
414 		tcp_assign_congestion_control(sk);
415 
416 	tcp_set_ca_state(sk, TCP_CA_Open);
417 }
418 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
419 
420 /* This is not only more efficient than what we used to do, it eliminates
421  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422  *
423  * Actually, we could lots of memory writes here. tp of listening
424  * socket contains all necessary default parameters.
425  */
426 struct sock *tcp_create_openreq_child(const struct sock *sk,
427 				      struct request_sock *req,
428 				      struct sk_buff *skb)
429 {
430 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
431 
432 	if (newsk) {
433 		const struct inet_request_sock *ireq = inet_rsk(req);
434 		struct tcp_request_sock *treq = tcp_rsk(req);
435 		struct inet_connection_sock *newicsk = inet_csk(newsk);
436 		struct tcp_sock *newtp = tcp_sk(newsk);
437 
438 		/* Now setup tcp_sock */
439 		newtp->pred_flags = 0;
440 
441 		newtp->rcv_wup = newtp->copied_seq =
442 		newtp->rcv_nxt = treq->rcv_isn + 1;
443 		newtp->segs_in = 1;
444 
445 		newtp->snd_sml = newtp->snd_una =
446 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
447 
448 		tcp_prequeue_init(newtp);
449 		INIT_LIST_HEAD(&newtp->tsq_node);
450 
451 		tcp_init_wl(newtp, treq->rcv_isn);
452 
453 		newtp->srtt_us = 0;
454 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
455 		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
456 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
457 		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
458 
459 		newtp->packets_out = 0;
460 		newtp->retrans_out = 0;
461 		newtp->sacked_out = 0;
462 		newtp->fackets_out = 0;
463 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
464 		newtp->tlp_high_seq = 0;
465 		newtp->lsndtime = tcp_jiffies32;
466 		newsk->sk_txhash = treq->txhash;
467 		newtp->last_oow_ack_time = 0;
468 		newtp->total_retrans = req->num_retrans;
469 
470 		/* So many TCP implementations out there (incorrectly) count the
471 		 * initial SYN frame in their delayed-ACK and congestion control
472 		 * algorithms that we must have the following bandaid to talk
473 		 * efficiently to them.  -DaveM
474 		 */
475 		newtp->snd_cwnd = TCP_INIT_CWND;
476 		newtp->snd_cwnd_cnt = 0;
477 
478 		/* There's a bubble in the pipe until at least the first ACK. */
479 		newtp->app_limited = ~0U;
480 
481 		tcp_init_xmit_timers(newsk);
482 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
483 
484 		newtp->rx_opt.saw_tstamp = 0;
485 
486 		newtp->rx_opt.dsack = 0;
487 		newtp->rx_opt.num_sacks = 0;
488 
489 		newtp->urg_data = 0;
490 
491 		if (sock_flag(newsk, SOCK_KEEPOPEN))
492 			inet_csk_reset_keepalive_timer(newsk,
493 						       keepalive_time_when(newtp));
494 
495 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
496 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
497 			if (sysctl_tcp_fack)
498 				tcp_enable_fack(newtp);
499 		}
500 		newtp->window_clamp = req->rsk_window_clamp;
501 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
502 		newtp->rcv_wnd = req->rsk_rcv_wnd;
503 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
504 		if (newtp->rx_opt.wscale_ok) {
505 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
506 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
507 		} else {
508 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
509 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
510 		}
511 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
512 				  newtp->rx_opt.snd_wscale);
513 		newtp->max_window = newtp->snd_wnd;
514 
515 		if (newtp->rx_opt.tstamp_ok) {
516 			newtp->rx_opt.ts_recent = req->ts_recent;
517 			newtp->rx_opt.ts_recent_stamp = get_seconds();
518 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
519 		} else {
520 			newtp->rx_opt.ts_recent_stamp = 0;
521 			newtp->tcp_header_len = sizeof(struct tcphdr);
522 		}
523 		newtp->tsoffset = treq->ts_off;
524 #ifdef CONFIG_TCP_MD5SIG
525 		newtp->md5sig_info = NULL;	/*XXX*/
526 		if (newtp->af_specific->md5_lookup(sk, newsk))
527 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
528 #endif
529 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
530 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
531 		newtp->rx_opt.mss_clamp = req->mss;
532 		tcp_ecn_openreq_child(newtp, req);
533 		newtp->fastopen_req = NULL;
534 		newtp->fastopen_rsk = NULL;
535 		newtp->syn_data_acked = 0;
536 		newtp->rack.mstamp = 0;
537 		newtp->rack.advanced = 0;
538 
539 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
540 	}
541 	return newsk;
542 }
543 EXPORT_SYMBOL(tcp_create_openreq_child);
544 
545 /*
546  * Process an incoming packet for SYN_RECV sockets represented as a
547  * request_sock. Normally sk is the listener socket but for TFO it
548  * points to the child socket.
549  *
550  * XXX (TFO) - The current impl contains a special check for ack
551  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
552  *
553  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
554  */
555 
556 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
557 			   struct request_sock *req,
558 			   bool fastopen)
559 {
560 	struct tcp_options_received tmp_opt;
561 	struct sock *child;
562 	const struct tcphdr *th = tcp_hdr(skb);
563 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
564 	bool paws_reject = false;
565 	bool own_req;
566 
567 	tmp_opt.saw_tstamp = 0;
568 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
569 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
570 
571 		if (tmp_opt.saw_tstamp) {
572 			tmp_opt.ts_recent = req->ts_recent;
573 			if (tmp_opt.rcv_tsecr)
574 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
575 			/* We do not store true stamp, but it is not required,
576 			 * it can be estimated (approximately)
577 			 * from another data.
578 			 */
579 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
580 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
581 		}
582 	}
583 
584 	/* Check for pure retransmitted SYN. */
585 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
586 	    flg == TCP_FLAG_SYN &&
587 	    !paws_reject) {
588 		/*
589 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
590 		 * this case on figure 6 and figure 8, but formal
591 		 * protocol description says NOTHING.
592 		 * To be more exact, it says that we should send ACK,
593 		 * because this segment (at least, if it has no data)
594 		 * is out of window.
595 		 *
596 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
597 		 *  describe SYN-RECV state. All the description
598 		 *  is wrong, we cannot believe to it and should
599 		 *  rely only on common sense and implementation
600 		 *  experience.
601 		 *
602 		 * Enforce "SYN-ACK" according to figure 8, figure 6
603 		 * of RFC793, fixed by RFC1122.
604 		 *
605 		 * Note that even if there is new data in the SYN packet
606 		 * they will be thrown away too.
607 		 *
608 		 * Reset timer after retransmitting SYNACK, similar to
609 		 * the idea of fast retransmit in recovery.
610 		 */
611 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
612 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
613 					  &tcp_rsk(req)->last_oow_ack_time) &&
614 
615 		    !inet_rtx_syn_ack(sk, req)) {
616 			unsigned long expires = jiffies;
617 
618 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
619 				       TCP_RTO_MAX);
620 			if (!fastopen)
621 				mod_timer_pending(&req->rsk_timer, expires);
622 			else
623 				req->rsk_timer.expires = expires;
624 		}
625 		return NULL;
626 	}
627 
628 	/* Further reproduces section "SEGMENT ARRIVES"
629 	   for state SYN-RECEIVED of RFC793.
630 	   It is broken, however, it does not work only
631 	   when SYNs are crossed.
632 
633 	   You would think that SYN crossing is impossible here, since
634 	   we should have a SYN_SENT socket (from connect()) on our end,
635 	   but this is not true if the crossed SYNs were sent to both
636 	   ends by a malicious third party.  We must defend against this,
637 	   and to do that we first verify the ACK (as per RFC793, page
638 	   36) and reset if it is invalid.  Is this a true full defense?
639 	   To convince ourselves, let us consider a way in which the ACK
640 	   test can still pass in this 'malicious crossed SYNs' case.
641 	   Malicious sender sends identical SYNs (and thus identical sequence
642 	   numbers) to both A and B:
643 
644 		A: gets SYN, seq=7
645 		B: gets SYN, seq=7
646 
647 	   By our good fortune, both A and B select the same initial
648 	   send sequence number of seven :-)
649 
650 		A: sends SYN|ACK, seq=7, ack_seq=8
651 		B: sends SYN|ACK, seq=7, ack_seq=8
652 
653 	   So we are now A eating this SYN|ACK, ACK test passes.  So
654 	   does sequence test, SYN is truncated, and thus we consider
655 	   it a bare ACK.
656 
657 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
658 	   bare ACK.  Otherwise, we create an established connection.  Both
659 	   ends (listening sockets) accept the new incoming connection and try
660 	   to talk to each other. 8-)
661 
662 	   Note: This case is both harmless, and rare.  Possibility is about the
663 	   same as us discovering intelligent life on another plant tomorrow.
664 
665 	   But generally, we should (RFC lies!) to accept ACK
666 	   from SYNACK both here and in tcp_rcv_state_process().
667 	   tcp_rcv_state_process() does not, hence, we do not too.
668 
669 	   Note that the case is absolutely generic:
670 	   we cannot optimize anything here without
671 	   violating protocol. All the checks must be made
672 	   before attempt to create socket.
673 	 */
674 
675 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
676 	 *                  and the incoming segment acknowledges something not yet
677 	 *                  sent (the segment carries an unacceptable ACK) ...
678 	 *                  a reset is sent."
679 	 *
680 	 * Invalid ACK: reset will be sent by listening socket.
681 	 * Note that the ACK validity check for a Fast Open socket is done
682 	 * elsewhere and is checked directly against the child socket rather
683 	 * than req because user data may have been sent out.
684 	 */
685 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
686 	    (TCP_SKB_CB(skb)->ack_seq !=
687 	     tcp_rsk(req)->snt_isn + 1))
688 		return sk;
689 
690 	/* Also, it would be not so bad idea to check rcv_tsecr, which
691 	 * is essentially ACK extension and too early or too late values
692 	 * should cause reset in unsynchronized states.
693 	 */
694 
695 	/* RFC793: "first check sequence number". */
696 
697 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
698 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
699 		/* Out of window: send ACK and drop. */
700 		if (!(flg & TCP_FLAG_RST) &&
701 		    !tcp_oow_rate_limited(sock_net(sk), skb,
702 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
703 					  &tcp_rsk(req)->last_oow_ack_time))
704 			req->rsk_ops->send_ack(sk, skb, req);
705 		if (paws_reject)
706 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
707 		return NULL;
708 	}
709 
710 	/* In sequence, PAWS is OK. */
711 
712 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
713 		req->ts_recent = tmp_opt.rcv_tsval;
714 
715 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
716 		/* Truncate SYN, it is out of window starting
717 		   at tcp_rsk(req)->rcv_isn + 1. */
718 		flg &= ~TCP_FLAG_SYN;
719 	}
720 
721 	/* RFC793: "second check the RST bit" and
722 	 *	   "fourth, check the SYN bit"
723 	 */
724 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
725 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
726 		goto embryonic_reset;
727 	}
728 
729 	/* ACK sequence verified above, just make sure ACK is
730 	 * set.  If ACK not set, just silently drop the packet.
731 	 *
732 	 * XXX (TFO) - if we ever allow "data after SYN", the
733 	 * following check needs to be removed.
734 	 */
735 	if (!(flg & TCP_FLAG_ACK))
736 		return NULL;
737 
738 	/* For Fast Open no more processing is needed (sk is the
739 	 * child socket).
740 	 */
741 	if (fastopen)
742 		return sk;
743 
744 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
745 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
746 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
747 		inet_rsk(req)->acked = 1;
748 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
749 		return NULL;
750 	}
751 
752 	/* OK, ACK is valid, create big socket and
753 	 * feed this segment to it. It will repeat all
754 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
755 	 * ESTABLISHED STATE. If it will be dropped after
756 	 * socket is created, wait for troubles.
757 	 */
758 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
759 							 req, &own_req);
760 	if (!child)
761 		goto listen_overflow;
762 
763 	sock_rps_save_rxhash(child, skb);
764 	tcp_synack_rtt_meas(child, req);
765 	return inet_csk_complete_hashdance(sk, child, req, own_req);
766 
767 listen_overflow:
768 	if (!sysctl_tcp_abort_on_overflow) {
769 		inet_rsk(req)->acked = 1;
770 		return NULL;
771 	}
772 
773 embryonic_reset:
774 	if (!(flg & TCP_FLAG_RST)) {
775 		/* Received a bad SYN pkt - for TFO We try not to reset
776 		 * the local connection unless it's really necessary to
777 		 * avoid becoming vulnerable to outside attack aiming at
778 		 * resetting legit local connections.
779 		 */
780 		req->rsk_ops->send_reset(sk, skb);
781 	} else if (fastopen) { /* received a valid RST pkt */
782 		reqsk_fastopen_remove(sk, req, true);
783 		tcp_reset(sk);
784 	}
785 	if (!fastopen) {
786 		inet_csk_reqsk_queue_drop(sk, req);
787 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
788 	}
789 	return NULL;
790 }
791 EXPORT_SYMBOL(tcp_check_req);
792 
793 /*
794  * Queue segment on the new socket if the new socket is active,
795  * otherwise we just shortcircuit this and continue with
796  * the new socket.
797  *
798  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
799  * when entering. But other states are possible due to a race condition
800  * where after __inet_lookup_established() fails but before the listener
801  * locked is obtained, other packets cause the same connection to
802  * be created.
803  */
804 
805 int tcp_child_process(struct sock *parent, struct sock *child,
806 		      struct sk_buff *skb)
807 {
808 	int ret = 0;
809 	int state = child->sk_state;
810 
811 	/* record NAPI ID of child */
812 	sk_mark_napi_id(child, skb);
813 
814 	tcp_segs_in(tcp_sk(child), skb);
815 	if (!sock_owned_by_user(child)) {
816 		ret = tcp_rcv_state_process(child, skb);
817 		/* Wakeup parent, send SIGIO */
818 		if (state == TCP_SYN_RECV && child->sk_state != state)
819 			parent->sk_data_ready(parent);
820 	} else {
821 		/* Alas, it is possible again, because we do lookup
822 		 * in main socket hash table and lock on listening
823 		 * socket does not protect us more.
824 		 */
825 		__sk_add_backlog(child, skb);
826 	}
827 
828 	bh_unlock_sock(child);
829 	sock_put(child);
830 	return ret;
831 }
832 EXPORT_SYMBOL(tcp_child_process);
833