xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 565d76cb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 /* VJ's idea. Save last timestamp seen from this destination
53  * and hold it at least for normal timewait interval to use for duplicate
54  * segment detection in subsequent connections, before they enter synchronized
55  * state.
56  */
57 
58 static int tcp_remember_stamp(struct sock *sk)
59 {
60 	const struct inet_connection_sock *icsk = inet_csk(sk);
61 	struct tcp_sock *tp = tcp_sk(sk);
62 	struct inet_peer *peer;
63 	bool release_it;
64 
65 	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
66 	if (peer) {
67 		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
68 		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
69 		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
70 			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
71 			peer->tcp_ts = tp->rx_opt.ts_recent;
72 		}
73 		if (release_it)
74 			inet_putpeer(peer);
75 		return 1;
76 	}
77 
78 	return 0;
79 }
80 
81 static int tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
82 {
83 	struct sock *sk = (struct sock *) tw;
84 	struct inet_peer *peer;
85 
86 	peer = twsk_getpeer(sk);
87 	if (peer) {
88 		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
89 
90 		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
91 		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
92 		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
93 			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
94 			peer->tcp_ts	   = tcptw->tw_ts_recent;
95 		}
96 		inet_putpeer(peer);
97 		return 1;
98 	}
99 	return 0;
100 }
101 
102 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103 {
104 	if (seq == s_win)
105 		return 1;
106 	if (after(end_seq, s_win) && before(seq, e_win))
107 		return 1;
108 	return seq == e_win && seq == end_seq;
109 }
110 
111 /*
112  * * Main purpose of TIME-WAIT state is to close connection gracefully,
113  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114  *   (and, probably, tail of data) and one or more our ACKs are lost.
115  * * What is TIME-WAIT timeout? It is associated with maximal packet
116  *   lifetime in the internet, which results in wrong conclusion, that
117  *   it is set to catch "old duplicate segments" wandering out of their path.
118  *   It is not quite correct. This timeout is calculated so that it exceeds
119  *   maximal retransmission timeout enough to allow to lose one (or more)
120  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121  * * When TIME-WAIT socket receives RST, it means that another end
122  *   finally closed and we are allowed to kill TIME-WAIT too.
123  * * Second purpose of TIME-WAIT is catching old duplicate segments.
124  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126  * * If we invented some more clever way to catch duplicates
127  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128  *
129  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131  * from the very beginning.
132  *
133  * NOTE. With recycling (and later with fin-wait-2) TW bucket
134  * is _not_ stateless. It means, that strictly speaking we must
135  * spinlock it. I do not want! Well, probability of misbehaviour
136  * is ridiculously low and, seems, we could use some mb() tricks
137  * to avoid misread sequence numbers, states etc.  --ANK
138  */
139 enum tcp_tw_status
140 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141 			   const struct tcphdr *th)
142 {
143 	struct tcp_options_received tmp_opt;
144 	u8 *hash_location;
145 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146 	int paws_reject = 0;
147 
148 	tmp_opt.saw_tstamp = 0;
149 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151 
152 		if (tmp_opt.saw_tstamp) {
153 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
155 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156 		}
157 	}
158 
159 	if (tw->tw_substate == TCP_FIN_WAIT2) {
160 		/* Just repeat all the checks of tcp_rcv_state_process() */
161 
162 		/* Out of window, send ACK */
163 		if (paws_reject ||
164 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165 				   tcptw->tw_rcv_nxt,
166 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167 			return TCP_TW_ACK;
168 
169 		if (th->rst)
170 			goto kill;
171 
172 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173 			goto kill_with_rst;
174 
175 		/* Dup ACK? */
176 		if (!th->ack ||
177 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179 			inet_twsk_put(tw);
180 			return TCP_TW_SUCCESS;
181 		}
182 
183 		/* New data or FIN. If new data arrive after half-duplex close,
184 		 * reset.
185 		 */
186 		if (!th->fin ||
187 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188 kill_with_rst:
189 			inet_twsk_deschedule(tw, &tcp_death_row);
190 			inet_twsk_put(tw);
191 			return TCP_TW_RST;
192 		}
193 
194 		/* FIN arrived, enter true time-wait state. */
195 		tw->tw_substate	  = TCP_TIME_WAIT;
196 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197 		if (tmp_opt.saw_tstamp) {
198 			tcptw->tw_ts_recent_stamp = get_seconds();
199 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200 		}
201 
202 		if (tcp_death_row.sysctl_tw_recycle &&
203 		    tcptw->tw_ts_recent_stamp &&
204 		    tcp_tw_remember_stamp(tw))
205 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206 					   TCP_TIMEWAIT_LEN);
207 		else
208 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209 					   TCP_TIMEWAIT_LEN);
210 		return TCP_TW_ACK;
211 	}
212 
213 	/*
214 	 *	Now real TIME-WAIT state.
215 	 *
216 	 *	RFC 1122:
217 	 *	"When a connection is [...] on TIME-WAIT state [...]
218 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219 	 *	reopen the connection directly, if it:
220 	 *
221 	 *	(1)  assigns its initial sequence number for the new
222 	 *	connection to be larger than the largest sequence
223 	 *	number it used on the previous connection incarnation,
224 	 *	and
225 	 *
226 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227 	 *	to be an old duplicate".
228 	 */
229 
230 	if (!paws_reject &&
231 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233 		/* In window segment, it may be only reset or bare ack. */
234 
235 		if (th->rst) {
236 			/* This is TIME_WAIT assassination, in two flavors.
237 			 * Oh well... nobody has a sufficient solution to this
238 			 * protocol bug yet.
239 			 */
240 			if (sysctl_tcp_rfc1337 == 0) {
241 kill:
242 				inet_twsk_deschedule(tw, &tcp_death_row);
243 				inet_twsk_put(tw);
244 				return TCP_TW_SUCCESS;
245 			}
246 		}
247 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248 				   TCP_TIMEWAIT_LEN);
249 
250 		if (tmp_opt.saw_tstamp) {
251 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252 			tcptw->tw_ts_recent_stamp = get_seconds();
253 		}
254 
255 		inet_twsk_put(tw);
256 		return TCP_TW_SUCCESS;
257 	}
258 
259 	/* Out of window segment.
260 
261 	   All the segments are ACKed immediately.
262 
263 	   The only exception is new SYN. We accept it, if it is
264 	   not old duplicate and we are not in danger to be killed
265 	   by delayed old duplicates. RFC check is that it has
266 	   newer sequence number works at rates <40Mbit/sec.
267 	   However, if paws works, it is reliable AND even more,
268 	   we even may relax silly seq space cutoff.
269 
270 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272 	   we must return socket to time-wait state. It is not good,
273 	   but not fatal yet.
274 	 */
275 
276 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278 	     (tmp_opt.saw_tstamp &&
279 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281 		if (isn == 0)
282 			isn++;
283 		TCP_SKB_CB(skb)->when = isn;
284 		return TCP_TW_SYN;
285 	}
286 
287 	if (paws_reject)
288 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289 
290 	if (!th->rst) {
291 		/* In this case we must reset the TIMEWAIT timer.
292 		 *
293 		 * If it is ACKless SYN it may be both old duplicate
294 		 * and new good SYN with random sequence number <rcv_nxt.
295 		 * Do not reschedule in the last case.
296 		 */
297 		if (paws_reject || th->ack)
298 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299 					   TCP_TIMEWAIT_LEN);
300 
301 		/* Send ACK. Note, we do not put the bucket,
302 		 * it will be released by caller.
303 		 */
304 		return TCP_TW_ACK;
305 	}
306 	inet_twsk_put(tw);
307 	return TCP_TW_SUCCESS;
308 }
309 EXPORT_SYMBOL(tcp_timewait_state_process);
310 
311 /*
312  * Move a socket to time-wait or dead fin-wait-2 state.
313  */
314 void tcp_time_wait(struct sock *sk, int state, int timeo)
315 {
316 	struct inet_timewait_sock *tw = NULL;
317 	const struct inet_connection_sock *icsk = inet_csk(sk);
318 	const struct tcp_sock *tp = tcp_sk(sk);
319 	int recycle_ok = 0;
320 
321 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322 		recycle_ok = tcp_remember_stamp(sk);
323 
324 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325 		tw = inet_twsk_alloc(sk, state);
326 
327 	if (tw != NULL) {
328 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
330 
331 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
332 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
333 		tcptw->tw_snd_nxt	= tp->snd_nxt;
334 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
335 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
336 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
337 
338 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
339 		if (tw->tw_family == PF_INET6) {
340 			struct ipv6_pinfo *np = inet6_sk(sk);
341 			struct inet6_timewait_sock *tw6;
342 
343 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
344 			tw6 = inet6_twsk((struct sock *)tw);
345 			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
346 			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
347 			tw->tw_ipv6only = np->ipv6only;
348 		}
349 #endif
350 
351 #ifdef CONFIG_TCP_MD5SIG
352 		/*
353 		 * The timewait bucket does not have the key DB from the
354 		 * sock structure. We just make a quick copy of the
355 		 * md5 key being used (if indeed we are using one)
356 		 * so the timewait ack generating code has the key.
357 		 */
358 		do {
359 			struct tcp_md5sig_key *key;
360 			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
361 			tcptw->tw_md5_keylen = 0;
362 			key = tp->af_specific->md5_lookup(sk, sk);
363 			if (key != NULL) {
364 				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
365 				tcptw->tw_md5_keylen = key->keylen;
366 				if (tcp_alloc_md5sig_pool(sk) == NULL)
367 					BUG();
368 			}
369 		} while (0);
370 #endif
371 
372 		/* Linkage updates. */
373 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
374 
375 		/* Get the TIME_WAIT timeout firing. */
376 		if (timeo < rto)
377 			timeo = rto;
378 
379 		if (recycle_ok) {
380 			tw->tw_timeout = rto;
381 		} else {
382 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
383 			if (state == TCP_TIME_WAIT)
384 				timeo = TCP_TIMEWAIT_LEN;
385 		}
386 
387 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
388 				   TCP_TIMEWAIT_LEN);
389 		inet_twsk_put(tw);
390 	} else {
391 		/* Sorry, if we're out of memory, just CLOSE this
392 		 * socket up.  We've got bigger problems than
393 		 * non-graceful socket closings.
394 		 */
395 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
396 	}
397 
398 	tcp_update_metrics(sk);
399 	tcp_done(sk);
400 }
401 
402 void tcp_twsk_destructor(struct sock *sk)
403 {
404 #ifdef CONFIG_TCP_MD5SIG
405 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
406 	if (twsk->tw_md5_keylen)
407 		tcp_free_md5sig_pool();
408 #endif
409 }
410 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
411 
412 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
413 					 struct request_sock *req)
414 {
415 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
416 }
417 
418 /* This is not only more efficient than what we used to do, it eliminates
419  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
420  *
421  * Actually, we could lots of memory writes here. tp of listening
422  * socket contains all necessary default parameters.
423  */
424 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
425 {
426 	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
427 
428 	if (newsk != NULL) {
429 		const struct inet_request_sock *ireq = inet_rsk(req);
430 		struct tcp_request_sock *treq = tcp_rsk(req);
431 		struct inet_connection_sock *newicsk = inet_csk(newsk);
432 		struct tcp_sock *newtp = tcp_sk(newsk);
433 		struct tcp_sock *oldtp = tcp_sk(sk);
434 		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
435 
436 		/* TCP Cookie Transactions require space for the cookie pair,
437 		 * as it differs for each connection.  There is no need to
438 		 * copy any s_data_payload stored at the original socket.
439 		 * Failure will prevent resuming the connection.
440 		 *
441 		 * Presumed copied, in order of appearance:
442 		 *	cookie_in_always, cookie_out_never
443 		 */
444 		if (oldcvp != NULL) {
445 			struct tcp_cookie_values *newcvp =
446 				kzalloc(sizeof(*newtp->cookie_values),
447 					GFP_ATOMIC);
448 
449 			if (newcvp != NULL) {
450 				kref_init(&newcvp->kref);
451 				newcvp->cookie_desired =
452 						oldcvp->cookie_desired;
453 				newtp->cookie_values = newcvp;
454 			} else {
455 				/* Not Yet Implemented */
456 				newtp->cookie_values = NULL;
457 			}
458 		}
459 
460 		/* Now setup tcp_sock */
461 		newtp->pred_flags = 0;
462 
463 		newtp->rcv_wup = newtp->copied_seq =
464 		newtp->rcv_nxt = treq->rcv_isn + 1;
465 
466 		newtp->snd_sml = newtp->snd_una =
467 		newtp->snd_nxt = newtp->snd_up =
468 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
469 
470 		tcp_prequeue_init(newtp);
471 
472 		tcp_init_wl(newtp, treq->rcv_isn);
473 
474 		newtp->srtt = 0;
475 		newtp->mdev = TCP_TIMEOUT_INIT;
476 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
477 
478 		newtp->packets_out = 0;
479 		newtp->retrans_out = 0;
480 		newtp->sacked_out = 0;
481 		newtp->fackets_out = 0;
482 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
483 
484 		/* So many TCP implementations out there (incorrectly) count the
485 		 * initial SYN frame in their delayed-ACK and congestion control
486 		 * algorithms that we must have the following bandaid to talk
487 		 * efficiently to them.  -DaveM
488 		 */
489 		newtp->snd_cwnd = 2;
490 		newtp->snd_cwnd_cnt = 0;
491 		newtp->bytes_acked = 0;
492 
493 		newtp->frto_counter = 0;
494 		newtp->frto_highmark = 0;
495 
496 		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
497 
498 		tcp_set_ca_state(newsk, TCP_CA_Open);
499 		tcp_init_xmit_timers(newsk);
500 		skb_queue_head_init(&newtp->out_of_order_queue);
501 		newtp->write_seq = newtp->pushed_seq =
502 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
503 
504 		newtp->rx_opt.saw_tstamp = 0;
505 
506 		newtp->rx_opt.dsack = 0;
507 		newtp->rx_opt.num_sacks = 0;
508 
509 		newtp->urg_data = 0;
510 
511 		if (sock_flag(newsk, SOCK_KEEPOPEN))
512 			inet_csk_reset_keepalive_timer(newsk,
513 						       keepalive_time_when(newtp));
514 
515 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
516 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
517 			if (sysctl_tcp_fack)
518 				tcp_enable_fack(newtp);
519 		}
520 		newtp->window_clamp = req->window_clamp;
521 		newtp->rcv_ssthresh = req->rcv_wnd;
522 		newtp->rcv_wnd = req->rcv_wnd;
523 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
524 		if (newtp->rx_opt.wscale_ok) {
525 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
526 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
527 		} else {
528 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
529 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
530 		}
531 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
532 				  newtp->rx_opt.snd_wscale);
533 		newtp->max_window = newtp->snd_wnd;
534 
535 		if (newtp->rx_opt.tstamp_ok) {
536 			newtp->rx_opt.ts_recent = req->ts_recent;
537 			newtp->rx_opt.ts_recent_stamp = get_seconds();
538 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
539 		} else {
540 			newtp->rx_opt.ts_recent_stamp = 0;
541 			newtp->tcp_header_len = sizeof(struct tcphdr);
542 		}
543 #ifdef CONFIG_TCP_MD5SIG
544 		newtp->md5sig_info = NULL;	/*XXX*/
545 		if (newtp->af_specific->md5_lookup(sk, newsk))
546 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
547 #endif
548 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
549 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
550 		newtp->rx_opt.mss_clamp = req->mss;
551 		TCP_ECN_openreq_child(newtp, req);
552 
553 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
554 	}
555 	return newsk;
556 }
557 EXPORT_SYMBOL(tcp_create_openreq_child);
558 
559 /*
560  *	Process an incoming packet for SYN_RECV sockets represented
561  *	as a request_sock.
562  */
563 
564 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
565 			   struct request_sock *req,
566 			   struct request_sock **prev)
567 {
568 	struct tcp_options_received tmp_opt;
569 	u8 *hash_location;
570 	struct sock *child;
571 	const struct tcphdr *th = tcp_hdr(skb);
572 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
573 	int paws_reject = 0;
574 
575 	tmp_opt.saw_tstamp = 0;
576 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
577 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
578 
579 		if (tmp_opt.saw_tstamp) {
580 			tmp_opt.ts_recent = req->ts_recent;
581 			/* We do not store true stamp, but it is not required,
582 			 * it can be estimated (approximately)
583 			 * from another data.
584 			 */
585 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
586 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
587 		}
588 	}
589 
590 	/* Check for pure retransmitted SYN. */
591 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
592 	    flg == TCP_FLAG_SYN &&
593 	    !paws_reject) {
594 		/*
595 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
596 		 * this case on figure 6 and figure 8, but formal
597 		 * protocol description says NOTHING.
598 		 * To be more exact, it says that we should send ACK,
599 		 * because this segment (at least, if it has no data)
600 		 * is out of window.
601 		 *
602 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
603 		 *  describe SYN-RECV state. All the description
604 		 *  is wrong, we cannot believe to it and should
605 		 *  rely only on common sense and implementation
606 		 *  experience.
607 		 *
608 		 * Enforce "SYN-ACK" according to figure 8, figure 6
609 		 * of RFC793, fixed by RFC1122.
610 		 */
611 		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
612 		return NULL;
613 	}
614 
615 	/* Further reproduces section "SEGMENT ARRIVES"
616 	   for state SYN-RECEIVED of RFC793.
617 	   It is broken, however, it does not work only
618 	   when SYNs are crossed.
619 
620 	   You would think that SYN crossing is impossible here, since
621 	   we should have a SYN_SENT socket (from connect()) on our end,
622 	   but this is not true if the crossed SYNs were sent to both
623 	   ends by a malicious third party.  We must defend against this,
624 	   and to do that we first verify the ACK (as per RFC793, page
625 	   36) and reset if it is invalid.  Is this a true full defense?
626 	   To convince ourselves, let us consider a way in which the ACK
627 	   test can still pass in this 'malicious crossed SYNs' case.
628 	   Malicious sender sends identical SYNs (and thus identical sequence
629 	   numbers) to both A and B:
630 
631 		A: gets SYN, seq=7
632 		B: gets SYN, seq=7
633 
634 	   By our good fortune, both A and B select the same initial
635 	   send sequence number of seven :-)
636 
637 		A: sends SYN|ACK, seq=7, ack_seq=8
638 		B: sends SYN|ACK, seq=7, ack_seq=8
639 
640 	   So we are now A eating this SYN|ACK, ACK test passes.  So
641 	   does sequence test, SYN is truncated, and thus we consider
642 	   it a bare ACK.
643 
644 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
645 	   bare ACK.  Otherwise, we create an established connection.  Both
646 	   ends (listening sockets) accept the new incoming connection and try
647 	   to talk to each other. 8-)
648 
649 	   Note: This case is both harmless, and rare.  Possibility is about the
650 	   same as us discovering intelligent life on another plant tomorrow.
651 
652 	   But generally, we should (RFC lies!) to accept ACK
653 	   from SYNACK both here and in tcp_rcv_state_process().
654 	   tcp_rcv_state_process() does not, hence, we do not too.
655 
656 	   Note that the case is absolutely generic:
657 	   we cannot optimize anything here without
658 	   violating protocol. All the checks must be made
659 	   before attempt to create socket.
660 	 */
661 
662 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
663 	 *                  and the incoming segment acknowledges something not yet
664 	 *                  sent (the segment carries an unacceptable ACK) ...
665 	 *                  a reset is sent."
666 	 *
667 	 * Invalid ACK: reset will be sent by listening socket
668 	 */
669 	if ((flg & TCP_FLAG_ACK) &&
670 	    (TCP_SKB_CB(skb)->ack_seq !=
671 	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
672 		return sk;
673 
674 	/* Also, it would be not so bad idea to check rcv_tsecr, which
675 	 * is essentially ACK extension and too early or too late values
676 	 * should cause reset in unsynchronized states.
677 	 */
678 
679 	/* RFC793: "first check sequence number". */
680 
681 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
682 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
683 		/* Out of window: send ACK and drop. */
684 		if (!(flg & TCP_FLAG_RST))
685 			req->rsk_ops->send_ack(sk, skb, req);
686 		if (paws_reject)
687 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
688 		return NULL;
689 	}
690 
691 	/* In sequence, PAWS is OK. */
692 
693 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
694 		req->ts_recent = tmp_opt.rcv_tsval;
695 
696 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
697 		/* Truncate SYN, it is out of window starting
698 		   at tcp_rsk(req)->rcv_isn + 1. */
699 		flg &= ~TCP_FLAG_SYN;
700 	}
701 
702 	/* RFC793: "second check the RST bit" and
703 	 *	   "fourth, check the SYN bit"
704 	 */
705 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
706 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
707 		goto embryonic_reset;
708 	}
709 
710 	/* ACK sequence verified above, just make sure ACK is
711 	 * set.  If ACK not set, just silently drop the packet.
712 	 */
713 	if (!(flg & TCP_FLAG_ACK))
714 		return NULL;
715 
716 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
717 	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
718 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
719 		inet_rsk(req)->acked = 1;
720 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
721 		return NULL;
722 	}
723 
724 	/* OK, ACK is valid, create big socket and
725 	 * feed this segment to it. It will repeat all
726 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
727 	 * ESTABLISHED STATE. If it will be dropped after
728 	 * socket is created, wait for troubles.
729 	 */
730 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
731 	if (child == NULL)
732 		goto listen_overflow;
733 
734 	inet_csk_reqsk_queue_unlink(sk, req, prev);
735 	inet_csk_reqsk_queue_removed(sk, req);
736 
737 	inet_csk_reqsk_queue_add(sk, req, child);
738 	return child;
739 
740 listen_overflow:
741 	if (!sysctl_tcp_abort_on_overflow) {
742 		inet_rsk(req)->acked = 1;
743 		return NULL;
744 	}
745 
746 embryonic_reset:
747 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
748 	if (!(flg & TCP_FLAG_RST))
749 		req->rsk_ops->send_reset(sk, skb);
750 
751 	inet_csk_reqsk_queue_drop(sk, req, prev);
752 	return NULL;
753 }
754 EXPORT_SYMBOL(tcp_check_req);
755 
756 /*
757  * Queue segment on the new socket if the new socket is active,
758  * otherwise we just shortcircuit this and continue with
759  * the new socket.
760  */
761 
762 int tcp_child_process(struct sock *parent, struct sock *child,
763 		      struct sk_buff *skb)
764 {
765 	int ret = 0;
766 	int state = child->sk_state;
767 
768 	if (!sock_owned_by_user(child)) {
769 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
770 					    skb->len);
771 		/* Wakeup parent, send SIGIO */
772 		if (state == TCP_SYN_RECV && child->sk_state != state)
773 			parent->sk_data_ready(parent, 0);
774 	} else {
775 		/* Alas, it is possible again, because we do lookup
776 		 * in main socket hash table and lock on listening
777 		 * socket does not protect us more.
778 		 */
779 		__sk_add_backlog(child, skb);
780 	}
781 
782 	bh_unlock_sock(child);
783 	sock_put(child);
784 	return ret;
785 }
786 EXPORT_SYMBOL(tcp_child_process);
787