xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 12eb4683)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54 	if (seq == s_win)
55 		return true;
56 	if (after(end_seq, s_win) && before(seq, e_win))
57 		return true;
58 	return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 	bool paws_reject = false;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return TCP_TW_ACK;
120 
121 		if (th->rst)
122 			goto kill;
123 
124 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125 			goto kill_with_rst;
126 
127 		/* Dup ACK? */
128 		if (!th->ack ||
129 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131 			inet_twsk_put(tw);
132 			return TCP_TW_SUCCESS;
133 		}
134 
135 		/* New data or FIN. If new data arrive after half-duplex close,
136 		 * reset.
137 		 */
138 		if (!th->fin ||
139 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140 kill_with_rst:
141 			inet_twsk_deschedule(tw, &tcp_death_row);
142 			inet_twsk_put(tw);
143 			return TCP_TW_RST;
144 		}
145 
146 		/* FIN arrived, enter true time-wait state. */
147 		tw->tw_substate	  = TCP_TIME_WAIT;
148 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149 		if (tmp_opt.saw_tstamp) {
150 			tcptw->tw_ts_recent_stamp = get_seconds();
151 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152 		}
153 
154 		if (tcp_death_row.sysctl_tw_recycle &&
155 		    tcptw->tw_ts_recent_stamp &&
156 		    tcp_tw_remember_stamp(tw))
157 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158 					   TCP_TIMEWAIT_LEN);
159 		else
160 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161 					   TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule(tw, &tcp_death_row);
195 				inet_twsk_put(tw);
196 				return TCP_TW_SUCCESS;
197 			}
198 		}
199 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200 				   TCP_TIMEWAIT_LEN);
201 
202 		if (tmp_opt.saw_tstamp) {
203 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204 			tcptw->tw_ts_recent_stamp = get_seconds();
205 		}
206 
207 		inet_twsk_put(tw);
208 		return TCP_TW_SUCCESS;
209 	}
210 
211 	/* Out of window segment.
212 
213 	   All the segments are ACKed immediately.
214 
215 	   The only exception is new SYN. We accept it, if it is
216 	   not old duplicate and we are not in danger to be killed
217 	   by delayed old duplicates. RFC check is that it has
218 	   newer sequence number works at rates <40Mbit/sec.
219 	   However, if paws works, it is reliable AND even more,
220 	   we even may relax silly seq space cutoff.
221 
222 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224 	   we must return socket to time-wait state. It is not good,
225 	   but not fatal yet.
226 	 */
227 
228 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230 	     (tmp_opt.saw_tstamp &&
231 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233 		if (isn == 0)
234 			isn++;
235 		TCP_SKB_CB(skb)->when = isn;
236 		return TCP_TW_SYN;
237 	}
238 
239 	if (paws_reject)
240 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241 
242 	if (!th->rst) {
243 		/* In this case we must reset the TIMEWAIT timer.
244 		 *
245 		 * If it is ACKless SYN it may be both old duplicate
246 		 * and new good SYN with random sequence number <rcv_nxt.
247 		 * Do not reschedule in the last case.
248 		 */
249 		if (paws_reject || th->ack)
250 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251 					   TCP_TIMEWAIT_LEN);
252 
253 		/* Send ACK. Note, we do not put the bucket,
254 		 * it will be released by caller.
255 		 */
256 		return TCP_TW_ACK;
257 	}
258 	inet_twsk_put(tw);
259 	return TCP_TW_SUCCESS;
260 }
261 EXPORT_SYMBOL(tcp_timewait_state_process);
262 
263 /*
264  * Move a socket to time-wait or dead fin-wait-2 state.
265  */
266 void tcp_time_wait(struct sock *sk, int state, int timeo)
267 {
268 	struct inet_timewait_sock *tw = NULL;
269 	const struct inet_connection_sock *icsk = inet_csk(sk);
270 	const struct tcp_sock *tp = tcp_sk(sk);
271 	bool recycle_ok = false;
272 
273 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274 		recycle_ok = tcp_remember_stamp(sk);
275 
276 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277 		tw = inet_twsk_alloc(sk, state);
278 
279 	if (tw != NULL) {
280 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 		struct inet_sock *inet = inet_sk(sk);
283 
284 		tw->tw_transparent	= inet->transparent;
285 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287 		tcptw->tw_snd_nxt	= tp->snd_nxt;
288 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 		tcptw->tw_ts_offset	= tp->tsoffset;
292 
293 #if IS_ENABLED(CONFIG_IPV6)
294 		if (tw->tw_family == PF_INET6) {
295 			struct ipv6_pinfo *np = inet6_sk(sk);
296 
297 			tw->tw_v6_daddr = sk->sk_v6_daddr;
298 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
299 			tw->tw_tclass = np->tclass;
300 			tw->tw_ipv6only = np->ipv6only;
301 		}
302 #endif
303 
304 #ifdef CONFIG_TCP_MD5SIG
305 		/*
306 		 * The timewait bucket does not have the key DB from the
307 		 * sock structure. We just make a quick copy of the
308 		 * md5 key being used (if indeed we are using one)
309 		 * so the timewait ack generating code has the key.
310 		 */
311 		do {
312 			struct tcp_md5sig_key *key;
313 			tcptw->tw_md5_key = NULL;
314 			key = tp->af_specific->md5_lookup(sk, sk);
315 			if (key != NULL) {
316 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
317 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
318 					BUG();
319 			}
320 		} while (0);
321 #endif
322 
323 		/* Linkage updates. */
324 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
325 
326 		/* Get the TIME_WAIT timeout firing. */
327 		if (timeo < rto)
328 			timeo = rto;
329 
330 		if (recycle_ok) {
331 			tw->tw_timeout = rto;
332 		} else {
333 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
334 			if (state == TCP_TIME_WAIT)
335 				timeo = TCP_TIMEWAIT_LEN;
336 		}
337 
338 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
339 				   TCP_TIMEWAIT_LEN);
340 		inet_twsk_put(tw);
341 	} else {
342 		/* Sorry, if we're out of memory, just CLOSE this
343 		 * socket up.  We've got bigger problems than
344 		 * non-graceful socket closings.
345 		 */
346 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 	}
348 
349 	tcp_update_metrics(sk);
350 	tcp_done(sk);
351 }
352 
353 void tcp_twsk_destructor(struct sock *sk)
354 {
355 #ifdef CONFIG_TCP_MD5SIG
356 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357 
358 	if (twsk->tw_md5_key)
359 		kfree_rcu(twsk->tw_md5_key, rcu);
360 #endif
361 }
362 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
363 
364 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
365 					 struct request_sock *req)
366 {
367 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
368 }
369 
370 /* This is not only more efficient than what we used to do, it eliminates
371  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
372  *
373  * Actually, we could lots of memory writes here. tp of listening
374  * socket contains all necessary default parameters.
375  */
376 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
377 {
378 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
379 
380 	if (newsk != NULL) {
381 		const struct inet_request_sock *ireq = inet_rsk(req);
382 		struct tcp_request_sock *treq = tcp_rsk(req);
383 		struct inet_connection_sock *newicsk = inet_csk(newsk);
384 		struct tcp_sock *newtp = tcp_sk(newsk);
385 
386 		/* Now setup tcp_sock */
387 		newtp->pred_flags = 0;
388 
389 		newtp->rcv_wup = newtp->copied_seq =
390 		newtp->rcv_nxt = treq->rcv_isn + 1;
391 
392 		newtp->snd_sml = newtp->snd_una =
393 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
394 
395 		tcp_prequeue_init(newtp);
396 		INIT_LIST_HEAD(&newtp->tsq_node);
397 
398 		tcp_init_wl(newtp, treq->rcv_isn);
399 
400 		newtp->srtt = 0;
401 		newtp->mdev = TCP_TIMEOUT_INIT;
402 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
403 
404 		newtp->packets_out = 0;
405 		newtp->retrans_out = 0;
406 		newtp->sacked_out = 0;
407 		newtp->fackets_out = 0;
408 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
409 		tcp_enable_early_retrans(newtp);
410 		newtp->tlp_high_seq = 0;
411 		newtp->lsndtime = treq->snt_synack;
412 		newtp->total_retrans = req->num_retrans;
413 
414 		/* So many TCP implementations out there (incorrectly) count the
415 		 * initial SYN frame in their delayed-ACK and congestion control
416 		 * algorithms that we must have the following bandaid to talk
417 		 * efficiently to them.  -DaveM
418 		 */
419 		newtp->snd_cwnd = TCP_INIT_CWND;
420 		newtp->snd_cwnd_cnt = 0;
421 
422 		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
423 		    !try_module_get(newicsk->icsk_ca_ops->owner))
424 			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
425 
426 		tcp_set_ca_state(newsk, TCP_CA_Open);
427 		tcp_init_xmit_timers(newsk);
428 		skb_queue_head_init(&newtp->out_of_order_queue);
429 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
430 
431 		newtp->rx_opt.saw_tstamp = 0;
432 
433 		newtp->rx_opt.dsack = 0;
434 		newtp->rx_opt.num_sacks = 0;
435 
436 		newtp->urg_data = 0;
437 
438 		if (sock_flag(newsk, SOCK_KEEPOPEN))
439 			inet_csk_reset_keepalive_timer(newsk,
440 						       keepalive_time_when(newtp));
441 
442 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
443 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
444 			if (sysctl_tcp_fack)
445 				tcp_enable_fack(newtp);
446 		}
447 		newtp->window_clamp = req->window_clamp;
448 		newtp->rcv_ssthresh = req->rcv_wnd;
449 		newtp->rcv_wnd = req->rcv_wnd;
450 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
451 		if (newtp->rx_opt.wscale_ok) {
452 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
453 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
454 		} else {
455 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
456 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
457 		}
458 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
459 				  newtp->rx_opt.snd_wscale);
460 		newtp->max_window = newtp->snd_wnd;
461 
462 		if (newtp->rx_opt.tstamp_ok) {
463 			newtp->rx_opt.ts_recent = req->ts_recent;
464 			newtp->rx_opt.ts_recent_stamp = get_seconds();
465 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
466 		} else {
467 			newtp->rx_opt.ts_recent_stamp = 0;
468 			newtp->tcp_header_len = sizeof(struct tcphdr);
469 		}
470 		newtp->tsoffset = 0;
471 #ifdef CONFIG_TCP_MD5SIG
472 		newtp->md5sig_info = NULL;	/*XXX*/
473 		if (newtp->af_specific->md5_lookup(sk, newsk))
474 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
475 #endif
476 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
477 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
478 		newtp->rx_opt.mss_clamp = req->mss;
479 		TCP_ECN_openreq_child(newtp, req);
480 		newtp->fastopen_rsk = NULL;
481 		newtp->syn_data_acked = 0;
482 
483 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
484 	}
485 	return newsk;
486 }
487 EXPORT_SYMBOL(tcp_create_openreq_child);
488 
489 /*
490  * Process an incoming packet for SYN_RECV sockets represented as a
491  * request_sock. Normally sk is the listener socket but for TFO it
492  * points to the child socket.
493  *
494  * XXX (TFO) - The current impl contains a special check for ack
495  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
496  *
497  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
498  */
499 
500 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
501 			   struct request_sock *req,
502 			   struct request_sock **prev,
503 			   bool fastopen)
504 {
505 	struct tcp_options_received tmp_opt;
506 	struct sock *child;
507 	const struct tcphdr *th = tcp_hdr(skb);
508 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
509 	bool paws_reject = false;
510 
511 	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
512 
513 	tmp_opt.saw_tstamp = 0;
514 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
515 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
516 
517 		if (tmp_opt.saw_tstamp) {
518 			tmp_opt.ts_recent = req->ts_recent;
519 			/* We do not store true stamp, but it is not required,
520 			 * it can be estimated (approximately)
521 			 * from another data.
522 			 */
523 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
524 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
525 		}
526 	}
527 
528 	/* Check for pure retransmitted SYN. */
529 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
530 	    flg == TCP_FLAG_SYN &&
531 	    !paws_reject) {
532 		/*
533 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
534 		 * this case on figure 6 and figure 8, but formal
535 		 * protocol description says NOTHING.
536 		 * To be more exact, it says that we should send ACK,
537 		 * because this segment (at least, if it has no data)
538 		 * is out of window.
539 		 *
540 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
541 		 *  describe SYN-RECV state. All the description
542 		 *  is wrong, we cannot believe to it and should
543 		 *  rely only on common sense and implementation
544 		 *  experience.
545 		 *
546 		 * Enforce "SYN-ACK" according to figure 8, figure 6
547 		 * of RFC793, fixed by RFC1122.
548 		 *
549 		 * Note that even if there is new data in the SYN packet
550 		 * they will be thrown away too.
551 		 *
552 		 * Reset timer after retransmitting SYNACK, similar to
553 		 * the idea of fast retransmit in recovery.
554 		 */
555 		if (!inet_rtx_syn_ack(sk, req))
556 			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
557 					   TCP_RTO_MAX) + jiffies;
558 		return NULL;
559 	}
560 
561 	/* Further reproduces section "SEGMENT ARRIVES"
562 	   for state SYN-RECEIVED of RFC793.
563 	   It is broken, however, it does not work only
564 	   when SYNs are crossed.
565 
566 	   You would think that SYN crossing is impossible here, since
567 	   we should have a SYN_SENT socket (from connect()) on our end,
568 	   but this is not true if the crossed SYNs were sent to both
569 	   ends by a malicious third party.  We must defend against this,
570 	   and to do that we first verify the ACK (as per RFC793, page
571 	   36) and reset if it is invalid.  Is this a true full defense?
572 	   To convince ourselves, let us consider a way in which the ACK
573 	   test can still pass in this 'malicious crossed SYNs' case.
574 	   Malicious sender sends identical SYNs (and thus identical sequence
575 	   numbers) to both A and B:
576 
577 		A: gets SYN, seq=7
578 		B: gets SYN, seq=7
579 
580 	   By our good fortune, both A and B select the same initial
581 	   send sequence number of seven :-)
582 
583 		A: sends SYN|ACK, seq=7, ack_seq=8
584 		B: sends SYN|ACK, seq=7, ack_seq=8
585 
586 	   So we are now A eating this SYN|ACK, ACK test passes.  So
587 	   does sequence test, SYN is truncated, and thus we consider
588 	   it a bare ACK.
589 
590 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
591 	   bare ACK.  Otherwise, we create an established connection.  Both
592 	   ends (listening sockets) accept the new incoming connection and try
593 	   to talk to each other. 8-)
594 
595 	   Note: This case is both harmless, and rare.  Possibility is about the
596 	   same as us discovering intelligent life on another plant tomorrow.
597 
598 	   But generally, we should (RFC lies!) to accept ACK
599 	   from SYNACK both here and in tcp_rcv_state_process().
600 	   tcp_rcv_state_process() does not, hence, we do not too.
601 
602 	   Note that the case is absolutely generic:
603 	   we cannot optimize anything here without
604 	   violating protocol. All the checks must be made
605 	   before attempt to create socket.
606 	 */
607 
608 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
609 	 *                  and the incoming segment acknowledges something not yet
610 	 *                  sent (the segment carries an unacceptable ACK) ...
611 	 *                  a reset is sent."
612 	 *
613 	 * Invalid ACK: reset will be sent by listening socket.
614 	 * Note that the ACK validity check for a Fast Open socket is done
615 	 * elsewhere and is checked directly against the child socket rather
616 	 * than req because user data may have been sent out.
617 	 */
618 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
619 	    (TCP_SKB_CB(skb)->ack_seq !=
620 	     tcp_rsk(req)->snt_isn + 1))
621 		return sk;
622 
623 	/* Also, it would be not so bad idea to check rcv_tsecr, which
624 	 * is essentially ACK extension and too early or too late values
625 	 * should cause reset in unsynchronized states.
626 	 */
627 
628 	/* RFC793: "first check sequence number". */
629 
630 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
631 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
632 		/* Out of window: send ACK and drop. */
633 		if (!(flg & TCP_FLAG_RST))
634 			req->rsk_ops->send_ack(sk, skb, req);
635 		if (paws_reject)
636 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
637 		return NULL;
638 	}
639 
640 	/* In sequence, PAWS is OK. */
641 
642 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
643 		req->ts_recent = tmp_opt.rcv_tsval;
644 
645 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
646 		/* Truncate SYN, it is out of window starting
647 		   at tcp_rsk(req)->rcv_isn + 1. */
648 		flg &= ~TCP_FLAG_SYN;
649 	}
650 
651 	/* RFC793: "second check the RST bit" and
652 	 *	   "fourth, check the SYN bit"
653 	 */
654 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
655 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
656 		goto embryonic_reset;
657 	}
658 
659 	/* ACK sequence verified above, just make sure ACK is
660 	 * set.  If ACK not set, just silently drop the packet.
661 	 *
662 	 * XXX (TFO) - if we ever allow "data after SYN", the
663 	 * following check needs to be removed.
664 	 */
665 	if (!(flg & TCP_FLAG_ACK))
666 		return NULL;
667 
668 	/* For Fast Open no more processing is needed (sk is the
669 	 * child socket).
670 	 */
671 	if (fastopen)
672 		return sk;
673 
674 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
675 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
676 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
677 		inet_rsk(req)->acked = 1;
678 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
679 		return NULL;
680 	}
681 
682 	/* OK, ACK is valid, create big socket and
683 	 * feed this segment to it. It will repeat all
684 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
685 	 * ESTABLISHED STATE. If it will be dropped after
686 	 * socket is created, wait for troubles.
687 	 */
688 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
689 	if (child == NULL)
690 		goto listen_overflow;
691 
692 	inet_csk_reqsk_queue_unlink(sk, req, prev);
693 	inet_csk_reqsk_queue_removed(sk, req);
694 
695 	inet_csk_reqsk_queue_add(sk, req, child);
696 	return child;
697 
698 listen_overflow:
699 	if (!sysctl_tcp_abort_on_overflow) {
700 		inet_rsk(req)->acked = 1;
701 		return NULL;
702 	}
703 
704 embryonic_reset:
705 	if (!(flg & TCP_FLAG_RST)) {
706 		/* Received a bad SYN pkt - for TFO We try not to reset
707 		 * the local connection unless it's really necessary to
708 		 * avoid becoming vulnerable to outside attack aiming at
709 		 * resetting legit local connections.
710 		 */
711 		req->rsk_ops->send_reset(sk, skb);
712 	} else if (fastopen) { /* received a valid RST pkt */
713 		reqsk_fastopen_remove(sk, req, true);
714 		tcp_reset(sk);
715 	}
716 	if (!fastopen) {
717 		inet_csk_reqsk_queue_drop(sk, req, prev);
718 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
719 	}
720 	return NULL;
721 }
722 EXPORT_SYMBOL(tcp_check_req);
723 
724 /*
725  * Queue segment on the new socket if the new socket is active,
726  * otherwise we just shortcircuit this and continue with
727  * the new socket.
728  *
729  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
730  * when entering. But other states are possible due to a race condition
731  * where after __inet_lookup_established() fails but before the listener
732  * locked is obtained, other packets cause the same connection to
733  * be created.
734  */
735 
736 int tcp_child_process(struct sock *parent, struct sock *child,
737 		      struct sk_buff *skb)
738 {
739 	int ret = 0;
740 	int state = child->sk_state;
741 
742 	if (!sock_owned_by_user(child)) {
743 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
744 					    skb->len);
745 		/* Wakeup parent, send SIGIO */
746 		if (state == TCP_SYN_RECV && child->sk_state != state)
747 			parent->sk_data_ready(parent, 0);
748 	} else {
749 		/* Alas, it is possible again, because we do lookup
750 		 * in main socket hash table and lock on listening
751 		 * socket does not protect us more.
752 		 */
753 		__sk_add_backlog(child, skb);
754 	}
755 
756 	bh_unlock_sock(child);
757 	sock_put(child);
758 	return ret;
759 }
760 EXPORT_SYMBOL(tcp_child_process);
761