1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 61 #include <net/net_namespace.h> 62 #include <net/icmp.h> 63 #include <net/inet_hashtables.h> 64 #include <net/tcp.h> 65 #include <net/transp_v6.h> 66 #include <net/ipv6.h> 67 #include <net/inet_common.h> 68 #include <net/timewait_sock.h> 69 #include <net/xfrm.h> 70 #include <net/secure_seq.h> 71 #include <net/busy_poll.h> 72 73 #include <linux/inet.h> 74 #include <linux/ipv6.h> 75 #include <linux/stddef.h> 76 #include <linux/proc_fs.h> 77 #include <linux/seq_file.h> 78 #include <linux/inetdevice.h> 79 80 #include <crypto/hash.h> 81 #include <linux/scatterlist.h> 82 83 #include <trace/events/tcp.h> 84 85 #ifdef CONFIG_TCP_MD5SIG 86 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 87 __be32 daddr, __be32 saddr, const struct tcphdr *th); 88 #endif 89 90 struct inet_hashinfo tcp_hashinfo; 91 EXPORT_SYMBOL(tcp_hashinfo); 92 93 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 94 { 95 return secure_tcp_seq(ip_hdr(skb)->daddr, 96 ip_hdr(skb)->saddr, 97 tcp_hdr(skb)->dest, 98 tcp_hdr(skb)->source); 99 } 100 101 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 102 { 103 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 104 } 105 106 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 107 { 108 const struct inet_timewait_sock *tw = inet_twsk(sktw); 109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 110 struct tcp_sock *tp = tcp_sk(sk); 111 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; 112 113 if (reuse == 2) { 114 /* Still does not detect *everything* that goes through 115 * lo, since we require a loopback src or dst address 116 * or direct binding to 'lo' interface. 117 */ 118 bool loopback = false; 119 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 120 loopback = true; 121 #if IS_ENABLED(CONFIG_IPV6) 122 if (tw->tw_family == AF_INET6) { 123 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 124 (ipv6_addr_v4mapped(&tw->tw_v6_daddr) && 125 (tw->tw_v6_daddr.s6_addr[12] == 127)) || 126 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 127 (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) && 128 (tw->tw_v6_rcv_saddr.s6_addr[12] == 127))) 129 loopback = true; 130 } else 131 #endif 132 { 133 if (ipv4_is_loopback(tw->tw_daddr) || 134 ipv4_is_loopback(tw->tw_rcv_saddr)) 135 loopback = true; 136 } 137 if (!loopback) 138 reuse = 0; 139 } 140 141 /* With PAWS, it is safe from the viewpoint 142 of data integrity. Even without PAWS it is safe provided sequence 143 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 144 145 Actually, the idea is close to VJ's one, only timestamp cache is 146 held not per host, but per port pair and TW bucket is used as state 147 holder. 148 149 If TW bucket has been already destroyed we fall back to VJ's scheme 150 and use initial timestamp retrieved from peer table. 151 */ 152 if (tcptw->tw_ts_recent_stamp && 153 (!twp || (reuse && time_after32(ktime_get_seconds(), 154 tcptw->tw_ts_recent_stamp)))) { 155 /* In case of repair and re-using TIME-WAIT sockets we still 156 * want to be sure that it is safe as above but honor the 157 * sequence numbers and time stamps set as part of the repair 158 * process. 159 * 160 * Without this check re-using a TIME-WAIT socket with TCP 161 * repair would accumulate a -1 on the repair assigned 162 * sequence number. The first time it is reused the sequence 163 * is -1, the second time -2, etc. This fixes that issue 164 * without appearing to create any others. 165 */ 166 if (likely(!tp->repair)) { 167 u32 seq = tcptw->tw_snd_nxt + 65535 + 2; 168 169 if (!seq) 170 seq = 1; 171 WRITE_ONCE(tp->write_seq, seq); 172 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 173 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 174 } 175 sock_hold(sktw); 176 return 1; 177 } 178 179 return 0; 180 } 181 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 182 183 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 184 int addr_len) 185 { 186 /* This check is replicated from tcp_v4_connect() and intended to 187 * prevent BPF program called below from accessing bytes that are out 188 * of the bound specified by user in addr_len. 189 */ 190 if (addr_len < sizeof(struct sockaddr_in)) 191 return -EINVAL; 192 193 sock_owned_by_me(sk); 194 195 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 196 } 197 198 /* This will initiate an outgoing connection. */ 199 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 200 { 201 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 202 struct inet_sock *inet = inet_sk(sk); 203 struct tcp_sock *tp = tcp_sk(sk); 204 __be16 orig_sport, orig_dport; 205 __be32 daddr, nexthop; 206 struct flowi4 *fl4; 207 struct rtable *rt; 208 int err; 209 struct ip_options_rcu *inet_opt; 210 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 211 212 if (addr_len < sizeof(struct sockaddr_in)) 213 return -EINVAL; 214 215 if (usin->sin_family != AF_INET) 216 return -EAFNOSUPPORT; 217 218 nexthop = daddr = usin->sin_addr.s_addr; 219 inet_opt = rcu_dereference_protected(inet->inet_opt, 220 lockdep_sock_is_held(sk)); 221 if (inet_opt && inet_opt->opt.srr) { 222 if (!daddr) 223 return -EINVAL; 224 nexthop = inet_opt->opt.faddr; 225 } 226 227 orig_sport = inet->inet_sport; 228 orig_dport = usin->sin_port; 229 fl4 = &inet->cork.fl.u.ip4; 230 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 231 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 232 IPPROTO_TCP, 233 orig_sport, orig_dport, sk); 234 if (IS_ERR(rt)) { 235 err = PTR_ERR(rt); 236 if (err == -ENETUNREACH) 237 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 238 return err; 239 } 240 241 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 242 ip_rt_put(rt); 243 return -ENETUNREACH; 244 } 245 246 if (!inet_opt || !inet_opt->opt.srr) 247 daddr = fl4->daddr; 248 249 if (!inet->inet_saddr) 250 inet->inet_saddr = fl4->saddr; 251 sk_rcv_saddr_set(sk, inet->inet_saddr); 252 253 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 254 /* Reset inherited state */ 255 tp->rx_opt.ts_recent = 0; 256 tp->rx_opt.ts_recent_stamp = 0; 257 if (likely(!tp->repair)) 258 WRITE_ONCE(tp->write_seq, 0); 259 } 260 261 inet->inet_dport = usin->sin_port; 262 sk_daddr_set(sk, daddr); 263 264 inet_csk(sk)->icsk_ext_hdr_len = 0; 265 if (inet_opt) 266 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 267 268 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 269 270 /* Socket identity is still unknown (sport may be zero). 271 * However we set state to SYN-SENT and not releasing socket 272 * lock select source port, enter ourselves into the hash tables and 273 * complete initialization after this. 274 */ 275 tcp_set_state(sk, TCP_SYN_SENT); 276 err = inet_hash_connect(tcp_death_row, sk); 277 if (err) 278 goto failure; 279 280 sk_set_txhash(sk); 281 282 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 283 inet->inet_sport, inet->inet_dport, sk); 284 if (IS_ERR(rt)) { 285 err = PTR_ERR(rt); 286 rt = NULL; 287 goto failure; 288 } 289 /* OK, now commit destination to socket. */ 290 sk->sk_gso_type = SKB_GSO_TCPV4; 291 sk_setup_caps(sk, &rt->dst); 292 rt = NULL; 293 294 if (likely(!tp->repair)) { 295 if (!tp->write_seq) 296 WRITE_ONCE(tp->write_seq, 297 secure_tcp_seq(inet->inet_saddr, 298 inet->inet_daddr, 299 inet->inet_sport, 300 usin->sin_port)); 301 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 302 inet->inet_saddr, 303 inet->inet_daddr); 304 } 305 306 inet->inet_id = prandom_u32(); 307 308 if (tcp_fastopen_defer_connect(sk, &err)) 309 return err; 310 if (err) 311 goto failure; 312 313 err = tcp_connect(sk); 314 315 if (err) 316 goto failure; 317 318 return 0; 319 320 failure: 321 /* 322 * This unhashes the socket and releases the local port, 323 * if necessary. 324 */ 325 tcp_set_state(sk, TCP_CLOSE); 326 ip_rt_put(rt); 327 sk->sk_route_caps = 0; 328 inet->inet_dport = 0; 329 return err; 330 } 331 EXPORT_SYMBOL(tcp_v4_connect); 332 333 /* 334 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 335 * It can be called through tcp_release_cb() if socket was owned by user 336 * at the time tcp_v4_err() was called to handle ICMP message. 337 */ 338 void tcp_v4_mtu_reduced(struct sock *sk) 339 { 340 struct inet_sock *inet = inet_sk(sk); 341 struct dst_entry *dst; 342 u32 mtu; 343 344 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 345 return; 346 mtu = tcp_sk(sk)->mtu_info; 347 dst = inet_csk_update_pmtu(sk, mtu); 348 if (!dst) 349 return; 350 351 /* Something is about to be wrong... Remember soft error 352 * for the case, if this connection will not able to recover. 353 */ 354 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 355 sk->sk_err_soft = EMSGSIZE; 356 357 mtu = dst_mtu(dst); 358 359 if (inet->pmtudisc != IP_PMTUDISC_DONT && 360 ip_sk_accept_pmtu(sk) && 361 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 362 tcp_sync_mss(sk, mtu); 363 364 /* Resend the TCP packet because it's 365 * clear that the old packet has been 366 * dropped. This is the new "fast" path mtu 367 * discovery. 368 */ 369 tcp_simple_retransmit(sk); 370 } /* else let the usual retransmit timer handle it */ 371 } 372 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 373 374 static void do_redirect(struct sk_buff *skb, struct sock *sk) 375 { 376 struct dst_entry *dst = __sk_dst_check(sk, 0); 377 378 if (dst) 379 dst->ops->redirect(dst, sk, skb); 380 } 381 382 383 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 384 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 385 { 386 struct request_sock *req = inet_reqsk(sk); 387 struct net *net = sock_net(sk); 388 389 /* ICMPs are not backlogged, hence we cannot get 390 * an established socket here. 391 */ 392 if (seq != tcp_rsk(req)->snt_isn) { 393 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 394 } else if (abort) { 395 /* 396 * Still in SYN_RECV, just remove it silently. 397 * There is no good way to pass the error to the newly 398 * created socket, and POSIX does not want network 399 * errors returned from accept(). 400 */ 401 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 402 tcp_listendrop(req->rsk_listener); 403 } 404 reqsk_put(req); 405 } 406 EXPORT_SYMBOL(tcp_req_err); 407 408 /* 409 * This routine is called by the ICMP module when it gets some 410 * sort of error condition. If err < 0 then the socket should 411 * be closed and the error returned to the user. If err > 0 412 * it's just the icmp type << 8 | icmp code. After adjustment 413 * header points to the first 8 bytes of the tcp header. We need 414 * to find the appropriate port. 415 * 416 * The locking strategy used here is very "optimistic". When 417 * someone else accesses the socket the ICMP is just dropped 418 * and for some paths there is no check at all. 419 * A more general error queue to queue errors for later handling 420 * is probably better. 421 * 422 */ 423 424 int tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 425 { 426 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 427 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 428 struct inet_connection_sock *icsk; 429 struct tcp_sock *tp; 430 struct inet_sock *inet; 431 const int type = icmp_hdr(icmp_skb)->type; 432 const int code = icmp_hdr(icmp_skb)->code; 433 struct sock *sk; 434 struct sk_buff *skb; 435 struct request_sock *fastopen; 436 u32 seq, snd_una; 437 s32 remaining; 438 u32 delta_us; 439 int err; 440 struct net *net = dev_net(icmp_skb->dev); 441 442 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 443 th->dest, iph->saddr, ntohs(th->source), 444 inet_iif(icmp_skb), 0); 445 if (!sk) { 446 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 447 return -ENOENT; 448 } 449 if (sk->sk_state == TCP_TIME_WAIT) { 450 inet_twsk_put(inet_twsk(sk)); 451 return 0; 452 } 453 seq = ntohl(th->seq); 454 if (sk->sk_state == TCP_NEW_SYN_RECV) { 455 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 456 type == ICMP_TIME_EXCEEDED || 457 (type == ICMP_DEST_UNREACH && 458 (code == ICMP_NET_UNREACH || 459 code == ICMP_HOST_UNREACH))); 460 return 0; 461 } 462 463 bh_lock_sock(sk); 464 /* If too many ICMPs get dropped on busy 465 * servers this needs to be solved differently. 466 * We do take care of PMTU discovery (RFC1191) special case : 467 * we can receive locally generated ICMP messages while socket is held. 468 */ 469 if (sock_owned_by_user(sk)) { 470 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 471 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 472 } 473 if (sk->sk_state == TCP_CLOSE) 474 goto out; 475 476 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 477 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 478 goto out; 479 } 480 481 icsk = inet_csk(sk); 482 tp = tcp_sk(sk); 483 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 484 fastopen = rcu_dereference(tp->fastopen_rsk); 485 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 486 if (sk->sk_state != TCP_LISTEN && 487 !between(seq, snd_una, tp->snd_nxt)) { 488 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 489 goto out; 490 } 491 492 switch (type) { 493 case ICMP_REDIRECT: 494 if (!sock_owned_by_user(sk)) 495 do_redirect(icmp_skb, sk); 496 goto out; 497 case ICMP_SOURCE_QUENCH: 498 /* Just silently ignore these. */ 499 goto out; 500 case ICMP_PARAMETERPROB: 501 err = EPROTO; 502 break; 503 case ICMP_DEST_UNREACH: 504 if (code > NR_ICMP_UNREACH) 505 goto out; 506 507 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 508 /* We are not interested in TCP_LISTEN and open_requests 509 * (SYN-ACKs send out by Linux are always <576bytes so 510 * they should go through unfragmented). 511 */ 512 if (sk->sk_state == TCP_LISTEN) 513 goto out; 514 515 tp->mtu_info = info; 516 if (!sock_owned_by_user(sk)) { 517 tcp_v4_mtu_reduced(sk); 518 } else { 519 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 520 sock_hold(sk); 521 } 522 goto out; 523 } 524 525 err = icmp_err_convert[code].errno; 526 /* check if icmp_skb allows revert of backoff 527 * (see draft-zimmermann-tcp-lcd) */ 528 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 529 break; 530 if (seq != tp->snd_una || !icsk->icsk_retransmits || 531 !icsk->icsk_backoff || fastopen) 532 break; 533 534 if (sock_owned_by_user(sk)) 535 break; 536 537 skb = tcp_rtx_queue_head(sk); 538 if (WARN_ON_ONCE(!skb)) 539 break; 540 541 icsk->icsk_backoff--; 542 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 543 TCP_TIMEOUT_INIT; 544 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 545 546 547 tcp_mstamp_refresh(tp); 548 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 549 remaining = icsk->icsk_rto - 550 usecs_to_jiffies(delta_us); 551 552 if (remaining > 0) { 553 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 554 remaining, TCP_RTO_MAX); 555 } else { 556 /* RTO revert clocked out retransmission. 557 * Will retransmit now */ 558 tcp_retransmit_timer(sk); 559 } 560 561 break; 562 case ICMP_TIME_EXCEEDED: 563 err = EHOSTUNREACH; 564 break; 565 default: 566 goto out; 567 } 568 569 switch (sk->sk_state) { 570 case TCP_SYN_SENT: 571 case TCP_SYN_RECV: 572 /* Only in fast or simultaneous open. If a fast open socket is 573 * is already accepted it is treated as a connected one below. 574 */ 575 if (fastopen && !fastopen->sk) 576 break; 577 578 if (!sock_owned_by_user(sk)) { 579 sk->sk_err = err; 580 581 sk->sk_error_report(sk); 582 583 tcp_done(sk); 584 } else { 585 sk->sk_err_soft = err; 586 } 587 goto out; 588 } 589 590 /* If we've already connected we will keep trying 591 * until we time out, or the user gives up. 592 * 593 * rfc1122 4.2.3.9 allows to consider as hard errors 594 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 595 * but it is obsoleted by pmtu discovery). 596 * 597 * Note, that in modern internet, where routing is unreliable 598 * and in each dark corner broken firewalls sit, sending random 599 * errors ordered by their masters even this two messages finally lose 600 * their original sense (even Linux sends invalid PORT_UNREACHs) 601 * 602 * Now we are in compliance with RFCs. 603 * --ANK (980905) 604 */ 605 606 inet = inet_sk(sk); 607 if (!sock_owned_by_user(sk) && inet->recverr) { 608 sk->sk_err = err; 609 sk->sk_error_report(sk); 610 } else { /* Only an error on timeout */ 611 sk->sk_err_soft = err; 612 } 613 614 out: 615 bh_unlock_sock(sk); 616 sock_put(sk); 617 return 0; 618 } 619 620 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 621 { 622 struct tcphdr *th = tcp_hdr(skb); 623 624 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 625 skb->csum_start = skb_transport_header(skb) - skb->head; 626 skb->csum_offset = offsetof(struct tcphdr, check); 627 } 628 629 /* This routine computes an IPv4 TCP checksum. */ 630 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 631 { 632 const struct inet_sock *inet = inet_sk(sk); 633 634 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 635 } 636 EXPORT_SYMBOL(tcp_v4_send_check); 637 638 /* 639 * This routine will send an RST to the other tcp. 640 * 641 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 642 * for reset. 643 * Answer: if a packet caused RST, it is not for a socket 644 * existing in our system, if it is matched to a socket, 645 * it is just duplicate segment or bug in other side's TCP. 646 * So that we build reply only basing on parameters 647 * arrived with segment. 648 * Exception: precedence violation. We do not implement it in any case. 649 */ 650 651 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 652 { 653 const struct tcphdr *th = tcp_hdr(skb); 654 struct { 655 struct tcphdr th; 656 #ifdef CONFIG_TCP_MD5SIG 657 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 658 #endif 659 } rep; 660 struct ip_reply_arg arg; 661 #ifdef CONFIG_TCP_MD5SIG 662 struct tcp_md5sig_key *key = NULL; 663 const __u8 *hash_location = NULL; 664 unsigned char newhash[16]; 665 int genhash; 666 struct sock *sk1 = NULL; 667 #endif 668 u64 transmit_time = 0; 669 struct sock *ctl_sk; 670 struct net *net; 671 672 /* Never send a reset in response to a reset. */ 673 if (th->rst) 674 return; 675 676 /* If sk not NULL, it means we did a successful lookup and incoming 677 * route had to be correct. prequeue might have dropped our dst. 678 */ 679 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 680 return; 681 682 /* Swap the send and the receive. */ 683 memset(&rep, 0, sizeof(rep)); 684 rep.th.dest = th->source; 685 rep.th.source = th->dest; 686 rep.th.doff = sizeof(struct tcphdr) / 4; 687 rep.th.rst = 1; 688 689 if (th->ack) { 690 rep.th.seq = th->ack_seq; 691 } else { 692 rep.th.ack = 1; 693 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 694 skb->len - (th->doff << 2)); 695 } 696 697 memset(&arg, 0, sizeof(arg)); 698 arg.iov[0].iov_base = (unsigned char *)&rep; 699 arg.iov[0].iov_len = sizeof(rep.th); 700 701 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 702 #ifdef CONFIG_TCP_MD5SIG 703 rcu_read_lock(); 704 hash_location = tcp_parse_md5sig_option(th); 705 if (sk && sk_fullsock(sk)) { 706 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 707 &ip_hdr(skb)->saddr, AF_INET); 708 } else if (hash_location) { 709 /* 710 * active side is lost. Try to find listening socket through 711 * source port, and then find md5 key through listening socket. 712 * we are not loose security here: 713 * Incoming packet is checked with md5 hash with finding key, 714 * no RST generated if md5 hash doesn't match. 715 */ 716 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 717 ip_hdr(skb)->saddr, 718 th->source, ip_hdr(skb)->daddr, 719 ntohs(th->source), inet_iif(skb), 720 tcp_v4_sdif(skb)); 721 /* don't send rst if it can't find key */ 722 if (!sk1) 723 goto out; 724 725 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 726 &ip_hdr(skb)->saddr, AF_INET); 727 if (!key) 728 goto out; 729 730 731 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 732 if (genhash || memcmp(hash_location, newhash, 16) != 0) 733 goto out; 734 735 } 736 737 if (key) { 738 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 739 (TCPOPT_NOP << 16) | 740 (TCPOPT_MD5SIG << 8) | 741 TCPOLEN_MD5SIG); 742 /* Update length and the length the header thinks exists */ 743 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 744 rep.th.doff = arg.iov[0].iov_len / 4; 745 746 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 747 key, ip_hdr(skb)->saddr, 748 ip_hdr(skb)->daddr, &rep.th); 749 } 750 #endif 751 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 752 ip_hdr(skb)->saddr, /* XXX */ 753 arg.iov[0].iov_len, IPPROTO_TCP, 0); 754 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 755 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 756 757 /* When socket is gone, all binding information is lost. 758 * routing might fail in this case. No choice here, if we choose to force 759 * input interface, we will misroute in case of asymmetric route. 760 */ 761 if (sk) { 762 arg.bound_dev_if = sk->sk_bound_dev_if; 763 if (sk_fullsock(sk)) 764 trace_tcp_send_reset(sk, skb); 765 } 766 767 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 768 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 769 770 arg.tos = ip_hdr(skb)->tos; 771 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 772 local_bh_disable(); 773 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); 774 if (sk) { 775 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 776 inet_twsk(sk)->tw_mark : sk->sk_mark; 777 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 778 inet_twsk(sk)->tw_priority : sk->sk_priority; 779 transmit_time = tcp_transmit_time(sk); 780 } 781 ip_send_unicast_reply(ctl_sk, 782 skb, &TCP_SKB_CB(skb)->header.h4.opt, 783 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 784 &arg, arg.iov[0].iov_len, 785 transmit_time); 786 787 ctl_sk->sk_mark = 0; 788 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 789 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 790 local_bh_enable(); 791 792 #ifdef CONFIG_TCP_MD5SIG 793 out: 794 rcu_read_unlock(); 795 #endif 796 } 797 798 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 799 outside socket context is ugly, certainly. What can I do? 800 */ 801 802 static void tcp_v4_send_ack(const struct sock *sk, 803 struct sk_buff *skb, u32 seq, u32 ack, 804 u32 win, u32 tsval, u32 tsecr, int oif, 805 struct tcp_md5sig_key *key, 806 int reply_flags, u8 tos) 807 { 808 const struct tcphdr *th = tcp_hdr(skb); 809 struct { 810 struct tcphdr th; 811 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 812 #ifdef CONFIG_TCP_MD5SIG 813 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 814 #endif 815 ]; 816 } rep; 817 struct net *net = sock_net(sk); 818 struct ip_reply_arg arg; 819 struct sock *ctl_sk; 820 u64 transmit_time; 821 822 memset(&rep.th, 0, sizeof(struct tcphdr)); 823 memset(&arg, 0, sizeof(arg)); 824 825 arg.iov[0].iov_base = (unsigned char *)&rep; 826 arg.iov[0].iov_len = sizeof(rep.th); 827 if (tsecr) { 828 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 829 (TCPOPT_TIMESTAMP << 8) | 830 TCPOLEN_TIMESTAMP); 831 rep.opt[1] = htonl(tsval); 832 rep.opt[2] = htonl(tsecr); 833 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 834 } 835 836 /* Swap the send and the receive. */ 837 rep.th.dest = th->source; 838 rep.th.source = th->dest; 839 rep.th.doff = arg.iov[0].iov_len / 4; 840 rep.th.seq = htonl(seq); 841 rep.th.ack_seq = htonl(ack); 842 rep.th.ack = 1; 843 rep.th.window = htons(win); 844 845 #ifdef CONFIG_TCP_MD5SIG 846 if (key) { 847 int offset = (tsecr) ? 3 : 0; 848 849 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 850 (TCPOPT_NOP << 16) | 851 (TCPOPT_MD5SIG << 8) | 852 TCPOLEN_MD5SIG); 853 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 854 rep.th.doff = arg.iov[0].iov_len/4; 855 856 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 857 key, ip_hdr(skb)->saddr, 858 ip_hdr(skb)->daddr, &rep.th); 859 } 860 #endif 861 arg.flags = reply_flags; 862 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 863 ip_hdr(skb)->saddr, /* XXX */ 864 arg.iov[0].iov_len, IPPROTO_TCP, 0); 865 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 866 if (oif) 867 arg.bound_dev_if = oif; 868 arg.tos = tos; 869 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 870 local_bh_disable(); 871 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); 872 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 873 inet_twsk(sk)->tw_mark : sk->sk_mark; 874 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 875 inet_twsk(sk)->tw_priority : sk->sk_priority; 876 transmit_time = tcp_transmit_time(sk); 877 ip_send_unicast_reply(ctl_sk, 878 skb, &TCP_SKB_CB(skb)->header.h4.opt, 879 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 880 &arg, arg.iov[0].iov_len, 881 transmit_time); 882 883 ctl_sk->sk_mark = 0; 884 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 885 local_bh_enable(); 886 } 887 888 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 889 { 890 struct inet_timewait_sock *tw = inet_twsk(sk); 891 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 892 893 tcp_v4_send_ack(sk, skb, 894 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 895 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 896 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 897 tcptw->tw_ts_recent, 898 tw->tw_bound_dev_if, 899 tcp_twsk_md5_key(tcptw), 900 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 901 tw->tw_tos 902 ); 903 904 inet_twsk_put(tw); 905 } 906 907 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 908 struct request_sock *req) 909 { 910 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 911 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 912 */ 913 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 914 tcp_sk(sk)->snd_nxt; 915 916 /* RFC 7323 2.3 917 * The window field (SEG.WND) of every outgoing segment, with the 918 * exception of <SYN> segments, MUST be right-shifted by 919 * Rcv.Wind.Shift bits: 920 */ 921 tcp_v4_send_ack(sk, skb, seq, 922 tcp_rsk(req)->rcv_nxt, 923 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 924 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 925 req->ts_recent, 926 0, 927 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr, 928 AF_INET), 929 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 930 ip_hdr(skb)->tos); 931 } 932 933 /* 934 * Send a SYN-ACK after having received a SYN. 935 * This still operates on a request_sock only, not on a big 936 * socket. 937 */ 938 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 939 struct flowi *fl, 940 struct request_sock *req, 941 struct tcp_fastopen_cookie *foc, 942 enum tcp_synack_type synack_type) 943 { 944 const struct inet_request_sock *ireq = inet_rsk(req); 945 struct flowi4 fl4; 946 int err = -1; 947 struct sk_buff *skb; 948 949 /* First, grab a route. */ 950 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 951 return -1; 952 953 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 954 955 if (skb) { 956 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 957 958 rcu_read_lock(); 959 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 960 ireq->ir_rmt_addr, 961 rcu_dereference(ireq->ireq_opt)); 962 rcu_read_unlock(); 963 err = net_xmit_eval(err); 964 } 965 966 return err; 967 } 968 969 /* 970 * IPv4 request_sock destructor. 971 */ 972 static void tcp_v4_reqsk_destructor(struct request_sock *req) 973 { 974 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 975 } 976 977 #ifdef CONFIG_TCP_MD5SIG 978 /* 979 * RFC2385 MD5 checksumming requires a mapping of 980 * IP address->MD5 Key. 981 * We need to maintain these in the sk structure. 982 */ 983 984 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed); 985 EXPORT_SYMBOL(tcp_md5_needed); 986 987 /* Find the Key structure for an address. */ 988 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, 989 const union tcp_md5_addr *addr, 990 int family) 991 { 992 const struct tcp_sock *tp = tcp_sk(sk); 993 struct tcp_md5sig_key *key; 994 const struct tcp_md5sig_info *md5sig; 995 __be32 mask; 996 struct tcp_md5sig_key *best_match = NULL; 997 bool match; 998 999 /* caller either holds rcu_read_lock() or socket lock */ 1000 md5sig = rcu_dereference_check(tp->md5sig_info, 1001 lockdep_sock_is_held(sk)); 1002 if (!md5sig) 1003 return NULL; 1004 1005 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 1006 if (key->family != family) 1007 continue; 1008 1009 if (family == AF_INET) { 1010 mask = inet_make_mask(key->prefixlen); 1011 match = (key->addr.a4.s_addr & mask) == 1012 (addr->a4.s_addr & mask); 1013 #if IS_ENABLED(CONFIG_IPV6) 1014 } else if (family == AF_INET6) { 1015 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1016 key->prefixlen); 1017 #endif 1018 } else { 1019 match = false; 1020 } 1021 1022 if (match && (!best_match || 1023 key->prefixlen > best_match->prefixlen)) 1024 best_match = key; 1025 } 1026 return best_match; 1027 } 1028 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1029 1030 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1031 const union tcp_md5_addr *addr, 1032 int family, u8 prefixlen) 1033 { 1034 const struct tcp_sock *tp = tcp_sk(sk); 1035 struct tcp_md5sig_key *key; 1036 unsigned int size = sizeof(struct in_addr); 1037 const struct tcp_md5sig_info *md5sig; 1038 1039 /* caller either holds rcu_read_lock() or socket lock */ 1040 md5sig = rcu_dereference_check(tp->md5sig_info, 1041 lockdep_sock_is_held(sk)); 1042 if (!md5sig) 1043 return NULL; 1044 #if IS_ENABLED(CONFIG_IPV6) 1045 if (family == AF_INET6) 1046 size = sizeof(struct in6_addr); 1047 #endif 1048 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 1049 if (key->family != family) 1050 continue; 1051 if (!memcmp(&key->addr, addr, size) && 1052 key->prefixlen == prefixlen) 1053 return key; 1054 } 1055 return NULL; 1056 } 1057 1058 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1059 const struct sock *addr_sk) 1060 { 1061 const union tcp_md5_addr *addr; 1062 1063 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1064 return tcp_md5_do_lookup(sk, addr, AF_INET); 1065 } 1066 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1067 1068 /* This can be called on a newly created socket, from other files */ 1069 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1070 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen, 1071 gfp_t gfp) 1072 { 1073 /* Add Key to the list */ 1074 struct tcp_md5sig_key *key; 1075 struct tcp_sock *tp = tcp_sk(sk); 1076 struct tcp_md5sig_info *md5sig; 1077 1078 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1079 if (key) { 1080 /* Pre-existing entry - just update that one. */ 1081 memcpy(key->key, newkey, newkeylen); 1082 key->keylen = newkeylen; 1083 return 0; 1084 } 1085 1086 md5sig = rcu_dereference_protected(tp->md5sig_info, 1087 lockdep_sock_is_held(sk)); 1088 if (!md5sig) { 1089 md5sig = kmalloc(sizeof(*md5sig), gfp); 1090 if (!md5sig) 1091 return -ENOMEM; 1092 1093 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1094 INIT_HLIST_HEAD(&md5sig->head); 1095 rcu_assign_pointer(tp->md5sig_info, md5sig); 1096 } 1097 1098 key = sock_kmalloc(sk, sizeof(*key), gfp); 1099 if (!key) 1100 return -ENOMEM; 1101 if (!tcp_alloc_md5sig_pool()) { 1102 sock_kfree_s(sk, key, sizeof(*key)); 1103 return -ENOMEM; 1104 } 1105 1106 memcpy(key->key, newkey, newkeylen); 1107 key->keylen = newkeylen; 1108 key->family = family; 1109 key->prefixlen = prefixlen; 1110 memcpy(&key->addr, addr, 1111 (family == AF_INET6) ? sizeof(struct in6_addr) : 1112 sizeof(struct in_addr)); 1113 hlist_add_head_rcu(&key->node, &md5sig->head); 1114 return 0; 1115 } 1116 EXPORT_SYMBOL(tcp_md5_do_add); 1117 1118 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1119 u8 prefixlen) 1120 { 1121 struct tcp_md5sig_key *key; 1122 1123 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1124 if (!key) 1125 return -ENOENT; 1126 hlist_del_rcu(&key->node); 1127 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1128 kfree_rcu(key, rcu); 1129 return 0; 1130 } 1131 EXPORT_SYMBOL(tcp_md5_do_del); 1132 1133 static void tcp_clear_md5_list(struct sock *sk) 1134 { 1135 struct tcp_sock *tp = tcp_sk(sk); 1136 struct tcp_md5sig_key *key; 1137 struct hlist_node *n; 1138 struct tcp_md5sig_info *md5sig; 1139 1140 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1141 1142 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1143 hlist_del_rcu(&key->node); 1144 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1145 kfree_rcu(key, rcu); 1146 } 1147 } 1148 1149 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1150 char __user *optval, int optlen) 1151 { 1152 struct tcp_md5sig cmd; 1153 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1154 u8 prefixlen = 32; 1155 1156 if (optlen < sizeof(cmd)) 1157 return -EINVAL; 1158 1159 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1160 return -EFAULT; 1161 1162 if (sin->sin_family != AF_INET) 1163 return -EINVAL; 1164 1165 if (optname == TCP_MD5SIG_EXT && 1166 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1167 prefixlen = cmd.tcpm_prefixlen; 1168 if (prefixlen > 32) 1169 return -EINVAL; 1170 } 1171 1172 if (!cmd.tcpm_keylen) 1173 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1174 AF_INET, prefixlen); 1175 1176 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1177 return -EINVAL; 1178 1179 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1180 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen, 1181 GFP_KERNEL); 1182 } 1183 1184 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1185 __be32 daddr, __be32 saddr, 1186 const struct tcphdr *th, int nbytes) 1187 { 1188 struct tcp4_pseudohdr *bp; 1189 struct scatterlist sg; 1190 struct tcphdr *_th; 1191 1192 bp = hp->scratch; 1193 bp->saddr = saddr; 1194 bp->daddr = daddr; 1195 bp->pad = 0; 1196 bp->protocol = IPPROTO_TCP; 1197 bp->len = cpu_to_be16(nbytes); 1198 1199 _th = (struct tcphdr *)(bp + 1); 1200 memcpy(_th, th, sizeof(*th)); 1201 _th->check = 0; 1202 1203 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1204 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1205 sizeof(*bp) + sizeof(*th)); 1206 return crypto_ahash_update(hp->md5_req); 1207 } 1208 1209 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1210 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1211 { 1212 struct tcp_md5sig_pool *hp; 1213 struct ahash_request *req; 1214 1215 hp = tcp_get_md5sig_pool(); 1216 if (!hp) 1217 goto clear_hash_noput; 1218 req = hp->md5_req; 1219 1220 if (crypto_ahash_init(req)) 1221 goto clear_hash; 1222 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1223 goto clear_hash; 1224 if (tcp_md5_hash_key(hp, key)) 1225 goto clear_hash; 1226 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1227 if (crypto_ahash_final(req)) 1228 goto clear_hash; 1229 1230 tcp_put_md5sig_pool(); 1231 return 0; 1232 1233 clear_hash: 1234 tcp_put_md5sig_pool(); 1235 clear_hash_noput: 1236 memset(md5_hash, 0, 16); 1237 return 1; 1238 } 1239 1240 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1241 const struct sock *sk, 1242 const struct sk_buff *skb) 1243 { 1244 struct tcp_md5sig_pool *hp; 1245 struct ahash_request *req; 1246 const struct tcphdr *th = tcp_hdr(skb); 1247 __be32 saddr, daddr; 1248 1249 if (sk) { /* valid for establish/request sockets */ 1250 saddr = sk->sk_rcv_saddr; 1251 daddr = sk->sk_daddr; 1252 } else { 1253 const struct iphdr *iph = ip_hdr(skb); 1254 saddr = iph->saddr; 1255 daddr = iph->daddr; 1256 } 1257 1258 hp = tcp_get_md5sig_pool(); 1259 if (!hp) 1260 goto clear_hash_noput; 1261 req = hp->md5_req; 1262 1263 if (crypto_ahash_init(req)) 1264 goto clear_hash; 1265 1266 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1267 goto clear_hash; 1268 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1269 goto clear_hash; 1270 if (tcp_md5_hash_key(hp, key)) 1271 goto clear_hash; 1272 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1273 if (crypto_ahash_final(req)) 1274 goto clear_hash; 1275 1276 tcp_put_md5sig_pool(); 1277 return 0; 1278 1279 clear_hash: 1280 tcp_put_md5sig_pool(); 1281 clear_hash_noput: 1282 memset(md5_hash, 0, 16); 1283 return 1; 1284 } 1285 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1286 1287 #endif 1288 1289 /* Called with rcu_read_lock() */ 1290 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1291 const struct sk_buff *skb) 1292 { 1293 #ifdef CONFIG_TCP_MD5SIG 1294 /* 1295 * This gets called for each TCP segment that arrives 1296 * so we want to be efficient. 1297 * We have 3 drop cases: 1298 * o No MD5 hash and one expected. 1299 * o MD5 hash and we're not expecting one. 1300 * o MD5 hash and its wrong. 1301 */ 1302 const __u8 *hash_location = NULL; 1303 struct tcp_md5sig_key *hash_expected; 1304 const struct iphdr *iph = ip_hdr(skb); 1305 const struct tcphdr *th = tcp_hdr(skb); 1306 int genhash; 1307 unsigned char newhash[16]; 1308 1309 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1310 AF_INET); 1311 hash_location = tcp_parse_md5sig_option(th); 1312 1313 /* We've parsed the options - do we have a hash? */ 1314 if (!hash_expected && !hash_location) 1315 return false; 1316 1317 if (hash_expected && !hash_location) { 1318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1319 return true; 1320 } 1321 1322 if (!hash_expected && hash_location) { 1323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1324 return true; 1325 } 1326 1327 /* Okay, so this is hash_expected and hash_location - 1328 * so we need to calculate the checksum. 1329 */ 1330 genhash = tcp_v4_md5_hash_skb(newhash, 1331 hash_expected, 1332 NULL, skb); 1333 1334 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1336 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1337 &iph->saddr, ntohs(th->source), 1338 &iph->daddr, ntohs(th->dest), 1339 genhash ? " tcp_v4_calc_md5_hash failed" 1340 : ""); 1341 return true; 1342 } 1343 return false; 1344 #endif 1345 return false; 1346 } 1347 1348 static void tcp_v4_init_req(struct request_sock *req, 1349 const struct sock *sk_listener, 1350 struct sk_buff *skb) 1351 { 1352 struct inet_request_sock *ireq = inet_rsk(req); 1353 struct net *net = sock_net(sk_listener); 1354 1355 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1356 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1357 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1358 } 1359 1360 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1361 struct flowi *fl, 1362 const struct request_sock *req) 1363 { 1364 return inet_csk_route_req(sk, &fl->u.ip4, req); 1365 } 1366 1367 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1368 .family = PF_INET, 1369 .obj_size = sizeof(struct tcp_request_sock), 1370 .rtx_syn_ack = tcp_rtx_synack, 1371 .send_ack = tcp_v4_reqsk_send_ack, 1372 .destructor = tcp_v4_reqsk_destructor, 1373 .send_reset = tcp_v4_send_reset, 1374 .syn_ack_timeout = tcp_syn_ack_timeout, 1375 }; 1376 1377 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1378 .mss_clamp = TCP_MSS_DEFAULT, 1379 #ifdef CONFIG_TCP_MD5SIG 1380 .req_md5_lookup = tcp_v4_md5_lookup, 1381 .calc_md5_hash = tcp_v4_md5_hash_skb, 1382 #endif 1383 .init_req = tcp_v4_init_req, 1384 #ifdef CONFIG_SYN_COOKIES 1385 .cookie_init_seq = cookie_v4_init_sequence, 1386 #endif 1387 .route_req = tcp_v4_route_req, 1388 .init_seq = tcp_v4_init_seq, 1389 .init_ts_off = tcp_v4_init_ts_off, 1390 .send_synack = tcp_v4_send_synack, 1391 }; 1392 1393 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1394 { 1395 /* Never answer to SYNs send to broadcast or multicast */ 1396 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1397 goto drop; 1398 1399 return tcp_conn_request(&tcp_request_sock_ops, 1400 &tcp_request_sock_ipv4_ops, sk, skb); 1401 1402 drop: 1403 tcp_listendrop(sk); 1404 return 0; 1405 } 1406 EXPORT_SYMBOL(tcp_v4_conn_request); 1407 1408 1409 /* 1410 * The three way handshake has completed - we got a valid synack - 1411 * now create the new socket. 1412 */ 1413 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1414 struct request_sock *req, 1415 struct dst_entry *dst, 1416 struct request_sock *req_unhash, 1417 bool *own_req) 1418 { 1419 struct inet_request_sock *ireq; 1420 struct inet_sock *newinet; 1421 struct tcp_sock *newtp; 1422 struct sock *newsk; 1423 #ifdef CONFIG_TCP_MD5SIG 1424 struct tcp_md5sig_key *key; 1425 #endif 1426 struct ip_options_rcu *inet_opt; 1427 1428 if (sk_acceptq_is_full(sk)) 1429 goto exit_overflow; 1430 1431 newsk = tcp_create_openreq_child(sk, req, skb); 1432 if (!newsk) 1433 goto exit_nonewsk; 1434 1435 newsk->sk_gso_type = SKB_GSO_TCPV4; 1436 inet_sk_rx_dst_set(newsk, skb); 1437 1438 newtp = tcp_sk(newsk); 1439 newinet = inet_sk(newsk); 1440 ireq = inet_rsk(req); 1441 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1442 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1443 newsk->sk_bound_dev_if = ireq->ir_iif; 1444 newinet->inet_saddr = ireq->ir_loc_addr; 1445 inet_opt = rcu_dereference(ireq->ireq_opt); 1446 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1447 newinet->mc_index = inet_iif(skb); 1448 newinet->mc_ttl = ip_hdr(skb)->ttl; 1449 newinet->rcv_tos = ip_hdr(skb)->tos; 1450 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1451 if (inet_opt) 1452 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1453 newinet->inet_id = prandom_u32(); 1454 1455 if (!dst) { 1456 dst = inet_csk_route_child_sock(sk, newsk, req); 1457 if (!dst) 1458 goto put_and_exit; 1459 } else { 1460 /* syncookie case : see end of cookie_v4_check() */ 1461 } 1462 sk_setup_caps(newsk, dst); 1463 1464 tcp_ca_openreq_child(newsk, dst); 1465 1466 tcp_sync_mss(newsk, dst_mtu(dst)); 1467 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1468 1469 tcp_initialize_rcv_mss(newsk); 1470 1471 #ifdef CONFIG_TCP_MD5SIG 1472 /* Copy over the MD5 key from the original socket */ 1473 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1474 AF_INET); 1475 if (key) { 1476 /* 1477 * We're using one, so create a matching key 1478 * on the newsk structure. If we fail to get 1479 * memory, then we end up not copying the key 1480 * across. Shucks. 1481 */ 1482 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1483 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC); 1484 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1485 } 1486 #endif 1487 1488 if (__inet_inherit_port(sk, newsk) < 0) 1489 goto put_and_exit; 1490 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1491 if (likely(*own_req)) { 1492 tcp_move_syn(newtp, req); 1493 ireq->ireq_opt = NULL; 1494 } else { 1495 newinet->inet_opt = NULL; 1496 } 1497 return newsk; 1498 1499 exit_overflow: 1500 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1501 exit_nonewsk: 1502 dst_release(dst); 1503 exit: 1504 tcp_listendrop(sk); 1505 return NULL; 1506 put_and_exit: 1507 newinet->inet_opt = NULL; 1508 inet_csk_prepare_forced_close(newsk); 1509 tcp_done(newsk); 1510 goto exit; 1511 } 1512 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1513 1514 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1515 { 1516 #ifdef CONFIG_SYN_COOKIES 1517 const struct tcphdr *th = tcp_hdr(skb); 1518 1519 if (!th->syn) 1520 sk = cookie_v4_check(sk, skb); 1521 #endif 1522 return sk; 1523 } 1524 1525 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1526 struct tcphdr *th, u32 *cookie) 1527 { 1528 u16 mss = 0; 1529 #ifdef CONFIG_SYN_COOKIES 1530 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1531 &tcp_request_sock_ipv4_ops, sk, th); 1532 if (mss) { 1533 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1534 tcp_synq_overflow(sk); 1535 } 1536 #endif 1537 return mss; 1538 } 1539 1540 /* The socket must have it's spinlock held when we get 1541 * here, unless it is a TCP_LISTEN socket. 1542 * 1543 * We have a potential double-lock case here, so even when 1544 * doing backlog processing we use the BH locking scheme. 1545 * This is because we cannot sleep with the original spinlock 1546 * held. 1547 */ 1548 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1549 { 1550 struct sock *rsk; 1551 1552 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1553 struct dst_entry *dst = sk->sk_rx_dst; 1554 1555 sock_rps_save_rxhash(sk, skb); 1556 sk_mark_napi_id(sk, skb); 1557 if (dst) { 1558 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1559 !dst->ops->check(dst, 0)) { 1560 dst_release(dst); 1561 sk->sk_rx_dst = NULL; 1562 } 1563 } 1564 tcp_rcv_established(sk, skb); 1565 return 0; 1566 } 1567 1568 if (tcp_checksum_complete(skb)) 1569 goto csum_err; 1570 1571 if (sk->sk_state == TCP_LISTEN) { 1572 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1573 1574 if (!nsk) 1575 goto discard; 1576 if (nsk != sk) { 1577 if (tcp_child_process(sk, nsk, skb)) { 1578 rsk = nsk; 1579 goto reset; 1580 } 1581 return 0; 1582 } 1583 } else 1584 sock_rps_save_rxhash(sk, skb); 1585 1586 if (tcp_rcv_state_process(sk, skb)) { 1587 rsk = sk; 1588 goto reset; 1589 } 1590 return 0; 1591 1592 reset: 1593 tcp_v4_send_reset(rsk, skb); 1594 discard: 1595 kfree_skb(skb); 1596 /* Be careful here. If this function gets more complicated and 1597 * gcc suffers from register pressure on the x86, sk (in %ebx) 1598 * might be destroyed here. This current version compiles correctly, 1599 * but you have been warned. 1600 */ 1601 return 0; 1602 1603 csum_err: 1604 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1605 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1606 goto discard; 1607 } 1608 EXPORT_SYMBOL(tcp_v4_do_rcv); 1609 1610 int tcp_v4_early_demux(struct sk_buff *skb) 1611 { 1612 const struct iphdr *iph; 1613 const struct tcphdr *th; 1614 struct sock *sk; 1615 1616 if (skb->pkt_type != PACKET_HOST) 1617 return 0; 1618 1619 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1620 return 0; 1621 1622 iph = ip_hdr(skb); 1623 th = tcp_hdr(skb); 1624 1625 if (th->doff < sizeof(struct tcphdr) / 4) 1626 return 0; 1627 1628 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1629 iph->saddr, th->source, 1630 iph->daddr, ntohs(th->dest), 1631 skb->skb_iif, inet_sdif(skb)); 1632 if (sk) { 1633 skb->sk = sk; 1634 skb->destructor = sock_edemux; 1635 if (sk_fullsock(sk)) { 1636 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1637 1638 if (dst) 1639 dst = dst_check(dst, 0); 1640 if (dst && 1641 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1642 skb_dst_set_noref(skb, dst); 1643 } 1644 } 1645 return 0; 1646 } 1647 1648 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1649 { 1650 u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf); 1651 struct skb_shared_info *shinfo; 1652 const struct tcphdr *th; 1653 struct tcphdr *thtail; 1654 struct sk_buff *tail; 1655 unsigned int hdrlen; 1656 bool fragstolen; 1657 u32 gso_segs; 1658 int delta; 1659 1660 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1661 * we can fix skb->truesize to its real value to avoid future drops. 1662 * This is valid because skb is not yet charged to the socket. 1663 * It has been noticed pure SACK packets were sometimes dropped 1664 * (if cooked by drivers without copybreak feature). 1665 */ 1666 skb_condense(skb); 1667 1668 skb_dst_drop(skb); 1669 1670 if (unlikely(tcp_checksum_complete(skb))) { 1671 bh_unlock_sock(sk); 1672 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1673 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1674 return true; 1675 } 1676 1677 /* Attempt coalescing to last skb in backlog, even if we are 1678 * above the limits. 1679 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 1680 */ 1681 th = (const struct tcphdr *)skb->data; 1682 hdrlen = th->doff * 4; 1683 shinfo = skb_shinfo(skb); 1684 1685 if (!shinfo->gso_size) 1686 shinfo->gso_size = skb->len - hdrlen; 1687 1688 if (!shinfo->gso_segs) 1689 shinfo->gso_segs = 1; 1690 1691 tail = sk->sk_backlog.tail; 1692 if (!tail) 1693 goto no_coalesce; 1694 thtail = (struct tcphdr *)tail->data; 1695 1696 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 1697 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 1698 ((TCP_SKB_CB(tail)->tcp_flags | 1699 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 1700 !((TCP_SKB_CB(tail)->tcp_flags & 1701 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 1702 ((TCP_SKB_CB(tail)->tcp_flags ^ 1703 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 1704 #ifdef CONFIG_TLS_DEVICE 1705 tail->decrypted != skb->decrypted || 1706 #endif 1707 thtail->doff != th->doff || 1708 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 1709 goto no_coalesce; 1710 1711 __skb_pull(skb, hdrlen); 1712 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 1713 thtail->window = th->window; 1714 1715 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 1716 1717 if (after(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq)) 1718 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 1719 1720 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 1721 * thtail->fin, so that the fast path in tcp_rcv_established() 1722 * is not entered if we append a packet with a FIN. 1723 * SYN, RST, URG are not present. 1724 * ACK is set on both packets. 1725 * PSH : we do not really care in TCP stack, 1726 * at least for 'GRO' packets. 1727 */ 1728 thtail->fin |= th->fin; 1729 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1730 1731 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1732 TCP_SKB_CB(tail)->has_rxtstamp = true; 1733 tail->tstamp = skb->tstamp; 1734 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 1735 } 1736 1737 /* Not as strict as GRO. We only need to carry mss max value */ 1738 skb_shinfo(tail)->gso_size = max(shinfo->gso_size, 1739 skb_shinfo(tail)->gso_size); 1740 1741 gso_segs = skb_shinfo(tail)->gso_segs + shinfo->gso_segs; 1742 skb_shinfo(tail)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 1743 1744 sk->sk_backlog.len += delta; 1745 __NET_INC_STATS(sock_net(sk), 1746 LINUX_MIB_TCPBACKLOGCOALESCE); 1747 kfree_skb_partial(skb, fragstolen); 1748 return false; 1749 } 1750 __skb_push(skb, hdrlen); 1751 1752 no_coalesce: 1753 /* Only socket owner can try to collapse/prune rx queues 1754 * to reduce memory overhead, so add a little headroom here. 1755 * Few sockets backlog are possibly concurrently non empty. 1756 */ 1757 limit += 64*1024; 1758 1759 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1760 bh_unlock_sock(sk); 1761 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1762 return true; 1763 } 1764 return false; 1765 } 1766 EXPORT_SYMBOL(tcp_add_backlog); 1767 1768 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1769 { 1770 struct tcphdr *th = (struct tcphdr *)skb->data; 1771 1772 return sk_filter_trim_cap(sk, skb, th->doff * 4); 1773 } 1774 EXPORT_SYMBOL(tcp_filter); 1775 1776 static void tcp_v4_restore_cb(struct sk_buff *skb) 1777 { 1778 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1779 sizeof(struct inet_skb_parm)); 1780 } 1781 1782 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1783 const struct tcphdr *th) 1784 { 1785 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1786 * barrier() makes sure compiler wont play fool^Waliasing games. 1787 */ 1788 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1789 sizeof(struct inet_skb_parm)); 1790 barrier(); 1791 1792 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1793 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1794 skb->len - th->doff * 4); 1795 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1796 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1797 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1798 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1799 TCP_SKB_CB(skb)->sacked = 0; 1800 TCP_SKB_CB(skb)->has_rxtstamp = 1801 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1802 } 1803 1804 /* 1805 * From tcp_input.c 1806 */ 1807 1808 int tcp_v4_rcv(struct sk_buff *skb) 1809 { 1810 struct net *net = dev_net(skb->dev); 1811 struct sk_buff *skb_to_free; 1812 int sdif = inet_sdif(skb); 1813 const struct iphdr *iph; 1814 const struct tcphdr *th; 1815 bool refcounted; 1816 struct sock *sk; 1817 int ret; 1818 1819 if (skb->pkt_type != PACKET_HOST) 1820 goto discard_it; 1821 1822 /* Count it even if it's bad */ 1823 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1824 1825 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1826 goto discard_it; 1827 1828 th = (const struct tcphdr *)skb->data; 1829 1830 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1831 goto bad_packet; 1832 if (!pskb_may_pull(skb, th->doff * 4)) 1833 goto discard_it; 1834 1835 /* An explanation is required here, I think. 1836 * Packet length and doff are validated by header prediction, 1837 * provided case of th->doff==0 is eliminated. 1838 * So, we defer the checks. */ 1839 1840 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1841 goto csum_error; 1842 1843 th = (const struct tcphdr *)skb->data; 1844 iph = ip_hdr(skb); 1845 lookup: 1846 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1847 th->dest, sdif, &refcounted); 1848 if (!sk) 1849 goto no_tcp_socket; 1850 1851 process: 1852 if (sk->sk_state == TCP_TIME_WAIT) 1853 goto do_time_wait; 1854 1855 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1856 struct request_sock *req = inet_reqsk(sk); 1857 bool req_stolen = false; 1858 struct sock *nsk; 1859 1860 sk = req->rsk_listener; 1861 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1862 sk_drops_add(sk, skb); 1863 reqsk_put(req); 1864 goto discard_it; 1865 } 1866 if (tcp_checksum_complete(skb)) { 1867 reqsk_put(req); 1868 goto csum_error; 1869 } 1870 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1871 inet_csk_reqsk_queue_drop_and_put(sk, req); 1872 goto lookup; 1873 } 1874 /* We own a reference on the listener, increase it again 1875 * as we might lose it too soon. 1876 */ 1877 sock_hold(sk); 1878 refcounted = true; 1879 nsk = NULL; 1880 if (!tcp_filter(sk, skb)) { 1881 th = (const struct tcphdr *)skb->data; 1882 iph = ip_hdr(skb); 1883 tcp_v4_fill_cb(skb, iph, th); 1884 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 1885 } 1886 if (!nsk) { 1887 reqsk_put(req); 1888 if (req_stolen) { 1889 /* Another cpu got exclusive access to req 1890 * and created a full blown socket. 1891 * Try to feed this packet to this socket 1892 * instead of discarding it. 1893 */ 1894 tcp_v4_restore_cb(skb); 1895 sock_put(sk); 1896 goto lookup; 1897 } 1898 goto discard_and_relse; 1899 } 1900 if (nsk == sk) { 1901 reqsk_put(req); 1902 tcp_v4_restore_cb(skb); 1903 } else if (tcp_child_process(sk, nsk, skb)) { 1904 tcp_v4_send_reset(nsk, skb); 1905 goto discard_and_relse; 1906 } else { 1907 sock_put(sk); 1908 return 0; 1909 } 1910 } 1911 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1912 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1913 goto discard_and_relse; 1914 } 1915 1916 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1917 goto discard_and_relse; 1918 1919 if (tcp_v4_inbound_md5_hash(sk, skb)) 1920 goto discard_and_relse; 1921 1922 nf_reset_ct(skb); 1923 1924 if (tcp_filter(sk, skb)) 1925 goto discard_and_relse; 1926 th = (const struct tcphdr *)skb->data; 1927 iph = ip_hdr(skb); 1928 tcp_v4_fill_cb(skb, iph, th); 1929 1930 skb->dev = NULL; 1931 1932 if (sk->sk_state == TCP_LISTEN) { 1933 ret = tcp_v4_do_rcv(sk, skb); 1934 goto put_and_return; 1935 } 1936 1937 sk_incoming_cpu_update(sk); 1938 1939 bh_lock_sock_nested(sk); 1940 tcp_segs_in(tcp_sk(sk), skb); 1941 ret = 0; 1942 if (!sock_owned_by_user(sk)) { 1943 skb_to_free = sk->sk_rx_skb_cache; 1944 sk->sk_rx_skb_cache = NULL; 1945 ret = tcp_v4_do_rcv(sk, skb); 1946 } else { 1947 if (tcp_add_backlog(sk, skb)) 1948 goto discard_and_relse; 1949 skb_to_free = NULL; 1950 } 1951 bh_unlock_sock(sk); 1952 if (skb_to_free) 1953 __kfree_skb(skb_to_free); 1954 1955 put_and_return: 1956 if (refcounted) 1957 sock_put(sk); 1958 1959 return ret; 1960 1961 no_tcp_socket: 1962 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1963 goto discard_it; 1964 1965 tcp_v4_fill_cb(skb, iph, th); 1966 1967 if (tcp_checksum_complete(skb)) { 1968 csum_error: 1969 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1970 bad_packet: 1971 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1972 } else { 1973 tcp_v4_send_reset(NULL, skb); 1974 } 1975 1976 discard_it: 1977 /* Discard frame. */ 1978 kfree_skb(skb); 1979 return 0; 1980 1981 discard_and_relse: 1982 sk_drops_add(sk, skb); 1983 if (refcounted) 1984 sock_put(sk); 1985 goto discard_it; 1986 1987 do_time_wait: 1988 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1989 inet_twsk_put(inet_twsk(sk)); 1990 goto discard_it; 1991 } 1992 1993 tcp_v4_fill_cb(skb, iph, th); 1994 1995 if (tcp_checksum_complete(skb)) { 1996 inet_twsk_put(inet_twsk(sk)); 1997 goto csum_error; 1998 } 1999 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2000 case TCP_TW_SYN: { 2001 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 2002 &tcp_hashinfo, skb, 2003 __tcp_hdrlen(th), 2004 iph->saddr, th->source, 2005 iph->daddr, th->dest, 2006 inet_iif(skb), 2007 sdif); 2008 if (sk2) { 2009 inet_twsk_deschedule_put(inet_twsk(sk)); 2010 sk = sk2; 2011 tcp_v4_restore_cb(skb); 2012 refcounted = false; 2013 goto process; 2014 } 2015 } 2016 /* to ACK */ 2017 /* fall through */ 2018 case TCP_TW_ACK: 2019 tcp_v4_timewait_ack(sk, skb); 2020 break; 2021 case TCP_TW_RST: 2022 tcp_v4_send_reset(sk, skb); 2023 inet_twsk_deschedule_put(inet_twsk(sk)); 2024 goto discard_it; 2025 case TCP_TW_SUCCESS:; 2026 } 2027 goto discard_it; 2028 } 2029 2030 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2031 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2032 .twsk_unique = tcp_twsk_unique, 2033 .twsk_destructor= tcp_twsk_destructor, 2034 }; 2035 2036 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2037 { 2038 struct dst_entry *dst = skb_dst(skb); 2039 2040 if (dst && dst_hold_safe(dst)) { 2041 sk->sk_rx_dst = dst; 2042 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 2043 } 2044 } 2045 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2046 2047 const struct inet_connection_sock_af_ops ipv4_specific = { 2048 .queue_xmit = ip_queue_xmit, 2049 .send_check = tcp_v4_send_check, 2050 .rebuild_header = inet_sk_rebuild_header, 2051 .sk_rx_dst_set = inet_sk_rx_dst_set, 2052 .conn_request = tcp_v4_conn_request, 2053 .syn_recv_sock = tcp_v4_syn_recv_sock, 2054 .net_header_len = sizeof(struct iphdr), 2055 .setsockopt = ip_setsockopt, 2056 .getsockopt = ip_getsockopt, 2057 .addr2sockaddr = inet_csk_addr2sockaddr, 2058 .sockaddr_len = sizeof(struct sockaddr_in), 2059 #ifdef CONFIG_COMPAT 2060 .compat_setsockopt = compat_ip_setsockopt, 2061 .compat_getsockopt = compat_ip_getsockopt, 2062 #endif 2063 .mtu_reduced = tcp_v4_mtu_reduced, 2064 }; 2065 EXPORT_SYMBOL(ipv4_specific); 2066 2067 #ifdef CONFIG_TCP_MD5SIG 2068 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2069 .md5_lookup = tcp_v4_md5_lookup, 2070 .calc_md5_hash = tcp_v4_md5_hash_skb, 2071 .md5_parse = tcp_v4_parse_md5_keys, 2072 }; 2073 #endif 2074 2075 /* NOTE: A lot of things set to zero explicitly by call to 2076 * sk_alloc() so need not be done here. 2077 */ 2078 static int tcp_v4_init_sock(struct sock *sk) 2079 { 2080 struct inet_connection_sock *icsk = inet_csk(sk); 2081 2082 tcp_init_sock(sk); 2083 2084 icsk->icsk_af_ops = &ipv4_specific; 2085 2086 #ifdef CONFIG_TCP_MD5SIG 2087 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2088 #endif 2089 2090 return 0; 2091 } 2092 2093 void tcp_v4_destroy_sock(struct sock *sk) 2094 { 2095 struct tcp_sock *tp = tcp_sk(sk); 2096 2097 trace_tcp_destroy_sock(sk); 2098 2099 tcp_clear_xmit_timers(sk); 2100 2101 tcp_cleanup_congestion_control(sk); 2102 2103 tcp_cleanup_ulp(sk); 2104 2105 /* Cleanup up the write buffer. */ 2106 tcp_write_queue_purge(sk); 2107 2108 /* Check if we want to disable active TFO */ 2109 tcp_fastopen_active_disable_ofo_check(sk); 2110 2111 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2112 skb_rbtree_purge(&tp->out_of_order_queue); 2113 2114 #ifdef CONFIG_TCP_MD5SIG 2115 /* Clean up the MD5 key list, if any */ 2116 if (tp->md5sig_info) { 2117 tcp_clear_md5_list(sk); 2118 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 2119 tp->md5sig_info = NULL; 2120 } 2121 #endif 2122 2123 /* Clean up a referenced TCP bind bucket. */ 2124 if (inet_csk(sk)->icsk_bind_hash) 2125 inet_put_port(sk); 2126 2127 BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); 2128 2129 /* If socket is aborted during connect operation */ 2130 tcp_free_fastopen_req(tp); 2131 tcp_fastopen_destroy_cipher(sk); 2132 tcp_saved_syn_free(tp); 2133 2134 sk_sockets_allocated_dec(sk); 2135 } 2136 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2137 2138 #ifdef CONFIG_PROC_FS 2139 /* Proc filesystem TCP sock list dumping. */ 2140 2141 /* 2142 * Get next listener socket follow cur. If cur is NULL, get first socket 2143 * starting from bucket given in st->bucket; when st->bucket is zero the 2144 * very first socket in the hash table is returned. 2145 */ 2146 static void *listening_get_next(struct seq_file *seq, void *cur) 2147 { 2148 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2149 struct tcp_iter_state *st = seq->private; 2150 struct net *net = seq_file_net(seq); 2151 struct inet_listen_hashbucket *ilb; 2152 struct sock *sk = cur; 2153 2154 if (!sk) { 2155 get_head: 2156 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2157 spin_lock(&ilb->lock); 2158 sk = sk_head(&ilb->head); 2159 st->offset = 0; 2160 goto get_sk; 2161 } 2162 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2163 ++st->num; 2164 ++st->offset; 2165 2166 sk = sk_next(sk); 2167 get_sk: 2168 sk_for_each_from(sk) { 2169 if (!net_eq(sock_net(sk), net)) 2170 continue; 2171 if (sk->sk_family == afinfo->family) 2172 return sk; 2173 } 2174 spin_unlock(&ilb->lock); 2175 st->offset = 0; 2176 if (++st->bucket < INET_LHTABLE_SIZE) 2177 goto get_head; 2178 return NULL; 2179 } 2180 2181 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2182 { 2183 struct tcp_iter_state *st = seq->private; 2184 void *rc; 2185 2186 st->bucket = 0; 2187 st->offset = 0; 2188 rc = listening_get_next(seq, NULL); 2189 2190 while (rc && *pos) { 2191 rc = listening_get_next(seq, rc); 2192 --*pos; 2193 } 2194 return rc; 2195 } 2196 2197 static inline bool empty_bucket(const struct tcp_iter_state *st) 2198 { 2199 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2200 } 2201 2202 /* 2203 * Get first established socket starting from bucket given in st->bucket. 2204 * If st->bucket is zero, the very first socket in the hash is returned. 2205 */ 2206 static void *established_get_first(struct seq_file *seq) 2207 { 2208 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2209 struct tcp_iter_state *st = seq->private; 2210 struct net *net = seq_file_net(seq); 2211 void *rc = NULL; 2212 2213 st->offset = 0; 2214 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2215 struct sock *sk; 2216 struct hlist_nulls_node *node; 2217 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2218 2219 /* Lockless fast path for the common case of empty buckets */ 2220 if (empty_bucket(st)) 2221 continue; 2222 2223 spin_lock_bh(lock); 2224 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2225 if (sk->sk_family != afinfo->family || 2226 !net_eq(sock_net(sk), net)) { 2227 continue; 2228 } 2229 rc = sk; 2230 goto out; 2231 } 2232 spin_unlock_bh(lock); 2233 } 2234 out: 2235 return rc; 2236 } 2237 2238 static void *established_get_next(struct seq_file *seq, void *cur) 2239 { 2240 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2241 struct sock *sk = cur; 2242 struct hlist_nulls_node *node; 2243 struct tcp_iter_state *st = seq->private; 2244 struct net *net = seq_file_net(seq); 2245 2246 ++st->num; 2247 ++st->offset; 2248 2249 sk = sk_nulls_next(sk); 2250 2251 sk_nulls_for_each_from(sk, node) { 2252 if (sk->sk_family == afinfo->family && 2253 net_eq(sock_net(sk), net)) 2254 return sk; 2255 } 2256 2257 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2258 ++st->bucket; 2259 return established_get_first(seq); 2260 } 2261 2262 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2263 { 2264 struct tcp_iter_state *st = seq->private; 2265 void *rc; 2266 2267 st->bucket = 0; 2268 rc = established_get_first(seq); 2269 2270 while (rc && pos) { 2271 rc = established_get_next(seq, rc); 2272 --pos; 2273 } 2274 return rc; 2275 } 2276 2277 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2278 { 2279 void *rc; 2280 struct tcp_iter_state *st = seq->private; 2281 2282 st->state = TCP_SEQ_STATE_LISTENING; 2283 rc = listening_get_idx(seq, &pos); 2284 2285 if (!rc) { 2286 st->state = TCP_SEQ_STATE_ESTABLISHED; 2287 rc = established_get_idx(seq, pos); 2288 } 2289 2290 return rc; 2291 } 2292 2293 static void *tcp_seek_last_pos(struct seq_file *seq) 2294 { 2295 struct tcp_iter_state *st = seq->private; 2296 int offset = st->offset; 2297 int orig_num = st->num; 2298 void *rc = NULL; 2299 2300 switch (st->state) { 2301 case TCP_SEQ_STATE_LISTENING: 2302 if (st->bucket >= INET_LHTABLE_SIZE) 2303 break; 2304 st->state = TCP_SEQ_STATE_LISTENING; 2305 rc = listening_get_next(seq, NULL); 2306 while (offset-- && rc) 2307 rc = listening_get_next(seq, rc); 2308 if (rc) 2309 break; 2310 st->bucket = 0; 2311 st->state = TCP_SEQ_STATE_ESTABLISHED; 2312 /* Fallthrough */ 2313 case TCP_SEQ_STATE_ESTABLISHED: 2314 if (st->bucket > tcp_hashinfo.ehash_mask) 2315 break; 2316 rc = established_get_first(seq); 2317 while (offset-- && rc) 2318 rc = established_get_next(seq, rc); 2319 } 2320 2321 st->num = orig_num; 2322 2323 return rc; 2324 } 2325 2326 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2327 { 2328 struct tcp_iter_state *st = seq->private; 2329 void *rc; 2330 2331 if (*pos && *pos == st->last_pos) { 2332 rc = tcp_seek_last_pos(seq); 2333 if (rc) 2334 goto out; 2335 } 2336 2337 st->state = TCP_SEQ_STATE_LISTENING; 2338 st->num = 0; 2339 st->bucket = 0; 2340 st->offset = 0; 2341 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2342 2343 out: 2344 st->last_pos = *pos; 2345 return rc; 2346 } 2347 EXPORT_SYMBOL(tcp_seq_start); 2348 2349 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2350 { 2351 struct tcp_iter_state *st = seq->private; 2352 void *rc = NULL; 2353 2354 if (v == SEQ_START_TOKEN) { 2355 rc = tcp_get_idx(seq, 0); 2356 goto out; 2357 } 2358 2359 switch (st->state) { 2360 case TCP_SEQ_STATE_LISTENING: 2361 rc = listening_get_next(seq, v); 2362 if (!rc) { 2363 st->state = TCP_SEQ_STATE_ESTABLISHED; 2364 st->bucket = 0; 2365 st->offset = 0; 2366 rc = established_get_first(seq); 2367 } 2368 break; 2369 case TCP_SEQ_STATE_ESTABLISHED: 2370 rc = established_get_next(seq, v); 2371 break; 2372 } 2373 out: 2374 ++*pos; 2375 st->last_pos = *pos; 2376 return rc; 2377 } 2378 EXPORT_SYMBOL(tcp_seq_next); 2379 2380 void tcp_seq_stop(struct seq_file *seq, void *v) 2381 { 2382 struct tcp_iter_state *st = seq->private; 2383 2384 switch (st->state) { 2385 case TCP_SEQ_STATE_LISTENING: 2386 if (v != SEQ_START_TOKEN) 2387 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2388 break; 2389 case TCP_SEQ_STATE_ESTABLISHED: 2390 if (v) 2391 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2392 break; 2393 } 2394 } 2395 EXPORT_SYMBOL(tcp_seq_stop); 2396 2397 static void get_openreq4(const struct request_sock *req, 2398 struct seq_file *f, int i) 2399 { 2400 const struct inet_request_sock *ireq = inet_rsk(req); 2401 long delta = req->rsk_timer.expires - jiffies; 2402 2403 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2404 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2405 i, 2406 ireq->ir_loc_addr, 2407 ireq->ir_num, 2408 ireq->ir_rmt_addr, 2409 ntohs(ireq->ir_rmt_port), 2410 TCP_SYN_RECV, 2411 0, 0, /* could print option size, but that is af dependent. */ 2412 1, /* timers active (only the expire timer) */ 2413 jiffies_delta_to_clock_t(delta), 2414 req->num_timeout, 2415 from_kuid_munged(seq_user_ns(f), 2416 sock_i_uid(req->rsk_listener)), 2417 0, /* non standard timer */ 2418 0, /* open_requests have no inode */ 2419 0, 2420 req); 2421 } 2422 2423 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2424 { 2425 int timer_active; 2426 unsigned long timer_expires; 2427 const struct tcp_sock *tp = tcp_sk(sk); 2428 const struct inet_connection_sock *icsk = inet_csk(sk); 2429 const struct inet_sock *inet = inet_sk(sk); 2430 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2431 __be32 dest = inet->inet_daddr; 2432 __be32 src = inet->inet_rcv_saddr; 2433 __u16 destp = ntohs(inet->inet_dport); 2434 __u16 srcp = ntohs(inet->inet_sport); 2435 int rx_queue; 2436 int state; 2437 2438 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2439 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2440 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2441 timer_active = 1; 2442 timer_expires = icsk->icsk_timeout; 2443 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2444 timer_active = 4; 2445 timer_expires = icsk->icsk_timeout; 2446 } else if (timer_pending(&sk->sk_timer)) { 2447 timer_active = 2; 2448 timer_expires = sk->sk_timer.expires; 2449 } else { 2450 timer_active = 0; 2451 timer_expires = jiffies; 2452 } 2453 2454 state = inet_sk_state_load(sk); 2455 if (state == TCP_LISTEN) 2456 rx_queue = sk->sk_ack_backlog; 2457 else 2458 /* Because we don't lock the socket, 2459 * we might find a transient negative value. 2460 */ 2461 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - 2462 READ_ONCE(tp->copied_seq), 0); 2463 2464 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2465 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2466 i, src, srcp, dest, destp, state, 2467 READ_ONCE(tp->write_seq) - tp->snd_una, 2468 rx_queue, 2469 timer_active, 2470 jiffies_delta_to_clock_t(timer_expires - jiffies), 2471 icsk->icsk_retransmits, 2472 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2473 icsk->icsk_probes_out, 2474 sock_i_ino(sk), 2475 refcount_read(&sk->sk_refcnt), sk, 2476 jiffies_to_clock_t(icsk->icsk_rto), 2477 jiffies_to_clock_t(icsk->icsk_ack.ato), 2478 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2479 tp->snd_cwnd, 2480 state == TCP_LISTEN ? 2481 fastopenq->max_qlen : 2482 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2483 } 2484 2485 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2486 struct seq_file *f, int i) 2487 { 2488 long delta = tw->tw_timer.expires - jiffies; 2489 __be32 dest, src; 2490 __u16 destp, srcp; 2491 2492 dest = tw->tw_daddr; 2493 src = tw->tw_rcv_saddr; 2494 destp = ntohs(tw->tw_dport); 2495 srcp = ntohs(tw->tw_sport); 2496 2497 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2498 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2499 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2500 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2501 refcount_read(&tw->tw_refcnt), tw); 2502 } 2503 2504 #define TMPSZ 150 2505 2506 static int tcp4_seq_show(struct seq_file *seq, void *v) 2507 { 2508 struct tcp_iter_state *st; 2509 struct sock *sk = v; 2510 2511 seq_setwidth(seq, TMPSZ - 1); 2512 if (v == SEQ_START_TOKEN) { 2513 seq_puts(seq, " sl local_address rem_address st tx_queue " 2514 "rx_queue tr tm->when retrnsmt uid timeout " 2515 "inode"); 2516 goto out; 2517 } 2518 st = seq->private; 2519 2520 if (sk->sk_state == TCP_TIME_WAIT) 2521 get_timewait4_sock(v, seq, st->num); 2522 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2523 get_openreq4(v, seq, st->num); 2524 else 2525 get_tcp4_sock(v, seq, st->num); 2526 out: 2527 seq_pad(seq, '\n'); 2528 return 0; 2529 } 2530 2531 static const struct seq_operations tcp4_seq_ops = { 2532 .show = tcp4_seq_show, 2533 .start = tcp_seq_start, 2534 .next = tcp_seq_next, 2535 .stop = tcp_seq_stop, 2536 }; 2537 2538 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2539 .family = AF_INET, 2540 }; 2541 2542 static int __net_init tcp4_proc_init_net(struct net *net) 2543 { 2544 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 2545 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 2546 return -ENOMEM; 2547 return 0; 2548 } 2549 2550 static void __net_exit tcp4_proc_exit_net(struct net *net) 2551 { 2552 remove_proc_entry("tcp", net->proc_net); 2553 } 2554 2555 static struct pernet_operations tcp4_net_ops = { 2556 .init = tcp4_proc_init_net, 2557 .exit = tcp4_proc_exit_net, 2558 }; 2559 2560 int __init tcp4_proc_init(void) 2561 { 2562 return register_pernet_subsys(&tcp4_net_ops); 2563 } 2564 2565 void tcp4_proc_exit(void) 2566 { 2567 unregister_pernet_subsys(&tcp4_net_ops); 2568 } 2569 #endif /* CONFIG_PROC_FS */ 2570 2571 struct proto tcp_prot = { 2572 .name = "TCP", 2573 .owner = THIS_MODULE, 2574 .close = tcp_close, 2575 .pre_connect = tcp_v4_pre_connect, 2576 .connect = tcp_v4_connect, 2577 .disconnect = tcp_disconnect, 2578 .accept = inet_csk_accept, 2579 .ioctl = tcp_ioctl, 2580 .init = tcp_v4_init_sock, 2581 .destroy = tcp_v4_destroy_sock, 2582 .shutdown = tcp_shutdown, 2583 .setsockopt = tcp_setsockopt, 2584 .getsockopt = tcp_getsockopt, 2585 .keepalive = tcp_set_keepalive, 2586 .recvmsg = tcp_recvmsg, 2587 .sendmsg = tcp_sendmsg, 2588 .sendpage = tcp_sendpage, 2589 .backlog_rcv = tcp_v4_do_rcv, 2590 .release_cb = tcp_release_cb, 2591 .hash = inet_hash, 2592 .unhash = inet_unhash, 2593 .get_port = inet_csk_get_port, 2594 .enter_memory_pressure = tcp_enter_memory_pressure, 2595 .leave_memory_pressure = tcp_leave_memory_pressure, 2596 .stream_memory_free = tcp_stream_memory_free, 2597 .sockets_allocated = &tcp_sockets_allocated, 2598 .orphan_count = &tcp_orphan_count, 2599 .memory_allocated = &tcp_memory_allocated, 2600 .memory_pressure = &tcp_memory_pressure, 2601 .sysctl_mem = sysctl_tcp_mem, 2602 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2603 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 2604 .max_header = MAX_TCP_HEADER, 2605 .obj_size = sizeof(struct tcp_sock), 2606 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2607 .twsk_prot = &tcp_timewait_sock_ops, 2608 .rsk_prot = &tcp_request_sock_ops, 2609 .h.hashinfo = &tcp_hashinfo, 2610 .no_autobind = true, 2611 #ifdef CONFIG_COMPAT 2612 .compat_setsockopt = compat_tcp_setsockopt, 2613 .compat_getsockopt = compat_tcp_getsockopt, 2614 #endif 2615 .diag_destroy = tcp_abort, 2616 }; 2617 EXPORT_SYMBOL(tcp_prot); 2618 2619 static void __net_exit tcp_sk_exit(struct net *net) 2620 { 2621 int cpu; 2622 2623 if (net->ipv4.tcp_congestion_control) 2624 module_put(net->ipv4.tcp_congestion_control->owner); 2625 2626 for_each_possible_cpu(cpu) 2627 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2628 free_percpu(net->ipv4.tcp_sk); 2629 } 2630 2631 static int __net_init tcp_sk_init(struct net *net) 2632 { 2633 int res, cpu, cnt; 2634 2635 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2636 if (!net->ipv4.tcp_sk) 2637 return -ENOMEM; 2638 2639 for_each_possible_cpu(cpu) { 2640 struct sock *sk; 2641 2642 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2643 IPPROTO_TCP, net); 2644 if (res) 2645 goto fail; 2646 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2647 2648 /* Please enforce IP_DF and IPID==0 for RST and 2649 * ACK sent in SYN-RECV and TIME-WAIT state. 2650 */ 2651 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 2652 2653 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2654 } 2655 2656 net->ipv4.sysctl_tcp_ecn = 2; 2657 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2658 2659 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2660 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 2661 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2662 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2663 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 2664 2665 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2666 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2667 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2668 2669 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2670 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2671 net->ipv4.sysctl_tcp_syncookies = 1; 2672 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2673 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2674 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2675 net->ipv4.sysctl_tcp_orphan_retries = 0; 2676 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2677 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2678 net->ipv4.sysctl_tcp_tw_reuse = 2; 2679 2680 cnt = tcp_hashinfo.ehash_mask + 1; 2681 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 2682 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; 2683 2684 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128); 2685 net->ipv4.sysctl_tcp_sack = 1; 2686 net->ipv4.sysctl_tcp_window_scaling = 1; 2687 net->ipv4.sysctl_tcp_timestamps = 1; 2688 net->ipv4.sysctl_tcp_early_retrans = 3; 2689 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 2690 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 2691 net->ipv4.sysctl_tcp_retrans_collapse = 1; 2692 net->ipv4.sysctl_tcp_max_reordering = 300; 2693 net->ipv4.sysctl_tcp_dsack = 1; 2694 net->ipv4.sysctl_tcp_app_win = 31; 2695 net->ipv4.sysctl_tcp_adv_win_scale = 1; 2696 net->ipv4.sysctl_tcp_frto = 2; 2697 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 2698 /* This limits the percentage of the congestion window which we 2699 * will allow a single TSO frame to consume. Building TSO frames 2700 * which are too large can cause TCP streams to be bursty. 2701 */ 2702 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 2703 /* Default TSQ limit of 16 TSO segments */ 2704 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 2705 /* rfc5961 challenge ack rate limiting */ 2706 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 2707 net->ipv4.sysctl_tcp_min_tso_segs = 2; 2708 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 2709 net->ipv4.sysctl_tcp_autocorking = 1; 2710 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 2711 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 2712 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 2713 if (net != &init_net) { 2714 memcpy(net->ipv4.sysctl_tcp_rmem, 2715 init_net.ipv4.sysctl_tcp_rmem, 2716 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 2717 memcpy(net->ipv4.sysctl_tcp_wmem, 2718 init_net.ipv4.sysctl_tcp_wmem, 2719 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 2720 } 2721 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 2722 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 2723 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 2724 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); 2725 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60; 2726 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 2727 2728 /* Reno is always built in */ 2729 if (!net_eq(net, &init_net) && 2730 try_module_get(init_net.ipv4.tcp_congestion_control->owner)) 2731 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 2732 else 2733 net->ipv4.tcp_congestion_control = &tcp_reno; 2734 2735 return 0; 2736 fail: 2737 tcp_sk_exit(net); 2738 2739 return res; 2740 } 2741 2742 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2743 { 2744 struct net *net; 2745 2746 inet_twsk_purge(&tcp_hashinfo, AF_INET); 2747 2748 list_for_each_entry(net, net_exit_list, exit_list) 2749 tcp_fastopen_ctx_destroy(net); 2750 } 2751 2752 static struct pernet_operations __net_initdata tcp_sk_ops = { 2753 .init = tcp_sk_init, 2754 .exit = tcp_sk_exit, 2755 .exit_batch = tcp_sk_exit_batch, 2756 }; 2757 2758 void __init tcp_v4_init(void) 2759 { 2760 if (register_pernet_subsys(&tcp_sk_ops)) 2761 panic("Failed to create the TCP control socket.\n"); 2762 } 2763