xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 2fa49589)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <linux/static_key.h>
27 #include <net/tcp.h>
28 #include <net/inet_common.h>
29 #include <net/xfrm.h>
30 #include <net/busy_poll.h>
31 
32 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
33 {
34 	if (seq == s_win)
35 		return true;
36 	if (after(end_seq, s_win) && before(seq, e_win))
37 		return true;
38 	return seq == e_win && seq == end_seq;
39 }
40 
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
43 				  const struct sk_buff *skb, int mib_idx)
44 {
45 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
46 
47 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
48 				  &tcptw->tw_last_oow_ack_time)) {
49 		/* Send ACK. Note, we do not put the bucket,
50 		 * it will be released by caller.
51 		 */
52 		return TCP_TW_ACK;
53 	}
54 
55 	/* We are rate-limiting, so just release the tw sock and drop skb. */
56 	inet_twsk_put(tw);
57 	return TCP_TW_SUCCESS;
58 }
59 
60 /*
61  * * Main purpose of TIME-WAIT state is to close connection gracefully,
62  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63  *   (and, probably, tail of data) and one or more our ACKs are lost.
64  * * What is TIME-WAIT timeout? It is associated with maximal packet
65  *   lifetime in the internet, which results in wrong conclusion, that
66  *   it is set to catch "old duplicate segments" wandering out of their path.
67  *   It is not quite correct. This timeout is calculated so that it exceeds
68  *   maximal retransmission timeout enough to allow to lose one (or more)
69  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
70  * * When TIME-WAIT socket receives RST, it means that another end
71  *   finally closed and we are allowed to kill TIME-WAIT too.
72  * * Second purpose of TIME-WAIT is catching old duplicate segments.
73  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
74  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75  * * If we invented some more clever way to catch duplicates
76  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
77  *
78  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80  * from the very beginning.
81  *
82  * NOTE. With recycling (and later with fin-wait-2) TW bucket
83  * is _not_ stateless. It means, that strictly speaking we must
84  * spinlock it. I do not want! Well, probability of misbehaviour
85  * is ridiculously low and, seems, we could use some mb() tricks
86  * to avoid misread sequence numbers, states etc.  --ANK
87  *
88  * We don't need to initialize tmp_out.sack_ok as we don't use the results
89  */
90 enum tcp_tw_status
91 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
92 			   const struct tcphdr *th)
93 {
94 	struct tcp_options_received tmp_opt;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 
98 	tmp_opt.saw_tstamp = 0;
99 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
101 
102 		if (tmp_opt.saw_tstamp) {
103 			if (tmp_opt.rcv_tsecr)
104 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return tcp_timewait_check_oow_rate_limit(
120 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121 
122 		if (th->rst)
123 			goto kill;
124 
125 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126 			return TCP_TW_RST;
127 
128 		/* Dup ACK? */
129 		if (!th->ack ||
130 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132 			inet_twsk_put(tw);
133 			return TCP_TW_SUCCESS;
134 		}
135 
136 		/* New data or FIN. If new data arrive after half-duplex close,
137 		 * reset.
138 		 */
139 		if (!th->fin ||
140 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141 			return TCP_TW_RST;
142 
143 		/* FIN arrived, enter true time-wait state. */
144 		tw->tw_substate	  = TCP_TIME_WAIT;
145 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146 		if (tmp_opt.saw_tstamp) {
147 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
148 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149 		}
150 
151 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
152 		return TCP_TW_ACK;
153 	}
154 
155 	/*
156 	 *	Now real TIME-WAIT state.
157 	 *
158 	 *	RFC 1122:
159 	 *	"When a connection is [...] on TIME-WAIT state [...]
160 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
161 	 *	reopen the connection directly, if it:
162 	 *
163 	 *	(1)  assigns its initial sequence number for the new
164 	 *	connection to be larger than the largest sequence
165 	 *	number it used on the previous connection incarnation,
166 	 *	and
167 	 *
168 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
169 	 *	to be an old duplicate".
170 	 */
171 
172 	if (!paws_reject &&
173 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
174 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
175 		/* In window segment, it may be only reset or bare ack. */
176 
177 		if (th->rst) {
178 			/* This is TIME_WAIT assassination, in two flavors.
179 			 * Oh well... nobody has a sufficient solution to this
180 			 * protocol bug yet.
181 			 */
182 			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
183 kill:
184 				inet_twsk_deschedule_put(tw);
185 				return TCP_TW_SUCCESS;
186 			}
187 		} else {
188 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
189 		}
190 
191 		if (tmp_opt.saw_tstamp) {
192 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
193 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
194 		}
195 
196 		inet_twsk_put(tw);
197 		return TCP_TW_SUCCESS;
198 	}
199 
200 	/* Out of window segment.
201 
202 	   All the segments are ACKed immediately.
203 
204 	   The only exception is new SYN. We accept it, if it is
205 	   not old duplicate and we are not in danger to be killed
206 	   by delayed old duplicates. RFC check is that it has
207 	   newer sequence number works at rates <40Mbit/sec.
208 	   However, if paws works, it is reliable AND even more,
209 	   we even may relax silly seq space cutoff.
210 
211 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
212 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
213 	   we must return socket to time-wait state. It is not good,
214 	   but not fatal yet.
215 	 */
216 
217 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
218 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
219 	     (tmp_opt.saw_tstamp &&
220 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
221 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
222 		if (isn == 0)
223 			isn++;
224 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
225 		return TCP_TW_SYN;
226 	}
227 
228 	if (paws_reject)
229 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
230 
231 	if (!th->rst) {
232 		/* In this case we must reset the TIMEWAIT timer.
233 		 *
234 		 * If it is ACKless SYN it may be both old duplicate
235 		 * and new good SYN with random sequence number <rcv_nxt.
236 		 * Do not reschedule in the last case.
237 		 */
238 		if (paws_reject || th->ack)
239 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
240 
241 		return tcp_timewait_check_oow_rate_limit(
242 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
243 	}
244 	inet_twsk_put(tw);
245 	return TCP_TW_SUCCESS;
246 }
247 EXPORT_SYMBOL(tcp_timewait_state_process);
248 
249 /*
250  * Move a socket to time-wait or dead fin-wait-2 state.
251  */
252 void tcp_time_wait(struct sock *sk, int state, int timeo)
253 {
254 	const struct inet_connection_sock *icsk = inet_csk(sk);
255 	const struct tcp_sock *tp = tcp_sk(sk);
256 	struct inet_timewait_sock *tw;
257 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
258 
259 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
260 
261 	if (tw) {
262 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
263 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
264 		struct inet_sock *inet = inet_sk(sk);
265 
266 		tw->tw_transparent	= inet->transparent;
267 		tw->tw_mark		= sk->sk_mark;
268 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
269 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
270 		tcptw->tw_snd_nxt	= tp->snd_nxt;
271 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
272 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
273 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
274 		tcptw->tw_ts_offset	= tp->tsoffset;
275 		tcptw->tw_last_oow_ack_time = 0;
276 
277 #if IS_ENABLED(CONFIG_IPV6)
278 		if (tw->tw_family == PF_INET6) {
279 			struct ipv6_pinfo *np = inet6_sk(sk);
280 
281 			tw->tw_v6_daddr = sk->sk_v6_daddr;
282 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
283 			tw->tw_tclass = np->tclass;
284 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
285 			tw->tw_ipv6only = sk->sk_ipv6only;
286 		}
287 #endif
288 
289 #ifdef CONFIG_TCP_MD5SIG
290 		/*
291 		 * The timewait bucket does not have the key DB from the
292 		 * sock structure. We just make a quick copy of the
293 		 * md5 key being used (if indeed we are using one)
294 		 * so the timewait ack generating code has the key.
295 		 */
296 		do {
297 			struct tcp_md5sig_key *key;
298 			tcptw->tw_md5_key = NULL;
299 			key = tp->af_specific->md5_lookup(sk, sk);
300 			if (key) {
301 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
302 				BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
303 			}
304 		} while (0);
305 #endif
306 
307 		/* Get the TIME_WAIT timeout firing. */
308 		if (timeo < rto)
309 			timeo = rto;
310 
311 		if (state == TCP_TIME_WAIT)
312 			timeo = TCP_TIMEWAIT_LEN;
313 
314 		/* tw_timer is pinned, so we need to make sure BH are disabled
315 		 * in following section, otherwise timer handler could run before
316 		 * we complete the initialization.
317 		 */
318 		local_bh_disable();
319 		inet_twsk_schedule(tw, timeo);
320 		/* Linkage updates.
321 		 * Note that access to tw after this point is illegal.
322 		 */
323 		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
324 		local_bh_enable();
325 	} else {
326 		/* Sorry, if we're out of memory, just CLOSE this
327 		 * socket up.  We've got bigger problems than
328 		 * non-graceful socket closings.
329 		 */
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
331 	}
332 
333 	tcp_update_metrics(sk);
334 	tcp_done(sk);
335 }
336 EXPORT_SYMBOL(tcp_time_wait);
337 
338 void tcp_twsk_destructor(struct sock *sk)
339 {
340 #ifdef CONFIG_TCP_MD5SIG
341 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
342 
343 	if (twsk->tw_md5_key)
344 		kfree_rcu(twsk->tw_md5_key, rcu);
345 #endif
346 }
347 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
348 
349 /* Warning : This function is called without sk_listener being locked.
350  * Be sure to read socket fields once, as their value could change under us.
351  */
352 void tcp_openreq_init_rwin(struct request_sock *req,
353 			   const struct sock *sk_listener,
354 			   const struct dst_entry *dst)
355 {
356 	struct inet_request_sock *ireq = inet_rsk(req);
357 	const struct tcp_sock *tp = tcp_sk(sk_listener);
358 	int full_space = tcp_full_space(sk_listener);
359 	u32 window_clamp;
360 	__u8 rcv_wscale;
361 	u32 rcv_wnd;
362 	int mss;
363 
364 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
365 	window_clamp = READ_ONCE(tp->window_clamp);
366 	/* Set this up on the first call only */
367 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
368 
369 	/* limit the window selection if the user enforce a smaller rx buffer */
370 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
371 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
372 		req->rsk_window_clamp = full_space;
373 
374 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
375 	if (rcv_wnd == 0)
376 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
377 	else if (full_space < rcv_wnd * mss)
378 		full_space = rcv_wnd * mss;
379 
380 	/* tcp_full_space because it is guaranteed to be the first packet */
381 	tcp_select_initial_window(sk_listener, full_space,
382 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
383 		&req->rsk_rcv_wnd,
384 		&req->rsk_window_clamp,
385 		ireq->wscale_ok,
386 		&rcv_wscale,
387 		rcv_wnd);
388 	ireq->rcv_wscale = rcv_wscale;
389 }
390 EXPORT_SYMBOL(tcp_openreq_init_rwin);
391 
392 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
393 				  const struct request_sock *req)
394 {
395 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
396 }
397 
398 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
399 {
400 	struct inet_connection_sock *icsk = inet_csk(sk);
401 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
402 	bool ca_got_dst = false;
403 
404 	if (ca_key != TCP_CA_UNSPEC) {
405 		const struct tcp_congestion_ops *ca;
406 
407 		rcu_read_lock();
408 		ca = tcp_ca_find_key(ca_key);
409 		if (likely(ca && try_module_get(ca->owner))) {
410 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
411 			icsk->icsk_ca_ops = ca;
412 			ca_got_dst = true;
413 		}
414 		rcu_read_unlock();
415 	}
416 
417 	/* If no valid choice made yet, assign current system default ca. */
418 	if (!ca_got_dst &&
419 	    (!icsk->icsk_ca_setsockopt ||
420 	     !try_module_get(icsk->icsk_ca_ops->owner)))
421 		tcp_assign_congestion_control(sk);
422 
423 	tcp_set_ca_state(sk, TCP_CA_Open);
424 }
425 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
426 
427 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
428 				    struct request_sock *req,
429 				    struct tcp_sock *newtp)
430 {
431 #if IS_ENABLED(CONFIG_SMC)
432 	struct inet_request_sock *ireq;
433 
434 	if (static_branch_unlikely(&tcp_have_smc)) {
435 		ireq = inet_rsk(req);
436 		if (oldtp->syn_smc && !ireq->smc_ok)
437 			newtp->syn_smc = 0;
438 	}
439 #endif
440 }
441 
442 /* This is not only more efficient than what we used to do, it eliminates
443  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
444  *
445  * Actually, we could lots of memory writes here. tp of listening
446  * socket contains all necessary default parameters.
447  */
448 struct sock *tcp_create_openreq_child(const struct sock *sk,
449 				      struct request_sock *req,
450 				      struct sk_buff *skb)
451 {
452 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
453 	const struct inet_request_sock *ireq = inet_rsk(req);
454 	struct tcp_request_sock *treq = tcp_rsk(req);
455 	struct inet_connection_sock *newicsk;
456 	struct tcp_sock *oldtp, *newtp;
457 
458 	if (!newsk)
459 		return NULL;
460 
461 	newicsk = inet_csk(newsk);
462 	newtp = tcp_sk(newsk);
463 	oldtp = tcp_sk(sk);
464 
465 	smc_check_reset_syn_req(oldtp, req, newtp);
466 
467 	/* Now setup tcp_sock */
468 	newtp->pred_flags = 0;
469 
470 	newtp->rcv_wup = newtp->copied_seq =
471 	newtp->rcv_nxt = treq->rcv_isn + 1;
472 	newtp->segs_in = 1;
473 
474 	newtp->snd_sml = newtp->snd_una =
475 	newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
476 
477 	INIT_LIST_HEAD(&newtp->tsq_node);
478 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
479 
480 	tcp_init_wl(newtp, treq->rcv_isn);
481 
482 	newtp->srtt_us = 0;
483 	newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
484 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
485 	newicsk->icsk_rto = TCP_TIMEOUT_INIT;
486 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
487 
488 	newtp->packets_out = 0;
489 	newtp->retrans_out = 0;
490 	newtp->sacked_out = 0;
491 	newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
492 	newtp->tlp_high_seq = 0;
493 	newtp->lsndtime = tcp_jiffies32;
494 	newsk->sk_txhash = treq->txhash;
495 	newtp->last_oow_ack_time = 0;
496 	newtp->total_retrans = req->num_retrans;
497 
498 	/* So many TCP implementations out there (incorrectly) count the
499 	 * initial SYN frame in their delayed-ACK and congestion control
500 	 * algorithms that we must have the following bandaid to talk
501 	 * efficiently to them.  -DaveM
502 	 */
503 	newtp->snd_cwnd = TCP_INIT_CWND;
504 	newtp->snd_cwnd_cnt = 0;
505 
506 	/* There's a bubble in the pipe until at least the first ACK. */
507 	newtp->app_limited = ~0U;
508 
509 	tcp_init_xmit_timers(newsk);
510 	newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
511 
512 	newtp->rx_opt.saw_tstamp = 0;
513 
514 	newtp->rx_opt.dsack = 0;
515 	newtp->rx_opt.num_sacks = 0;
516 
517 	newtp->urg_data = 0;
518 
519 	if (sock_flag(newsk, SOCK_KEEPOPEN))
520 		inet_csk_reset_keepalive_timer(newsk,
521 					       keepalive_time_when(newtp));
522 
523 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
524 	newtp->rx_opt.sack_ok = ireq->sack_ok;
525 	newtp->window_clamp = req->rsk_window_clamp;
526 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
527 	newtp->rcv_wnd = req->rsk_rcv_wnd;
528 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
529 	if (newtp->rx_opt.wscale_ok) {
530 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
531 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
532 	} else {
533 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
534 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
535 	}
536 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
537 	newtp->max_window = newtp->snd_wnd;
538 
539 	if (newtp->rx_opt.tstamp_ok) {
540 		newtp->rx_opt.ts_recent = req->ts_recent;
541 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
542 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
543 	} else {
544 		newtp->rx_opt.ts_recent_stamp = 0;
545 		newtp->tcp_header_len = sizeof(struct tcphdr);
546 	}
547 	newtp->tsoffset = treq->ts_off;
548 #ifdef CONFIG_TCP_MD5SIG
549 	newtp->md5sig_info = NULL;	/*XXX*/
550 	if (newtp->af_specific->md5_lookup(sk, newsk))
551 		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
552 #endif
553 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
554 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
555 	newtp->rx_opt.mss_clamp = req->mss;
556 	tcp_ecn_openreq_child(newtp, req);
557 	newtp->fastopen_req = NULL;
558 	newtp->fastopen_rsk = NULL;
559 	newtp->syn_data_acked = 0;
560 	newtp->rack.mstamp = 0;
561 	newtp->rack.advanced = 0;
562 	newtp->rack.reo_wnd_steps = 1;
563 	newtp->rack.last_delivered = 0;
564 	newtp->rack.reo_wnd_persist = 0;
565 	newtp->rack.dsack_seen = 0;
566 
567 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
568 
569 	return newsk;
570 }
571 EXPORT_SYMBOL(tcp_create_openreq_child);
572 
573 /*
574  * Process an incoming packet for SYN_RECV sockets represented as a
575  * request_sock. Normally sk is the listener socket but for TFO it
576  * points to the child socket.
577  *
578  * XXX (TFO) - The current impl contains a special check for ack
579  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
580  *
581  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
582  */
583 
584 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
585 			   struct request_sock *req,
586 			   bool fastopen, bool *req_stolen)
587 {
588 	struct tcp_options_received tmp_opt;
589 	struct sock *child;
590 	const struct tcphdr *th = tcp_hdr(skb);
591 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
592 	bool paws_reject = false;
593 	bool own_req;
594 
595 	tmp_opt.saw_tstamp = 0;
596 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
597 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
598 
599 		if (tmp_opt.saw_tstamp) {
600 			tmp_opt.ts_recent = req->ts_recent;
601 			if (tmp_opt.rcv_tsecr)
602 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
603 			/* We do not store true stamp, but it is not required,
604 			 * it can be estimated (approximately)
605 			 * from another data.
606 			 */
607 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
608 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
609 		}
610 	}
611 
612 	/* Check for pure retransmitted SYN. */
613 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
614 	    flg == TCP_FLAG_SYN &&
615 	    !paws_reject) {
616 		/*
617 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
618 		 * this case on figure 6 and figure 8, but formal
619 		 * protocol description says NOTHING.
620 		 * To be more exact, it says that we should send ACK,
621 		 * because this segment (at least, if it has no data)
622 		 * is out of window.
623 		 *
624 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
625 		 *  describe SYN-RECV state. All the description
626 		 *  is wrong, we cannot believe to it and should
627 		 *  rely only on common sense and implementation
628 		 *  experience.
629 		 *
630 		 * Enforce "SYN-ACK" according to figure 8, figure 6
631 		 * of RFC793, fixed by RFC1122.
632 		 *
633 		 * Note that even if there is new data in the SYN packet
634 		 * they will be thrown away too.
635 		 *
636 		 * Reset timer after retransmitting SYNACK, similar to
637 		 * the idea of fast retransmit in recovery.
638 		 */
639 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
640 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
641 					  &tcp_rsk(req)->last_oow_ack_time) &&
642 
643 		    !inet_rtx_syn_ack(sk, req)) {
644 			unsigned long expires = jiffies;
645 
646 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
647 				       TCP_RTO_MAX);
648 			if (!fastopen)
649 				mod_timer_pending(&req->rsk_timer, expires);
650 			else
651 				req->rsk_timer.expires = expires;
652 		}
653 		return NULL;
654 	}
655 
656 	/* Further reproduces section "SEGMENT ARRIVES"
657 	   for state SYN-RECEIVED of RFC793.
658 	   It is broken, however, it does not work only
659 	   when SYNs are crossed.
660 
661 	   You would think that SYN crossing is impossible here, since
662 	   we should have a SYN_SENT socket (from connect()) on our end,
663 	   but this is not true if the crossed SYNs were sent to both
664 	   ends by a malicious third party.  We must defend against this,
665 	   and to do that we first verify the ACK (as per RFC793, page
666 	   36) and reset if it is invalid.  Is this a true full defense?
667 	   To convince ourselves, let us consider a way in which the ACK
668 	   test can still pass in this 'malicious crossed SYNs' case.
669 	   Malicious sender sends identical SYNs (and thus identical sequence
670 	   numbers) to both A and B:
671 
672 		A: gets SYN, seq=7
673 		B: gets SYN, seq=7
674 
675 	   By our good fortune, both A and B select the same initial
676 	   send sequence number of seven :-)
677 
678 		A: sends SYN|ACK, seq=7, ack_seq=8
679 		B: sends SYN|ACK, seq=7, ack_seq=8
680 
681 	   So we are now A eating this SYN|ACK, ACK test passes.  So
682 	   does sequence test, SYN is truncated, and thus we consider
683 	   it a bare ACK.
684 
685 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
686 	   bare ACK.  Otherwise, we create an established connection.  Both
687 	   ends (listening sockets) accept the new incoming connection and try
688 	   to talk to each other. 8-)
689 
690 	   Note: This case is both harmless, and rare.  Possibility is about the
691 	   same as us discovering intelligent life on another plant tomorrow.
692 
693 	   But generally, we should (RFC lies!) to accept ACK
694 	   from SYNACK both here and in tcp_rcv_state_process().
695 	   tcp_rcv_state_process() does not, hence, we do not too.
696 
697 	   Note that the case is absolutely generic:
698 	   we cannot optimize anything here without
699 	   violating protocol. All the checks must be made
700 	   before attempt to create socket.
701 	 */
702 
703 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
704 	 *                  and the incoming segment acknowledges something not yet
705 	 *                  sent (the segment carries an unacceptable ACK) ...
706 	 *                  a reset is sent."
707 	 *
708 	 * Invalid ACK: reset will be sent by listening socket.
709 	 * Note that the ACK validity check for a Fast Open socket is done
710 	 * elsewhere and is checked directly against the child socket rather
711 	 * than req because user data may have been sent out.
712 	 */
713 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
714 	    (TCP_SKB_CB(skb)->ack_seq !=
715 	     tcp_rsk(req)->snt_isn + 1))
716 		return sk;
717 
718 	/* Also, it would be not so bad idea to check rcv_tsecr, which
719 	 * is essentially ACK extension and too early or too late values
720 	 * should cause reset in unsynchronized states.
721 	 */
722 
723 	/* RFC793: "first check sequence number". */
724 
725 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
726 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
727 		/* Out of window: send ACK and drop. */
728 		if (!(flg & TCP_FLAG_RST) &&
729 		    !tcp_oow_rate_limited(sock_net(sk), skb,
730 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
731 					  &tcp_rsk(req)->last_oow_ack_time))
732 			req->rsk_ops->send_ack(sk, skb, req);
733 		if (paws_reject)
734 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
735 		return NULL;
736 	}
737 
738 	/* In sequence, PAWS is OK. */
739 
740 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
741 		req->ts_recent = tmp_opt.rcv_tsval;
742 
743 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
744 		/* Truncate SYN, it is out of window starting
745 		   at tcp_rsk(req)->rcv_isn + 1. */
746 		flg &= ~TCP_FLAG_SYN;
747 	}
748 
749 	/* RFC793: "second check the RST bit" and
750 	 *	   "fourth, check the SYN bit"
751 	 */
752 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
753 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
754 		goto embryonic_reset;
755 	}
756 
757 	/* ACK sequence verified above, just make sure ACK is
758 	 * set.  If ACK not set, just silently drop the packet.
759 	 *
760 	 * XXX (TFO) - if we ever allow "data after SYN", the
761 	 * following check needs to be removed.
762 	 */
763 	if (!(flg & TCP_FLAG_ACK))
764 		return NULL;
765 
766 	/* For Fast Open no more processing is needed (sk is the
767 	 * child socket).
768 	 */
769 	if (fastopen)
770 		return sk;
771 
772 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
773 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
774 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
775 		inet_rsk(req)->acked = 1;
776 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
777 		return NULL;
778 	}
779 
780 	/* OK, ACK is valid, create big socket and
781 	 * feed this segment to it. It will repeat all
782 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
783 	 * ESTABLISHED STATE. If it will be dropped after
784 	 * socket is created, wait for troubles.
785 	 */
786 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
787 							 req, &own_req);
788 	if (!child)
789 		goto listen_overflow;
790 
791 	sock_rps_save_rxhash(child, skb);
792 	tcp_synack_rtt_meas(child, req);
793 	*req_stolen = !own_req;
794 	return inet_csk_complete_hashdance(sk, child, req, own_req);
795 
796 listen_overflow:
797 	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
798 		inet_rsk(req)->acked = 1;
799 		return NULL;
800 	}
801 
802 embryonic_reset:
803 	if (!(flg & TCP_FLAG_RST)) {
804 		/* Received a bad SYN pkt - for TFO We try not to reset
805 		 * the local connection unless it's really necessary to
806 		 * avoid becoming vulnerable to outside attack aiming at
807 		 * resetting legit local connections.
808 		 */
809 		req->rsk_ops->send_reset(sk, skb);
810 	} else if (fastopen) { /* received a valid RST pkt */
811 		reqsk_fastopen_remove(sk, req, true);
812 		tcp_reset(sk);
813 	}
814 	if (!fastopen) {
815 		inet_csk_reqsk_queue_drop(sk, req);
816 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
817 	}
818 	return NULL;
819 }
820 EXPORT_SYMBOL(tcp_check_req);
821 
822 /*
823  * Queue segment on the new socket if the new socket is active,
824  * otherwise we just shortcircuit this and continue with
825  * the new socket.
826  *
827  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
828  * when entering. But other states are possible due to a race condition
829  * where after __inet_lookup_established() fails but before the listener
830  * locked is obtained, other packets cause the same connection to
831  * be created.
832  */
833 
834 int tcp_child_process(struct sock *parent, struct sock *child,
835 		      struct sk_buff *skb)
836 {
837 	int ret = 0;
838 	int state = child->sk_state;
839 
840 	/* record NAPI ID of child */
841 	sk_mark_napi_id(child, skb);
842 
843 	tcp_segs_in(tcp_sk(child), skb);
844 	if (!sock_owned_by_user(child)) {
845 		ret = tcp_rcv_state_process(child, skb);
846 		/* Wakeup parent, send SIGIO */
847 		if (state == TCP_SYN_RECV && child->sk_state != state)
848 			parent->sk_data_ready(parent);
849 	} else {
850 		/* Alas, it is possible again, because we do lookup
851 		 * in main socket hash table and lock on listening
852 		 * socket does not protect us more.
853 		 */
854 		__sk_add_backlog(child, skb);
855 	}
856 
857 	bh_unlock_sock(child);
858 	sock_put(child);
859 	return ret;
860 }
861 EXPORT_SYMBOL(tcp_child_process);
862