xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 74a22e8f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <linux/static_key.h>
27 #include <net/tcp.h>
28 #include <net/inet_common.h>
29 #include <net/xfrm.h>
30 #include <net/busy_poll.h>
31 
32 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
33 {
34 	if (seq == s_win)
35 		return true;
36 	if (after(end_seq, s_win) && before(seq, e_win))
37 		return true;
38 	return seq == e_win && seq == end_seq;
39 }
40 
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
43 				  const struct sk_buff *skb, int mib_idx)
44 {
45 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
46 
47 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
48 				  &tcptw->tw_last_oow_ack_time)) {
49 		/* Send ACK. Note, we do not put the bucket,
50 		 * it will be released by caller.
51 		 */
52 		return TCP_TW_ACK;
53 	}
54 
55 	/* We are rate-limiting, so just release the tw sock and drop skb. */
56 	inet_twsk_put(tw);
57 	return TCP_TW_SUCCESS;
58 }
59 
60 /*
61  * * Main purpose of TIME-WAIT state is to close connection gracefully,
62  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63  *   (and, probably, tail of data) and one or more our ACKs are lost.
64  * * What is TIME-WAIT timeout? It is associated with maximal packet
65  *   lifetime in the internet, which results in wrong conclusion, that
66  *   it is set to catch "old duplicate segments" wandering out of their path.
67  *   It is not quite correct. This timeout is calculated so that it exceeds
68  *   maximal retransmission timeout enough to allow to lose one (or more)
69  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
70  * * When TIME-WAIT socket receives RST, it means that another end
71  *   finally closed and we are allowed to kill TIME-WAIT too.
72  * * Second purpose of TIME-WAIT is catching old duplicate segments.
73  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
74  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75  * * If we invented some more clever way to catch duplicates
76  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
77  *
78  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80  * from the very beginning.
81  *
82  * NOTE. With recycling (and later with fin-wait-2) TW bucket
83  * is _not_ stateless. It means, that strictly speaking we must
84  * spinlock it. I do not want! Well, probability of misbehaviour
85  * is ridiculously low and, seems, we could use some mb() tricks
86  * to avoid misread sequence numbers, states etc.  --ANK
87  *
88  * We don't need to initialize tmp_out.sack_ok as we don't use the results
89  */
90 enum tcp_tw_status
91 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
92 			   const struct tcphdr *th)
93 {
94 	struct tcp_options_received tmp_opt;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 
98 	tmp_opt.saw_tstamp = 0;
99 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101 
102 		if (tmp_opt.saw_tstamp) {
103 			if (tmp_opt.rcv_tsecr)
104 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return tcp_timewait_check_oow_rate_limit(
120 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121 
122 		if (th->rst)
123 			goto kill;
124 
125 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126 			return TCP_TW_RST;
127 
128 		/* Dup ACK? */
129 		if (!th->ack ||
130 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132 			inet_twsk_put(tw);
133 			return TCP_TW_SUCCESS;
134 		}
135 
136 		/* New data or FIN. If new data arrive after half-duplex close,
137 		 * reset.
138 		 */
139 		if (!th->fin ||
140 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141 			return TCP_TW_RST;
142 
143 		/* FIN arrived, enter true time-wait state. */
144 		tw->tw_substate	  = TCP_TIME_WAIT;
145 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146 		if (tmp_opt.saw_tstamp) {
147 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
148 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149 		}
150 
151 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152 		return TCP_TW_ACK;
153 	}
154 
155 	/*
156 	 *	Now real TIME-WAIT state.
157 	 *
158 	 *	RFC 1122:
159 	 *	"When a connection is [...] on TIME-WAIT state [...]
160 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161 	 *	reopen the connection directly, if it:
162 	 *
163 	 *	(1)  assigns its initial sequence number for the new
164 	 *	connection to be larger than the largest sequence
165 	 *	number it used on the previous connection incarnation,
166 	 *	and
167 	 *
168 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169 	 *	to be an old duplicate".
170 	 */
171 
172 	if (!paws_reject &&
173 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175 		/* In window segment, it may be only reset or bare ack. */
176 
177 		if (th->rst) {
178 			/* This is TIME_WAIT assassination, in two flavors.
179 			 * Oh well... nobody has a sufficient solution to this
180 			 * protocol bug yet.
181 			 */
182 			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183 kill:
184 				inet_twsk_deschedule_put(tw);
185 				return TCP_TW_SUCCESS;
186 			}
187 		} else {
188 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189 		}
190 
191 		if (tmp_opt.saw_tstamp) {
192 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
193 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
194 		}
195 
196 		inet_twsk_put(tw);
197 		return TCP_TW_SUCCESS;
198 	}
199 
200 	/* Out of window segment.
201 
202 	   All the segments are ACKed immediately.
203 
204 	   The only exception is new SYN. We accept it, if it is
205 	   not old duplicate and we are not in danger to be killed
206 	   by delayed old duplicates. RFC check is that it has
207 	   newer sequence number works at rates <40Mbit/sec.
208 	   However, if paws works, it is reliable AND even more,
209 	   we even may relax silly seq space cutoff.
210 
211 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
212 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
213 	   we must return socket to time-wait state. It is not good,
214 	   but not fatal yet.
215 	 */
216 
217 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
218 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
219 	     (tmp_opt.saw_tstamp &&
220 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
221 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
222 		if (isn == 0)
223 			isn++;
224 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
225 		return TCP_TW_SYN;
226 	}
227 
228 	if (paws_reject)
229 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
230 
231 	if (!th->rst) {
232 		/* In this case we must reset the TIMEWAIT timer.
233 		 *
234 		 * If it is ACKless SYN it may be both old duplicate
235 		 * and new good SYN with random sequence number <rcv_nxt.
236 		 * Do not reschedule in the last case.
237 		 */
238 		if (paws_reject || th->ack)
239 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
240 
241 		return tcp_timewait_check_oow_rate_limit(
242 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
243 	}
244 	inet_twsk_put(tw);
245 	return TCP_TW_SUCCESS;
246 }
247 EXPORT_SYMBOL(tcp_timewait_state_process);
248 
249 /*
250  * Move a socket to time-wait or dead fin-wait-2 state.
251  */
252 void tcp_time_wait(struct sock *sk, int state, int timeo)
253 {
254 	const struct inet_connection_sock *icsk = inet_csk(sk);
255 	const struct tcp_sock *tp = tcp_sk(sk);
256 	struct inet_timewait_sock *tw;
257 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
258 
259 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
260 
261 	if (tw) {
262 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
263 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
264 		struct inet_sock *inet = inet_sk(sk);
265 
266 		tw->tw_transparent	= inet->transparent;
267 		tw->tw_mark		= sk->sk_mark;
268 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
269 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
270 		tcptw->tw_snd_nxt	= tp->snd_nxt;
271 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
272 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
273 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
274 		tcptw->tw_ts_offset	= tp->tsoffset;
275 		tcptw->tw_last_oow_ack_time = 0;
276 
277 #if IS_ENABLED(CONFIG_IPV6)
278 		if (tw->tw_family == PF_INET6) {
279 			struct ipv6_pinfo *np = inet6_sk(sk);
280 
281 			tw->tw_v6_daddr = sk->sk_v6_daddr;
282 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
283 			tw->tw_tclass = np->tclass;
284 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
285 			tw->tw_ipv6only = sk->sk_ipv6only;
286 		}
287 #endif
288 
289 #ifdef CONFIG_TCP_MD5SIG
290 		/*
291 		 * The timewait bucket does not have the key DB from the
292 		 * sock structure. We just make a quick copy of the
293 		 * md5 key being used (if indeed we are using one)
294 		 * so the timewait ack generating code has the key.
295 		 */
296 		do {
297 			tcptw->tw_md5_key = NULL;
298 			if (static_branch_unlikely(&tcp_md5_needed)) {
299 				struct tcp_md5sig_key *key;
300 
301 				key = tp->af_specific->md5_lookup(sk, sk);
302 				if (key) {
303 					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
304 					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
305 				}
306 			}
307 		} while (0);
308 #endif
309 
310 		/* Get the TIME_WAIT timeout firing. */
311 		if (timeo < rto)
312 			timeo = rto;
313 
314 		if (state == TCP_TIME_WAIT)
315 			timeo = TCP_TIMEWAIT_LEN;
316 
317 		/* tw_timer is pinned, so we need to make sure BH are disabled
318 		 * in following section, otherwise timer handler could run before
319 		 * we complete the initialization.
320 		 */
321 		local_bh_disable();
322 		inet_twsk_schedule(tw, timeo);
323 		/* Linkage updates.
324 		 * Note that access to tw after this point is illegal.
325 		 */
326 		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
327 		local_bh_enable();
328 	} else {
329 		/* Sorry, if we're out of memory, just CLOSE this
330 		 * socket up.  We've got bigger problems than
331 		 * non-graceful socket closings.
332 		 */
333 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
334 	}
335 
336 	tcp_update_metrics(sk);
337 	tcp_done(sk);
338 }
339 EXPORT_SYMBOL(tcp_time_wait);
340 
341 void tcp_twsk_destructor(struct sock *sk)
342 {
343 #ifdef CONFIG_TCP_MD5SIG
344 	if (static_branch_unlikely(&tcp_md5_needed)) {
345 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
346 
347 		if (twsk->tw_md5_key)
348 			kfree_rcu(twsk->tw_md5_key, rcu);
349 	}
350 #endif
351 }
352 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
353 
354 /* Warning : This function is called without sk_listener being locked.
355  * Be sure to read socket fields once, as their value could change under us.
356  */
357 void tcp_openreq_init_rwin(struct request_sock *req,
358 			   const struct sock *sk_listener,
359 			   const struct dst_entry *dst)
360 {
361 	struct inet_request_sock *ireq = inet_rsk(req);
362 	const struct tcp_sock *tp = tcp_sk(sk_listener);
363 	int full_space = tcp_full_space(sk_listener);
364 	u32 window_clamp;
365 	__u8 rcv_wscale;
366 	u32 rcv_wnd;
367 	int mss;
368 
369 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
370 	window_clamp = READ_ONCE(tp->window_clamp);
371 	/* Set this up on the first call only */
372 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
373 
374 	/* limit the window selection if the user enforce a smaller rx buffer */
375 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
376 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
377 		req->rsk_window_clamp = full_space;
378 
379 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
380 	if (rcv_wnd == 0)
381 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
382 	else if (full_space < rcv_wnd * mss)
383 		full_space = rcv_wnd * mss;
384 
385 	/* tcp_full_space because it is guaranteed to be the first packet */
386 	tcp_select_initial_window(sk_listener, full_space,
387 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388 		&req->rsk_rcv_wnd,
389 		&req->rsk_window_clamp,
390 		ireq->wscale_ok,
391 		&rcv_wscale,
392 		rcv_wnd);
393 	ireq->rcv_wscale = rcv_wscale;
394 }
395 EXPORT_SYMBOL(tcp_openreq_init_rwin);
396 
397 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398 				  const struct request_sock *req)
399 {
400 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401 }
402 
403 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404 {
405 	struct inet_connection_sock *icsk = inet_csk(sk);
406 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407 	bool ca_got_dst = false;
408 
409 	if (ca_key != TCP_CA_UNSPEC) {
410 		const struct tcp_congestion_ops *ca;
411 
412 		rcu_read_lock();
413 		ca = tcp_ca_find_key(ca_key);
414 		if (likely(ca && try_module_get(ca->owner))) {
415 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416 			icsk->icsk_ca_ops = ca;
417 			ca_got_dst = true;
418 		}
419 		rcu_read_unlock();
420 	}
421 
422 	/* If no valid choice made yet, assign current system default ca. */
423 	if (!ca_got_dst &&
424 	    (!icsk->icsk_ca_setsockopt ||
425 	     !try_module_get(icsk->icsk_ca_ops->owner)))
426 		tcp_assign_congestion_control(sk);
427 
428 	tcp_set_ca_state(sk, TCP_CA_Open);
429 }
430 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431 
432 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
433 				    struct request_sock *req,
434 				    struct tcp_sock *newtp)
435 {
436 #if IS_ENABLED(CONFIG_SMC)
437 	struct inet_request_sock *ireq;
438 
439 	if (static_branch_unlikely(&tcp_have_smc)) {
440 		ireq = inet_rsk(req);
441 		if (oldtp->syn_smc && !ireq->smc_ok)
442 			newtp->syn_smc = 0;
443 	}
444 #endif
445 }
446 
447 /* This is not only more efficient than what we used to do, it eliminates
448  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
449  *
450  * Actually, we could lots of memory writes here. tp of listening
451  * socket contains all necessary default parameters.
452  */
453 struct sock *tcp_create_openreq_child(const struct sock *sk,
454 				      struct request_sock *req,
455 				      struct sk_buff *skb)
456 {
457 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
458 	const struct inet_request_sock *ireq = inet_rsk(req);
459 	struct tcp_request_sock *treq = tcp_rsk(req);
460 	struct inet_connection_sock *newicsk;
461 	struct tcp_sock *oldtp, *newtp;
462 
463 	if (!newsk)
464 		return NULL;
465 
466 	newicsk = inet_csk(newsk);
467 	newtp = tcp_sk(newsk);
468 	oldtp = tcp_sk(sk);
469 
470 	smc_check_reset_syn_req(oldtp, req, newtp);
471 
472 	/* Now setup tcp_sock */
473 	newtp->pred_flags = 0;
474 
475 	newtp->rcv_wup = newtp->copied_seq =
476 	newtp->rcv_nxt = treq->rcv_isn + 1;
477 	newtp->segs_in = 1;
478 
479 	newtp->snd_sml = newtp->snd_una =
480 	newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
481 
482 	INIT_LIST_HEAD(&newtp->tsq_node);
483 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
484 
485 	tcp_init_wl(newtp, treq->rcv_isn);
486 
487 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
488 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
489 
490 	newtp->lsndtime = tcp_jiffies32;
491 	newsk->sk_txhash = treq->txhash;
492 	newtp->total_retrans = req->num_retrans;
493 
494 	tcp_init_xmit_timers(newsk);
495 	newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
496 
497 	if (sock_flag(newsk, SOCK_KEEPOPEN))
498 		inet_csk_reset_keepalive_timer(newsk,
499 					       keepalive_time_when(newtp));
500 
501 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
502 	newtp->rx_opt.sack_ok = ireq->sack_ok;
503 	newtp->window_clamp = req->rsk_window_clamp;
504 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
505 	newtp->rcv_wnd = req->rsk_rcv_wnd;
506 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
507 	if (newtp->rx_opt.wscale_ok) {
508 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
509 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
510 	} else {
511 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
512 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
513 	}
514 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
515 	newtp->max_window = newtp->snd_wnd;
516 
517 	if (newtp->rx_opt.tstamp_ok) {
518 		newtp->rx_opt.ts_recent = req->ts_recent;
519 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
520 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
521 	} else {
522 		newtp->rx_opt.ts_recent_stamp = 0;
523 		newtp->tcp_header_len = sizeof(struct tcphdr);
524 	}
525 	if (req->num_timeout) {
526 		newtp->undo_marker = treq->snt_isn;
527 		newtp->retrans_stamp = div_u64(treq->snt_synack,
528 					       USEC_PER_SEC / TCP_TS_HZ);
529 	}
530 	newtp->tsoffset = treq->ts_off;
531 #ifdef CONFIG_TCP_MD5SIG
532 	newtp->md5sig_info = NULL;	/*XXX*/
533 	if (newtp->af_specific->md5_lookup(sk, newsk))
534 		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
535 #endif
536 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
537 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
538 	newtp->rx_opt.mss_clamp = req->mss;
539 	tcp_ecn_openreq_child(newtp, req);
540 	newtp->fastopen_req = NULL;
541 	newtp->fastopen_rsk = NULL;
542 
543 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
544 
545 	return newsk;
546 }
547 EXPORT_SYMBOL(tcp_create_openreq_child);
548 
549 /*
550  * Process an incoming packet for SYN_RECV sockets represented as a
551  * request_sock. Normally sk is the listener socket but for TFO it
552  * points to the child socket.
553  *
554  * XXX (TFO) - The current impl contains a special check for ack
555  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
556  *
557  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
558  */
559 
560 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
561 			   struct request_sock *req,
562 			   bool fastopen, bool *req_stolen)
563 {
564 	struct tcp_options_received tmp_opt;
565 	struct sock *child;
566 	const struct tcphdr *th = tcp_hdr(skb);
567 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
568 	bool paws_reject = false;
569 	bool own_req;
570 
571 	tmp_opt.saw_tstamp = 0;
572 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
573 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
574 
575 		if (tmp_opt.saw_tstamp) {
576 			tmp_opt.ts_recent = req->ts_recent;
577 			if (tmp_opt.rcv_tsecr)
578 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
579 			/* We do not store true stamp, but it is not required,
580 			 * it can be estimated (approximately)
581 			 * from another data.
582 			 */
583 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
584 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
585 		}
586 	}
587 
588 	/* Check for pure retransmitted SYN. */
589 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
590 	    flg == TCP_FLAG_SYN &&
591 	    !paws_reject) {
592 		/*
593 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
594 		 * this case on figure 6 and figure 8, but formal
595 		 * protocol description says NOTHING.
596 		 * To be more exact, it says that we should send ACK,
597 		 * because this segment (at least, if it has no data)
598 		 * is out of window.
599 		 *
600 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
601 		 *  describe SYN-RECV state. All the description
602 		 *  is wrong, we cannot believe to it and should
603 		 *  rely only on common sense and implementation
604 		 *  experience.
605 		 *
606 		 * Enforce "SYN-ACK" according to figure 8, figure 6
607 		 * of RFC793, fixed by RFC1122.
608 		 *
609 		 * Note that even if there is new data in the SYN packet
610 		 * they will be thrown away too.
611 		 *
612 		 * Reset timer after retransmitting SYNACK, similar to
613 		 * the idea of fast retransmit in recovery.
614 		 */
615 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
616 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
617 					  &tcp_rsk(req)->last_oow_ack_time) &&
618 
619 		    !inet_rtx_syn_ack(sk, req)) {
620 			unsigned long expires = jiffies;
621 
622 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
623 				       TCP_RTO_MAX);
624 			if (!fastopen)
625 				mod_timer_pending(&req->rsk_timer, expires);
626 			else
627 				req->rsk_timer.expires = expires;
628 		}
629 		return NULL;
630 	}
631 
632 	/* Further reproduces section "SEGMENT ARRIVES"
633 	   for state SYN-RECEIVED of RFC793.
634 	   It is broken, however, it does not work only
635 	   when SYNs are crossed.
636 
637 	   You would think that SYN crossing is impossible here, since
638 	   we should have a SYN_SENT socket (from connect()) on our end,
639 	   but this is not true if the crossed SYNs were sent to both
640 	   ends by a malicious third party.  We must defend against this,
641 	   and to do that we first verify the ACK (as per RFC793, page
642 	   36) and reset if it is invalid.  Is this a true full defense?
643 	   To convince ourselves, let us consider a way in which the ACK
644 	   test can still pass in this 'malicious crossed SYNs' case.
645 	   Malicious sender sends identical SYNs (and thus identical sequence
646 	   numbers) to both A and B:
647 
648 		A: gets SYN, seq=7
649 		B: gets SYN, seq=7
650 
651 	   By our good fortune, both A and B select the same initial
652 	   send sequence number of seven :-)
653 
654 		A: sends SYN|ACK, seq=7, ack_seq=8
655 		B: sends SYN|ACK, seq=7, ack_seq=8
656 
657 	   So we are now A eating this SYN|ACK, ACK test passes.  So
658 	   does sequence test, SYN is truncated, and thus we consider
659 	   it a bare ACK.
660 
661 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
662 	   bare ACK.  Otherwise, we create an established connection.  Both
663 	   ends (listening sockets) accept the new incoming connection and try
664 	   to talk to each other. 8-)
665 
666 	   Note: This case is both harmless, and rare.  Possibility is about the
667 	   same as us discovering intelligent life on another plant tomorrow.
668 
669 	   But generally, we should (RFC lies!) to accept ACK
670 	   from SYNACK both here and in tcp_rcv_state_process().
671 	   tcp_rcv_state_process() does not, hence, we do not too.
672 
673 	   Note that the case is absolutely generic:
674 	   we cannot optimize anything here without
675 	   violating protocol. All the checks must be made
676 	   before attempt to create socket.
677 	 */
678 
679 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
680 	 *                  and the incoming segment acknowledges something not yet
681 	 *                  sent (the segment carries an unacceptable ACK) ...
682 	 *                  a reset is sent."
683 	 *
684 	 * Invalid ACK: reset will be sent by listening socket.
685 	 * Note that the ACK validity check for a Fast Open socket is done
686 	 * elsewhere and is checked directly against the child socket rather
687 	 * than req because user data may have been sent out.
688 	 */
689 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
690 	    (TCP_SKB_CB(skb)->ack_seq !=
691 	     tcp_rsk(req)->snt_isn + 1))
692 		return sk;
693 
694 	/* Also, it would be not so bad idea to check rcv_tsecr, which
695 	 * is essentially ACK extension and too early or too late values
696 	 * should cause reset in unsynchronized states.
697 	 */
698 
699 	/* RFC793: "first check sequence number". */
700 
701 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
702 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
703 		/* Out of window: send ACK and drop. */
704 		if (!(flg & TCP_FLAG_RST) &&
705 		    !tcp_oow_rate_limited(sock_net(sk), skb,
706 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
707 					  &tcp_rsk(req)->last_oow_ack_time))
708 			req->rsk_ops->send_ack(sk, skb, req);
709 		if (paws_reject)
710 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
711 		return NULL;
712 	}
713 
714 	/* In sequence, PAWS is OK. */
715 
716 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
717 		req->ts_recent = tmp_opt.rcv_tsval;
718 
719 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
720 		/* Truncate SYN, it is out of window starting
721 		   at tcp_rsk(req)->rcv_isn + 1. */
722 		flg &= ~TCP_FLAG_SYN;
723 	}
724 
725 	/* RFC793: "second check the RST bit" and
726 	 *	   "fourth, check the SYN bit"
727 	 */
728 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
729 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
730 		goto embryonic_reset;
731 	}
732 
733 	/* ACK sequence verified above, just make sure ACK is
734 	 * set.  If ACK not set, just silently drop the packet.
735 	 *
736 	 * XXX (TFO) - if we ever allow "data after SYN", the
737 	 * following check needs to be removed.
738 	 */
739 	if (!(flg & TCP_FLAG_ACK))
740 		return NULL;
741 
742 	/* For Fast Open no more processing is needed (sk is the
743 	 * child socket).
744 	 */
745 	if (fastopen)
746 		return sk;
747 
748 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
749 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
750 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
751 		inet_rsk(req)->acked = 1;
752 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
753 		return NULL;
754 	}
755 
756 	/* OK, ACK is valid, create big socket and
757 	 * feed this segment to it. It will repeat all
758 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
759 	 * ESTABLISHED STATE. If it will be dropped after
760 	 * socket is created, wait for troubles.
761 	 */
762 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
763 							 req, &own_req);
764 	if (!child)
765 		goto listen_overflow;
766 
767 	sock_rps_save_rxhash(child, skb);
768 	tcp_synack_rtt_meas(child, req);
769 	*req_stolen = !own_req;
770 	return inet_csk_complete_hashdance(sk, child, req, own_req);
771 
772 listen_overflow:
773 	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
774 		inet_rsk(req)->acked = 1;
775 		return NULL;
776 	}
777 
778 embryonic_reset:
779 	if (!(flg & TCP_FLAG_RST)) {
780 		/* Received a bad SYN pkt - for TFO We try not to reset
781 		 * the local connection unless it's really necessary to
782 		 * avoid becoming vulnerable to outside attack aiming at
783 		 * resetting legit local connections.
784 		 */
785 		req->rsk_ops->send_reset(sk, skb);
786 	} else if (fastopen) { /* received a valid RST pkt */
787 		reqsk_fastopen_remove(sk, req, true);
788 		tcp_reset(sk);
789 	}
790 	if (!fastopen) {
791 		inet_csk_reqsk_queue_drop(sk, req);
792 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
793 	}
794 	return NULL;
795 }
796 EXPORT_SYMBOL(tcp_check_req);
797 
798 /*
799  * Queue segment on the new socket if the new socket is active,
800  * otherwise we just shortcircuit this and continue with
801  * the new socket.
802  *
803  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
804  * when entering. But other states are possible due to a race condition
805  * where after __inet_lookup_established() fails but before the listener
806  * locked is obtained, other packets cause the same connection to
807  * be created.
808  */
809 
810 int tcp_child_process(struct sock *parent, struct sock *child,
811 		      struct sk_buff *skb)
812 {
813 	int ret = 0;
814 	int state = child->sk_state;
815 
816 	/* record NAPI ID of child */
817 	sk_mark_napi_id(child, skb);
818 
819 	tcp_segs_in(tcp_sk(child), skb);
820 	if (!sock_owned_by_user(child)) {
821 		ret = tcp_rcv_state_process(child, skb);
822 		/* Wakeup parent, send SIGIO */
823 		if (state == TCP_SYN_RECV && child->sk_state != state)
824 			parent->sk_data_ready(parent);
825 	} else {
826 		/* Alas, it is possible again, because we do lookup
827 		 * in main socket hash table and lock on listening
828 		 * socket does not protect us more.
829 		 */
830 		__sk_add_backlog(child, skb);
831 	}
832 
833 	bh_unlock_sock(child);
834 	sock_put(child);
835 	return ret;
836 }
837 EXPORT_SYMBOL(tcp_child_process);
838