xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision f59a3ee6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 
61 #include <net/net_namespace.h>
62 #include <net/icmp.h>
63 #include <net/inet_hashtables.h>
64 #include <net/tcp.h>
65 #include <net/transp_v6.h>
66 #include <net/ipv6.h>
67 #include <net/inet_common.h>
68 #include <net/timewait_sock.h>
69 #include <net/xfrm.h>
70 #include <net/secure_seq.h>
71 #include <net/busy_poll.h>
72 
73 #include <linux/inet.h>
74 #include <linux/ipv6.h>
75 #include <linux/stddef.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/inetdevice.h>
79 #include <linux/btf_ids.h>
80 
81 #include <crypto/hash.h>
82 #include <linux/scatterlist.h>
83 
84 #include <trace/events/tcp.h>
85 
86 #ifdef CONFIG_TCP_MD5SIG
87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
89 #endif
90 
91 struct inet_hashinfo tcp_hashinfo;
92 EXPORT_SYMBOL(tcp_hashinfo);
93 
94 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
95 
96 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
97 {
98 	return secure_tcp_seq(ip_hdr(skb)->daddr,
99 			      ip_hdr(skb)->saddr,
100 			      tcp_hdr(skb)->dest,
101 			      tcp_hdr(skb)->source);
102 }
103 
104 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
105 {
106 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
112 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
113 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 	struct tcp_sock *tp = tcp_sk(sk);
115 
116 	if (reuse == 2) {
117 		/* Still does not detect *everything* that goes through
118 		 * lo, since we require a loopback src or dst address
119 		 * or direct binding to 'lo' interface.
120 		 */
121 		bool loopback = false;
122 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
123 			loopback = true;
124 #if IS_ENABLED(CONFIG_IPV6)
125 		if (tw->tw_family == AF_INET6) {
126 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
127 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
129 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
130 				loopback = true;
131 		} else
132 #endif
133 		{
134 			if (ipv4_is_loopback(tw->tw_daddr) ||
135 			    ipv4_is_loopback(tw->tw_rcv_saddr))
136 				loopback = true;
137 		}
138 		if (!loopback)
139 			reuse = 0;
140 	}
141 
142 	/* With PAWS, it is safe from the viewpoint
143 	   of data integrity. Even without PAWS it is safe provided sequence
144 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
145 
146 	   Actually, the idea is close to VJ's one, only timestamp cache is
147 	   held not per host, but per port pair and TW bucket is used as state
148 	   holder.
149 
150 	   If TW bucket has been already destroyed we fall back to VJ's scheme
151 	   and use initial timestamp retrieved from peer table.
152 	 */
153 	if (tcptw->tw_ts_recent_stamp &&
154 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
155 					    tcptw->tw_ts_recent_stamp)))) {
156 		/* In case of repair and re-using TIME-WAIT sockets we still
157 		 * want to be sure that it is safe as above but honor the
158 		 * sequence numbers and time stamps set as part of the repair
159 		 * process.
160 		 *
161 		 * Without this check re-using a TIME-WAIT socket with TCP
162 		 * repair would accumulate a -1 on the repair assigned
163 		 * sequence number. The first time it is reused the sequence
164 		 * is -1, the second time -2, etc. This fixes that issue
165 		 * without appearing to create any others.
166 		 */
167 		if (likely(!tp->repair)) {
168 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
169 
170 			if (!seq)
171 				seq = 1;
172 			WRITE_ONCE(tp->write_seq, seq);
173 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
174 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
175 		}
176 		sock_hold(sktw);
177 		return 1;
178 	}
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
183 
184 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
185 			      int addr_len)
186 {
187 	/* This check is replicated from tcp_v4_connect() and intended to
188 	 * prevent BPF program called below from accessing bytes that are out
189 	 * of the bound specified by user in addr_len.
190 	 */
191 	if (addr_len < sizeof(struct sockaddr_in))
192 		return -EINVAL;
193 
194 	sock_owned_by_me(sk);
195 
196 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
197 }
198 
199 /* This will initiate an outgoing connection. */
200 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
201 {
202 	struct inet_bind_hashbucket *prev_addr_hashbucket = NULL;
203 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
204 	struct inet_timewait_death_row *tcp_death_row;
205 	__be32 daddr, nexthop, prev_sk_rcv_saddr;
206 	struct inet_sock *inet = inet_sk(sk);
207 	struct tcp_sock *tp = tcp_sk(sk);
208 	struct ip_options_rcu *inet_opt;
209 	struct net *net = sock_net(sk);
210 	__be16 orig_sport, orig_dport;
211 	struct flowi4 *fl4;
212 	struct rtable *rt;
213 	int err;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
235 			      orig_dport, sk);
236 	if (IS_ERR(rt)) {
237 		err = PTR_ERR(rt);
238 		if (err == -ENETUNREACH)
239 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
240 		return err;
241 	}
242 
243 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
244 		ip_rt_put(rt);
245 		return -ENETUNREACH;
246 	}
247 
248 	if (!inet_opt || !inet_opt->opt.srr)
249 		daddr = fl4->daddr;
250 
251 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252 
253 	if (!inet->inet_saddr) {
254 		if (inet_csk(sk)->icsk_bind2_hash) {
255 			prev_addr_hashbucket = inet_bhashfn_portaddr(tcp_death_row->hashinfo,
256 								     sk, net, inet->inet_num);
257 			prev_sk_rcv_saddr = sk->sk_rcv_saddr;
258 		}
259 		inet->inet_saddr = fl4->saddr;
260 	}
261 
262 	sk_rcv_saddr_set(sk, inet->inet_saddr);
263 
264 	if (prev_addr_hashbucket) {
265 		err = inet_bhash2_update_saddr(prev_addr_hashbucket, sk);
266 		if (err) {
267 			inet->inet_saddr = 0;
268 			sk_rcv_saddr_set(sk, prev_sk_rcv_saddr);
269 			ip_rt_put(rt);
270 			return err;
271 		}
272 	}
273 
274 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
275 		/* Reset inherited state */
276 		tp->rx_opt.ts_recent	   = 0;
277 		tp->rx_opt.ts_recent_stamp = 0;
278 		if (likely(!tp->repair))
279 			WRITE_ONCE(tp->write_seq, 0);
280 	}
281 
282 	inet->inet_dport = usin->sin_port;
283 	sk_daddr_set(sk, daddr);
284 
285 	inet_csk(sk)->icsk_ext_hdr_len = 0;
286 	if (inet_opt)
287 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
288 
289 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
290 
291 	/* Socket identity is still unknown (sport may be zero).
292 	 * However we set state to SYN-SENT and not releasing socket
293 	 * lock select source port, enter ourselves into the hash tables and
294 	 * complete initialization after this.
295 	 */
296 	tcp_set_state(sk, TCP_SYN_SENT);
297 	err = inet_hash_connect(tcp_death_row, sk);
298 	if (err)
299 		goto failure;
300 
301 	sk_set_txhash(sk);
302 
303 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
304 			       inet->inet_sport, inet->inet_dport, sk);
305 	if (IS_ERR(rt)) {
306 		err = PTR_ERR(rt);
307 		rt = NULL;
308 		goto failure;
309 	}
310 	/* OK, now commit destination to socket.  */
311 	sk->sk_gso_type = SKB_GSO_TCPV4;
312 	sk_setup_caps(sk, &rt->dst);
313 	rt = NULL;
314 
315 	if (likely(!tp->repair)) {
316 		if (!tp->write_seq)
317 			WRITE_ONCE(tp->write_seq,
318 				   secure_tcp_seq(inet->inet_saddr,
319 						  inet->inet_daddr,
320 						  inet->inet_sport,
321 						  usin->sin_port));
322 		tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr,
323 						 inet->inet_daddr);
324 	}
325 
326 	inet->inet_id = get_random_u16();
327 
328 	if (tcp_fastopen_defer_connect(sk, &err))
329 		return err;
330 	if (err)
331 		goto failure;
332 
333 	err = tcp_connect(sk);
334 
335 	if (err)
336 		goto failure;
337 
338 	return 0;
339 
340 failure:
341 	/*
342 	 * This unhashes the socket and releases the local port,
343 	 * if necessary.
344 	 */
345 	tcp_set_state(sk, TCP_CLOSE);
346 	ip_rt_put(rt);
347 	sk->sk_route_caps = 0;
348 	inet->inet_dport = 0;
349 	return err;
350 }
351 EXPORT_SYMBOL(tcp_v4_connect);
352 
353 /*
354  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
355  * It can be called through tcp_release_cb() if socket was owned by user
356  * at the time tcp_v4_err() was called to handle ICMP message.
357  */
358 void tcp_v4_mtu_reduced(struct sock *sk)
359 {
360 	struct inet_sock *inet = inet_sk(sk);
361 	struct dst_entry *dst;
362 	u32 mtu;
363 
364 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
365 		return;
366 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
367 	dst = inet_csk_update_pmtu(sk, mtu);
368 	if (!dst)
369 		return;
370 
371 	/* Something is about to be wrong... Remember soft error
372 	 * for the case, if this connection will not able to recover.
373 	 */
374 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
375 		sk->sk_err_soft = EMSGSIZE;
376 
377 	mtu = dst_mtu(dst);
378 
379 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
380 	    ip_sk_accept_pmtu(sk) &&
381 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
382 		tcp_sync_mss(sk, mtu);
383 
384 		/* Resend the TCP packet because it's
385 		 * clear that the old packet has been
386 		 * dropped. This is the new "fast" path mtu
387 		 * discovery.
388 		 */
389 		tcp_simple_retransmit(sk);
390 	} /* else let the usual retransmit timer handle it */
391 }
392 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
393 
394 static void do_redirect(struct sk_buff *skb, struct sock *sk)
395 {
396 	struct dst_entry *dst = __sk_dst_check(sk, 0);
397 
398 	if (dst)
399 		dst->ops->redirect(dst, sk, skb);
400 }
401 
402 
403 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
404 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
405 {
406 	struct request_sock *req = inet_reqsk(sk);
407 	struct net *net = sock_net(sk);
408 
409 	/* ICMPs are not backlogged, hence we cannot get
410 	 * an established socket here.
411 	 */
412 	if (seq != tcp_rsk(req)->snt_isn) {
413 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
414 	} else if (abort) {
415 		/*
416 		 * Still in SYN_RECV, just remove it silently.
417 		 * There is no good way to pass the error to the newly
418 		 * created socket, and POSIX does not want network
419 		 * errors returned from accept().
420 		 */
421 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
422 		tcp_listendrop(req->rsk_listener);
423 	}
424 	reqsk_put(req);
425 }
426 EXPORT_SYMBOL(tcp_req_err);
427 
428 /* TCP-LD (RFC 6069) logic */
429 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
430 {
431 	struct inet_connection_sock *icsk = inet_csk(sk);
432 	struct tcp_sock *tp = tcp_sk(sk);
433 	struct sk_buff *skb;
434 	s32 remaining;
435 	u32 delta_us;
436 
437 	if (sock_owned_by_user(sk))
438 		return;
439 
440 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
441 	    !icsk->icsk_backoff)
442 		return;
443 
444 	skb = tcp_rtx_queue_head(sk);
445 	if (WARN_ON_ONCE(!skb))
446 		return;
447 
448 	icsk->icsk_backoff--;
449 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
450 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
451 
452 	tcp_mstamp_refresh(tp);
453 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
454 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
455 
456 	if (remaining > 0) {
457 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
458 					  remaining, TCP_RTO_MAX);
459 	} else {
460 		/* RTO revert clocked out retransmission.
461 		 * Will retransmit now.
462 		 */
463 		tcp_retransmit_timer(sk);
464 	}
465 }
466 EXPORT_SYMBOL(tcp_ld_RTO_revert);
467 
468 /*
469  * This routine is called by the ICMP module when it gets some
470  * sort of error condition.  If err < 0 then the socket should
471  * be closed and the error returned to the user.  If err > 0
472  * it's just the icmp type << 8 | icmp code.  After adjustment
473  * header points to the first 8 bytes of the tcp header.  We need
474  * to find the appropriate port.
475  *
476  * The locking strategy used here is very "optimistic". When
477  * someone else accesses the socket the ICMP is just dropped
478  * and for some paths there is no check at all.
479  * A more general error queue to queue errors for later handling
480  * is probably better.
481  *
482  */
483 
484 int tcp_v4_err(struct sk_buff *skb, u32 info)
485 {
486 	const struct iphdr *iph = (const struct iphdr *)skb->data;
487 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
488 	struct tcp_sock *tp;
489 	struct inet_sock *inet;
490 	const int type = icmp_hdr(skb)->type;
491 	const int code = icmp_hdr(skb)->code;
492 	struct sock *sk;
493 	struct request_sock *fastopen;
494 	u32 seq, snd_una;
495 	int err;
496 	struct net *net = dev_net(skb->dev);
497 
498 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
499 				       iph->daddr, th->dest, iph->saddr,
500 				       ntohs(th->source), inet_iif(skb), 0);
501 	if (!sk) {
502 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
503 		return -ENOENT;
504 	}
505 	if (sk->sk_state == TCP_TIME_WAIT) {
506 		inet_twsk_put(inet_twsk(sk));
507 		return 0;
508 	}
509 	seq = ntohl(th->seq);
510 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
511 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
512 				     type == ICMP_TIME_EXCEEDED ||
513 				     (type == ICMP_DEST_UNREACH &&
514 				      (code == ICMP_NET_UNREACH ||
515 				       code == ICMP_HOST_UNREACH)));
516 		return 0;
517 	}
518 
519 	bh_lock_sock(sk);
520 	/* If too many ICMPs get dropped on busy
521 	 * servers this needs to be solved differently.
522 	 * We do take care of PMTU discovery (RFC1191) special case :
523 	 * we can receive locally generated ICMP messages while socket is held.
524 	 */
525 	if (sock_owned_by_user(sk)) {
526 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
527 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
528 	}
529 	if (sk->sk_state == TCP_CLOSE)
530 		goto out;
531 
532 	if (static_branch_unlikely(&ip4_min_ttl)) {
533 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
534 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
535 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
536 			goto out;
537 		}
538 	}
539 
540 	tp = tcp_sk(sk);
541 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
542 	fastopen = rcu_dereference(tp->fastopen_rsk);
543 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
544 	if (sk->sk_state != TCP_LISTEN &&
545 	    !between(seq, snd_una, tp->snd_nxt)) {
546 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
547 		goto out;
548 	}
549 
550 	switch (type) {
551 	case ICMP_REDIRECT:
552 		if (!sock_owned_by_user(sk))
553 			do_redirect(skb, sk);
554 		goto out;
555 	case ICMP_SOURCE_QUENCH:
556 		/* Just silently ignore these. */
557 		goto out;
558 	case ICMP_PARAMETERPROB:
559 		err = EPROTO;
560 		break;
561 	case ICMP_DEST_UNREACH:
562 		if (code > NR_ICMP_UNREACH)
563 			goto out;
564 
565 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
566 			/* We are not interested in TCP_LISTEN and open_requests
567 			 * (SYN-ACKs send out by Linux are always <576bytes so
568 			 * they should go through unfragmented).
569 			 */
570 			if (sk->sk_state == TCP_LISTEN)
571 				goto out;
572 
573 			WRITE_ONCE(tp->mtu_info, info);
574 			if (!sock_owned_by_user(sk)) {
575 				tcp_v4_mtu_reduced(sk);
576 			} else {
577 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
578 					sock_hold(sk);
579 			}
580 			goto out;
581 		}
582 
583 		err = icmp_err_convert[code].errno;
584 		/* check if this ICMP message allows revert of backoff.
585 		 * (see RFC 6069)
586 		 */
587 		if (!fastopen &&
588 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
589 			tcp_ld_RTO_revert(sk, seq);
590 		break;
591 	case ICMP_TIME_EXCEEDED:
592 		err = EHOSTUNREACH;
593 		break;
594 	default:
595 		goto out;
596 	}
597 
598 	switch (sk->sk_state) {
599 	case TCP_SYN_SENT:
600 	case TCP_SYN_RECV:
601 		/* Only in fast or simultaneous open. If a fast open socket is
602 		 * already accepted it is treated as a connected one below.
603 		 */
604 		if (fastopen && !fastopen->sk)
605 			break;
606 
607 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
608 
609 		if (!sock_owned_by_user(sk)) {
610 			sk->sk_err = err;
611 
612 			sk_error_report(sk);
613 
614 			tcp_done(sk);
615 		} else {
616 			sk->sk_err_soft = err;
617 		}
618 		goto out;
619 	}
620 
621 	/* If we've already connected we will keep trying
622 	 * until we time out, or the user gives up.
623 	 *
624 	 * rfc1122 4.2.3.9 allows to consider as hard errors
625 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
626 	 * but it is obsoleted by pmtu discovery).
627 	 *
628 	 * Note, that in modern internet, where routing is unreliable
629 	 * and in each dark corner broken firewalls sit, sending random
630 	 * errors ordered by their masters even this two messages finally lose
631 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
632 	 *
633 	 * Now we are in compliance with RFCs.
634 	 *							--ANK (980905)
635 	 */
636 
637 	inet = inet_sk(sk);
638 	if (!sock_owned_by_user(sk) && inet->recverr) {
639 		sk->sk_err = err;
640 		sk_error_report(sk);
641 	} else	{ /* Only an error on timeout */
642 		sk->sk_err_soft = err;
643 	}
644 
645 out:
646 	bh_unlock_sock(sk);
647 	sock_put(sk);
648 	return 0;
649 }
650 
651 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
652 {
653 	struct tcphdr *th = tcp_hdr(skb);
654 
655 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
656 	skb->csum_start = skb_transport_header(skb) - skb->head;
657 	skb->csum_offset = offsetof(struct tcphdr, check);
658 }
659 
660 /* This routine computes an IPv4 TCP checksum. */
661 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
662 {
663 	const struct inet_sock *inet = inet_sk(sk);
664 
665 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
666 }
667 EXPORT_SYMBOL(tcp_v4_send_check);
668 
669 /*
670  *	This routine will send an RST to the other tcp.
671  *
672  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
673  *		      for reset.
674  *	Answer: if a packet caused RST, it is not for a socket
675  *		existing in our system, if it is matched to a socket,
676  *		it is just duplicate segment or bug in other side's TCP.
677  *		So that we build reply only basing on parameters
678  *		arrived with segment.
679  *	Exception: precedence violation. We do not implement it in any case.
680  */
681 
682 #ifdef CONFIG_TCP_MD5SIG
683 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
684 #else
685 #define OPTION_BYTES sizeof(__be32)
686 #endif
687 
688 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
689 {
690 	const struct tcphdr *th = tcp_hdr(skb);
691 	struct {
692 		struct tcphdr th;
693 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
694 	} rep;
695 	struct ip_reply_arg arg;
696 #ifdef CONFIG_TCP_MD5SIG
697 	struct tcp_md5sig_key *key = NULL;
698 	const __u8 *hash_location = NULL;
699 	unsigned char newhash[16];
700 	int genhash;
701 	struct sock *sk1 = NULL;
702 #endif
703 	u64 transmit_time = 0;
704 	struct sock *ctl_sk;
705 	struct net *net;
706 
707 	/* Never send a reset in response to a reset. */
708 	if (th->rst)
709 		return;
710 
711 	/* If sk not NULL, it means we did a successful lookup and incoming
712 	 * route had to be correct. prequeue might have dropped our dst.
713 	 */
714 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
715 		return;
716 
717 	/* Swap the send and the receive. */
718 	memset(&rep, 0, sizeof(rep));
719 	rep.th.dest   = th->source;
720 	rep.th.source = th->dest;
721 	rep.th.doff   = sizeof(struct tcphdr) / 4;
722 	rep.th.rst    = 1;
723 
724 	if (th->ack) {
725 		rep.th.seq = th->ack_seq;
726 	} else {
727 		rep.th.ack = 1;
728 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
729 				       skb->len - (th->doff << 2));
730 	}
731 
732 	memset(&arg, 0, sizeof(arg));
733 	arg.iov[0].iov_base = (unsigned char *)&rep;
734 	arg.iov[0].iov_len  = sizeof(rep.th);
735 
736 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
737 #ifdef CONFIG_TCP_MD5SIG
738 	rcu_read_lock();
739 	hash_location = tcp_parse_md5sig_option(th);
740 	if (sk && sk_fullsock(sk)) {
741 		const union tcp_md5_addr *addr;
742 		int l3index;
743 
744 		/* sdif set, means packet ingressed via a device
745 		 * in an L3 domain and inet_iif is set to it.
746 		 */
747 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
748 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
749 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
750 	} else if (hash_location) {
751 		const union tcp_md5_addr *addr;
752 		int sdif = tcp_v4_sdif(skb);
753 		int dif = inet_iif(skb);
754 		int l3index;
755 
756 		/*
757 		 * active side is lost. Try to find listening socket through
758 		 * source port, and then find md5 key through listening socket.
759 		 * we are not loose security here:
760 		 * Incoming packet is checked with md5 hash with finding key,
761 		 * no RST generated if md5 hash doesn't match.
762 		 */
763 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
764 					     NULL, 0, ip_hdr(skb)->saddr,
765 					     th->source, ip_hdr(skb)->daddr,
766 					     ntohs(th->source), dif, sdif);
767 		/* don't send rst if it can't find key */
768 		if (!sk1)
769 			goto out;
770 
771 		/* sdif set, means packet ingressed via a device
772 		 * in an L3 domain and dif is set to it.
773 		 */
774 		l3index = sdif ? dif : 0;
775 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
776 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
777 		if (!key)
778 			goto out;
779 
780 
781 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
782 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
783 			goto out;
784 
785 	}
786 
787 	if (key) {
788 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
789 				   (TCPOPT_NOP << 16) |
790 				   (TCPOPT_MD5SIG << 8) |
791 				   TCPOLEN_MD5SIG);
792 		/* Update length and the length the header thinks exists */
793 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
794 		rep.th.doff = arg.iov[0].iov_len / 4;
795 
796 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
797 				     key, ip_hdr(skb)->saddr,
798 				     ip_hdr(skb)->daddr, &rep.th);
799 	}
800 #endif
801 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
802 	if (rep.opt[0] == 0) {
803 		__be32 mrst = mptcp_reset_option(skb);
804 
805 		if (mrst) {
806 			rep.opt[0] = mrst;
807 			arg.iov[0].iov_len += sizeof(mrst);
808 			rep.th.doff = arg.iov[0].iov_len / 4;
809 		}
810 	}
811 
812 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
813 				      ip_hdr(skb)->saddr, /* XXX */
814 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
815 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
816 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
817 
818 	/* When socket is gone, all binding information is lost.
819 	 * routing might fail in this case. No choice here, if we choose to force
820 	 * input interface, we will misroute in case of asymmetric route.
821 	 */
822 	if (sk) {
823 		arg.bound_dev_if = sk->sk_bound_dev_if;
824 		if (sk_fullsock(sk))
825 			trace_tcp_send_reset(sk, skb);
826 	}
827 
828 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
829 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
830 
831 	arg.tos = ip_hdr(skb)->tos;
832 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
833 	local_bh_disable();
834 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
835 	sock_net_set(ctl_sk, net);
836 	if (sk) {
837 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
838 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
839 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
840 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
841 		transmit_time = tcp_transmit_time(sk);
842 		xfrm_sk_clone_policy(ctl_sk, sk);
843 	}
844 	ip_send_unicast_reply(ctl_sk,
845 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
846 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
847 			      &arg, arg.iov[0].iov_len,
848 			      transmit_time);
849 
850 	ctl_sk->sk_mark = 0;
851 	xfrm_sk_free_policy(ctl_sk);
852 	sock_net_set(ctl_sk, &init_net);
853 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
854 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
855 	local_bh_enable();
856 
857 #ifdef CONFIG_TCP_MD5SIG
858 out:
859 	rcu_read_unlock();
860 #endif
861 }
862 
863 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
864    outside socket context is ugly, certainly. What can I do?
865  */
866 
867 static void tcp_v4_send_ack(const struct sock *sk,
868 			    struct sk_buff *skb, u32 seq, u32 ack,
869 			    u32 win, u32 tsval, u32 tsecr, int oif,
870 			    struct tcp_md5sig_key *key,
871 			    int reply_flags, u8 tos)
872 {
873 	const struct tcphdr *th = tcp_hdr(skb);
874 	struct {
875 		struct tcphdr th;
876 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
877 #ifdef CONFIG_TCP_MD5SIG
878 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
879 #endif
880 			];
881 	} rep;
882 	struct net *net = sock_net(sk);
883 	struct ip_reply_arg arg;
884 	struct sock *ctl_sk;
885 	u64 transmit_time;
886 
887 	memset(&rep.th, 0, sizeof(struct tcphdr));
888 	memset(&arg, 0, sizeof(arg));
889 
890 	arg.iov[0].iov_base = (unsigned char *)&rep;
891 	arg.iov[0].iov_len  = sizeof(rep.th);
892 	if (tsecr) {
893 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
894 				   (TCPOPT_TIMESTAMP << 8) |
895 				   TCPOLEN_TIMESTAMP);
896 		rep.opt[1] = htonl(tsval);
897 		rep.opt[2] = htonl(tsecr);
898 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
899 	}
900 
901 	/* Swap the send and the receive. */
902 	rep.th.dest    = th->source;
903 	rep.th.source  = th->dest;
904 	rep.th.doff    = arg.iov[0].iov_len / 4;
905 	rep.th.seq     = htonl(seq);
906 	rep.th.ack_seq = htonl(ack);
907 	rep.th.ack     = 1;
908 	rep.th.window  = htons(win);
909 
910 #ifdef CONFIG_TCP_MD5SIG
911 	if (key) {
912 		int offset = (tsecr) ? 3 : 0;
913 
914 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
915 					  (TCPOPT_NOP << 16) |
916 					  (TCPOPT_MD5SIG << 8) |
917 					  TCPOLEN_MD5SIG);
918 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
919 		rep.th.doff = arg.iov[0].iov_len/4;
920 
921 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
922 				    key, ip_hdr(skb)->saddr,
923 				    ip_hdr(skb)->daddr, &rep.th);
924 	}
925 #endif
926 	arg.flags = reply_flags;
927 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
928 				      ip_hdr(skb)->saddr, /* XXX */
929 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
930 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
931 	if (oif)
932 		arg.bound_dev_if = oif;
933 	arg.tos = tos;
934 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
935 	local_bh_disable();
936 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
937 	sock_net_set(ctl_sk, net);
938 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
939 			   inet_twsk(sk)->tw_mark : sk->sk_mark;
940 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
941 			   inet_twsk(sk)->tw_priority : sk->sk_priority;
942 	transmit_time = tcp_transmit_time(sk);
943 	ip_send_unicast_reply(ctl_sk,
944 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
945 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
946 			      &arg, arg.iov[0].iov_len,
947 			      transmit_time);
948 
949 	ctl_sk->sk_mark = 0;
950 	sock_net_set(ctl_sk, &init_net);
951 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
952 	local_bh_enable();
953 }
954 
955 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
956 {
957 	struct inet_timewait_sock *tw = inet_twsk(sk);
958 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
959 
960 	tcp_v4_send_ack(sk, skb,
961 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
962 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
963 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
964 			tcptw->tw_ts_recent,
965 			tw->tw_bound_dev_if,
966 			tcp_twsk_md5_key(tcptw),
967 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
968 			tw->tw_tos
969 			);
970 
971 	inet_twsk_put(tw);
972 }
973 
974 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
975 				  struct request_sock *req)
976 {
977 	const union tcp_md5_addr *addr;
978 	int l3index;
979 
980 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
981 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
982 	 */
983 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
984 					     tcp_sk(sk)->snd_nxt;
985 
986 	/* RFC 7323 2.3
987 	 * The window field (SEG.WND) of every outgoing segment, with the
988 	 * exception of <SYN> segments, MUST be right-shifted by
989 	 * Rcv.Wind.Shift bits:
990 	 */
991 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
992 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
993 	tcp_v4_send_ack(sk, skb, seq,
994 			tcp_rsk(req)->rcv_nxt,
995 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
996 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
997 			req->ts_recent,
998 			0,
999 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
1000 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1001 			ip_hdr(skb)->tos);
1002 }
1003 
1004 /*
1005  *	Send a SYN-ACK after having received a SYN.
1006  *	This still operates on a request_sock only, not on a big
1007  *	socket.
1008  */
1009 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1010 			      struct flowi *fl,
1011 			      struct request_sock *req,
1012 			      struct tcp_fastopen_cookie *foc,
1013 			      enum tcp_synack_type synack_type,
1014 			      struct sk_buff *syn_skb)
1015 {
1016 	const struct inet_request_sock *ireq = inet_rsk(req);
1017 	struct flowi4 fl4;
1018 	int err = -1;
1019 	struct sk_buff *skb;
1020 	u8 tos;
1021 
1022 	/* First, grab a route. */
1023 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1024 		return -1;
1025 
1026 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1027 
1028 	if (skb) {
1029 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1030 
1031 		tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1032 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1033 				(inet_sk(sk)->tos & INET_ECN_MASK) :
1034 				inet_sk(sk)->tos;
1035 
1036 		if (!INET_ECN_is_capable(tos) &&
1037 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1038 			tos |= INET_ECN_ECT_0;
1039 
1040 		rcu_read_lock();
1041 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1042 					    ireq->ir_rmt_addr,
1043 					    rcu_dereference(ireq->ireq_opt),
1044 					    tos);
1045 		rcu_read_unlock();
1046 		err = net_xmit_eval(err);
1047 	}
1048 
1049 	return err;
1050 }
1051 
1052 /*
1053  *	IPv4 request_sock destructor.
1054  */
1055 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1056 {
1057 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1058 }
1059 
1060 #ifdef CONFIG_TCP_MD5SIG
1061 /*
1062  * RFC2385 MD5 checksumming requires a mapping of
1063  * IP address->MD5 Key.
1064  * We need to maintain these in the sk structure.
1065  */
1066 
1067 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1068 EXPORT_SYMBOL(tcp_md5_needed);
1069 
1070 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1071 {
1072 	if (!old)
1073 		return true;
1074 
1075 	/* l3index always overrides non-l3index */
1076 	if (old->l3index && new->l3index == 0)
1077 		return false;
1078 	if (old->l3index == 0 && new->l3index)
1079 		return true;
1080 
1081 	return old->prefixlen < new->prefixlen;
1082 }
1083 
1084 /* Find the Key structure for an address.  */
1085 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1086 					   const union tcp_md5_addr *addr,
1087 					   int family)
1088 {
1089 	const struct tcp_sock *tp = tcp_sk(sk);
1090 	struct tcp_md5sig_key *key;
1091 	const struct tcp_md5sig_info *md5sig;
1092 	__be32 mask;
1093 	struct tcp_md5sig_key *best_match = NULL;
1094 	bool match;
1095 
1096 	/* caller either holds rcu_read_lock() or socket lock */
1097 	md5sig = rcu_dereference_check(tp->md5sig_info,
1098 				       lockdep_sock_is_held(sk));
1099 	if (!md5sig)
1100 		return NULL;
1101 
1102 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1103 				 lockdep_sock_is_held(sk)) {
1104 		if (key->family != family)
1105 			continue;
1106 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1107 			continue;
1108 		if (family == AF_INET) {
1109 			mask = inet_make_mask(key->prefixlen);
1110 			match = (key->addr.a4.s_addr & mask) ==
1111 				(addr->a4.s_addr & mask);
1112 #if IS_ENABLED(CONFIG_IPV6)
1113 		} else if (family == AF_INET6) {
1114 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1115 						  key->prefixlen);
1116 #endif
1117 		} else {
1118 			match = false;
1119 		}
1120 
1121 		if (match && better_md5_match(best_match, key))
1122 			best_match = key;
1123 	}
1124 	return best_match;
1125 }
1126 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1127 
1128 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1129 						      const union tcp_md5_addr *addr,
1130 						      int family, u8 prefixlen,
1131 						      int l3index, u8 flags)
1132 {
1133 	const struct tcp_sock *tp = tcp_sk(sk);
1134 	struct tcp_md5sig_key *key;
1135 	unsigned int size = sizeof(struct in_addr);
1136 	const struct tcp_md5sig_info *md5sig;
1137 
1138 	/* caller either holds rcu_read_lock() or socket lock */
1139 	md5sig = rcu_dereference_check(tp->md5sig_info,
1140 				       lockdep_sock_is_held(sk));
1141 	if (!md5sig)
1142 		return NULL;
1143 #if IS_ENABLED(CONFIG_IPV6)
1144 	if (family == AF_INET6)
1145 		size = sizeof(struct in6_addr);
1146 #endif
1147 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1148 				 lockdep_sock_is_held(sk)) {
1149 		if (key->family != family)
1150 			continue;
1151 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1152 			continue;
1153 		if (key->l3index != l3index)
1154 			continue;
1155 		if (!memcmp(&key->addr, addr, size) &&
1156 		    key->prefixlen == prefixlen)
1157 			return key;
1158 	}
1159 	return NULL;
1160 }
1161 
1162 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1163 					 const struct sock *addr_sk)
1164 {
1165 	const union tcp_md5_addr *addr;
1166 	int l3index;
1167 
1168 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1169 						 addr_sk->sk_bound_dev_if);
1170 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1171 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1172 }
1173 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1174 
1175 /* This can be called on a newly created socket, from other files */
1176 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1177 		   int family, u8 prefixlen, int l3index, u8 flags,
1178 		   const u8 *newkey, u8 newkeylen, gfp_t gfp)
1179 {
1180 	/* Add Key to the list */
1181 	struct tcp_md5sig_key *key;
1182 	struct tcp_sock *tp = tcp_sk(sk);
1183 	struct tcp_md5sig_info *md5sig;
1184 
1185 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1186 	if (key) {
1187 		/* Pre-existing entry - just update that one.
1188 		 * Note that the key might be used concurrently.
1189 		 * data_race() is telling kcsan that we do not care of
1190 		 * key mismatches, since changing MD5 key on live flows
1191 		 * can lead to packet drops.
1192 		 */
1193 		data_race(memcpy(key->key, newkey, newkeylen));
1194 
1195 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1196 		 * Also note that a reader could catch new key->keylen value
1197 		 * but old key->key[], this is the reason we use __GFP_ZERO
1198 		 * at sock_kmalloc() time below these lines.
1199 		 */
1200 		WRITE_ONCE(key->keylen, newkeylen);
1201 
1202 		return 0;
1203 	}
1204 
1205 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1206 					   lockdep_sock_is_held(sk));
1207 	if (!md5sig) {
1208 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1209 		if (!md5sig)
1210 			return -ENOMEM;
1211 
1212 		sk_gso_disable(sk);
1213 		INIT_HLIST_HEAD(&md5sig->head);
1214 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1215 	}
1216 
1217 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1218 	if (!key)
1219 		return -ENOMEM;
1220 	if (!tcp_alloc_md5sig_pool()) {
1221 		sock_kfree_s(sk, key, sizeof(*key));
1222 		return -ENOMEM;
1223 	}
1224 
1225 	memcpy(key->key, newkey, newkeylen);
1226 	key->keylen = newkeylen;
1227 	key->family = family;
1228 	key->prefixlen = prefixlen;
1229 	key->l3index = l3index;
1230 	key->flags = flags;
1231 	memcpy(&key->addr, addr,
1232 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1233 								 sizeof(struct in_addr));
1234 	hlist_add_head_rcu(&key->node, &md5sig->head);
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL(tcp_md5_do_add);
1238 
1239 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1240 		   u8 prefixlen, int l3index, u8 flags)
1241 {
1242 	struct tcp_md5sig_key *key;
1243 
1244 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1245 	if (!key)
1246 		return -ENOENT;
1247 	hlist_del_rcu(&key->node);
1248 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1249 	kfree_rcu(key, rcu);
1250 	return 0;
1251 }
1252 EXPORT_SYMBOL(tcp_md5_do_del);
1253 
1254 static void tcp_clear_md5_list(struct sock *sk)
1255 {
1256 	struct tcp_sock *tp = tcp_sk(sk);
1257 	struct tcp_md5sig_key *key;
1258 	struct hlist_node *n;
1259 	struct tcp_md5sig_info *md5sig;
1260 
1261 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1262 
1263 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1264 		hlist_del_rcu(&key->node);
1265 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1266 		kfree_rcu(key, rcu);
1267 	}
1268 }
1269 
1270 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1271 				 sockptr_t optval, int optlen)
1272 {
1273 	struct tcp_md5sig cmd;
1274 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1275 	const union tcp_md5_addr *addr;
1276 	u8 prefixlen = 32;
1277 	int l3index = 0;
1278 	u8 flags;
1279 
1280 	if (optlen < sizeof(cmd))
1281 		return -EINVAL;
1282 
1283 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1284 		return -EFAULT;
1285 
1286 	if (sin->sin_family != AF_INET)
1287 		return -EINVAL;
1288 
1289 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1290 
1291 	if (optname == TCP_MD5SIG_EXT &&
1292 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1293 		prefixlen = cmd.tcpm_prefixlen;
1294 		if (prefixlen > 32)
1295 			return -EINVAL;
1296 	}
1297 
1298 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1299 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1300 		struct net_device *dev;
1301 
1302 		rcu_read_lock();
1303 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1304 		if (dev && netif_is_l3_master(dev))
1305 			l3index = dev->ifindex;
1306 
1307 		rcu_read_unlock();
1308 
1309 		/* ok to reference set/not set outside of rcu;
1310 		 * right now device MUST be an L3 master
1311 		 */
1312 		if (!dev || !l3index)
1313 			return -EINVAL;
1314 	}
1315 
1316 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1317 
1318 	if (!cmd.tcpm_keylen)
1319 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1320 
1321 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1322 		return -EINVAL;
1323 
1324 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1325 			      cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1326 }
1327 
1328 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1329 				   __be32 daddr, __be32 saddr,
1330 				   const struct tcphdr *th, int nbytes)
1331 {
1332 	struct tcp4_pseudohdr *bp;
1333 	struct scatterlist sg;
1334 	struct tcphdr *_th;
1335 
1336 	bp = hp->scratch;
1337 	bp->saddr = saddr;
1338 	bp->daddr = daddr;
1339 	bp->pad = 0;
1340 	bp->protocol = IPPROTO_TCP;
1341 	bp->len = cpu_to_be16(nbytes);
1342 
1343 	_th = (struct tcphdr *)(bp + 1);
1344 	memcpy(_th, th, sizeof(*th));
1345 	_th->check = 0;
1346 
1347 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1348 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1349 				sizeof(*bp) + sizeof(*th));
1350 	return crypto_ahash_update(hp->md5_req);
1351 }
1352 
1353 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1354 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1355 {
1356 	struct tcp_md5sig_pool *hp;
1357 	struct ahash_request *req;
1358 
1359 	hp = tcp_get_md5sig_pool();
1360 	if (!hp)
1361 		goto clear_hash_noput;
1362 	req = hp->md5_req;
1363 
1364 	if (crypto_ahash_init(req))
1365 		goto clear_hash;
1366 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1367 		goto clear_hash;
1368 	if (tcp_md5_hash_key(hp, key))
1369 		goto clear_hash;
1370 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1371 	if (crypto_ahash_final(req))
1372 		goto clear_hash;
1373 
1374 	tcp_put_md5sig_pool();
1375 	return 0;
1376 
1377 clear_hash:
1378 	tcp_put_md5sig_pool();
1379 clear_hash_noput:
1380 	memset(md5_hash, 0, 16);
1381 	return 1;
1382 }
1383 
1384 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1385 			const struct sock *sk,
1386 			const struct sk_buff *skb)
1387 {
1388 	struct tcp_md5sig_pool *hp;
1389 	struct ahash_request *req;
1390 	const struct tcphdr *th = tcp_hdr(skb);
1391 	__be32 saddr, daddr;
1392 
1393 	if (sk) { /* valid for establish/request sockets */
1394 		saddr = sk->sk_rcv_saddr;
1395 		daddr = sk->sk_daddr;
1396 	} else {
1397 		const struct iphdr *iph = ip_hdr(skb);
1398 		saddr = iph->saddr;
1399 		daddr = iph->daddr;
1400 	}
1401 
1402 	hp = tcp_get_md5sig_pool();
1403 	if (!hp)
1404 		goto clear_hash_noput;
1405 	req = hp->md5_req;
1406 
1407 	if (crypto_ahash_init(req))
1408 		goto clear_hash;
1409 
1410 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1411 		goto clear_hash;
1412 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1413 		goto clear_hash;
1414 	if (tcp_md5_hash_key(hp, key))
1415 		goto clear_hash;
1416 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1417 	if (crypto_ahash_final(req))
1418 		goto clear_hash;
1419 
1420 	tcp_put_md5sig_pool();
1421 	return 0;
1422 
1423 clear_hash:
1424 	tcp_put_md5sig_pool();
1425 clear_hash_noput:
1426 	memset(md5_hash, 0, 16);
1427 	return 1;
1428 }
1429 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1430 
1431 #endif
1432 
1433 static void tcp_v4_init_req(struct request_sock *req,
1434 			    const struct sock *sk_listener,
1435 			    struct sk_buff *skb)
1436 {
1437 	struct inet_request_sock *ireq = inet_rsk(req);
1438 	struct net *net = sock_net(sk_listener);
1439 
1440 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1441 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1442 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1443 }
1444 
1445 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1446 					  struct sk_buff *skb,
1447 					  struct flowi *fl,
1448 					  struct request_sock *req)
1449 {
1450 	tcp_v4_init_req(req, sk, skb);
1451 
1452 	if (security_inet_conn_request(sk, skb, req))
1453 		return NULL;
1454 
1455 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1456 }
1457 
1458 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1459 	.family		=	PF_INET,
1460 	.obj_size	=	sizeof(struct tcp_request_sock),
1461 	.rtx_syn_ack	=	tcp_rtx_synack,
1462 	.send_ack	=	tcp_v4_reqsk_send_ack,
1463 	.destructor	=	tcp_v4_reqsk_destructor,
1464 	.send_reset	=	tcp_v4_send_reset,
1465 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1466 };
1467 
1468 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1469 	.mss_clamp	=	TCP_MSS_DEFAULT,
1470 #ifdef CONFIG_TCP_MD5SIG
1471 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1472 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1473 #endif
1474 #ifdef CONFIG_SYN_COOKIES
1475 	.cookie_init_seq =	cookie_v4_init_sequence,
1476 #endif
1477 	.route_req	=	tcp_v4_route_req,
1478 	.init_seq	=	tcp_v4_init_seq,
1479 	.init_ts_off	=	tcp_v4_init_ts_off,
1480 	.send_synack	=	tcp_v4_send_synack,
1481 };
1482 
1483 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1484 {
1485 	/* Never answer to SYNs send to broadcast or multicast */
1486 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487 		goto drop;
1488 
1489 	return tcp_conn_request(&tcp_request_sock_ops,
1490 				&tcp_request_sock_ipv4_ops, sk, skb);
1491 
1492 drop:
1493 	tcp_listendrop(sk);
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL(tcp_v4_conn_request);
1497 
1498 
1499 /*
1500  * The three way handshake has completed - we got a valid synack -
1501  * now create the new socket.
1502  */
1503 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1504 				  struct request_sock *req,
1505 				  struct dst_entry *dst,
1506 				  struct request_sock *req_unhash,
1507 				  bool *own_req)
1508 {
1509 	struct inet_request_sock *ireq;
1510 	bool found_dup_sk = false;
1511 	struct inet_sock *newinet;
1512 	struct tcp_sock *newtp;
1513 	struct sock *newsk;
1514 #ifdef CONFIG_TCP_MD5SIG
1515 	const union tcp_md5_addr *addr;
1516 	struct tcp_md5sig_key *key;
1517 	int l3index;
1518 #endif
1519 	struct ip_options_rcu *inet_opt;
1520 
1521 	if (sk_acceptq_is_full(sk))
1522 		goto exit_overflow;
1523 
1524 	newsk = tcp_create_openreq_child(sk, req, skb);
1525 	if (!newsk)
1526 		goto exit_nonewsk;
1527 
1528 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1529 	inet_sk_rx_dst_set(newsk, skb);
1530 
1531 	newtp		      = tcp_sk(newsk);
1532 	newinet		      = inet_sk(newsk);
1533 	ireq		      = inet_rsk(req);
1534 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1535 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1536 	newsk->sk_bound_dev_if = ireq->ir_iif;
1537 	newinet->inet_saddr   = ireq->ir_loc_addr;
1538 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1539 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1540 	newinet->mc_index     = inet_iif(skb);
1541 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1542 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1543 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1544 	if (inet_opt)
1545 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1546 	newinet->inet_id = get_random_u16();
1547 
1548 	/* Set ToS of the new socket based upon the value of incoming SYN.
1549 	 * ECT bits are set later in tcp_init_transfer().
1550 	 */
1551 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1552 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1553 
1554 	if (!dst) {
1555 		dst = inet_csk_route_child_sock(sk, newsk, req);
1556 		if (!dst)
1557 			goto put_and_exit;
1558 	} else {
1559 		/* syncookie case : see end of cookie_v4_check() */
1560 	}
1561 	sk_setup_caps(newsk, dst);
1562 
1563 	tcp_ca_openreq_child(newsk, dst);
1564 
1565 	tcp_sync_mss(newsk, dst_mtu(dst));
1566 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1567 
1568 	tcp_initialize_rcv_mss(newsk);
1569 
1570 #ifdef CONFIG_TCP_MD5SIG
1571 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1572 	/* Copy over the MD5 key from the original socket */
1573 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1574 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1575 	if (key) {
1576 		/*
1577 		 * We're using one, so create a matching key
1578 		 * on the newsk structure. If we fail to get
1579 		 * memory, then we end up not copying the key
1580 		 * across. Shucks.
1581 		 */
1582 		tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, key->flags,
1583 			       key->key, key->keylen, GFP_ATOMIC);
1584 		sk_gso_disable(newsk);
1585 	}
1586 #endif
1587 
1588 	if (__inet_inherit_port(sk, newsk) < 0)
1589 		goto put_and_exit;
1590 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1591 				       &found_dup_sk);
1592 	if (likely(*own_req)) {
1593 		tcp_move_syn(newtp, req);
1594 		ireq->ireq_opt = NULL;
1595 	} else {
1596 		newinet->inet_opt = NULL;
1597 
1598 		if (!req_unhash && found_dup_sk) {
1599 			/* This code path should only be executed in the
1600 			 * syncookie case only
1601 			 */
1602 			bh_unlock_sock(newsk);
1603 			sock_put(newsk);
1604 			newsk = NULL;
1605 		}
1606 	}
1607 	return newsk;
1608 
1609 exit_overflow:
1610 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1611 exit_nonewsk:
1612 	dst_release(dst);
1613 exit:
1614 	tcp_listendrop(sk);
1615 	return NULL;
1616 put_and_exit:
1617 	newinet->inet_opt = NULL;
1618 	inet_csk_prepare_forced_close(newsk);
1619 	tcp_done(newsk);
1620 	goto exit;
1621 }
1622 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1623 
1624 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1625 {
1626 #ifdef CONFIG_SYN_COOKIES
1627 	const struct tcphdr *th = tcp_hdr(skb);
1628 
1629 	if (!th->syn)
1630 		sk = cookie_v4_check(sk, skb);
1631 #endif
1632 	return sk;
1633 }
1634 
1635 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1636 			 struct tcphdr *th, u32 *cookie)
1637 {
1638 	u16 mss = 0;
1639 #ifdef CONFIG_SYN_COOKIES
1640 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1641 				    &tcp_request_sock_ipv4_ops, sk, th);
1642 	if (mss) {
1643 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1644 		tcp_synq_overflow(sk);
1645 	}
1646 #endif
1647 	return mss;
1648 }
1649 
1650 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1651 							   u32));
1652 /* The socket must have it's spinlock held when we get
1653  * here, unless it is a TCP_LISTEN socket.
1654  *
1655  * We have a potential double-lock case here, so even when
1656  * doing backlog processing we use the BH locking scheme.
1657  * This is because we cannot sleep with the original spinlock
1658  * held.
1659  */
1660 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1661 {
1662 	enum skb_drop_reason reason;
1663 	struct sock *rsk;
1664 
1665 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1666 		struct dst_entry *dst;
1667 
1668 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1669 						lockdep_sock_is_held(sk));
1670 
1671 		sock_rps_save_rxhash(sk, skb);
1672 		sk_mark_napi_id(sk, skb);
1673 		if (dst) {
1674 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1675 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1676 					     dst, 0)) {
1677 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1678 				dst_release(dst);
1679 			}
1680 		}
1681 		tcp_rcv_established(sk, skb);
1682 		return 0;
1683 	}
1684 
1685 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1686 	if (tcp_checksum_complete(skb))
1687 		goto csum_err;
1688 
1689 	if (sk->sk_state == TCP_LISTEN) {
1690 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1691 
1692 		if (!nsk)
1693 			goto discard;
1694 		if (nsk != sk) {
1695 			if (tcp_child_process(sk, nsk, skb)) {
1696 				rsk = nsk;
1697 				goto reset;
1698 			}
1699 			return 0;
1700 		}
1701 	} else
1702 		sock_rps_save_rxhash(sk, skb);
1703 
1704 	if (tcp_rcv_state_process(sk, skb)) {
1705 		rsk = sk;
1706 		goto reset;
1707 	}
1708 	return 0;
1709 
1710 reset:
1711 	tcp_v4_send_reset(rsk, skb);
1712 discard:
1713 	kfree_skb_reason(skb, reason);
1714 	/* Be careful here. If this function gets more complicated and
1715 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1716 	 * might be destroyed here. This current version compiles correctly,
1717 	 * but you have been warned.
1718 	 */
1719 	return 0;
1720 
1721 csum_err:
1722 	reason = SKB_DROP_REASON_TCP_CSUM;
1723 	trace_tcp_bad_csum(skb);
1724 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1725 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1726 	goto discard;
1727 }
1728 EXPORT_SYMBOL(tcp_v4_do_rcv);
1729 
1730 int tcp_v4_early_demux(struct sk_buff *skb)
1731 {
1732 	struct net *net = dev_net(skb->dev);
1733 	const struct iphdr *iph;
1734 	const struct tcphdr *th;
1735 	struct sock *sk;
1736 
1737 	if (skb->pkt_type != PACKET_HOST)
1738 		return 0;
1739 
1740 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1741 		return 0;
1742 
1743 	iph = ip_hdr(skb);
1744 	th = tcp_hdr(skb);
1745 
1746 	if (th->doff < sizeof(struct tcphdr) / 4)
1747 		return 0;
1748 
1749 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1750 				       iph->saddr, th->source,
1751 				       iph->daddr, ntohs(th->dest),
1752 				       skb->skb_iif, inet_sdif(skb));
1753 	if (sk) {
1754 		skb->sk = sk;
1755 		skb->destructor = sock_edemux;
1756 		if (sk_fullsock(sk)) {
1757 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1758 
1759 			if (dst)
1760 				dst = dst_check(dst, 0);
1761 			if (dst &&
1762 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1763 				skb_dst_set_noref(skb, dst);
1764 		}
1765 	}
1766 	return 0;
1767 }
1768 
1769 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1770 		     enum skb_drop_reason *reason)
1771 {
1772 	u32 limit, tail_gso_size, tail_gso_segs;
1773 	struct skb_shared_info *shinfo;
1774 	const struct tcphdr *th;
1775 	struct tcphdr *thtail;
1776 	struct sk_buff *tail;
1777 	unsigned int hdrlen;
1778 	bool fragstolen;
1779 	u32 gso_segs;
1780 	u32 gso_size;
1781 	int delta;
1782 
1783 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1784 	 * we can fix skb->truesize to its real value to avoid future drops.
1785 	 * This is valid because skb is not yet charged to the socket.
1786 	 * It has been noticed pure SACK packets were sometimes dropped
1787 	 * (if cooked by drivers without copybreak feature).
1788 	 */
1789 	skb_condense(skb);
1790 
1791 	skb_dst_drop(skb);
1792 
1793 	if (unlikely(tcp_checksum_complete(skb))) {
1794 		bh_unlock_sock(sk);
1795 		trace_tcp_bad_csum(skb);
1796 		*reason = SKB_DROP_REASON_TCP_CSUM;
1797 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1798 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1799 		return true;
1800 	}
1801 
1802 	/* Attempt coalescing to last skb in backlog, even if we are
1803 	 * above the limits.
1804 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1805 	 */
1806 	th = (const struct tcphdr *)skb->data;
1807 	hdrlen = th->doff * 4;
1808 
1809 	tail = sk->sk_backlog.tail;
1810 	if (!tail)
1811 		goto no_coalesce;
1812 	thtail = (struct tcphdr *)tail->data;
1813 
1814 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1815 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1816 	    ((TCP_SKB_CB(tail)->tcp_flags |
1817 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1818 	    !((TCP_SKB_CB(tail)->tcp_flags &
1819 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1820 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1821 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1822 #ifdef CONFIG_TLS_DEVICE
1823 	    tail->decrypted != skb->decrypted ||
1824 #endif
1825 	    thtail->doff != th->doff ||
1826 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1827 		goto no_coalesce;
1828 
1829 	__skb_pull(skb, hdrlen);
1830 
1831 	shinfo = skb_shinfo(skb);
1832 	gso_size = shinfo->gso_size ?: skb->len;
1833 	gso_segs = shinfo->gso_segs ?: 1;
1834 
1835 	shinfo = skb_shinfo(tail);
1836 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1837 	tail_gso_segs = shinfo->gso_segs ?: 1;
1838 
1839 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1840 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1841 
1842 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1843 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1844 			thtail->window = th->window;
1845 		}
1846 
1847 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1848 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1849 		 * is not entered if we append a packet with a FIN.
1850 		 * SYN, RST, URG are not present.
1851 		 * ACK is set on both packets.
1852 		 * PSH : we do not really care in TCP stack,
1853 		 *       at least for 'GRO' packets.
1854 		 */
1855 		thtail->fin |= th->fin;
1856 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1857 
1858 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1859 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1860 			tail->tstamp = skb->tstamp;
1861 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1862 		}
1863 
1864 		/* Not as strict as GRO. We only need to carry mss max value */
1865 		shinfo->gso_size = max(gso_size, tail_gso_size);
1866 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1867 
1868 		sk->sk_backlog.len += delta;
1869 		__NET_INC_STATS(sock_net(sk),
1870 				LINUX_MIB_TCPBACKLOGCOALESCE);
1871 		kfree_skb_partial(skb, fragstolen);
1872 		return false;
1873 	}
1874 	__skb_push(skb, hdrlen);
1875 
1876 no_coalesce:
1877 	/* Only socket owner can try to collapse/prune rx queues
1878 	 * to reduce memory overhead, so add a little headroom here.
1879 	 * Few sockets backlog are possibly concurrently non empty.
1880 	 */
1881 	limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf) + 64*1024;
1882 
1883 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1884 		bh_unlock_sock(sk);
1885 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1886 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1887 		return true;
1888 	}
1889 	return false;
1890 }
1891 EXPORT_SYMBOL(tcp_add_backlog);
1892 
1893 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1894 {
1895 	struct tcphdr *th = (struct tcphdr *)skb->data;
1896 
1897 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1898 }
1899 EXPORT_SYMBOL(tcp_filter);
1900 
1901 static void tcp_v4_restore_cb(struct sk_buff *skb)
1902 {
1903 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1904 		sizeof(struct inet_skb_parm));
1905 }
1906 
1907 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1908 			   const struct tcphdr *th)
1909 {
1910 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1911 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1912 	 */
1913 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1914 		sizeof(struct inet_skb_parm));
1915 	barrier();
1916 
1917 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1918 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1919 				    skb->len - th->doff * 4);
1920 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1921 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1922 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1923 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1924 	TCP_SKB_CB(skb)->sacked	 = 0;
1925 	TCP_SKB_CB(skb)->has_rxtstamp =
1926 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1927 }
1928 
1929 /*
1930  *	From tcp_input.c
1931  */
1932 
1933 int tcp_v4_rcv(struct sk_buff *skb)
1934 {
1935 	struct net *net = dev_net(skb->dev);
1936 	enum skb_drop_reason drop_reason;
1937 	int sdif = inet_sdif(skb);
1938 	int dif = inet_iif(skb);
1939 	const struct iphdr *iph;
1940 	const struct tcphdr *th;
1941 	bool refcounted;
1942 	struct sock *sk;
1943 	int ret;
1944 
1945 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1946 	if (skb->pkt_type != PACKET_HOST)
1947 		goto discard_it;
1948 
1949 	/* Count it even if it's bad */
1950 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1951 
1952 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1953 		goto discard_it;
1954 
1955 	th = (const struct tcphdr *)skb->data;
1956 
1957 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
1958 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
1959 		goto bad_packet;
1960 	}
1961 	if (!pskb_may_pull(skb, th->doff * 4))
1962 		goto discard_it;
1963 
1964 	/* An explanation is required here, I think.
1965 	 * Packet length and doff are validated by header prediction,
1966 	 * provided case of th->doff==0 is eliminated.
1967 	 * So, we defer the checks. */
1968 
1969 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1970 		goto csum_error;
1971 
1972 	th = (const struct tcphdr *)skb->data;
1973 	iph = ip_hdr(skb);
1974 lookup:
1975 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
1976 			       skb, __tcp_hdrlen(th), th->source,
1977 			       th->dest, sdif, &refcounted);
1978 	if (!sk)
1979 		goto no_tcp_socket;
1980 
1981 process:
1982 	if (sk->sk_state == TCP_TIME_WAIT)
1983 		goto do_time_wait;
1984 
1985 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1986 		struct request_sock *req = inet_reqsk(sk);
1987 		bool req_stolen = false;
1988 		struct sock *nsk;
1989 
1990 		sk = req->rsk_listener;
1991 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1992 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
1993 		else
1994 			drop_reason = tcp_inbound_md5_hash(sk, skb,
1995 						   &iph->saddr, &iph->daddr,
1996 						   AF_INET, dif, sdif);
1997 		if (unlikely(drop_reason)) {
1998 			sk_drops_add(sk, skb);
1999 			reqsk_put(req);
2000 			goto discard_it;
2001 		}
2002 		if (tcp_checksum_complete(skb)) {
2003 			reqsk_put(req);
2004 			goto csum_error;
2005 		}
2006 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2007 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2008 			if (!nsk) {
2009 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2010 				goto lookup;
2011 			}
2012 			sk = nsk;
2013 			/* reuseport_migrate_sock() has already held one sk_refcnt
2014 			 * before returning.
2015 			 */
2016 		} else {
2017 			/* We own a reference on the listener, increase it again
2018 			 * as we might lose it too soon.
2019 			 */
2020 			sock_hold(sk);
2021 		}
2022 		refcounted = true;
2023 		nsk = NULL;
2024 		if (!tcp_filter(sk, skb)) {
2025 			th = (const struct tcphdr *)skb->data;
2026 			iph = ip_hdr(skb);
2027 			tcp_v4_fill_cb(skb, iph, th);
2028 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2029 		} else {
2030 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2031 		}
2032 		if (!nsk) {
2033 			reqsk_put(req);
2034 			if (req_stolen) {
2035 				/* Another cpu got exclusive access to req
2036 				 * and created a full blown socket.
2037 				 * Try to feed this packet to this socket
2038 				 * instead of discarding it.
2039 				 */
2040 				tcp_v4_restore_cb(skb);
2041 				sock_put(sk);
2042 				goto lookup;
2043 			}
2044 			goto discard_and_relse;
2045 		}
2046 		nf_reset_ct(skb);
2047 		if (nsk == sk) {
2048 			reqsk_put(req);
2049 			tcp_v4_restore_cb(skb);
2050 		} else if (tcp_child_process(sk, nsk, skb)) {
2051 			tcp_v4_send_reset(nsk, skb);
2052 			goto discard_and_relse;
2053 		} else {
2054 			sock_put(sk);
2055 			return 0;
2056 		}
2057 	}
2058 
2059 	if (static_branch_unlikely(&ip4_min_ttl)) {
2060 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2061 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2062 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2063 			goto discard_and_relse;
2064 		}
2065 	}
2066 
2067 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2068 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2069 		goto discard_and_relse;
2070 	}
2071 
2072 	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2073 					   &iph->daddr, AF_INET, dif, sdif);
2074 	if (drop_reason)
2075 		goto discard_and_relse;
2076 
2077 	nf_reset_ct(skb);
2078 
2079 	if (tcp_filter(sk, skb)) {
2080 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2081 		goto discard_and_relse;
2082 	}
2083 	th = (const struct tcphdr *)skb->data;
2084 	iph = ip_hdr(skb);
2085 	tcp_v4_fill_cb(skb, iph, th);
2086 
2087 	skb->dev = NULL;
2088 
2089 	if (sk->sk_state == TCP_LISTEN) {
2090 		ret = tcp_v4_do_rcv(sk, skb);
2091 		goto put_and_return;
2092 	}
2093 
2094 	sk_incoming_cpu_update(sk);
2095 
2096 	bh_lock_sock_nested(sk);
2097 	tcp_segs_in(tcp_sk(sk), skb);
2098 	ret = 0;
2099 	if (!sock_owned_by_user(sk)) {
2100 		ret = tcp_v4_do_rcv(sk, skb);
2101 	} else {
2102 		if (tcp_add_backlog(sk, skb, &drop_reason))
2103 			goto discard_and_relse;
2104 	}
2105 	bh_unlock_sock(sk);
2106 
2107 put_and_return:
2108 	if (refcounted)
2109 		sock_put(sk);
2110 
2111 	return ret;
2112 
2113 no_tcp_socket:
2114 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2115 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2116 		goto discard_it;
2117 
2118 	tcp_v4_fill_cb(skb, iph, th);
2119 
2120 	if (tcp_checksum_complete(skb)) {
2121 csum_error:
2122 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2123 		trace_tcp_bad_csum(skb);
2124 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2125 bad_packet:
2126 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2127 	} else {
2128 		tcp_v4_send_reset(NULL, skb);
2129 	}
2130 
2131 discard_it:
2132 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2133 	/* Discard frame. */
2134 	kfree_skb_reason(skb, drop_reason);
2135 	return 0;
2136 
2137 discard_and_relse:
2138 	sk_drops_add(sk, skb);
2139 	if (refcounted)
2140 		sock_put(sk);
2141 	goto discard_it;
2142 
2143 do_time_wait:
2144 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2145 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2146 		inet_twsk_put(inet_twsk(sk));
2147 		goto discard_it;
2148 	}
2149 
2150 	tcp_v4_fill_cb(skb, iph, th);
2151 
2152 	if (tcp_checksum_complete(skb)) {
2153 		inet_twsk_put(inet_twsk(sk));
2154 		goto csum_error;
2155 	}
2156 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2157 	case TCP_TW_SYN: {
2158 		struct sock *sk2 = inet_lookup_listener(net,
2159 							net->ipv4.tcp_death_row.hashinfo,
2160 							skb, __tcp_hdrlen(th),
2161 							iph->saddr, th->source,
2162 							iph->daddr, th->dest,
2163 							inet_iif(skb),
2164 							sdif);
2165 		if (sk2) {
2166 			inet_twsk_deschedule_put(inet_twsk(sk));
2167 			sk = sk2;
2168 			tcp_v4_restore_cb(skb);
2169 			refcounted = false;
2170 			goto process;
2171 		}
2172 	}
2173 		/* to ACK */
2174 		fallthrough;
2175 	case TCP_TW_ACK:
2176 		tcp_v4_timewait_ack(sk, skb);
2177 		break;
2178 	case TCP_TW_RST:
2179 		tcp_v4_send_reset(sk, skb);
2180 		inet_twsk_deschedule_put(inet_twsk(sk));
2181 		goto discard_it;
2182 	case TCP_TW_SUCCESS:;
2183 	}
2184 	goto discard_it;
2185 }
2186 
2187 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2188 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2189 	.twsk_unique	= tcp_twsk_unique,
2190 	.twsk_destructor= tcp_twsk_destructor,
2191 };
2192 
2193 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2194 {
2195 	struct dst_entry *dst = skb_dst(skb);
2196 
2197 	if (dst && dst_hold_safe(dst)) {
2198 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2199 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2200 	}
2201 }
2202 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2203 
2204 const struct inet_connection_sock_af_ops ipv4_specific = {
2205 	.queue_xmit	   = ip_queue_xmit,
2206 	.send_check	   = tcp_v4_send_check,
2207 	.rebuild_header	   = inet_sk_rebuild_header,
2208 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2209 	.conn_request	   = tcp_v4_conn_request,
2210 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2211 	.net_header_len	   = sizeof(struct iphdr),
2212 	.setsockopt	   = ip_setsockopt,
2213 	.getsockopt	   = ip_getsockopt,
2214 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2215 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2216 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2217 };
2218 EXPORT_SYMBOL(ipv4_specific);
2219 
2220 #ifdef CONFIG_TCP_MD5SIG
2221 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2222 	.md5_lookup		= tcp_v4_md5_lookup,
2223 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2224 	.md5_parse		= tcp_v4_parse_md5_keys,
2225 };
2226 #endif
2227 
2228 /* NOTE: A lot of things set to zero explicitly by call to
2229  *       sk_alloc() so need not be done here.
2230  */
2231 static int tcp_v4_init_sock(struct sock *sk)
2232 {
2233 	struct inet_connection_sock *icsk = inet_csk(sk);
2234 
2235 	tcp_init_sock(sk);
2236 
2237 	icsk->icsk_af_ops = &ipv4_specific;
2238 
2239 #ifdef CONFIG_TCP_MD5SIG
2240 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2241 #endif
2242 
2243 	return 0;
2244 }
2245 
2246 void tcp_v4_destroy_sock(struct sock *sk)
2247 {
2248 	struct tcp_sock *tp = tcp_sk(sk);
2249 
2250 	trace_tcp_destroy_sock(sk);
2251 
2252 	tcp_clear_xmit_timers(sk);
2253 
2254 	tcp_cleanup_congestion_control(sk);
2255 
2256 	tcp_cleanup_ulp(sk);
2257 
2258 	/* Cleanup up the write buffer. */
2259 	tcp_write_queue_purge(sk);
2260 
2261 	/* Check if we want to disable active TFO */
2262 	tcp_fastopen_active_disable_ofo_check(sk);
2263 
2264 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2265 	skb_rbtree_purge(&tp->out_of_order_queue);
2266 
2267 #ifdef CONFIG_TCP_MD5SIG
2268 	/* Clean up the MD5 key list, if any */
2269 	if (tp->md5sig_info) {
2270 		tcp_clear_md5_list(sk);
2271 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2272 		tp->md5sig_info = NULL;
2273 	}
2274 #endif
2275 
2276 	/* Clean up a referenced TCP bind bucket. */
2277 	if (inet_csk(sk)->icsk_bind_hash)
2278 		inet_put_port(sk);
2279 
2280 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2281 
2282 	/* If socket is aborted during connect operation */
2283 	tcp_free_fastopen_req(tp);
2284 	tcp_fastopen_destroy_cipher(sk);
2285 	tcp_saved_syn_free(tp);
2286 
2287 	sk_sockets_allocated_dec(sk);
2288 }
2289 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2290 
2291 #ifdef CONFIG_PROC_FS
2292 /* Proc filesystem TCP sock list dumping. */
2293 
2294 static unsigned short seq_file_family(const struct seq_file *seq);
2295 
2296 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2297 {
2298 	unsigned short family = seq_file_family(seq);
2299 
2300 	/* AF_UNSPEC is used as a match all */
2301 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2302 		net_eq(sock_net(sk), seq_file_net(seq)));
2303 }
2304 
2305 /* Find a non empty bucket (starting from st->bucket)
2306  * and return the first sk from it.
2307  */
2308 static void *listening_get_first(struct seq_file *seq)
2309 {
2310 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2311 	struct tcp_iter_state *st = seq->private;
2312 
2313 	st->offset = 0;
2314 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2315 		struct inet_listen_hashbucket *ilb2;
2316 		struct hlist_nulls_node *node;
2317 		struct sock *sk;
2318 
2319 		ilb2 = &hinfo->lhash2[st->bucket];
2320 		if (hlist_nulls_empty(&ilb2->nulls_head))
2321 			continue;
2322 
2323 		spin_lock(&ilb2->lock);
2324 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2325 			if (seq_sk_match(seq, sk))
2326 				return sk;
2327 		}
2328 		spin_unlock(&ilb2->lock);
2329 	}
2330 
2331 	return NULL;
2332 }
2333 
2334 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2335  * If "cur" is the last one in the st->bucket,
2336  * call listening_get_first() to return the first sk of the next
2337  * non empty bucket.
2338  */
2339 static void *listening_get_next(struct seq_file *seq, void *cur)
2340 {
2341 	struct tcp_iter_state *st = seq->private;
2342 	struct inet_listen_hashbucket *ilb2;
2343 	struct hlist_nulls_node *node;
2344 	struct inet_hashinfo *hinfo;
2345 	struct sock *sk = cur;
2346 
2347 	++st->num;
2348 	++st->offset;
2349 
2350 	sk = sk_nulls_next(sk);
2351 	sk_nulls_for_each_from(sk, node) {
2352 		if (seq_sk_match(seq, sk))
2353 			return sk;
2354 	}
2355 
2356 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2357 	ilb2 = &hinfo->lhash2[st->bucket];
2358 	spin_unlock(&ilb2->lock);
2359 	++st->bucket;
2360 	return listening_get_first(seq);
2361 }
2362 
2363 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2364 {
2365 	struct tcp_iter_state *st = seq->private;
2366 	void *rc;
2367 
2368 	st->bucket = 0;
2369 	st->offset = 0;
2370 	rc = listening_get_first(seq);
2371 
2372 	while (rc && *pos) {
2373 		rc = listening_get_next(seq, rc);
2374 		--*pos;
2375 	}
2376 	return rc;
2377 }
2378 
2379 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2380 				const struct tcp_iter_state *st)
2381 {
2382 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2383 }
2384 
2385 /*
2386  * Get first established socket starting from bucket given in st->bucket.
2387  * If st->bucket is zero, the very first socket in the hash is returned.
2388  */
2389 static void *established_get_first(struct seq_file *seq)
2390 {
2391 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2392 	struct tcp_iter_state *st = seq->private;
2393 
2394 	st->offset = 0;
2395 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2396 		struct sock *sk;
2397 		struct hlist_nulls_node *node;
2398 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2399 
2400 		/* Lockless fast path for the common case of empty buckets */
2401 		if (empty_bucket(hinfo, st))
2402 			continue;
2403 
2404 		spin_lock_bh(lock);
2405 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2406 			if (seq_sk_match(seq, sk))
2407 				return sk;
2408 		}
2409 		spin_unlock_bh(lock);
2410 	}
2411 
2412 	return NULL;
2413 }
2414 
2415 static void *established_get_next(struct seq_file *seq, void *cur)
2416 {
2417 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2418 	struct tcp_iter_state *st = seq->private;
2419 	struct hlist_nulls_node *node;
2420 	struct sock *sk = cur;
2421 
2422 	++st->num;
2423 	++st->offset;
2424 
2425 	sk = sk_nulls_next(sk);
2426 
2427 	sk_nulls_for_each_from(sk, node) {
2428 		if (seq_sk_match(seq, sk))
2429 			return sk;
2430 	}
2431 
2432 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2433 	++st->bucket;
2434 	return established_get_first(seq);
2435 }
2436 
2437 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2438 {
2439 	struct tcp_iter_state *st = seq->private;
2440 	void *rc;
2441 
2442 	st->bucket = 0;
2443 	rc = established_get_first(seq);
2444 
2445 	while (rc && pos) {
2446 		rc = established_get_next(seq, rc);
2447 		--pos;
2448 	}
2449 	return rc;
2450 }
2451 
2452 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2453 {
2454 	void *rc;
2455 	struct tcp_iter_state *st = seq->private;
2456 
2457 	st->state = TCP_SEQ_STATE_LISTENING;
2458 	rc	  = listening_get_idx(seq, &pos);
2459 
2460 	if (!rc) {
2461 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2462 		rc	  = established_get_idx(seq, pos);
2463 	}
2464 
2465 	return rc;
2466 }
2467 
2468 static void *tcp_seek_last_pos(struct seq_file *seq)
2469 {
2470 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2471 	struct tcp_iter_state *st = seq->private;
2472 	int bucket = st->bucket;
2473 	int offset = st->offset;
2474 	int orig_num = st->num;
2475 	void *rc = NULL;
2476 
2477 	switch (st->state) {
2478 	case TCP_SEQ_STATE_LISTENING:
2479 		if (st->bucket > hinfo->lhash2_mask)
2480 			break;
2481 		st->state = TCP_SEQ_STATE_LISTENING;
2482 		rc = listening_get_first(seq);
2483 		while (offset-- && rc && bucket == st->bucket)
2484 			rc = listening_get_next(seq, rc);
2485 		if (rc)
2486 			break;
2487 		st->bucket = 0;
2488 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2489 		fallthrough;
2490 	case TCP_SEQ_STATE_ESTABLISHED:
2491 		if (st->bucket > hinfo->ehash_mask)
2492 			break;
2493 		rc = established_get_first(seq);
2494 		while (offset-- && rc && bucket == st->bucket)
2495 			rc = established_get_next(seq, rc);
2496 	}
2497 
2498 	st->num = orig_num;
2499 
2500 	return rc;
2501 }
2502 
2503 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2504 {
2505 	struct tcp_iter_state *st = seq->private;
2506 	void *rc;
2507 
2508 	if (*pos && *pos == st->last_pos) {
2509 		rc = tcp_seek_last_pos(seq);
2510 		if (rc)
2511 			goto out;
2512 	}
2513 
2514 	st->state = TCP_SEQ_STATE_LISTENING;
2515 	st->num = 0;
2516 	st->bucket = 0;
2517 	st->offset = 0;
2518 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2519 
2520 out:
2521 	st->last_pos = *pos;
2522 	return rc;
2523 }
2524 EXPORT_SYMBOL(tcp_seq_start);
2525 
2526 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2527 {
2528 	struct tcp_iter_state *st = seq->private;
2529 	void *rc = NULL;
2530 
2531 	if (v == SEQ_START_TOKEN) {
2532 		rc = tcp_get_idx(seq, 0);
2533 		goto out;
2534 	}
2535 
2536 	switch (st->state) {
2537 	case TCP_SEQ_STATE_LISTENING:
2538 		rc = listening_get_next(seq, v);
2539 		if (!rc) {
2540 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2541 			st->bucket = 0;
2542 			st->offset = 0;
2543 			rc	  = established_get_first(seq);
2544 		}
2545 		break;
2546 	case TCP_SEQ_STATE_ESTABLISHED:
2547 		rc = established_get_next(seq, v);
2548 		break;
2549 	}
2550 out:
2551 	++*pos;
2552 	st->last_pos = *pos;
2553 	return rc;
2554 }
2555 EXPORT_SYMBOL(tcp_seq_next);
2556 
2557 void tcp_seq_stop(struct seq_file *seq, void *v)
2558 {
2559 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2560 	struct tcp_iter_state *st = seq->private;
2561 
2562 	switch (st->state) {
2563 	case TCP_SEQ_STATE_LISTENING:
2564 		if (v != SEQ_START_TOKEN)
2565 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2566 		break;
2567 	case TCP_SEQ_STATE_ESTABLISHED:
2568 		if (v)
2569 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2570 		break;
2571 	}
2572 }
2573 EXPORT_SYMBOL(tcp_seq_stop);
2574 
2575 static void get_openreq4(const struct request_sock *req,
2576 			 struct seq_file *f, int i)
2577 {
2578 	const struct inet_request_sock *ireq = inet_rsk(req);
2579 	long delta = req->rsk_timer.expires - jiffies;
2580 
2581 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2582 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2583 		i,
2584 		ireq->ir_loc_addr,
2585 		ireq->ir_num,
2586 		ireq->ir_rmt_addr,
2587 		ntohs(ireq->ir_rmt_port),
2588 		TCP_SYN_RECV,
2589 		0, 0, /* could print option size, but that is af dependent. */
2590 		1,    /* timers active (only the expire timer) */
2591 		jiffies_delta_to_clock_t(delta),
2592 		req->num_timeout,
2593 		from_kuid_munged(seq_user_ns(f),
2594 				 sock_i_uid(req->rsk_listener)),
2595 		0,  /* non standard timer */
2596 		0, /* open_requests have no inode */
2597 		0,
2598 		req);
2599 }
2600 
2601 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2602 {
2603 	int timer_active;
2604 	unsigned long timer_expires;
2605 	const struct tcp_sock *tp = tcp_sk(sk);
2606 	const struct inet_connection_sock *icsk = inet_csk(sk);
2607 	const struct inet_sock *inet = inet_sk(sk);
2608 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2609 	__be32 dest = inet->inet_daddr;
2610 	__be32 src = inet->inet_rcv_saddr;
2611 	__u16 destp = ntohs(inet->inet_dport);
2612 	__u16 srcp = ntohs(inet->inet_sport);
2613 	int rx_queue;
2614 	int state;
2615 
2616 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2617 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2618 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2619 		timer_active	= 1;
2620 		timer_expires	= icsk->icsk_timeout;
2621 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2622 		timer_active	= 4;
2623 		timer_expires	= icsk->icsk_timeout;
2624 	} else if (timer_pending(&sk->sk_timer)) {
2625 		timer_active	= 2;
2626 		timer_expires	= sk->sk_timer.expires;
2627 	} else {
2628 		timer_active	= 0;
2629 		timer_expires = jiffies;
2630 	}
2631 
2632 	state = inet_sk_state_load(sk);
2633 	if (state == TCP_LISTEN)
2634 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2635 	else
2636 		/* Because we don't lock the socket,
2637 		 * we might find a transient negative value.
2638 		 */
2639 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2640 				      READ_ONCE(tp->copied_seq), 0);
2641 
2642 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2643 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2644 		i, src, srcp, dest, destp, state,
2645 		READ_ONCE(tp->write_seq) - tp->snd_una,
2646 		rx_queue,
2647 		timer_active,
2648 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2649 		icsk->icsk_retransmits,
2650 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2651 		icsk->icsk_probes_out,
2652 		sock_i_ino(sk),
2653 		refcount_read(&sk->sk_refcnt), sk,
2654 		jiffies_to_clock_t(icsk->icsk_rto),
2655 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2656 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2657 		tcp_snd_cwnd(tp),
2658 		state == TCP_LISTEN ?
2659 		    fastopenq->max_qlen :
2660 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2661 }
2662 
2663 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2664 			       struct seq_file *f, int i)
2665 {
2666 	long delta = tw->tw_timer.expires - jiffies;
2667 	__be32 dest, src;
2668 	__u16 destp, srcp;
2669 
2670 	dest  = tw->tw_daddr;
2671 	src   = tw->tw_rcv_saddr;
2672 	destp = ntohs(tw->tw_dport);
2673 	srcp  = ntohs(tw->tw_sport);
2674 
2675 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2676 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2677 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2678 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2679 		refcount_read(&tw->tw_refcnt), tw);
2680 }
2681 
2682 #define TMPSZ 150
2683 
2684 static int tcp4_seq_show(struct seq_file *seq, void *v)
2685 {
2686 	struct tcp_iter_state *st;
2687 	struct sock *sk = v;
2688 
2689 	seq_setwidth(seq, TMPSZ - 1);
2690 	if (v == SEQ_START_TOKEN) {
2691 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2692 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2693 			   "inode");
2694 		goto out;
2695 	}
2696 	st = seq->private;
2697 
2698 	if (sk->sk_state == TCP_TIME_WAIT)
2699 		get_timewait4_sock(v, seq, st->num);
2700 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2701 		get_openreq4(v, seq, st->num);
2702 	else
2703 		get_tcp4_sock(v, seq, st->num);
2704 out:
2705 	seq_pad(seq, '\n');
2706 	return 0;
2707 }
2708 
2709 #ifdef CONFIG_BPF_SYSCALL
2710 struct bpf_tcp_iter_state {
2711 	struct tcp_iter_state state;
2712 	unsigned int cur_sk;
2713 	unsigned int end_sk;
2714 	unsigned int max_sk;
2715 	struct sock **batch;
2716 	bool st_bucket_done;
2717 };
2718 
2719 struct bpf_iter__tcp {
2720 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2721 	__bpf_md_ptr(struct sock_common *, sk_common);
2722 	uid_t uid __aligned(8);
2723 };
2724 
2725 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2726 			     struct sock_common *sk_common, uid_t uid)
2727 {
2728 	struct bpf_iter__tcp ctx;
2729 
2730 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2731 	ctx.meta = meta;
2732 	ctx.sk_common = sk_common;
2733 	ctx.uid = uid;
2734 	return bpf_iter_run_prog(prog, &ctx);
2735 }
2736 
2737 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2738 {
2739 	while (iter->cur_sk < iter->end_sk)
2740 		sock_put(iter->batch[iter->cur_sk++]);
2741 }
2742 
2743 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2744 				      unsigned int new_batch_sz)
2745 {
2746 	struct sock **new_batch;
2747 
2748 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2749 			     GFP_USER | __GFP_NOWARN);
2750 	if (!new_batch)
2751 		return -ENOMEM;
2752 
2753 	bpf_iter_tcp_put_batch(iter);
2754 	kvfree(iter->batch);
2755 	iter->batch = new_batch;
2756 	iter->max_sk = new_batch_sz;
2757 
2758 	return 0;
2759 }
2760 
2761 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2762 						 struct sock *start_sk)
2763 {
2764 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2765 	struct bpf_tcp_iter_state *iter = seq->private;
2766 	struct tcp_iter_state *st = &iter->state;
2767 	struct hlist_nulls_node *node;
2768 	unsigned int expected = 1;
2769 	struct sock *sk;
2770 
2771 	sock_hold(start_sk);
2772 	iter->batch[iter->end_sk++] = start_sk;
2773 
2774 	sk = sk_nulls_next(start_sk);
2775 	sk_nulls_for_each_from(sk, node) {
2776 		if (seq_sk_match(seq, sk)) {
2777 			if (iter->end_sk < iter->max_sk) {
2778 				sock_hold(sk);
2779 				iter->batch[iter->end_sk++] = sk;
2780 			}
2781 			expected++;
2782 		}
2783 	}
2784 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2785 
2786 	return expected;
2787 }
2788 
2789 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2790 						   struct sock *start_sk)
2791 {
2792 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2793 	struct bpf_tcp_iter_state *iter = seq->private;
2794 	struct tcp_iter_state *st = &iter->state;
2795 	struct hlist_nulls_node *node;
2796 	unsigned int expected = 1;
2797 	struct sock *sk;
2798 
2799 	sock_hold(start_sk);
2800 	iter->batch[iter->end_sk++] = start_sk;
2801 
2802 	sk = sk_nulls_next(start_sk);
2803 	sk_nulls_for_each_from(sk, node) {
2804 		if (seq_sk_match(seq, sk)) {
2805 			if (iter->end_sk < iter->max_sk) {
2806 				sock_hold(sk);
2807 				iter->batch[iter->end_sk++] = sk;
2808 			}
2809 			expected++;
2810 		}
2811 	}
2812 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2813 
2814 	return expected;
2815 }
2816 
2817 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2818 {
2819 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2820 	struct bpf_tcp_iter_state *iter = seq->private;
2821 	struct tcp_iter_state *st = &iter->state;
2822 	unsigned int expected;
2823 	bool resized = false;
2824 	struct sock *sk;
2825 
2826 	/* The st->bucket is done.  Directly advance to the next
2827 	 * bucket instead of having the tcp_seek_last_pos() to skip
2828 	 * one by one in the current bucket and eventually find out
2829 	 * it has to advance to the next bucket.
2830 	 */
2831 	if (iter->st_bucket_done) {
2832 		st->offset = 0;
2833 		st->bucket++;
2834 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2835 		    st->bucket > hinfo->lhash2_mask) {
2836 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2837 			st->bucket = 0;
2838 		}
2839 	}
2840 
2841 again:
2842 	/* Get a new batch */
2843 	iter->cur_sk = 0;
2844 	iter->end_sk = 0;
2845 	iter->st_bucket_done = false;
2846 
2847 	sk = tcp_seek_last_pos(seq);
2848 	if (!sk)
2849 		return NULL; /* Done */
2850 
2851 	if (st->state == TCP_SEQ_STATE_LISTENING)
2852 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2853 	else
2854 		expected = bpf_iter_tcp_established_batch(seq, sk);
2855 
2856 	if (iter->end_sk == expected) {
2857 		iter->st_bucket_done = true;
2858 		return sk;
2859 	}
2860 
2861 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2862 		resized = true;
2863 		goto again;
2864 	}
2865 
2866 	return sk;
2867 }
2868 
2869 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2870 {
2871 	/* bpf iter does not support lseek, so it always
2872 	 * continue from where it was stop()-ped.
2873 	 */
2874 	if (*pos)
2875 		return bpf_iter_tcp_batch(seq);
2876 
2877 	return SEQ_START_TOKEN;
2878 }
2879 
2880 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2881 {
2882 	struct bpf_tcp_iter_state *iter = seq->private;
2883 	struct tcp_iter_state *st = &iter->state;
2884 	struct sock *sk;
2885 
2886 	/* Whenever seq_next() is called, the iter->cur_sk is
2887 	 * done with seq_show(), so advance to the next sk in
2888 	 * the batch.
2889 	 */
2890 	if (iter->cur_sk < iter->end_sk) {
2891 		/* Keeping st->num consistent in tcp_iter_state.
2892 		 * bpf_iter_tcp does not use st->num.
2893 		 * meta.seq_num is used instead.
2894 		 */
2895 		st->num++;
2896 		/* Move st->offset to the next sk in the bucket such that
2897 		 * the future start() will resume at st->offset in
2898 		 * st->bucket.  See tcp_seek_last_pos().
2899 		 */
2900 		st->offset++;
2901 		sock_put(iter->batch[iter->cur_sk++]);
2902 	}
2903 
2904 	if (iter->cur_sk < iter->end_sk)
2905 		sk = iter->batch[iter->cur_sk];
2906 	else
2907 		sk = bpf_iter_tcp_batch(seq);
2908 
2909 	++*pos;
2910 	/* Keeping st->last_pos consistent in tcp_iter_state.
2911 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2912 	 */
2913 	st->last_pos = *pos;
2914 	return sk;
2915 }
2916 
2917 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2918 {
2919 	struct bpf_iter_meta meta;
2920 	struct bpf_prog *prog;
2921 	struct sock *sk = v;
2922 	bool slow;
2923 	uid_t uid;
2924 	int ret;
2925 
2926 	if (v == SEQ_START_TOKEN)
2927 		return 0;
2928 
2929 	if (sk_fullsock(sk))
2930 		slow = lock_sock_fast(sk);
2931 
2932 	if (unlikely(sk_unhashed(sk))) {
2933 		ret = SEQ_SKIP;
2934 		goto unlock;
2935 	}
2936 
2937 	if (sk->sk_state == TCP_TIME_WAIT) {
2938 		uid = 0;
2939 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2940 		const struct request_sock *req = v;
2941 
2942 		uid = from_kuid_munged(seq_user_ns(seq),
2943 				       sock_i_uid(req->rsk_listener));
2944 	} else {
2945 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2946 	}
2947 
2948 	meta.seq = seq;
2949 	prog = bpf_iter_get_info(&meta, false);
2950 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
2951 
2952 unlock:
2953 	if (sk_fullsock(sk))
2954 		unlock_sock_fast(sk, slow);
2955 	return ret;
2956 
2957 }
2958 
2959 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2960 {
2961 	struct bpf_tcp_iter_state *iter = seq->private;
2962 	struct bpf_iter_meta meta;
2963 	struct bpf_prog *prog;
2964 
2965 	if (!v) {
2966 		meta.seq = seq;
2967 		prog = bpf_iter_get_info(&meta, true);
2968 		if (prog)
2969 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
2970 	}
2971 
2972 	if (iter->cur_sk < iter->end_sk) {
2973 		bpf_iter_tcp_put_batch(iter);
2974 		iter->st_bucket_done = false;
2975 	}
2976 }
2977 
2978 static const struct seq_operations bpf_iter_tcp_seq_ops = {
2979 	.show		= bpf_iter_tcp_seq_show,
2980 	.start		= bpf_iter_tcp_seq_start,
2981 	.next		= bpf_iter_tcp_seq_next,
2982 	.stop		= bpf_iter_tcp_seq_stop,
2983 };
2984 #endif
2985 static unsigned short seq_file_family(const struct seq_file *seq)
2986 {
2987 	const struct tcp_seq_afinfo *afinfo;
2988 
2989 #ifdef CONFIG_BPF_SYSCALL
2990 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
2991 	if (seq->op == &bpf_iter_tcp_seq_ops)
2992 		return AF_UNSPEC;
2993 #endif
2994 
2995 	/* Iterated from proc fs */
2996 	afinfo = pde_data(file_inode(seq->file));
2997 	return afinfo->family;
2998 }
2999 
3000 static const struct seq_operations tcp4_seq_ops = {
3001 	.show		= tcp4_seq_show,
3002 	.start		= tcp_seq_start,
3003 	.next		= tcp_seq_next,
3004 	.stop		= tcp_seq_stop,
3005 };
3006 
3007 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3008 	.family		= AF_INET,
3009 };
3010 
3011 static int __net_init tcp4_proc_init_net(struct net *net)
3012 {
3013 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3014 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3015 		return -ENOMEM;
3016 	return 0;
3017 }
3018 
3019 static void __net_exit tcp4_proc_exit_net(struct net *net)
3020 {
3021 	remove_proc_entry("tcp", net->proc_net);
3022 }
3023 
3024 static struct pernet_operations tcp4_net_ops = {
3025 	.init = tcp4_proc_init_net,
3026 	.exit = tcp4_proc_exit_net,
3027 };
3028 
3029 int __init tcp4_proc_init(void)
3030 {
3031 	return register_pernet_subsys(&tcp4_net_ops);
3032 }
3033 
3034 void tcp4_proc_exit(void)
3035 {
3036 	unregister_pernet_subsys(&tcp4_net_ops);
3037 }
3038 #endif /* CONFIG_PROC_FS */
3039 
3040 /* @wake is one when sk_stream_write_space() calls us.
3041  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3042  * This mimics the strategy used in sock_def_write_space().
3043  */
3044 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3045 {
3046 	const struct tcp_sock *tp = tcp_sk(sk);
3047 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3048 			    READ_ONCE(tp->snd_nxt);
3049 
3050 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3051 }
3052 EXPORT_SYMBOL(tcp_stream_memory_free);
3053 
3054 struct proto tcp_prot = {
3055 	.name			= "TCP",
3056 	.owner			= THIS_MODULE,
3057 	.close			= tcp_close,
3058 	.pre_connect		= tcp_v4_pre_connect,
3059 	.connect		= tcp_v4_connect,
3060 	.disconnect		= tcp_disconnect,
3061 	.accept			= inet_csk_accept,
3062 	.ioctl			= tcp_ioctl,
3063 	.init			= tcp_v4_init_sock,
3064 	.destroy		= tcp_v4_destroy_sock,
3065 	.shutdown		= tcp_shutdown,
3066 	.setsockopt		= tcp_setsockopt,
3067 	.getsockopt		= tcp_getsockopt,
3068 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3069 	.keepalive		= tcp_set_keepalive,
3070 	.recvmsg		= tcp_recvmsg,
3071 	.sendmsg		= tcp_sendmsg,
3072 	.sendpage		= tcp_sendpage,
3073 	.backlog_rcv		= tcp_v4_do_rcv,
3074 	.release_cb		= tcp_release_cb,
3075 	.hash			= inet_hash,
3076 	.unhash			= inet_unhash,
3077 	.get_port		= inet_csk_get_port,
3078 	.put_port		= inet_put_port,
3079 #ifdef CONFIG_BPF_SYSCALL
3080 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3081 #endif
3082 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3083 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3084 	.stream_memory_free	= tcp_stream_memory_free,
3085 	.sockets_allocated	= &tcp_sockets_allocated,
3086 	.orphan_count		= &tcp_orphan_count,
3087 
3088 	.memory_allocated	= &tcp_memory_allocated,
3089 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3090 
3091 	.memory_pressure	= &tcp_memory_pressure,
3092 	.sysctl_mem		= sysctl_tcp_mem,
3093 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3094 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3095 	.max_header		= MAX_TCP_HEADER,
3096 	.obj_size		= sizeof(struct tcp_sock),
3097 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3098 	.twsk_prot		= &tcp_timewait_sock_ops,
3099 	.rsk_prot		= &tcp_request_sock_ops,
3100 	.h.hashinfo		= NULL,
3101 	.no_autobind		= true,
3102 	.diag_destroy		= tcp_abort,
3103 };
3104 EXPORT_SYMBOL(tcp_prot);
3105 
3106 static void __net_exit tcp_sk_exit(struct net *net)
3107 {
3108 	if (net->ipv4.tcp_congestion_control)
3109 		bpf_module_put(net->ipv4.tcp_congestion_control,
3110 			       net->ipv4.tcp_congestion_control->owner);
3111 }
3112 
3113 static void __net_init tcp_set_hashinfo(struct net *net)
3114 {
3115 	struct inet_hashinfo *hinfo;
3116 	unsigned int ehash_entries;
3117 	struct net *old_net;
3118 
3119 	if (net_eq(net, &init_net))
3120 		goto fallback;
3121 
3122 	old_net = current->nsproxy->net_ns;
3123 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3124 	if (!ehash_entries)
3125 		goto fallback;
3126 
3127 	ehash_entries = roundup_pow_of_two(ehash_entries);
3128 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3129 	if (!hinfo) {
3130 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3131 			"for a netns, fallback to the global one\n",
3132 			ehash_entries);
3133 fallback:
3134 		hinfo = &tcp_hashinfo;
3135 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3136 	}
3137 
3138 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3139 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3140 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3141 }
3142 
3143 static int __net_init tcp_sk_init(struct net *net)
3144 {
3145 	net->ipv4.sysctl_tcp_ecn = 2;
3146 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3147 
3148 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3149 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3150 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3151 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3152 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3153 
3154 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3155 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3156 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3157 
3158 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3159 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3160 	net->ipv4.sysctl_tcp_syncookies = 1;
3161 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3162 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3163 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3164 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3165 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3166 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3167 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3168 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3169 
3170 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3171 	tcp_set_hashinfo(net);
3172 
3173 	net->ipv4.sysctl_tcp_sack = 1;
3174 	net->ipv4.sysctl_tcp_window_scaling = 1;
3175 	net->ipv4.sysctl_tcp_timestamps = 1;
3176 	net->ipv4.sysctl_tcp_early_retrans = 3;
3177 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3178 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3179 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3180 	net->ipv4.sysctl_tcp_max_reordering = 300;
3181 	net->ipv4.sysctl_tcp_dsack = 1;
3182 	net->ipv4.sysctl_tcp_app_win = 31;
3183 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3184 	net->ipv4.sysctl_tcp_frto = 2;
3185 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3186 	/* This limits the percentage of the congestion window which we
3187 	 * will allow a single TSO frame to consume.  Building TSO frames
3188 	 * which are too large can cause TCP streams to be bursty.
3189 	 */
3190 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3191 	/* Default TSQ limit of 16 TSO segments */
3192 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3193 
3194 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3195 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3196 
3197 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3198 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3199 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3200 	net->ipv4.sysctl_tcp_autocorking = 1;
3201 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3202 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3203 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3204 	if (net != &init_net) {
3205 		memcpy(net->ipv4.sysctl_tcp_rmem,
3206 		       init_net.ipv4.sysctl_tcp_rmem,
3207 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3208 		memcpy(net->ipv4.sysctl_tcp_wmem,
3209 		       init_net.ipv4.sysctl_tcp_wmem,
3210 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3211 	}
3212 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3213 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3214 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3215 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3216 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3217 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3218 
3219 	/* Reno is always built in */
3220 	if (!net_eq(net, &init_net) &&
3221 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3222 			       init_net.ipv4.tcp_congestion_control->owner))
3223 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3224 	else
3225 		net->ipv4.tcp_congestion_control = &tcp_reno;
3226 
3227 	return 0;
3228 }
3229 
3230 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3231 {
3232 	struct net *net;
3233 
3234 	tcp_twsk_purge(net_exit_list, AF_INET);
3235 
3236 	list_for_each_entry(net, net_exit_list, exit_list) {
3237 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3238 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3239 		tcp_fastopen_ctx_destroy(net);
3240 	}
3241 }
3242 
3243 static struct pernet_operations __net_initdata tcp_sk_ops = {
3244        .init	   = tcp_sk_init,
3245        .exit	   = tcp_sk_exit,
3246        .exit_batch = tcp_sk_exit_batch,
3247 };
3248 
3249 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3250 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3251 		     struct sock_common *sk_common, uid_t uid)
3252 
3253 #define INIT_BATCH_SZ 16
3254 
3255 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3256 {
3257 	struct bpf_tcp_iter_state *iter = priv_data;
3258 	int err;
3259 
3260 	err = bpf_iter_init_seq_net(priv_data, aux);
3261 	if (err)
3262 		return err;
3263 
3264 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3265 	if (err) {
3266 		bpf_iter_fini_seq_net(priv_data);
3267 		return err;
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 static void bpf_iter_fini_tcp(void *priv_data)
3274 {
3275 	struct bpf_tcp_iter_state *iter = priv_data;
3276 
3277 	bpf_iter_fini_seq_net(priv_data);
3278 	kvfree(iter->batch);
3279 }
3280 
3281 static const struct bpf_iter_seq_info tcp_seq_info = {
3282 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3283 	.init_seq_private	= bpf_iter_init_tcp,
3284 	.fini_seq_private	= bpf_iter_fini_tcp,
3285 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3286 };
3287 
3288 static const struct bpf_func_proto *
3289 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3290 			    const struct bpf_prog *prog)
3291 {
3292 	switch (func_id) {
3293 	case BPF_FUNC_setsockopt:
3294 		return &bpf_sk_setsockopt_proto;
3295 	case BPF_FUNC_getsockopt:
3296 		return &bpf_sk_getsockopt_proto;
3297 	default:
3298 		return NULL;
3299 	}
3300 }
3301 
3302 static struct bpf_iter_reg tcp_reg_info = {
3303 	.target			= "tcp",
3304 	.ctx_arg_info_size	= 1,
3305 	.ctx_arg_info		= {
3306 		{ offsetof(struct bpf_iter__tcp, sk_common),
3307 		  PTR_TO_BTF_ID_OR_NULL },
3308 	},
3309 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3310 	.seq_info		= &tcp_seq_info,
3311 };
3312 
3313 static void __init bpf_iter_register(void)
3314 {
3315 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3316 	if (bpf_iter_reg_target(&tcp_reg_info))
3317 		pr_warn("Warning: could not register bpf iterator tcp\n");
3318 }
3319 
3320 #endif
3321 
3322 void __init tcp_v4_init(void)
3323 {
3324 	int cpu, res;
3325 
3326 	for_each_possible_cpu(cpu) {
3327 		struct sock *sk;
3328 
3329 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3330 					   IPPROTO_TCP, &init_net);
3331 		if (res)
3332 			panic("Failed to create the TCP control socket.\n");
3333 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3334 
3335 		/* Please enforce IP_DF and IPID==0 for RST and
3336 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3337 		 */
3338 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3339 
3340 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3341 	}
3342 	if (register_pernet_subsys(&tcp_sk_ops))
3343 		panic("Failed to create the TCP control socket.\n");
3344 
3345 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3346 	bpf_iter_register();
3347 #endif
3348 }
3349