xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 384740dc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/sysctl.h>
24 #include <linux/workqueue.h>
25 #include <net/tcp.h>
26 #include <net/inet_common.h>
27 #include <net/xfrm.h>
28 
29 #ifdef CONFIG_SYSCTL
30 #define SYNC_INIT 0 /* let the user enable it */
31 #else
32 #define SYNC_INIT 1
33 #endif
34 
35 int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
36 EXPORT_SYMBOL(sysctl_tcp_syncookies);
37 
38 int sysctl_tcp_abort_on_overflow __read_mostly;
39 
40 struct inet_timewait_death_row tcp_death_row = {
41 	.sysctl_max_tw_buckets = NR_FILE * 2,
42 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
43 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
44 	.hashinfo	= &tcp_hashinfo,
45 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
46 					    (unsigned long)&tcp_death_row),
47 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
48 					     inet_twdr_twkill_work),
49 /* Short-time timewait calendar */
50 
51 	.twcal_hand	= -1,
52 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
53 					    (unsigned long)&tcp_death_row),
54 };
55 
56 EXPORT_SYMBOL_GPL(tcp_death_row);
57 
58 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
59 {
60 	if (seq == s_win)
61 		return 1;
62 	if (after(end_seq, s_win) && before(seq, e_win))
63 		return 1;
64 	return (seq == e_win && seq == end_seq);
65 }
66 
67 /*
68  * * Main purpose of TIME-WAIT state is to close connection gracefully,
69  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
70  *   (and, probably, tail of data) and one or more our ACKs are lost.
71  * * What is TIME-WAIT timeout? It is associated with maximal packet
72  *   lifetime in the internet, which results in wrong conclusion, that
73  *   it is set to catch "old duplicate segments" wandering out of their path.
74  *   It is not quite correct. This timeout is calculated so that it exceeds
75  *   maximal retransmission timeout enough to allow to lose one (or more)
76  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
77  * * When TIME-WAIT socket receives RST, it means that another end
78  *   finally closed and we are allowed to kill TIME-WAIT too.
79  * * Second purpose of TIME-WAIT is catching old duplicate segments.
80  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
81  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
82  * * If we invented some more clever way to catch duplicates
83  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
84  *
85  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
86  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
87  * from the very beginning.
88  *
89  * NOTE. With recycling (and later with fin-wait-2) TW bucket
90  * is _not_ stateless. It means, that strictly speaking we must
91  * spinlock it. I do not want! Well, probability of misbehaviour
92  * is ridiculously low and, seems, we could use some mb() tricks
93  * to avoid misread sequence numbers, states etc.  --ANK
94  */
95 enum tcp_tw_status
96 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
97 			   const struct tcphdr *th)
98 {
99 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
100 	struct tcp_options_received tmp_opt;
101 	int paws_reject = 0;
102 
103 	tmp_opt.saw_tstamp = 0;
104 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
105 		tcp_parse_options(skb, &tmp_opt, 0);
106 
107 		if (tmp_opt.saw_tstamp) {
108 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
109 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
110 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
111 		}
112 	}
113 
114 	if (tw->tw_substate == TCP_FIN_WAIT2) {
115 		/* Just repeat all the checks of tcp_rcv_state_process() */
116 
117 		/* Out of window, send ACK */
118 		if (paws_reject ||
119 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
120 				   tcptw->tw_rcv_nxt,
121 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
122 			return TCP_TW_ACK;
123 
124 		if (th->rst)
125 			goto kill;
126 
127 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
128 			goto kill_with_rst;
129 
130 		/* Dup ACK? */
131 		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133 			inet_twsk_put(tw);
134 			return TCP_TW_SUCCESS;
135 		}
136 
137 		/* New data or FIN. If new data arrive after half-duplex close,
138 		 * reset.
139 		 */
140 		if (!th->fin ||
141 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
142 kill_with_rst:
143 			inet_twsk_deschedule(tw, &tcp_death_row);
144 			inet_twsk_put(tw);
145 			return TCP_TW_RST;
146 		}
147 
148 		/* FIN arrived, enter true time-wait state. */
149 		tw->tw_substate	  = TCP_TIME_WAIT;
150 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151 		if (tmp_opt.saw_tstamp) {
152 			tcptw->tw_ts_recent_stamp = get_seconds();
153 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154 		}
155 
156 		/* I am shamed, but failed to make it more elegant.
157 		 * Yes, it is direct reference to IP, which is impossible
158 		 * to generalize to IPv6. Taking into account that IPv6
159 		 * do not understand recycling in any case, it not
160 		 * a big problem in practice. --ANK */
161 		if (tw->tw_family == AF_INET &&
162 		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
163 		    tcp_v4_tw_remember_stamp(tw))
164 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
165 					   TCP_TIMEWAIT_LEN);
166 		else
167 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
168 					   TCP_TIMEWAIT_LEN);
169 		return TCP_TW_ACK;
170 	}
171 
172 	/*
173 	 *	Now real TIME-WAIT state.
174 	 *
175 	 *	RFC 1122:
176 	 *	"When a connection is [...] on TIME-WAIT state [...]
177 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
178 	 *	reopen the connection directly, if it:
179 	 *
180 	 *	(1)  assigns its initial sequence number for the new
181 	 *	connection to be larger than the largest sequence
182 	 *	number it used on the previous connection incarnation,
183 	 *	and
184 	 *
185 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
186 	 *	to be an old duplicate".
187 	 */
188 
189 	if (!paws_reject &&
190 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
191 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
192 		/* In window segment, it may be only reset or bare ack. */
193 
194 		if (th->rst) {
195 			/* This is TIME_WAIT assassination, in two flavors.
196 			 * Oh well... nobody has a sufficient solution to this
197 			 * protocol bug yet.
198 			 */
199 			if (sysctl_tcp_rfc1337 == 0) {
200 kill:
201 				inet_twsk_deschedule(tw, &tcp_death_row);
202 				inet_twsk_put(tw);
203 				return TCP_TW_SUCCESS;
204 			}
205 		}
206 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
207 				   TCP_TIMEWAIT_LEN);
208 
209 		if (tmp_opt.saw_tstamp) {
210 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
211 			tcptw->tw_ts_recent_stamp = get_seconds();
212 		}
213 
214 		inet_twsk_put(tw);
215 		return TCP_TW_SUCCESS;
216 	}
217 
218 	/* Out of window segment.
219 
220 	   All the segments are ACKed immediately.
221 
222 	   The only exception is new SYN. We accept it, if it is
223 	   not old duplicate and we are not in danger to be killed
224 	   by delayed old duplicates. RFC check is that it has
225 	   newer sequence number works at rates <40Mbit/sec.
226 	   However, if paws works, it is reliable AND even more,
227 	   we even may relax silly seq space cutoff.
228 
229 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
230 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
231 	   we must return socket to time-wait state. It is not good,
232 	   but not fatal yet.
233 	 */
234 
235 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
236 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
237 	     (tmp_opt.saw_tstamp &&
238 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
239 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
240 		if (isn == 0)
241 			isn++;
242 		TCP_SKB_CB(skb)->when = isn;
243 		return TCP_TW_SYN;
244 	}
245 
246 	if (paws_reject)
247 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
248 
249 	if (!th->rst) {
250 		/* In this case we must reset the TIMEWAIT timer.
251 		 *
252 		 * If it is ACKless SYN it may be both old duplicate
253 		 * and new good SYN with random sequence number <rcv_nxt.
254 		 * Do not reschedule in the last case.
255 		 */
256 		if (paws_reject || th->ack)
257 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
258 					   TCP_TIMEWAIT_LEN);
259 
260 		/* Send ACK. Note, we do not put the bucket,
261 		 * it will be released by caller.
262 		 */
263 		return TCP_TW_ACK;
264 	}
265 	inet_twsk_put(tw);
266 	return TCP_TW_SUCCESS;
267 }
268 
269 /*
270  * Move a socket to time-wait or dead fin-wait-2 state.
271  */
272 void tcp_time_wait(struct sock *sk, int state, int timeo)
273 {
274 	struct inet_timewait_sock *tw = NULL;
275 	const struct inet_connection_sock *icsk = inet_csk(sk);
276 	const struct tcp_sock *tp = tcp_sk(sk);
277 	int recycle_ok = 0;
278 
279 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
280 		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
281 
282 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
283 		tw = inet_twsk_alloc(sk, state);
284 
285 	if (tw != NULL) {
286 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
287 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
288 
289 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
290 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
291 		tcptw->tw_snd_nxt	= tp->snd_nxt;
292 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
293 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
294 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
295 
296 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
297 		if (tw->tw_family == PF_INET6) {
298 			struct ipv6_pinfo *np = inet6_sk(sk);
299 			struct inet6_timewait_sock *tw6;
300 
301 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
302 			tw6 = inet6_twsk((struct sock *)tw);
303 			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
304 			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
305 			tw->tw_ipv6only = np->ipv6only;
306 		}
307 #endif
308 
309 #ifdef CONFIG_TCP_MD5SIG
310 		/*
311 		 * The timewait bucket does not have the key DB from the
312 		 * sock structure. We just make a quick copy of the
313 		 * md5 key being used (if indeed we are using one)
314 		 * so the timewait ack generating code has the key.
315 		 */
316 		do {
317 			struct tcp_md5sig_key *key;
318 			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
319 			tcptw->tw_md5_keylen = 0;
320 			key = tp->af_specific->md5_lookup(sk, sk);
321 			if (key != NULL) {
322 				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
323 				tcptw->tw_md5_keylen = key->keylen;
324 				if (tcp_alloc_md5sig_pool() == NULL)
325 					BUG();
326 			}
327 		} while (0);
328 #endif
329 
330 		/* Linkage updates. */
331 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
332 
333 		/* Get the TIME_WAIT timeout firing. */
334 		if (timeo < rto)
335 			timeo = rto;
336 
337 		if (recycle_ok) {
338 			tw->tw_timeout = rto;
339 		} else {
340 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
341 			if (state == TCP_TIME_WAIT)
342 				timeo = TCP_TIMEWAIT_LEN;
343 		}
344 
345 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
346 				   TCP_TIMEWAIT_LEN);
347 		inet_twsk_put(tw);
348 	} else {
349 		/* Sorry, if we're out of memory, just CLOSE this
350 		 * socket up.  We've got bigger problems than
351 		 * non-graceful socket closings.
352 		 */
353 		LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
354 	}
355 
356 	tcp_update_metrics(sk);
357 	tcp_done(sk);
358 }
359 
360 void tcp_twsk_destructor(struct sock *sk)
361 {
362 #ifdef CONFIG_TCP_MD5SIG
363 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
364 	if (twsk->tw_md5_keylen)
365 		tcp_put_md5sig_pool();
366 #endif
367 }
368 
369 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
370 
371 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
372 					 struct request_sock *req)
373 {
374 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
375 }
376 
377 /* This is not only more efficient than what we used to do, it eliminates
378  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
379  *
380  * Actually, we could lots of memory writes here. tp of listening
381  * socket contains all necessary default parameters.
382  */
383 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
384 {
385 	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
386 
387 	if (newsk != NULL) {
388 		const struct inet_request_sock *ireq = inet_rsk(req);
389 		struct tcp_request_sock *treq = tcp_rsk(req);
390 		struct inet_connection_sock *newicsk = inet_csk(newsk);
391 		struct tcp_sock *newtp;
392 
393 		/* Now setup tcp_sock */
394 		newtp = tcp_sk(newsk);
395 		newtp->pred_flags = 0;
396 		newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1;
397 		newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = treq->snt_isn + 1;
398 
399 		tcp_prequeue_init(newtp);
400 
401 		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
402 
403 		newtp->srtt = 0;
404 		newtp->mdev = TCP_TIMEOUT_INIT;
405 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
406 
407 		newtp->packets_out = 0;
408 		newtp->retrans_out = 0;
409 		newtp->sacked_out = 0;
410 		newtp->fackets_out = 0;
411 		newtp->snd_ssthresh = 0x7fffffff;
412 
413 		/* So many TCP implementations out there (incorrectly) count the
414 		 * initial SYN frame in their delayed-ACK and congestion control
415 		 * algorithms that we must have the following bandaid to talk
416 		 * efficiently to them.  -DaveM
417 		 */
418 		newtp->snd_cwnd = 2;
419 		newtp->snd_cwnd_cnt = 0;
420 		newtp->bytes_acked = 0;
421 
422 		newtp->frto_counter = 0;
423 		newtp->frto_highmark = 0;
424 
425 		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
426 
427 		tcp_set_ca_state(newsk, TCP_CA_Open);
428 		tcp_init_xmit_timers(newsk);
429 		skb_queue_head_init(&newtp->out_of_order_queue);
430 		newtp->write_seq = treq->snt_isn + 1;
431 		newtp->pushed_seq = newtp->write_seq;
432 
433 		newtp->rx_opt.saw_tstamp = 0;
434 
435 		newtp->rx_opt.dsack = 0;
436 		newtp->rx_opt.eff_sacks = 0;
437 
438 		newtp->rx_opt.num_sacks = 0;
439 		newtp->urg_data = 0;
440 
441 		if (sock_flag(newsk, SOCK_KEEPOPEN))
442 			inet_csk_reset_keepalive_timer(newsk,
443 						       keepalive_time_when(newtp));
444 
445 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
446 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
447 			if (sysctl_tcp_fack)
448 				tcp_enable_fack(newtp);
449 		}
450 		newtp->window_clamp = req->window_clamp;
451 		newtp->rcv_ssthresh = req->rcv_wnd;
452 		newtp->rcv_wnd = req->rcv_wnd;
453 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
454 		if (newtp->rx_opt.wscale_ok) {
455 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
456 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
457 		} else {
458 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
459 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
460 		}
461 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
462 				  newtp->rx_opt.snd_wscale);
463 		newtp->max_window = newtp->snd_wnd;
464 
465 		if (newtp->rx_opt.tstamp_ok) {
466 			newtp->rx_opt.ts_recent = req->ts_recent;
467 			newtp->rx_opt.ts_recent_stamp = get_seconds();
468 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
469 		} else {
470 			newtp->rx_opt.ts_recent_stamp = 0;
471 			newtp->tcp_header_len = sizeof(struct tcphdr);
472 		}
473 #ifdef CONFIG_TCP_MD5SIG
474 		newtp->md5sig_info = NULL;	/*XXX*/
475 		if (newtp->af_specific->md5_lookup(sk, newsk))
476 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
477 #endif
478 		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
479 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
480 		newtp->rx_opt.mss_clamp = req->mss;
481 		TCP_ECN_openreq_child(newtp, req);
482 
483 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
484 	}
485 	return newsk;
486 }
487 
488 /*
489  *	Process an incoming packet for SYN_RECV sockets represented
490  *	as a request_sock.
491  */
492 
493 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
494 			   struct request_sock *req,
495 			   struct request_sock **prev)
496 {
497 	const struct tcphdr *th = tcp_hdr(skb);
498 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
499 	int paws_reject = 0;
500 	struct tcp_options_received tmp_opt;
501 	struct sock *child;
502 
503 	tmp_opt.saw_tstamp = 0;
504 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
505 		tcp_parse_options(skb, &tmp_opt, 0);
506 
507 		if (tmp_opt.saw_tstamp) {
508 			tmp_opt.ts_recent = req->ts_recent;
509 			/* We do not store true stamp, but it is not required,
510 			 * it can be estimated (approximately)
511 			 * from another data.
512 			 */
513 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
514 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
515 		}
516 	}
517 
518 	/* Check for pure retransmitted SYN. */
519 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
520 	    flg == TCP_FLAG_SYN &&
521 	    !paws_reject) {
522 		/*
523 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
524 		 * this case on figure 6 and figure 8, but formal
525 		 * protocol description says NOTHING.
526 		 * To be more exact, it says that we should send ACK,
527 		 * because this segment (at least, if it has no data)
528 		 * is out of window.
529 		 *
530 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
531 		 *  describe SYN-RECV state. All the description
532 		 *  is wrong, we cannot believe to it and should
533 		 *  rely only on common sense and implementation
534 		 *  experience.
535 		 *
536 		 * Enforce "SYN-ACK" according to figure 8, figure 6
537 		 * of RFC793, fixed by RFC1122.
538 		 */
539 		req->rsk_ops->rtx_syn_ack(sk, req);
540 		return NULL;
541 	}
542 
543 	/* Further reproduces section "SEGMENT ARRIVES"
544 	   for state SYN-RECEIVED of RFC793.
545 	   It is broken, however, it does not work only
546 	   when SYNs are crossed.
547 
548 	   You would think that SYN crossing is impossible here, since
549 	   we should have a SYN_SENT socket (from connect()) on our end,
550 	   but this is not true if the crossed SYNs were sent to both
551 	   ends by a malicious third party.  We must defend against this,
552 	   and to do that we first verify the ACK (as per RFC793, page
553 	   36) and reset if it is invalid.  Is this a true full defense?
554 	   To convince ourselves, let us consider a way in which the ACK
555 	   test can still pass in this 'malicious crossed SYNs' case.
556 	   Malicious sender sends identical SYNs (and thus identical sequence
557 	   numbers) to both A and B:
558 
559 		A: gets SYN, seq=7
560 		B: gets SYN, seq=7
561 
562 	   By our good fortune, both A and B select the same initial
563 	   send sequence number of seven :-)
564 
565 		A: sends SYN|ACK, seq=7, ack_seq=8
566 		B: sends SYN|ACK, seq=7, ack_seq=8
567 
568 	   So we are now A eating this SYN|ACK, ACK test passes.  So
569 	   does sequence test, SYN is truncated, and thus we consider
570 	   it a bare ACK.
571 
572 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
573 	   bare ACK.  Otherwise, we create an established connection.  Both
574 	   ends (listening sockets) accept the new incoming connection and try
575 	   to talk to each other. 8-)
576 
577 	   Note: This case is both harmless, and rare.  Possibility is about the
578 	   same as us discovering intelligent life on another plant tomorrow.
579 
580 	   But generally, we should (RFC lies!) to accept ACK
581 	   from SYNACK both here and in tcp_rcv_state_process().
582 	   tcp_rcv_state_process() does not, hence, we do not too.
583 
584 	   Note that the case is absolutely generic:
585 	   we cannot optimize anything here without
586 	   violating protocol. All the checks must be made
587 	   before attempt to create socket.
588 	 */
589 
590 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
591 	 *                  and the incoming segment acknowledges something not yet
592 	 *                  sent (the segment carries an unacceptable ACK) ...
593 	 *                  a reset is sent."
594 	 *
595 	 * Invalid ACK: reset will be sent by listening socket
596 	 */
597 	if ((flg & TCP_FLAG_ACK) &&
598 	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
599 		return sk;
600 
601 	/* Also, it would be not so bad idea to check rcv_tsecr, which
602 	 * is essentially ACK extension and too early or too late values
603 	 * should cause reset in unsynchronized states.
604 	 */
605 
606 	/* RFC793: "first check sequence number". */
607 
608 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
609 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
610 		/* Out of window: send ACK and drop. */
611 		if (!(flg & TCP_FLAG_RST))
612 			req->rsk_ops->send_ack(sk, skb, req);
613 		if (paws_reject)
614 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
615 		return NULL;
616 	}
617 
618 	/* In sequence, PAWS is OK. */
619 
620 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
621 		req->ts_recent = tmp_opt.rcv_tsval;
622 
623 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
624 		/* Truncate SYN, it is out of window starting
625 		   at tcp_rsk(req)->rcv_isn + 1. */
626 		flg &= ~TCP_FLAG_SYN;
627 	}
628 
629 	/* RFC793: "second check the RST bit" and
630 	 *	   "fourth, check the SYN bit"
631 	 */
632 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
633 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
634 		goto embryonic_reset;
635 	}
636 
637 	/* ACK sequence verified above, just make sure ACK is
638 	 * set.  If ACK not set, just silently drop the packet.
639 	 */
640 	if (!(flg & TCP_FLAG_ACK))
641 		return NULL;
642 
643 	/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
644 	if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
645 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
646 		inet_rsk(req)->acked = 1;
647 		return NULL;
648 	}
649 
650 	/* OK, ACK is valid, create big socket and
651 	 * feed this segment to it. It will repeat all
652 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
653 	 * ESTABLISHED STATE. If it will be dropped after
654 	 * socket is created, wait for troubles.
655 	 */
656 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
657 	if (child == NULL)
658 		goto listen_overflow;
659 #ifdef CONFIG_TCP_MD5SIG
660 	else {
661 		/* Copy over the MD5 key from the original socket */
662 		struct tcp_md5sig_key *key;
663 		struct tcp_sock *tp = tcp_sk(sk);
664 		key = tp->af_specific->md5_lookup(sk, child);
665 		if (key != NULL) {
666 			/*
667 			 * We're using one, so create a matching key on the
668 			 * newsk structure. If we fail to get memory then we
669 			 * end up not copying the key across. Shucks.
670 			 */
671 			char *newkey = kmemdup(key->key, key->keylen,
672 					       GFP_ATOMIC);
673 			if (newkey) {
674 				if (!tcp_alloc_md5sig_pool())
675 					BUG();
676 				tp->af_specific->md5_add(child, child, newkey,
677 							 key->keylen);
678 			}
679 		}
680 	}
681 #endif
682 
683 	inet_csk_reqsk_queue_unlink(sk, req, prev);
684 	inet_csk_reqsk_queue_removed(sk, req);
685 
686 	inet_csk_reqsk_queue_add(sk, req, child);
687 	return child;
688 
689 listen_overflow:
690 	if (!sysctl_tcp_abort_on_overflow) {
691 		inet_rsk(req)->acked = 1;
692 		return NULL;
693 	}
694 
695 embryonic_reset:
696 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
697 	if (!(flg & TCP_FLAG_RST))
698 		req->rsk_ops->send_reset(sk, skb);
699 
700 	inet_csk_reqsk_queue_drop(sk, req, prev);
701 	return NULL;
702 }
703 
704 /*
705  * Queue segment on the new socket if the new socket is active,
706  * otherwise we just shortcircuit this and continue with
707  * the new socket.
708  */
709 
710 int tcp_child_process(struct sock *parent, struct sock *child,
711 		      struct sk_buff *skb)
712 {
713 	int ret = 0;
714 	int state = child->sk_state;
715 
716 	if (!sock_owned_by_user(child)) {
717 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
718 					    skb->len);
719 		/* Wakeup parent, send SIGIO */
720 		if (state == TCP_SYN_RECV && child->sk_state != state)
721 			parent->sk_data_ready(parent, 0);
722 	} else {
723 		/* Alas, it is possible again, because we do lookup
724 		 * in main socket hash table and lock on listening
725 		 * socket does not protect us more.
726 		 */
727 		sk_add_backlog(child, skb);
728 	}
729 
730 	bh_unlock_sock(child);
731 	sock_put(child);
732 	return ret;
733 }
734 
735 EXPORT_SYMBOL(tcp_check_req);
736 EXPORT_SYMBOL(tcp_child_process);
737 EXPORT_SYMBOL(tcp_create_openreq_child);
738 EXPORT_SYMBOL(tcp_timewait_state_process);
739