xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision eb96b740192b2a09720aaed8a8c132e6a29d5bdb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 
61 #include <net/net_namespace.h>
62 #include <net/icmp.h>
63 #include <net/inet_hashtables.h>
64 #include <net/tcp.h>
65 #include <net/transp_v6.h>
66 #include <net/ipv6.h>
67 #include <net/inet_common.h>
68 #include <net/timewait_sock.h>
69 #include <net/xfrm.h>
70 #include <net/secure_seq.h>
71 #include <net/busy_poll.h>
72 
73 #include <linux/inet.h>
74 #include <linux/ipv6.h>
75 #include <linux/stddef.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/inetdevice.h>
79 #include <linux/btf_ids.h>
80 
81 #include <crypto/hash.h>
82 #include <linux/scatterlist.h>
83 
84 #include <trace/events/tcp.h>
85 
86 #ifdef CONFIG_TCP_MD5SIG
87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
89 #endif
90 
91 struct inet_hashinfo tcp_hashinfo;
92 EXPORT_SYMBOL(tcp_hashinfo);
93 
94 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
95 
96 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
97 {
98 	return secure_tcp_seq(ip_hdr(skb)->daddr,
99 			      ip_hdr(skb)->saddr,
100 			      tcp_hdr(skb)->dest,
101 			      tcp_hdr(skb)->source);
102 }
103 
104 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
105 {
106 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
112 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
113 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 	struct tcp_sock *tp = tcp_sk(sk);
115 
116 	if (reuse == 2) {
117 		/* Still does not detect *everything* that goes through
118 		 * lo, since we require a loopback src or dst address
119 		 * or direct binding to 'lo' interface.
120 		 */
121 		bool loopback = false;
122 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
123 			loopback = true;
124 #if IS_ENABLED(CONFIG_IPV6)
125 		if (tw->tw_family == AF_INET6) {
126 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
127 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
129 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
130 				loopback = true;
131 		} else
132 #endif
133 		{
134 			if (ipv4_is_loopback(tw->tw_daddr) ||
135 			    ipv4_is_loopback(tw->tw_rcv_saddr))
136 				loopback = true;
137 		}
138 		if (!loopback)
139 			reuse = 0;
140 	}
141 
142 	/* With PAWS, it is safe from the viewpoint
143 	   of data integrity. Even without PAWS it is safe provided sequence
144 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
145 
146 	   Actually, the idea is close to VJ's one, only timestamp cache is
147 	   held not per host, but per port pair and TW bucket is used as state
148 	   holder.
149 
150 	   If TW bucket has been already destroyed we fall back to VJ's scheme
151 	   and use initial timestamp retrieved from peer table.
152 	 */
153 	if (tcptw->tw_ts_recent_stamp &&
154 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
155 					    tcptw->tw_ts_recent_stamp)))) {
156 		/* In case of repair and re-using TIME-WAIT sockets we still
157 		 * want to be sure that it is safe as above but honor the
158 		 * sequence numbers and time stamps set as part of the repair
159 		 * process.
160 		 *
161 		 * Without this check re-using a TIME-WAIT socket with TCP
162 		 * repair would accumulate a -1 on the repair assigned
163 		 * sequence number. The first time it is reused the sequence
164 		 * is -1, the second time -2, etc. This fixes that issue
165 		 * without appearing to create any others.
166 		 */
167 		if (likely(!tp->repair)) {
168 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
169 
170 			if (!seq)
171 				seq = 1;
172 			WRITE_ONCE(tp->write_seq, seq);
173 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
174 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
175 		}
176 		sock_hold(sktw);
177 		return 1;
178 	}
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
183 
184 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
185 			      int addr_len)
186 {
187 	/* This check is replicated from tcp_v4_connect() and intended to
188 	 * prevent BPF program called below from accessing bytes that are out
189 	 * of the bound specified by user in addr_len.
190 	 */
191 	if (addr_len < sizeof(struct sockaddr_in))
192 		return -EINVAL;
193 
194 	sock_owned_by_me(sk);
195 
196 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
197 }
198 
199 /* This will initiate an outgoing connection. */
200 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
201 {
202 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
203 	struct inet_timewait_death_row *tcp_death_row;
204 	struct inet_sock *inet = inet_sk(sk);
205 	struct tcp_sock *tp = tcp_sk(sk);
206 	struct ip_options_rcu *inet_opt;
207 	struct net *net = sock_net(sk);
208 	__be16 orig_sport, orig_dport;
209 	__be32 daddr, nexthop;
210 	struct flowi4 *fl4;
211 	struct rtable *rt;
212 	int err;
213 
214 	if (addr_len < sizeof(struct sockaddr_in))
215 		return -EINVAL;
216 
217 	if (usin->sin_family != AF_INET)
218 		return -EAFNOSUPPORT;
219 
220 	nexthop = daddr = usin->sin_addr.s_addr;
221 	inet_opt = rcu_dereference_protected(inet->inet_opt,
222 					     lockdep_sock_is_held(sk));
223 	if (inet_opt && inet_opt->opt.srr) {
224 		if (!daddr)
225 			return -EINVAL;
226 		nexthop = inet_opt->opt.faddr;
227 	}
228 
229 	orig_sport = inet->inet_sport;
230 	orig_dport = usin->sin_port;
231 	fl4 = &inet->cork.fl.u.ip4;
232 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
233 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
234 			      orig_dport, sk);
235 	if (IS_ERR(rt)) {
236 		err = PTR_ERR(rt);
237 		if (err == -ENETUNREACH)
238 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
239 		return err;
240 	}
241 
242 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
243 		ip_rt_put(rt);
244 		return -ENETUNREACH;
245 	}
246 
247 	if (!inet_opt || !inet_opt->opt.srr)
248 		daddr = fl4->daddr;
249 
250 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
251 
252 	if (!inet->inet_saddr) {
253 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
254 		if (err) {
255 			ip_rt_put(rt);
256 			return err;
257 		}
258 	} else {
259 		sk_rcv_saddr_set(sk, inet->inet_saddr);
260 	}
261 
262 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
263 		/* Reset inherited state */
264 		tp->rx_opt.ts_recent	   = 0;
265 		tp->rx_opt.ts_recent_stamp = 0;
266 		if (likely(!tp->repair))
267 			WRITE_ONCE(tp->write_seq, 0);
268 	}
269 
270 	inet->inet_dport = usin->sin_port;
271 	sk_daddr_set(sk, daddr);
272 
273 	inet_csk(sk)->icsk_ext_hdr_len = 0;
274 	if (inet_opt)
275 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
276 
277 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
278 
279 	/* Socket identity is still unknown (sport may be zero).
280 	 * However we set state to SYN-SENT and not releasing socket
281 	 * lock select source port, enter ourselves into the hash tables and
282 	 * complete initialization after this.
283 	 */
284 	tcp_set_state(sk, TCP_SYN_SENT);
285 	err = inet_hash_connect(tcp_death_row, sk);
286 	if (err)
287 		goto failure;
288 
289 	sk_set_txhash(sk);
290 
291 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
292 			       inet->inet_sport, inet->inet_dport, sk);
293 	if (IS_ERR(rt)) {
294 		err = PTR_ERR(rt);
295 		rt = NULL;
296 		goto failure;
297 	}
298 	/* OK, now commit destination to socket.  */
299 	sk->sk_gso_type = SKB_GSO_TCPV4;
300 	sk_setup_caps(sk, &rt->dst);
301 	rt = NULL;
302 
303 	if (likely(!tp->repair)) {
304 		if (!tp->write_seq)
305 			WRITE_ONCE(tp->write_seq,
306 				   secure_tcp_seq(inet->inet_saddr,
307 						  inet->inet_daddr,
308 						  inet->inet_sport,
309 						  usin->sin_port));
310 		tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr,
311 						 inet->inet_daddr);
312 	}
313 
314 	inet->inet_id = get_random_u16();
315 
316 	if (tcp_fastopen_defer_connect(sk, &err))
317 		return err;
318 	if (err)
319 		goto failure;
320 
321 	err = tcp_connect(sk);
322 
323 	if (err)
324 		goto failure;
325 
326 	return 0;
327 
328 failure:
329 	/*
330 	 * This unhashes the socket and releases the local port,
331 	 * if necessary.
332 	 */
333 	tcp_set_state(sk, TCP_CLOSE);
334 	inet_bhash2_reset_saddr(sk);
335 	ip_rt_put(rt);
336 	sk->sk_route_caps = 0;
337 	inet->inet_dport = 0;
338 	return err;
339 }
340 EXPORT_SYMBOL(tcp_v4_connect);
341 
342 /*
343  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
344  * It can be called through tcp_release_cb() if socket was owned by user
345  * at the time tcp_v4_err() was called to handle ICMP message.
346  */
347 void tcp_v4_mtu_reduced(struct sock *sk)
348 {
349 	struct inet_sock *inet = inet_sk(sk);
350 	struct dst_entry *dst;
351 	u32 mtu;
352 
353 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
354 		return;
355 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
356 	dst = inet_csk_update_pmtu(sk, mtu);
357 	if (!dst)
358 		return;
359 
360 	/* Something is about to be wrong... Remember soft error
361 	 * for the case, if this connection will not able to recover.
362 	 */
363 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
364 		sk->sk_err_soft = EMSGSIZE;
365 
366 	mtu = dst_mtu(dst);
367 
368 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
369 	    ip_sk_accept_pmtu(sk) &&
370 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
371 		tcp_sync_mss(sk, mtu);
372 
373 		/* Resend the TCP packet because it's
374 		 * clear that the old packet has been
375 		 * dropped. This is the new "fast" path mtu
376 		 * discovery.
377 		 */
378 		tcp_simple_retransmit(sk);
379 	} /* else let the usual retransmit timer handle it */
380 }
381 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
382 
383 static void do_redirect(struct sk_buff *skb, struct sock *sk)
384 {
385 	struct dst_entry *dst = __sk_dst_check(sk, 0);
386 
387 	if (dst)
388 		dst->ops->redirect(dst, sk, skb);
389 }
390 
391 
392 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
393 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
394 {
395 	struct request_sock *req = inet_reqsk(sk);
396 	struct net *net = sock_net(sk);
397 
398 	/* ICMPs are not backlogged, hence we cannot get
399 	 * an established socket here.
400 	 */
401 	if (seq != tcp_rsk(req)->snt_isn) {
402 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
403 	} else if (abort) {
404 		/*
405 		 * Still in SYN_RECV, just remove it silently.
406 		 * There is no good way to pass the error to the newly
407 		 * created socket, and POSIX does not want network
408 		 * errors returned from accept().
409 		 */
410 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
411 		tcp_listendrop(req->rsk_listener);
412 	}
413 	reqsk_put(req);
414 }
415 EXPORT_SYMBOL(tcp_req_err);
416 
417 /* TCP-LD (RFC 6069) logic */
418 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
419 {
420 	struct inet_connection_sock *icsk = inet_csk(sk);
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	struct sk_buff *skb;
423 	s32 remaining;
424 	u32 delta_us;
425 
426 	if (sock_owned_by_user(sk))
427 		return;
428 
429 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
430 	    !icsk->icsk_backoff)
431 		return;
432 
433 	skb = tcp_rtx_queue_head(sk);
434 	if (WARN_ON_ONCE(!skb))
435 		return;
436 
437 	icsk->icsk_backoff--;
438 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
439 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
440 
441 	tcp_mstamp_refresh(tp);
442 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
443 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
444 
445 	if (remaining > 0) {
446 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
447 					  remaining, TCP_RTO_MAX);
448 	} else {
449 		/* RTO revert clocked out retransmission.
450 		 * Will retransmit now.
451 		 */
452 		tcp_retransmit_timer(sk);
453 	}
454 }
455 EXPORT_SYMBOL(tcp_ld_RTO_revert);
456 
457 /*
458  * This routine is called by the ICMP module when it gets some
459  * sort of error condition.  If err < 0 then the socket should
460  * be closed and the error returned to the user.  If err > 0
461  * it's just the icmp type << 8 | icmp code.  After adjustment
462  * header points to the first 8 bytes of the tcp header.  We need
463  * to find the appropriate port.
464  *
465  * The locking strategy used here is very "optimistic". When
466  * someone else accesses the socket the ICMP is just dropped
467  * and for some paths there is no check at all.
468  * A more general error queue to queue errors for later handling
469  * is probably better.
470  *
471  */
472 
473 int tcp_v4_err(struct sk_buff *skb, u32 info)
474 {
475 	const struct iphdr *iph = (const struct iphdr *)skb->data;
476 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
477 	struct tcp_sock *tp;
478 	struct inet_sock *inet;
479 	const int type = icmp_hdr(skb)->type;
480 	const int code = icmp_hdr(skb)->code;
481 	struct sock *sk;
482 	struct request_sock *fastopen;
483 	u32 seq, snd_una;
484 	int err;
485 	struct net *net = dev_net(skb->dev);
486 
487 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
488 				       iph->daddr, th->dest, iph->saddr,
489 				       ntohs(th->source), inet_iif(skb), 0);
490 	if (!sk) {
491 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
492 		return -ENOENT;
493 	}
494 	if (sk->sk_state == TCP_TIME_WAIT) {
495 		inet_twsk_put(inet_twsk(sk));
496 		return 0;
497 	}
498 	seq = ntohl(th->seq);
499 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
500 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
501 				     type == ICMP_TIME_EXCEEDED ||
502 				     (type == ICMP_DEST_UNREACH &&
503 				      (code == ICMP_NET_UNREACH ||
504 				       code == ICMP_HOST_UNREACH)));
505 		return 0;
506 	}
507 
508 	bh_lock_sock(sk);
509 	/* If too many ICMPs get dropped on busy
510 	 * servers this needs to be solved differently.
511 	 * We do take care of PMTU discovery (RFC1191) special case :
512 	 * we can receive locally generated ICMP messages while socket is held.
513 	 */
514 	if (sock_owned_by_user(sk)) {
515 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
516 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
517 	}
518 	if (sk->sk_state == TCP_CLOSE)
519 		goto out;
520 
521 	if (static_branch_unlikely(&ip4_min_ttl)) {
522 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
523 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
524 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
525 			goto out;
526 		}
527 	}
528 
529 	tp = tcp_sk(sk);
530 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
531 	fastopen = rcu_dereference(tp->fastopen_rsk);
532 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
533 	if (sk->sk_state != TCP_LISTEN &&
534 	    !between(seq, snd_una, tp->snd_nxt)) {
535 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
536 		goto out;
537 	}
538 
539 	switch (type) {
540 	case ICMP_REDIRECT:
541 		if (!sock_owned_by_user(sk))
542 			do_redirect(skb, sk);
543 		goto out;
544 	case ICMP_SOURCE_QUENCH:
545 		/* Just silently ignore these. */
546 		goto out;
547 	case ICMP_PARAMETERPROB:
548 		err = EPROTO;
549 		break;
550 	case ICMP_DEST_UNREACH:
551 		if (code > NR_ICMP_UNREACH)
552 			goto out;
553 
554 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
555 			/* We are not interested in TCP_LISTEN and open_requests
556 			 * (SYN-ACKs send out by Linux are always <576bytes so
557 			 * they should go through unfragmented).
558 			 */
559 			if (sk->sk_state == TCP_LISTEN)
560 				goto out;
561 
562 			WRITE_ONCE(tp->mtu_info, info);
563 			if (!sock_owned_by_user(sk)) {
564 				tcp_v4_mtu_reduced(sk);
565 			} else {
566 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
567 					sock_hold(sk);
568 			}
569 			goto out;
570 		}
571 
572 		err = icmp_err_convert[code].errno;
573 		/* check if this ICMP message allows revert of backoff.
574 		 * (see RFC 6069)
575 		 */
576 		if (!fastopen &&
577 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
578 			tcp_ld_RTO_revert(sk, seq);
579 		break;
580 	case ICMP_TIME_EXCEEDED:
581 		err = EHOSTUNREACH;
582 		break;
583 	default:
584 		goto out;
585 	}
586 
587 	switch (sk->sk_state) {
588 	case TCP_SYN_SENT:
589 	case TCP_SYN_RECV:
590 		/* Only in fast or simultaneous open. If a fast open socket is
591 		 * already accepted it is treated as a connected one below.
592 		 */
593 		if (fastopen && !fastopen->sk)
594 			break;
595 
596 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
597 
598 		if (!sock_owned_by_user(sk)) {
599 			sk->sk_err = err;
600 
601 			sk_error_report(sk);
602 
603 			tcp_done(sk);
604 		} else {
605 			sk->sk_err_soft = err;
606 		}
607 		goto out;
608 	}
609 
610 	/* If we've already connected we will keep trying
611 	 * until we time out, or the user gives up.
612 	 *
613 	 * rfc1122 4.2.3.9 allows to consider as hard errors
614 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
615 	 * but it is obsoleted by pmtu discovery).
616 	 *
617 	 * Note, that in modern internet, where routing is unreliable
618 	 * and in each dark corner broken firewalls sit, sending random
619 	 * errors ordered by their masters even this two messages finally lose
620 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
621 	 *
622 	 * Now we are in compliance with RFCs.
623 	 *							--ANK (980905)
624 	 */
625 
626 	inet = inet_sk(sk);
627 	if (!sock_owned_by_user(sk) && inet->recverr) {
628 		sk->sk_err = err;
629 		sk_error_report(sk);
630 	} else	{ /* Only an error on timeout */
631 		sk->sk_err_soft = err;
632 	}
633 
634 out:
635 	bh_unlock_sock(sk);
636 	sock_put(sk);
637 	return 0;
638 }
639 
640 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
641 {
642 	struct tcphdr *th = tcp_hdr(skb);
643 
644 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
645 	skb->csum_start = skb_transport_header(skb) - skb->head;
646 	skb->csum_offset = offsetof(struct tcphdr, check);
647 }
648 
649 /* This routine computes an IPv4 TCP checksum. */
650 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
651 {
652 	const struct inet_sock *inet = inet_sk(sk);
653 
654 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
655 }
656 EXPORT_SYMBOL(tcp_v4_send_check);
657 
658 /*
659  *	This routine will send an RST to the other tcp.
660  *
661  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
662  *		      for reset.
663  *	Answer: if a packet caused RST, it is not for a socket
664  *		existing in our system, if it is matched to a socket,
665  *		it is just duplicate segment or bug in other side's TCP.
666  *		So that we build reply only basing on parameters
667  *		arrived with segment.
668  *	Exception: precedence violation. We do not implement it in any case.
669  */
670 
671 #ifdef CONFIG_TCP_MD5SIG
672 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
673 #else
674 #define OPTION_BYTES sizeof(__be32)
675 #endif
676 
677 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
678 {
679 	const struct tcphdr *th = tcp_hdr(skb);
680 	struct {
681 		struct tcphdr th;
682 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
683 	} rep;
684 	struct ip_reply_arg arg;
685 #ifdef CONFIG_TCP_MD5SIG
686 	struct tcp_md5sig_key *key = NULL;
687 	const __u8 *hash_location = NULL;
688 	unsigned char newhash[16];
689 	int genhash;
690 	struct sock *sk1 = NULL;
691 #endif
692 	u64 transmit_time = 0;
693 	struct sock *ctl_sk;
694 	struct net *net;
695 
696 	/* Never send a reset in response to a reset. */
697 	if (th->rst)
698 		return;
699 
700 	/* If sk not NULL, it means we did a successful lookup and incoming
701 	 * route had to be correct. prequeue might have dropped our dst.
702 	 */
703 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
704 		return;
705 
706 	/* Swap the send and the receive. */
707 	memset(&rep, 0, sizeof(rep));
708 	rep.th.dest   = th->source;
709 	rep.th.source = th->dest;
710 	rep.th.doff   = sizeof(struct tcphdr) / 4;
711 	rep.th.rst    = 1;
712 
713 	if (th->ack) {
714 		rep.th.seq = th->ack_seq;
715 	} else {
716 		rep.th.ack = 1;
717 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
718 				       skb->len - (th->doff << 2));
719 	}
720 
721 	memset(&arg, 0, sizeof(arg));
722 	arg.iov[0].iov_base = (unsigned char *)&rep;
723 	arg.iov[0].iov_len  = sizeof(rep.th);
724 
725 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
726 #ifdef CONFIG_TCP_MD5SIG
727 	rcu_read_lock();
728 	hash_location = tcp_parse_md5sig_option(th);
729 	if (sk && sk_fullsock(sk)) {
730 		const union tcp_md5_addr *addr;
731 		int l3index;
732 
733 		/* sdif set, means packet ingressed via a device
734 		 * in an L3 domain and inet_iif is set to it.
735 		 */
736 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
737 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
738 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
739 	} else if (hash_location) {
740 		const union tcp_md5_addr *addr;
741 		int sdif = tcp_v4_sdif(skb);
742 		int dif = inet_iif(skb);
743 		int l3index;
744 
745 		/*
746 		 * active side is lost. Try to find listening socket through
747 		 * source port, and then find md5 key through listening socket.
748 		 * we are not loose security here:
749 		 * Incoming packet is checked with md5 hash with finding key,
750 		 * no RST generated if md5 hash doesn't match.
751 		 */
752 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
753 					     NULL, 0, ip_hdr(skb)->saddr,
754 					     th->source, ip_hdr(skb)->daddr,
755 					     ntohs(th->source), dif, sdif);
756 		/* don't send rst if it can't find key */
757 		if (!sk1)
758 			goto out;
759 
760 		/* sdif set, means packet ingressed via a device
761 		 * in an L3 domain and dif is set to it.
762 		 */
763 		l3index = sdif ? dif : 0;
764 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
765 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
766 		if (!key)
767 			goto out;
768 
769 
770 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
771 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
772 			goto out;
773 
774 	}
775 
776 	if (key) {
777 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
778 				   (TCPOPT_NOP << 16) |
779 				   (TCPOPT_MD5SIG << 8) |
780 				   TCPOLEN_MD5SIG);
781 		/* Update length and the length the header thinks exists */
782 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
783 		rep.th.doff = arg.iov[0].iov_len / 4;
784 
785 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
786 				     key, ip_hdr(skb)->saddr,
787 				     ip_hdr(skb)->daddr, &rep.th);
788 	}
789 #endif
790 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
791 	if (rep.opt[0] == 0) {
792 		__be32 mrst = mptcp_reset_option(skb);
793 
794 		if (mrst) {
795 			rep.opt[0] = mrst;
796 			arg.iov[0].iov_len += sizeof(mrst);
797 			rep.th.doff = arg.iov[0].iov_len / 4;
798 		}
799 	}
800 
801 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
802 				      ip_hdr(skb)->saddr, /* XXX */
803 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
804 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
805 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
806 
807 	/* When socket is gone, all binding information is lost.
808 	 * routing might fail in this case. No choice here, if we choose to force
809 	 * input interface, we will misroute in case of asymmetric route.
810 	 */
811 	if (sk) {
812 		arg.bound_dev_if = sk->sk_bound_dev_if;
813 		if (sk_fullsock(sk))
814 			trace_tcp_send_reset(sk, skb);
815 	}
816 
817 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
818 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
819 
820 	arg.tos = ip_hdr(skb)->tos;
821 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
822 	local_bh_disable();
823 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
824 	sock_net_set(ctl_sk, net);
825 	if (sk) {
826 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
827 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
828 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
829 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
830 		transmit_time = tcp_transmit_time(sk);
831 		xfrm_sk_clone_policy(ctl_sk, sk);
832 	}
833 	ip_send_unicast_reply(ctl_sk,
834 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
835 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
836 			      &arg, arg.iov[0].iov_len,
837 			      transmit_time);
838 
839 	ctl_sk->sk_mark = 0;
840 	xfrm_sk_free_policy(ctl_sk);
841 	sock_net_set(ctl_sk, &init_net);
842 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
843 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
844 	local_bh_enable();
845 
846 #ifdef CONFIG_TCP_MD5SIG
847 out:
848 	rcu_read_unlock();
849 #endif
850 }
851 
852 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
853    outside socket context is ugly, certainly. What can I do?
854  */
855 
856 static void tcp_v4_send_ack(const struct sock *sk,
857 			    struct sk_buff *skb, u32 seq, u32 ack,
858 			    u32 win, u32 tsval, u32 tsecr, int oif,
859 			    struct tcp_md5sig_key *key,
860 			    int reply_flags, u8 tos)
861 {
862 	const struct tcphdr *th = tcp_hdr(skb);
863 	struct {
864 		struct tcphdr th;
865 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
866 #ifdef CONFIG_TCP_MD5SIG
867 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
868 #endif
869 			];
870 	} rep;
871 	struct net *net = sock_net(sk);
872 	struct ip_reply_arg arg;
873 	struct sock *ctl_sk;
874 	u64 transmit_time;
875 
876 	memset(&rep.th, 0, sizeof(struct tcphdr));
877 	memset(&arg, 0, sizeof(arg));
878 
879 	arg.iov[0].iov_base = (unsigned char *)&rep;
880 	arg.iov[0].iov_len  = sizeof(rep.th);
881 	if (tsecr) {
882 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
883 				   (TCPOPT_TIMESTAMP << 8) |
884 				   TCPOLEN_TIMESTAMP);
885 		rep.opt[1] = htonl(tsval);
886 		rep.opt[2] = htonl(tsecr);
887 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
888 	}
889 
890 	/* Swap the send and the receive. */
891 	rep.th.dest    = th->source;
892 	rep.th.source  = th->dest;
893 	rep.th.doff    = arg.iov[0].iov_len / 4;
894 	rep.th.seq     = htonl(seq);
895 	rep.th.ack_seq = htonl(ack);
896 	rep.th.ack     = 1;
897 	rep.th.window  = htons(win);
898 
899 #ifdef CONFIG_TCP_MD5SIG
900 	if (key) {
901 		int offset = (tsecr) ? 3 : 0;
902 
903 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
904 					  (TCPOPT_NOP << 16) |
905 					  (TCPOPT_MD5SIG << 8) |
906 					  TCPOLEN_MD5SIG);
907 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
908 		rep.th.doff = arg.iov[0].iov_len/4;
909 
910 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
911 				    key, ip_hdr(skb)->saddr,
912 				    ip_hdr(skb)->daddr, &rep.th);
913 	}
914 #endif
915 	arg.flags = reply_flags;
916 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
917 				      ip_hdr(skb)->saddr, /* XXX */
918 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
919 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
920 	if (oif)
921 		arg.bound_dev_if = oif;
922 	arg.tos = tos;
923 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
924 	local_bh_disable();
925 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
926 	sock_net_set(ctl_sk, net);
927 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
928 			   inet_twsk(sk)->tw_mark : sk->sk_mark;
929 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
930 			   inet_twsk(sk)->tw_priority : sk->sk_priority;
931 	transmit_time = tcp_transmit_time(sk);
932 	ip_send_unicast_reply(ctl_sk,
933 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
934 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
935 			      &arg, arg.iov[0].iov_len,
936 			      transmit_time);
937 
938 	ctl_sk->sk_mark = 0;
939 	sock_net_set(ctl_sk, &init_net);
940 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
941 	local_bh_enable();
942 }
943 
944 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
945 {
946 	struct inet_timewait_sock *tw = inet_twsk(sk);
947 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
948 
949 	tcp_v4_send_ack(sk, skb,
950 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
951 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
952 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
953 			tcptw->tw_ts_recent,
954 			tw->tw_bound_dev_if,
955 			tcp_twsk_md5_key(tcptw),
956 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
957 			tw->tw_tos
958 			);
959 
960 	inet_twsk_put(tw);
961 }
962 
963 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
964 				  struct request_sock *req)
965 {
966 	const union tcp_md5_addr *addr;
967 	int l3index;
968 
969 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
970 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
971 	 */
972 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
973 					     tcp_sk(sk)->snd_nxt;
974 
975 	/* RFC 7323 2.3
976 	 * The window field (SEG.WND) of every outgoing segment, with the
977 	 * exception of <SYN> segments, MUST be right-shifted by
978 	 * Rcv.Wind.Shift bits:
979 	 */
980 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
981 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
982 	tcp_v4_send_ack(sk, skb, seq,
983 			tcp_rsk(req)->rcv_nxt,
984 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
985 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
986 			req->ts_recent,
987 			0,
988 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
989 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
990 			ip_hdr(skb)->tos);
991 }
992 
993 /*
994  *	Send a SYN-ACK after having received a SYN.
995  *	This still operates on a request_sock only, not on a big
996  *	socket.
997  */
998 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
999 			      struct flowi *fl,
1000 			      struct request_sock *req,
1001 			      struct tcp_fastopen_cookie *foc,
1002 			      enum tcp_synack_type synack_type,
1003 			      struct sk_buff *syn_skb)
1004 {
1005 	const struct inet_request_sock *ireq = inet_rsk(req);
1006 	struct flowi4 fl4;
1007 	int err = -1;
1008 	struct sk_buff *skb;
1009 	u8 tos;
1010 
1011 	/* First, grab a route. */
1012 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1013 		return -1;
1014 
1015 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1016 
1017 	if (skb) {
1018 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1019 
1020 		tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1021 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1022 				(inet_sk(sk)->tos & INET_ECN_MASK) :
1023 				inet_sk(sk)->tos;
1024 
1025 		if (!INET_ECN_is_capable(tos) &&
1026 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1027 			tos |= INET_ECN_ECT_0;
1028 
1029 		rcu_read_lock();
1030 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1031 					    ireq->ir_rmt_addr,
1032 					    rcu_dereference(ireq->ireq_opt),
1033 					    tos);
1034 		rcu_read_unlock();
1035 		err = net_xmit_eval(err);
1036 	}
1037 
1038 	return err;
1039 }
1040 
1041 /*
1042  *	IPv4 request_sock destructor.
1043  */
1044 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1045 {
1046 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1047 }
1048 
1049 #ifdef CONFIG_TCP_MD5SIG
1050 /*
1051  * RFC2385 MD5 checksumming requires a mapping of
1052  * IP address->MD5 Key.
1053  * We need to maintain these in the sk structure.
1054  */
1055 
1056 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1057 EXPORT_SYMBOL(tcp_md5_needed);
1058 
1059 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1060 {
1061 	if (!old)
1062 		return true;
1063 
1064 	/* l3index always overrides non-l3index */
1065 	if (old->l3index && new->l3index == 0)
1066 		return false;
1067 	if (old->l3index == 0 && new->l3index)
1068 		return true;
1069 
1070 	return old->prefixlen < new->prefixlen;
1071 }
1072 
1073 /* Find the Key structure for an address.  */
1074 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1075 					   const union tcp_md5_addr *addr,
1076 					   int family)
1077 {
1078 	const struct tcp_sock *tp = tcp_sk(sk);
1079 	struct tcp_md5sig_key *key;
1080 	const struct tcp_md5sig_info *md5sig;
1081 	__be32 mask;
1082 	struct tcp_md5sig_key *best_match = NULL;
1083 	bool match;
1084 
1085 	/* caller either holds rcu_read_lock() or socket lock */
1086 	md5sig = rcu_dereference_check(tp->md5sig_info,
1087 				       lockdep_sock_is_held(sk));
1088 	if (!md5sig)
1089 		return NULL;
1090 
1091 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1092 				 lockdep_sock_is_held(sk)) {
1093 		if (key->family != family)
1094 			continue;
1095 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1096 			continue;
1097 		if (family == AF_INET) {
1098 			mask = inet_make_mask(key->prefixlen);
1099 			match = (key->addr.a4.s_addr & mask) ==
1100 				(addr->a4.s_addr & mask);
1101 #if IS_ENABLED(CONFIG_IPV6)
1102 		} else if (family == AF_INET6) {
1103 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1104 						  key->prefixlen);
1105 #endif
1106 		} else {
1107 			match = false;
1108 		}
1109 
1110 		if (match && better_md5_match(best_match, key))
1111 			best_match = key;
1112 	}
1113 	return best_match;
1114 }
1115 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1116 
1117 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1118 						      const union tcp_md5_addr *addr,
1119 						      int family, u8 prefixlen,
1120 						      int l3index, u8 flags)
1121 {
1122 	const struct tcp_sock *tp = tcp_sk(sk);
1123 	struct tcp_md5sig_key *key;
1124 	unsigned int size = sizeof(struct in_addr);
1125 	const struct tcp_md5sig_info *md5sig;
1126 
1127 	/* caller either holds rcu_read_lock() or socket lock */
1128 	md5sig = rcu_dereference_check(tp->md5sig_info,
1129 				       lockdep_sock_is_held(sk));
1130 	if (!md5sig)
1131 		return NULL;
1132 #if IS_ENABLED(CONFIG_IPV6)
1133 	if (family == AF_INET6)
1134 		size = sizeof(struct in6_addr);
1135 #endif
1136 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1137 				 lockdep_sock_is_held(sk)) {
1138 		if (key->family != family)
1139 			continue;
1140 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1141 			continue;
1142 		if (key->l3index != l3index)
1143 			continue;
1144 		if (!memcmp(&key->addr, addr, size) &&
1145 		    key->prefixlen == prefixlen)
1146 			return key;
1147 	}
1148 	return NULL;
1149 }
1150 
1151 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1152 					 const struct sock *addr_sk)
1153 {
1154 	const union tcp_md5_addr *addr;
1155 	int l3index;
1156 
1157 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1158 						 addr_sk->sk_bound_dev_if);
1159 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1160 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1161 }
1162 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1163 
1164 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1165 {
1166 	struct tcp_sock *tp = tcp_sk(sk);
1167 	struct tcp_md5sig_info *md5sig;
1168 
1169 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1170 	if (!md5sig)
1171 		return -ENOMEM;
1172 
1173 	sk_gso_disable(sk);
1174 	INIT_HLIST_HEAD(&md5sig->head);
1175 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1176 	return 0;
1177 }
1178 
1179 /* This can be called on a newly created socket, from other files */
1180 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1181 			    int family, u8 prefixlen, int l3index, u8 flags,
1182 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1183 {
1184 	/* Add Key to the list */
1185 	struct tcp_md5sig_key *key;
1186 	struct tcp_sock *tp = tcp_sk(sk);
1187 	struct tcp_md5sig_info *md5sig;
1188 
1189 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1190 	if (key) {
1191 		/* Pre-existing entry - just update that one.
1192 		 * Note that the key might be used concurrently.
1193 		 * data_race() is telling kcsan that we do not care of
1194 		 * key mismatches, since changing MD5 key on live flows
1195 		 * can lead to packet drops.
1196 		 */
1197 		data_race(memcpy(key->key, newkey, newkeylen));
1198 
1199 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1200 		 * Also note that a reader could catch new key->keylen value
1201 		 * but old key->key[], this is the reason we use __GFP_ZERO
1202 		 * at sock_kmalloc() time below these lines.
1203 		 */
1204 		WRITE_ONCE(key->keylen, newkeylen);
1205 
1206 		return 0;
1207 	}
1208 
1209 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1210 					   lockdep_sock_is_held(sk));
1211 
1212 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1213 	if (!key)
1214 		return -ENOMEM;
1215 	if (!tcp_alloc_md5sig_pool()) {
1216 		sock_kfree_s(sk, key, sizeof(*key));
1217 		return -ENOMEM;
1218 	}
1219 
1220 	memcpy(key->key, newkey, newkeylen);
1221 	key->keylen = newkeylen;
1222 	key->family = family;
1223 	key->prefixlen = prefixlen;
1224 	key->l3index = l3index;
1225 	key->flags = flags;
1226 	memcpy(&key->addr, addr,
1227 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1228 								 sizeof(struct in_addr));
1229 	hlist_add_head_rcu(&key->node, &md5sig->head);
1230 	return 0;
1231 }
1232 
1233 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1234 		   int family, u8 prefixlen, int l3index, u8 flags,
1235 		   const u8 *newkey, u8 newkeylen)
1236 {
1237 	struct tcp_sock *tp = tcp_sk(sk);
1238 
1239 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1240 		if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1241 			return -ENOMEM;
1242 
1243 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1244 			struct tcp_md5sig_info *md5sig;
1245 
1246 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1247 			rcu_assign_pointer(tp->md5sig_info, NULL);
1248 			kfree_rcu(md5sig, rcu);
1249 			return -EUSERS;
1250 		}
1251 	}
1252 
1253 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1254 				newkey, newkeylen, GFP_KERNEL);
1255 }
1256 EXPORT_SYMBOL(tcp_md5_do_add);
1257 
1258 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1259 		     int family, u8 prefixlen, int l3index,
1260 		     struct tcp_md5sig_key *key)
1261 {
1262 	struct tcp_sock *tp = tcp_sk(sk);
1263 
1264 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1265 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1266 			return -ENOMEM;
1267 
1268 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1269 			struct tcp_md5sig_info *md5sig;
1270 
1271 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1272 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1273 			rcu_assign_pointer(tp->md5sig_info, NULL);
1274 			kfree_rcu(md5sig, rcu);
1275 			return -EUSERS;
1276 		}
1277 	}
1278 
1279 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1280 				key->flags, key->key, key->keylen,
1281 				sk_gfp_mask(sk, GFP_ATOMIC));
1282 }
1283 EXPORT_SYMBOL(tcp_md5_key_copy);
1284 
1285 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1286 		   u8 prefixlen, int l3index, u8 flags)
1287 {
1288 	struct tcp_md5sig_key *key;
1289 
1290 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1291 	if (!key)
1292 		return -ENOENT;
1293 	hlist_del_rcu(&key->node);
1294 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1295 	kfree_rcu(key, rcu);
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL(tcp_md5_do_del);
1299 
1300 static void tcp_clear_md5_list(struct sock *sk)
1301 {
1302 	struct tcp_sock *tp = tcp_sk(sk);
1303 	struct tcp_md5sig_key *key;
1304 	struct hlist_node *n;
1305 	struct tcp_md5sig_info *md5sig;
1306 
1307 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1308 
1309 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1310 		hlist_del_rcu(&key->node);
1311 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1312 		kfree_rcu(key, rcu);
1313 	}
1314 }
1315 
1316 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1317 				 sockptr_t optval, int optlen)
1318 {
1319 	struct tcp_md5sig cmd;
1320 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1321 	const union tcp_md5_addr *addr;
1322 	u8 prefixlen = 32;
1323 	int l3index = 0;
1324 	u8 flags;
1325 
1326 	if (optlen < sizeof(cmd))
1327 		return -EINVAL;
1328 
1329 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1330 		return -EFAULT;
1331 
1332 	if (sin->sin_family != AF_INET)
1333 		return -EINVAL;
1334 
1335 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1336 
1337 	if (optname == TCP_MD5SIG_EXT &&
1338 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1339 		prefixlen = cmd.tcpm_prefixlen;
1340 		if (prefixlen > 32)
1341 			return -EINVAL;
1342 	}
1343 
1344 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1345 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1346 		struct net_device *dev;
1347 
1348 		rcu_read_lock();
1349 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1350 		if (dev && netif_is_l3_master(dev))
1351 			l3index = dev->ifindex;
1352 
1353 		rcu_read_unlock();
1354 
1355 		/* ok to reference set/not set outside of rcu;
1356 		 * right now device MUST be an L3 master
1357 		 */
1358 		if (!dev || !l3index)
1359 			return -EINVAL;
1360 	}
1361 
1362 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1363 
1364 	if (!cmd.tcpm_keylen)
1365 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1366 
1367 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1368 		return -EINVAL;
1369 
1370 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1371 			      cmd.tcpm_key, cmd.tcpm_keylen);
1372 }
1373 
1374 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1375 				   __be32 daddr, __be32 saddr,
1376 				   const struct tcphdr *th, int nbytes)
1377 {
1378 	struct tcp4_pseudohdr *bp;
1379 	struct scatterlist sg;
1380 	struct tcphdr *_th;
1381 
1382 	bp = hp->scratch;
1383 	bp->saddr = saddr;
1384 	bp->daddr = daddr;
1385 	bp->pad = 0;
1386 	bp->protocol = IPPROTO_TCP;
1387 	bp->len = cpu_to_be16(nbytes);
1388 
1389 	_th = (struct tcphdr *)(bp + 1);
1390 	memcpy(_th, th, sizeof(*th));
1391 	_th->check = 0;
1392 
1393 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1394 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1395 				sizeof(*bp) + sizeof(*th));
1396 	return crypto_ahash_update(hp->md5_req);
1397 }
1398 
1399 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1400 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1401 {
1402 	struct tcp_md5sig_pool *hp;
1403 	struct ahash_request *req;
1404 
1405 	hp = tcp_get_md5sig_pool();
1406 	if (!hp)
1407 		goto clear_hash_noput;
1408 	req = hp->md5_req;
1409 
1410 	if (crypto_ahash_init(req))
1411 		goto clear_hash;
1412 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1413 		goto clear_hash;
1414 	if (tcp_md5_hash_key(hp, key))
1415 		goto clear_hash;
1416 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1417 	if (crypto_ahash_final(req))
1418 		goto clear_hash;
1419 
1420 	tcp_put_md5sig_pool();
1421 	return 0;
1422 
1423 clear_hash:
1424 	tcp_put_md5sig_pool();
1425 clear_hash_noput:
1426 	memset(md5_hash, 0, 16);
1427 	return 1;
1428 }
1429 
1430 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1431 			const struct sock *sk,
1432 			const struct sk_buff *skb)
1433 {
1434 	struct tcp_md5sig_pool *hp;
1435 	struct ahash_request *req;
1436 	const struct tcphdr *th = tcp_hdr(skb);
1437 	__be32 saddr, daddr;
1438 
1439 	if (sk) { /* valid for establish/request sockets */
1440 		saddr = sk->sk_rcv_saddr;
1441 		daddr = sk->sk_daddr;
1442 	} else {
1443 		const struct iphdr *iph = ip_hdr(skb);
1444 		saddr = iph->saddr;
1445 		daddr = iph->daddr;
1446 	}
1447 
1448 	hp = tcp_get_md5sig_pool();
1449 	if (!hp)
1450 		goto clear_hash_noput;
1451 	req = hp->md5_req;
1452 
1453 	if (crypto_ahash_init(req))
1454 		goto clear_hash;
1455 
1456 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1457 		goto clear_hash;
1458 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1459 		goto clear_hash;
1460 	if (tcp_md5_hash_key(hp, key))
1461 		goto clear_hash;
1462 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1463 	if (crypto_ahash_final(req))
1464 		goto clear_hash;
1465 
1466 	tcp_put_md5sig_pool();
1467 	return 0;
1468 
1469 clear_hash:
1470 	tcp_put_md5sig_pool();
1471 clear_hash_noput:
1472 	memset(md5_hash, 0, 16);
1473 	return 1;
1474 }
1475 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1476 
1477 #endif
1478 
1479 static void tcp_v4_init_req(struct request_sock *req,
1480 			    const struct sock *sk_listener,
1481 			    struct sk_buff *skb)
1482 {
1483 	struct inet_request_sock *ireq = inet_rsk(req);
1484 	struct net *net = sock_net(sk_listener);
1485 
1486 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1487 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1488 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1489 }
1490 
1491 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1492 					  struct sk_buff *skb,
1493 					  struct flowi *fl,
1494 					  struct request_sock *req)
1495 {
1496 	tcp_v4_init_req(req, sk, skb);
1497 
1498 	if (security_inet_conn_request(sk, skb, req))
1499 		return NULL;
1500 
1501 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1502 }
1503 
1504 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1505 	.family		=	PF_INET,
1506 	.obj_size	=	sizeof(struct tcp_request_sock),
1507 	.rtx_syn_ack	=	tcp_rtx_synack,
1508 	.send_ack	=	tcp_v4_reqsk_send_ack,
1509 	.destructor	=	tcp_v4_reqsk_destructor,
1510 	.send_reset	=	tcp_v4_send_reset,
1511 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1512 };
1513 
1514 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1515 	.mss_clamp	=	TCP_MSS_DEFAULT,
1516 #ifdef CONFIG_TCP_MD5SIG
1517 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1518 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1519 #endif
1520 #ifdef CONFIG_SYN_COOKIES
1521 	.cookie_init_seq =	cookie_v4_init_sequence,
1522 #endif
1523 	.route_req	=	tcp_v4_route_req,
1524 	.init_seq	=	tcp_v4_init_seq,
1525 	.init_ts_off	=	tcp_v4_init_ts_off,
1526 	.send_synack	=	tcp_v4_send_synack,
1527 };
1528 
1529 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1530 {
1531 	/* Never answer to SYNs send to broadcast or multicast */
1532 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1533 		goto drop;
1534 
1535 	return tcp_conn_request(&tcp_request_sock_ops,
1536 				&tcp_request_sock_ipv4_ops, sk, skb);
1537 
1538 drop:
1539 	tcp_listendrop(sk);
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL(tcp_v4_conn_request);
1543 
1544 
1545 /*
1546  * The three way handshake has completed - we got a valid synack -
1547  * now create the new socket.
1548  */
1549 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1550 				  struct request_sock *req,
1551 				  struct dst_entry *dst,
1552 				  struct request_sock *req_unhash,
1553 				  bool *own_req)
1554 {
1555 	struct inet_request_sock *ireq;
1556 	bool found_dup_sk = false;
1557 	struct inet_sock *newinet;
1558 	struct tcp_sock *newtp;
1559 	struct sock *newsk;
1560 #ifdef CONFIG_TCP_MD5SIG
1561 	const union tcp_md5_addr *addr;
1562 	struct tcp_md5sig_key *key;
1563 	int l3index;
1564 #endif
1565 	struct ip_options_rcu *inet_opt;
1566 
1567 	if (sk_acceptq_is_full(sk))
1568 		goto exit_overflow;
1569 
1570 	newsk = tcp_create_openreq_child(sk, req, skb);
1571 	if (!newsk)
1572 		goto exit_nonewsk;
1573 
1574 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1575 	inet_sk_rx_dst_set(newsk, skb);
1576 
1577 	newtp		      = tcp_sk(newsk);
1578 	newinet		      = inet_sk(newsk);
1579 	ireq		      = inet_rsk(req);
1580 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1581 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1582 	newsk->sk_bound_dev_if = ireq->ir_iif;
1583 	newinet->inet_saddr   = ireq->ir_loc_addr;
1584 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1585 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1586 	newinet->mc_index     = inet_iif(skb);
1587 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1588 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1589 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1590 	if (inet_opt)
1591 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1592 	newinet->inet_id = get_random_u16();
1593 
1594 	/* Set ToS of the new socket based upon the value of incoming SYN.
1595 	 * ECT bits are set later in tcp_init_transfer().
1596 	 */
1597 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1598 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1599 
1600 	if (!dst) {
1601 		dst = inet_csk_route_child_sock(sk, newsk, req);
1602 		if (!dst)
1603 			goto put_and_exit;
1604 	} else {
1605 		/* syncookie case : see end of cookie_v4_check() */
1606 	}
1607 	sk_setup_caps(newsk, dst);
1608 
1609 	tcp_ca_openreq_child(newsk, dst);
1610 
1611 	tcp_sync_mss(newsk, dst_mtu(dst));
1612 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1613 
1614 	tcp_initialize_rcv_mss(newsk);
1615 
1616 #ifdef CONFIG_TCP_MD5SIG
1617 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1618 	/* Copy over the MD5 key from the original socket */
1619 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1620 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1621 	if (key) {
1622 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1623 			goto put_and_exit;
1624 		sk_gso_disable(newsk);
1625 	}
1626 #endif
1627 
1628 	if (__inet_inherit_port(sk, newsk) < 0)
1629 		goto put_and_exit;
1630 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1631 				       &found_dup_sk);
1632 	if (likely(*own_req)) {
1633 		tcp_move_syn(newtp, req);
1634 		ireq->ireq_opt = NULL;
1635 	} else {
1636 		newinet->inet_opt = NULL;
1637 
1638 		if (!req_unhash && found_dup_sk) {
1639 			/* This code path should only be executed in the
1640 			 * syncookie case only
1641 			 */
1642 			bh_unlock_sock(newsk);
1643 			sock_put(newsk);
1644 			newsk = NULL;
1645 		}
1646 	}
1647 	return newsk;
1648 
1649 exit_overflow:
1650 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1651 exit_nonewsk:
1652 	dst_release(dst);
1653 exit:
1654 	tcp_listendrop(sk);
1655 	return NULL;
1656 put_and_exit:
1657 	newinet->inet_opt = NULL;
1658 	inet_csk_prepare_forced_close(newsk);
1659 	tcp_done(newsk);
1660 	goto exit;
1661 }
1662 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1663 
1664 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1665 {
1666 #ifdef CONFIG_SYN_COOKIES
1667 	const struct tcphdr *th = tcp_hdr(skb);
1668 
1669 	if (!th->syn)
1670 		sk = cookie_v4_check(sk, skb);
1671 #endif
1672 	return sk;
1673 }
1674 
1675 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1676 			 struct tcphdr *th, u32 *cookie)
1677 {
1678 	u16 mss = 0;
1679 #ifdef CONFIG_SYN_COOKIES
1680 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1681 				    &tcp_request_sock_ipv4_ops, sk, th);
1682 	if (mss) {
1683 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1684 		tcp_synq_overflow(sk);
1685 	}
1686 #endif
1687 	return mss;
1688 }
1689 
1690 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1691 							   u32));
1692 /* The socket must have it's spinlock held when we get
1693  * here, unless it is a TCP_LISTEN socket.
1694  *
1695  * We have a potential double-lock case here, so even when
1696  * doing backlog processing we use the BH locking scheme.
1697  * This is because we cannot sleep with the original spinlock
1698  * held.
1699  */
1700 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1701 {
1702 	enum skb_drop_reason reason;
1703 	struct sock *rsk;
1704 
1705 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1706 		struct dst_entry *dst;
1707 
1708 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1709 						lockdep_sock_is_held(sk));
1710 
1711 		sock_rps_save_rxhash(sk, skb);
1712 		sk_mark_napi_id(sk, skb);
1713 		if (dst) {
1714 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1715 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1716 					     dst, 0)) {
1717 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1718 				dst_release(dst);
1719 			}
1720 		}
1721 		tcp_rcv_established(sk, skb);
1722 		return 0;
1723 	}
1724 
1725 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1726 	if (tcp_checksum_complete(skb))
1727 		goto csum_err;
1728 
1729 	if (sk->sk_state == TCP_LISTEN) {
1730 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1731 
1732 		if (!nsk)
1733 			goto discard;
1734 		if (nsk != sk) {
1735 			if (tcp_child_process(sk, nsk, skb)) {
1736 				rsk = nsk;
1737 				goto reset;
1738 			}
1739 			return 0;
1740 		}
1741 	} else
1742 		sock_rps_save_rxhash(sk, skb);
1743 
1744 	if (tcp_rcv_state_process(sk, skb)) {
1745 		rsk = sk;
1746 		goto reset;
1747 	}
1748 	return 0;
1749 
1750 reset:
1751 	tcp_v4_send_reset(rsk, skb);
1752 discard:
1753 	kfree_skb_reason(skb, reason);
1754 	/* Be careful here. If this function gets more complicated and
1755 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1756 	 * might be destroyed here. This current version compiles correctly,
1757 	 * but you have been warned.
1758 	 */
1759 	return 0;
1760 
1761 csum_err:
1762 	reason = SKB_DROP_REASON_TCP_CSUM;
1763 	trace_tcp_bad_csum(skb);
1764 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1765 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1766 	goto discard;
1767 }
1768 EXPORT_SYMBOL(tcp_v4_do_rcv);
1769 
1770 int tcp_v4_early_demux(struct sk_buff *skb)
1771 {
1772 	struct net *net = dev_net(skb->dev);
1773 	const struct iphdr *iph;
1774 	const struct tcphdr *th;
1775 	struct sock *sk;
1776 
1777 	if (skb->pkt_type != PACKET_HOST)
1778 		return 0;
1779 
1780 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1781 		return 0;
1782 
1783 	iph = ip_hdr(skb);
1784 	th = tcp_hdr(skb);
1785 
1786 	if (th->doff < sizeof(struct tcphdr) / 4)
1787 		return 0;
1788 
1789 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1790 				       iph->saddr, th->source,
1791 				       iph->daddr, ntohs(th->dest),
1792 				       skb->skb_iif, inet_sdif(skb));
1793 	if (sk) {
1794 		skb->sk = sk;
1795 		skb->destructor = sock_edemux;
1796 		if (sk_fullsock(sk)) {
1797 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1798 
1799 			if (dst)
1800 				dst = dst_check(dst, 0);
1801 			if (dst &&
1802 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1803 				skb_dst_set_noref(skb, dst);
1804 		}
1805 	}
1806 	return 0;
1807 }
1808 
1809 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1810 		     enum skb_drop_reason *reason)
1811 {
1812 	u32 limit, tail_gso_size, tail_gso_segs;
1813 	struct skb_shared_info *shinfo;
1814 	const struct tcphdr *th;
1815 	struct tcphdr *thtail;
1816 	struct sk_buff *tail;
1817 	unsigned int hdrlen;
1818 	bool fragstolen;
1819 	u32 gso_segs;
1820 	u32 gso_size;
1821 	int delta;
1822 
1823 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1824 	 * we can fix skb->truesize to its real value to avoid future drops.
1825 	 * This is valid because skb is not yet charged to the socket.
1826 	 * It has been noticed pure SACK packets were sometimes dropped
1827 	 * (if cooked by drivers without copybreak feature).
1828 	 */
1829 	skb_condense(skb);
1830 
1831 	skb_dst_drop(skb);
1832 
1833 	if (unlikely(tcp_checksum_complete(skb))) {
1834 		bh_unlock_sock(sk);
1835 		trace_tcp_bad_csum(skb);
1836 		*reason = SKB_DROP_REASON_TCP_CSUM;
1837 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1838 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1839 		return true;
1840 	}
1841 
1842 	/* Attempt coalescing to last skb in backlog, even if we are
1843 	 * above the limits.
1844 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1845 	 */
1846 	th = (const struct tcphdr *)skb->data;
1847 	hdrlen = th->doff * 4;
1848 
1849 	tail = sk->sk_backlog.tail;
1850 	if (!tail)
1851 		goto no_coalesce;
1852 	thtail = (struct tcphdr *)tail->data;
1853 
1854 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1855 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1856 	    ((TCP_SKB_CB(tail)->tcp_flags |
1857 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1858 	    !((TCP_SKB_CB(tail)->tcp_flags &
1859 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1860 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1861 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1862 #ifdef CONFIG_TLS_DEVICE
1863 	    tail->decrypted != skb->decrypted ||
1864 #endif
1865 	    thtail->doff != th->doff ||
1866 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1867 		goto no_coalesce;
1868 
1869 	__skb_pull(skb, hdrlen);
1870 
1871 	shinfo = skb_shinfo(skb);
1872 	gso_size = shinfo->gso_size ?: skb->len;
1873 	gso_segs = shinfo->gso_segs ?: 1;
1874 
1875 	shinfo = skb_shinfo(tail);
1876 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1877 	tail_gso_segs = shinfo->gso_segs ?: 1;
1878 
1879 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1880 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1881 
1882 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1883 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1884 			thtail->window = th->window;
1885 		}
1886 
1887 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1888 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1889 		 * is not entered if we append a packet with a FIN.
1890 		 * SYN, RST, URG are not present.
1891 		 * ACK is set on both packets.
1892 		 * PSH : we do not really care in TCP stack,
1893 		 *       at least for 'GRO' packets.
1894 		 */
1895 		thtail->fin |= th->fin;
1896 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1897 
1898 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1899 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1900 			tail->tstamp = skb->tstamp;
1901 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1902 		}
1903 
1904 		/* Not as strict as GRO. We only need to carry mss max value */
1905 		shinfo->gso_size = max(gso_size, tail_gso_size);
1906 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1907 
1908 		sk->sk_backlog.len += delta;
1909 		__NET_INC_STATS(sock_net(sk),
1910 				LINUX_MIB_TCPBACKLOGCOALESCE);
1911 		kfree_skb_partial(skb, fragstolen);
1912 		return false;
1913 	}
1914 	__skb_push(skb, hdrlen);
1915 
1916 no_coalesce:
1917 	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1918 
1919 	/* Only socket owner can try to collapse/prune rx queues
1920 	 * to reduce memory overhead, so add a little headroom here.
1921 	 * Few sockets backlog are possibly concurrently non empty.
1922 	 */
1923 	limit += 64 * 1024;
1924 
1925 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1926 		bh_unlock_sock(sk);
1927 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1928 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1929 		return true;
1930 	}
1931 	return false;
1932 }
1933 EXPORT_SYMBOL(tcp_add_backlog);
1934 
1935 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1936 {
1937 	struct tcphdr *th = (struct tcphdr *)skb->data;
1938 
1939 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1940 }
1941 EXPORT_SYMBOL(tcp_filter);
1942 
1943 static void tcp_v4_restore_cb(struct sk_buff *skb)
1944 {
1945 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1946 		sizeof(struct inet_skb_parm));
1947 }
1948 
1949 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1950 			   const struct tcphdr *th)
1951 {
1952 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1953 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1954 	 */
1955 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1956 		sizeof(struct inet_skb_parm));
1957 	barrier();
1958 
1959 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1960 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1961 				    skb->len - th->doff * 4);
1962 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1963 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1964 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1965 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1966 	TCP_SKB_CB(skb)->sacked	 = 0;
1967 	TCP_SKB_CB(skb)->has_rxtstamp =
1968 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1969 }
1970 
1971 /*
1972  *	From tcp_input.c
1973  */
1974 
1975 int tcp_v4_rcv(struct sk_buff *skb)
1976 {
1977 	struct net *net = dev_net(skb->dev);
1978 	enum skb_drop_reason drop_reason;
1979 	int sdif = inet_sdif(skb);
1980 	int dif = inet_iif(skb);
1981 	const struct iphdr *iph;
1982 	const struct tcphdr *th;
1983 	bool refcounted;
1984 	struct sock *sk;
1985 	int ret;
1986 
1987 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1988 	if (skb->pkt_type != PACKET_HOST)
1989 		goto discard_it;
1990 
1991 	/* Count it even if it's bad */
1992 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1993 
1994 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1995 		goto discard_it;
1996 
1997 	th = (const struct tcphdr *)skb->data;
1998 
1999 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2000 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2001 		goto bad_packet;
2002 	}
2003 	if (!pskb_may_pull(skb, th->doff * 4))
2004 		goto discard_it;
2005 
2006 	/* An explanation is required here, I think.
2007 	 * Packet length and doff are validated by header prediction,
2008 	 * provided case of th->doff==0 is eliminated.
2009 	 * So, we defer the checks. */
2010 
2011 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2012 		goto csum_error;
2013 
2014 	th = (const struct tcphdr *)skb->data;
2015 	iph = ip_hdr(skb);
2016 lookup:
2017 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2018 			       skb, __tcp_hdrlen(th), th->source,
2019 			       th->dest, sdif, &refcounted);
2020 	if (!sk)
2021 		goto no_tcp_socket;
2022 
2023 process:
2024 	if (sk->sk_state == TCP_TIME_WAIT)
2025 		goto do_time_wait;
2026 
2027 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2028 		struct request_sock *req = inet_reqsk(sk);
2029 		bool req_stolen = false;
2030 		struct sock *nsk;
2031 
2032 		sk = req->rsk_listener;
2033 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2034 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2035 		else
2036 			drop_reason = tcp_inbound_md5_hash(sk, skb,
2037 						   &iph->saddr, &iph->daddr,
2038 						   AF_INET, dif, sdif);
2039 		if (unlikely(drop_reason)) {
2040 			sk_drops_add(sk, skb);
2041 			reqsk_put(req);
2042 			goto discard_it;
2043 		}
2044 		if (tcp_checksum_complete(skb)) {
2045 			reqsk_put(req);
2046 			goto csum_error;
2047 		}
2048 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2049 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2050 			if (!nsk) {
2051 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2052 				goto lookup;
2053 			}
2054 			sk = nsk;
2055 			/* reuseport_migrate_sock() has already held one sk_refcnt
2056 			 * before returning.
2057 			 */
2058 		} else {
2059 			/* We own a reference on the listener, increase it again
2060 			 * as we might lose it too soon.
2061 			 */
2062 			sock_hold(sk);
2063 		}
2064 		refcounted = true;
2065 		nsk = NULL;
2066 		if (!tcp_filter(sk, skb)) {
2067 			th = (const struct tcphdr *)skb->data;
2068 			iph = ip_hdr(skb);
2069 			tcp_v4_fill_cb(skb, iph, th);
2070 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2071 		} else {
2072 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2073 		}
2074 		if (!nsk) {
2075 			reqsk_put(req);
2076 			if (req_stolen) {
2077 				/* Another cpu got exclusive access to req
2078 				 * and created a full blown socket.
2079 				 * Try to feed this packet to this socket
2080 				 * instead of discarding it.
2081 				 */
2082 				tcp_v4_restore_cb(skb);
2083 				sock_put(sk);
2084 				goto lookup;
2085 			}
2086 			goto discard_and_relse;
2087 		}
2088 		nf_reset_ct(skb);
2089 		if (nsk == sk) {
2090 			reqsk_put(req);
2091 			tcp_v4_restore_cb(skb);
2092 		} else if (tcp_child_process(sk, nsk, skb)) {
2093 			tcp_v4_send_reset(nsk, skb);
2094 			goto discard_and_relse;
2095 		} else {
2096 			sock_put(sk);
2097 			return 0;
2098 		}
2099 	}
2100 
2101 	if (static_branch_unlikely(&ip4_min_ttl)) {
2102 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2103 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2104 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2105 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2106 			goto discard_and_relse;
2107 		}
2108 	}
2109 
2110 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2111 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2112 		goto discard_and_relse;
2113 	}
2114 
2115 	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2116 					   &iph->daddr, AF_INET, dif, sdif);
2117 	if (drop_reason)
2118 		goto discard_and_relse;
2119 
2120 	nf_reset_ct(skb);
2121 
2122 	if (tcp_filter(sk, skb)) {
2123 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2124 		goto discard_and_relse;
2125 	}
2126 	th = (const struct tcphdr *)skb->data;
2127 	iph = ip_hdr(skb);
2128 	tcp_v4_fill_cb(skb, iph, th);
2129 
2130 	skb->dev = NULL;
2131 
2132 	if (sk->sk_state == TCP_LISTEN) {
2133 		ret = tcp_v4_do_rcv(sk, skb);
2134 		goto put_and_return;
2135 	}
2136 
2137 	sk_incoming_cpu_update(sk);
2138 
2139 	bh_lock_sock_nested(sk);
2140 	tcp_segs_in(tcp_sk(sk), skb);
2141 	ret = 0;
2142 	if (!sock_owned_by_user(sk)) {
2143 		ret = tcp_v4_do_rcv(sk, skb);
2144 	} else {
2145 		if (tcp_add_backlog(sk, skb, &drop_reason))
2146 			goto discard_and_relse;
2147 	}
2148 	bh_unlock_sock(sk);
2149 
2150 put_and_return:
2151 	if (refcounted)
2152 		sock_put(sk);
2153 
2154 	return ret;
2155 
2156 no_tcp_socket:
2157 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2158 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2159 		goto discard_it;
2160 
2161 	tcp_v4_fill_cb(skb, iph, th);
2162 
2163 	if (tcp_checksum_complete(skb)) {
2164 csum_error:
2165 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2166 		trace_tcp_bad_csum(skb);
2167 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2168 bad_packet:
2169 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2170 	} else {
2171 		tcp_v4_send_reset(NULL, skb);
2172 	}
2173 
2174 discard_it:
2175 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2176 	/* Discard frame. */
2177 	kfree_skb_reason(skb, drop_reason);
2178 	return 0;
2179 
2180 discard_and_relse:
2181 	sk_drops_add(sk, skb);
2182 	if (refcounted)
2183 		sock_put(sk);
2184 	goto discard_it;
2185 
2186 do_time_wait:
2187 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2188 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2189 		inet_twsk_put(inet_twsk(sk));
2190 		goto discard_it;
2191 	}
2192 
2193 	tcp_v4_fill_cb(skb, iph, th);
2194 
2195 	if (tcp_checksum_complete(skb)) {
2196 		inet_twsk_put(inet_twsk(sk));
2197 		goto csum_error;
2198 	}
2199 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2200 	case TCP_TW_SYN: {
2201 		struct sock *sk2 = inet_lookup_listener(net,
2202 							net->ipv4.tcp_death_row.hashinfo,
2203 							skb, __tcp_hdrlen(th),
2204 							iph->saddr, th->source,
2205 							iph->daddr, th->dest,
2206 							inet_iif(skb),
2207 							sdif);
2208 		if (sk2) {
2209 			inet_twsk_deschedule_put(inet_twsk(sk));
2210 			sk = sk2;
2211 			tcp_v4_restore_cb(skb);
2212 			refcounted = false;
2213 			goto process;
2214 		}
2215 	}
2216 		/* to ACK */
2217 		fallthrough;
2218 	case TCP_TW_ACK:
2219 		tcp_v4_timewait_ack(sk, skb);
2220 		break;
2221 	case TCP_TW_RST:
2222 		tcp_v4_send_reset(sk, skb);
2223 		inet_twsk_deschedule_put(inet_twsk(sk));
2224 		goto discard_it;
2225 	case TCP_TW_SUCCESS:;
2226 	}
2227 	goto discard_it;
2228 }
2229 
2230 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2231 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2232 	.twsk_unique	= tcp_twsk_unique,
2233 	.twsk_destructor= tcp_twsk_destructor,
2234 };
2235 
2236 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2237 {
2238 	struct dst_entry *dst = skb_dst(skb);
2239 
2240 	if (dst && dst_hold_safe(dst)) {
2241 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2242 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2243 	}
2244 }
2245 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2246 
2247 const struct inet_connection_sock_af_ops ipv4_specific = {
2248 	.queue_xmit	   = ip_queue_xmit,
2249 	.send_check	   = tcp_v4_send_check,
2250 	.rebuild_header	   = inet_sk_rebuild_header,
2251 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2252 	.conn_request	   = tcp_v4_conn_request,
2253 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2254 	.net_header_len	   = sizeof(struct iphdr),
2255 	.setsockopt	   = ip_setsockopt,
2256 	.getsockopt	   = ip_getsockopt,
2257 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2258 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2259 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2260 };
2261 EXPORT_SYMBOL(ipv4_specific);
2262 
2263 #ifdef CONFIG_TCP_MD5SIG
2264 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2265 	.md5_lookup		= tcp_v4_md5_lookup,
2266 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2267 	.md5_parse		= tcp_v4_parse_md5_keys,
2268 };
2269 #endif
2270 
2271 /* NOTE: A lot of things set to zero explicitly by call to
2272  *       sk_alloc() so need not be done here.
2273  */
2274 static int tcp_v4_init_sock(struct sock *sk)
2275 {
2276 	struct inet_connection_sock *icsk = inet_csk(sk);
2277 
2278 	tcp_init_sock(sk);
2279 
2280 	icsk->icsk_af_ops = &ipv4_specific;
2281 
2282 #ifdef CONFIG_TCP_MD5SIG
2283 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2284 #endif
2285 
2286 	return 0;
2287 }
2288 
2289 void tcp_v4_destroy_sock(struct sock *sk)
2290 {
2291 	struct tcp_sock *tp = tcp_sk(sk);
2292 
2293 	trace_tcp_destroy_sock(sk);
2294 
2295 	tcp_clear_xmit_timers(sk);
2296 
2297 	tcp_cleanup_congestion_control(sk);
2298 
2299 	tcp_cleanup_ulp(sk);
2300 
2301 	/* Cleanup up the write buffer. */
2302 	tcp_write_queue_purge(sk);
2303 
2304 	/* Check if we want to disable active TFO */
2305 	tcp_fastopen_active_disable_ofo_check(sk);
2306 
2307 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2308 	skb_rbtree_purge(&tp->out_of_order_queue);
2309 
2310 #ifdef CONFIG_TCP_MD5SIG
2311 	/* Clean up the MD5 key list, if any */
2312 	if (tp->md5sig_info) {
2313 		tcp_clear_md5_list(sk);
2314 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2315 		tp->md5sig_info = NULL;
2316 		static_branch_slow_dec_deferred(&tcp_md5_needed);
2317 	}
2318 #endif
2319 
2320 	/* Clean up a referenced TCP bind bucket. */
2321 	if (inet_csk(sk)->icsk_bind_hash)
2322 		inet_put_port(sk);
2323 
2324 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2325 
2326 	/* If socket is aborted during connect operation */
2327 	tcp_free_fastopen_req(tp);
2328 	tcp_fastopen_destroy_cipher(sk);
2329 	tcp_saved_syn_free(tp);
2330 
2331 	sk_sockets_allocated_dec(sk);
2332 }
2333 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2334 
2335 #ifdef CONFIG_PROC_FS
2336 /* Proc filesystem TCP sock list dumping. */
2337 
2338 static unsigned short seq_file_family(const struct seq_file *seq);
2339 
2340 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2341 {
2342 	unsigned short family = seq_file_family(seq);
2343 
2344 	/* AF_UNSPEC is used as a match all */
2345 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2346 		net_eq(sock_net(sk), seq_file_net(seq)));
2347 }
2348 
2349 /* Find a non empty bucket (starting from st->bucket)
2350  * and return the first sk from it.
2351  */
2352 static void *listening_get_first(struct seq_file *seq)
2353 {
2354 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2355 	struct tcp_iter_state *st = seq->private;
2356 
2357 	st->offset = 0;
2358 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2359 		struct inet_listen_hashbucket *ilb2;
2360 		struct hlist_nulls_node *node;
2361 		struct sock *sk;
2362 
2363 		ilb2 = &hinfo->lhash2[st->bucket];
2364 		if (hlist_nulls_empty(&ilb2->nulls_head))
2365 			continue;
2366 
2367 		spin_lock(&ilb2->lock);
2368 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2369 			if (seq_sk_match(seq, sk))
2370 				return sk;
2371 		}
2372 		spin_unlock(&ilb2->lock);
2373 	}
2374 
2375 	return NULL;
2376 }
2377 
2378 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2379  * If "cur" is the last one in the st->bucket,
2380  * call listening_get_first() to return the first sk of the next
2381  * non empty bucket.
2382  */
2383 static void *listening_get_next(struct seq_file *seq, void *cur)
2384 {
2385 	struct tcp_iter_state *st = seq->private;
2386 	struct inet_listen_hashbucket *ilb2;
2387 	struct hlist_nulls_node *node;
2388 	struct inet_hashinfo *hinfo;
2389 	struct sock *sk = cur;
2390 
2391 	++st->num;
2392 	++st->offset;
2393 
2394 	sk = sk_nulls_next(sk);
2395 	sk_nulls_for_each_from(sk, node) {
2396 		if (seq_sk_match(seq, sk))
2397 			return sk;
2398 	}
2399 
2400 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2401 	ilb2 = &hinfo->lhash2[st->bucket];
2402 	spin_unlock(&ilb2->lock);
2403 	++st->bucket;
2404 	return listening_get_first(seq);
2405 }
2406 
2407 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2408 {
2409 	struct tcp_iter_state *st = seq->private;
2410 	void *rc;
2411 
2412 	st->bucket = 0;
2413 	st->offset = 0;
2414 	rc = listening_get_first(seq);
2415 
2416 	while (rc && *pos) {
2417 		rc = listening_get_next(seq, rc);
2418 		--*pos;
2419 	}
2420 	return rc;
2421 }
2422 
2423 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2424 				const struct tcp_iter_state *st)
2425 {
2426 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2427 }
2428 
2429 /*
2430  * Get first established socket starting from bucket given in st->bucket.
2431  * If st->bucket is zero, the very first socket in the hash is returned.
2432  */
2433 static void *established_get_first(struct seq_file *seq)
2434 {
2435 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2436 	struct tcp_iter_state *st = seq->private;
2437 
2438 	st->offset = 0;
2439 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2440 		struct sock *sk;
2441 		struct hlist_nulls_node *node;
2442 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2443 
2444 		/* Lockless fast path for the common case of empty buckets */
2445 		if (empty_bucket(hinfo, st))
2446 			continue;
2447 
2448 		spin_lock_bh(lock);
2449 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2450 			if (seq_sk_match(seq, sk))
2451 				return sk;
2452 		}
2453 		spin_unlock_bh(lock);
2454 	}
2455 
2456 	return NULL;
2457 }
2458 
2459 static void *established_get_next(struct seq_file *seq, void *cur)
2460 {
2461 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2462 	struct tcp_iter_state *st = seq->private;
2463 	struct hlist_nulls_node *node;
2464 	struct sock *sk = cur;
2465 
2466 	++st->num;
2467 	++st->offset;
2468 
2469 	sk = sk_nulls_next(sk);
2470 
2471 	sk_nulls_for_each_from(sk, node) {
2472 		if (seq_sk_match(seq, sk))
2473 			return sk;
2474 	}
2475 
2476 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2477 	++st->bucket;
2478 	return established_get_first(seq);
2479 }
2480 
2481 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2482 {
2483 	struct tcp_iter_state *st = seq->private;
2484 	void *rc;
2485 
2486 	st->bucket = 0;
2487 	rc = established_get_first(seq);
2488 
2489 	while (rc && pos) {
2490 		rc = established_get_next(seq, rc);
2491 		--pos;
2492 	}
2493 	return rc;
2494 }
2495 
2496 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2497 {
2498 	void *rc;
2499 	struct tcp_iter_state *st = seq->private;
2500 
2501 	st->state = TCP_SEQ_STATE_LISTENING;
2502 	rc	  = listening_get_idx(seq, &pos);
2503 
2504 	if (!rc) {
2505 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2506 		rc	  = established_get_idx(seq, pos);
2507 	}
2508 
2509 	return rc;
2510 }
2511 
2512 static void *tcp_seek_last_pos(struct seq_file *seq)
2513 {
2514 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2515 	struct tcp_iter_state *st = seq->private;
2516 	int bucket = st->bucket;
2517 	int offset = st->offset;
2518 	int orig_num = st->num;
2519 	void *rc = NULL;
2520 
2521 	switch (st->state) {
2522 	case TCP_SEQ_STATE_LISTENING:
2523 		if (st->bucket > hinfo->lhash2_mask)
2524 			break;
2525 		rc = listening_get_first(seq);
2526 		while (offset-- && rc && bucket == st->bucket)
2527 			rc = listening_get_next(seq, rc);
2528 		if (rc)
2529 			break;
2530 		st->bucket = 0;
2531 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2532 		fallthrough;
2533 	case TCP_SEQ_STATE_ESTABLISHED:
2534 		if (st->bucket > hinfo->ehash_mask)
2535 			break;
2536 		rc = established_get_first(seq);
2537 		while (offset-- && rc && bucket == st->bucket)
2538 			rc = established_get_next(seq, rc);
2539 	}
2540 
2541 	st->num = orig_num;
2542 
2543 	return rc;
2544 }
2545 
2546 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2547 {
2548 	struct tcp_iter_state *st = seq->private;
2549 	void *rc;
2550 
2551 	if (*pos && *pos == st->last_pos) {
2552 		rc = tcp_seek_last_pos(seq);
2553 		if (rc)
2554 			goto out;
2555 	}
2556 
2557 	st->state = TCP_SEQ_STATE_LISTENING;
2558 	st->num = 0;
2559 	st->bucket = 0;
2560 	st->offset = 0;
2561 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2562 
2563 out:
2564 	st->last_pos = *pos;
2565 	return rc;
2566 }
2567 EXPORT_SYMBOL(tcp_seq_start);
2568 
2569 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2570 {
2571 	struct tcp_iter_state *st = seq->private;
2572 	void *rc = NULL;
2573 
2574 	if (v == SEQ_START_TOKEN) {
2575 		rc = tcp_get_idx(seq, 0);
2576 		goto out;
2577 	}
2578 
2579 	switch (st->state) {
2580 	case TCP_SEQ_STATE_LISTENING:
2581 		rc = listening_get_next(seq, v);
2582 		if (!rc) {
2583 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2584 			st->bucket = 0;
2585 			st->offset = 0;
2586 			rc	  = established_get_first(seq);
2587 		}
2588 		break;
2589 	case TCP_SEQ_STATE_ESTABLISHED:
2590 		rc = established_get_next(seq, v);
2591 		break;
2592 	}
2593 out:
2594 	++*pos;
2595 	st->last_pos = *pos;
2596 	return rc;
2597 }
2598 EXPORT_SYMBOL(tcp_seq_next);
2599 
2600 void tcp_seq_stop(struct seq_file *seq, void *v)
2601 {
2602 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2603 	struct tcp_iter_state *st = seq->private;
2604 
2605 	switch (st->state) {
2606 	case TCP_SEQ_STATE_LISTENING:
2607 		if (v != SEQ_START_TOKEN)
2608 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2609 		break;
2610 	case TCP_SEQ_STATE_ESTABLISHED:
2611 		if (v)
2612 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2613 		break;
2614 	}
2615 }
2616 EXPORT_SYMBOL(tcp_seq_stop);
2617 
2618 static void get_openreq4(const struct request_sock *req,
2619 			 struct seq_file *f, int i)
2620 {
2621 	const struct inet_request_sock *ireq = inet_rsk(req);
2622 	long delta = req->rsk_timer.expires - jiffies;
2623 
2624 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2625 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2626 		i,
2627 		ireq->ir_loc_addr,
2628 		ireq->ir_num,
2629 		ireq->ir_rmt_addr,
2630 		ntohs(ireq->ir_rmt_port),
2631 		TCP_SYN_RECV,
2632 		0, 0, /* could print option size, but that is af dependent. */
2633 		1,    /* timers active (only the expire timer) */
2634 		jiffies_delta_to_clock_t(delta),
2635 		req->num_timeout,
2636 		from_kuid_munged(seq_user_ns(f),
2637 				 sock_i_uid(req->rsk_listener)),
2638 		0,  /* non standard timer */
2639 		0, /* open_requests have no inode */
2640 		0,
2641 		req);
2642 }
2643 
2644 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2645 {
2646 	int timer_active;
2647 	unsigned long timer_expires;
2648 	const struct tcp_sock *tp = tcp_sk(sk);
2649 	const struct inet_connection_sock *icsk = inet_csk(sk);
2650 	const struct inet_sock *inet = inet_sk(sk);
2651 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2652 	__be32 dest = inet->inet_daddr;
2653 	__be32 src = inet->inet_rcv_saddr;
2654 	__u16 destp = ntohs(inet->inet_dport);
2655 	__u16 srcp = ntohs(inet->inet_sport);
2656 	int rx_queue;
2657 	int state;
2658 
2659 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2660 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2661 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2662 		timer_active	= 1;
2663 		timer_expires	= icsk->icsk_timeout;
2664 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2665 		timer_active	= 4;
2666 		timer_expires	= icsk->icsk_timeout;
2667 	} else if (timer_pending(&sk->sk_timer)) {
2668 		timer_active	= 2;
2669 		timer_expires	= sk->sk_timer.expires;
2670 	} else {
2671 		timer_active	= 0;
2672 		timer_expires = jiffies;
2673 	}
2674 
2675 	state = inet_sk_state_load(sk);
2676 	if (state == TCP_LISTEN)
2677 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2678 	else
2679 		/* Because we don't lock the socket,
2680 		 * we might find a transient negative value.
2681 		 */
2682 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2683 				      READ_ONCE(tp->copied_seq), 0);
2684 
2685 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2686 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2687 		i, src, srcp, dest, destp, state,
2688 		READ_ONCE(tp->write_seq) - tp->snd_una,
2689 		rx_queue,
2690 		timer_active,
2691 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2692 		icsk->icsk_retransmits,
2693 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2694 		icsk->icsk_probes_out,
2695 		sock_i_ino(sk),
2696 		refcount_read(&sk->sk_refcnt), sk,
2697 		jiffies_to_clock_t(icsk->icsk_rto),
2698 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2699 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2700 		tcp_snd_cwnd(tp),
2701 		state == TCP_LISTEN ?
2702 		    fastopenq->max_qlen :
2703 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2704 }
2705 
2706 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2707 			       struct seq_file *f, int i)
2708 {
2709 	long delta = tw->tw_timer.expires - jiffies;
2710 	__be32 dest, src;
2711 	__u16 destp, srcp;
2712 
2713 	dest  = tw->tw_daddr;
2714 	src   = tw->tw_rcv_saddr;
2715 	destp = ntohs(tw->tw_dport);
2716 	srcp  = ntohs(tw->tw_sport);
2717 
2718 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2719 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2720 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2721 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2722 		refcount_read(&tw->tw_refcnt), tw);
2723 }
2724 
2725 #define TMPSZ 150
2726 
2727 static int tcp4_seq_show(struct seq_file *seq, void *v)
2728 {
2729 	struct tcp_iter_state *st;
2730 	struct sock *sk = v;
2731 
2732 	seq_setwidth(seq, TMPSZ - 1);
2733 	if (v == SEQ_START_TOKEN) {
2734 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2735 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2736 			   "inode");
2737 		goto out;
2738 	}
2739 	st = seq->private;
2740 
2741 	if (sk->sk_state == TCP_TIME_WAIT)
2742 		get_timewait4_sock(v, seq, st->num);
2743 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2744 		get_openreq4(v, seq, st->num);
2745 	else
2746 		get_tcp4_sock(v, seq, st->num);
2747 out:
2748 	seq_pad(seq, '\n');
2749 	return 0;
2750 }
2751 
2752 #ifdef CONFIG_BPF_SYSCALL
2753 struct bpf_tcp_iter_state {
2754 	struct tcp_iter_state state;
2755 	unsigned int cur_sk;
2756 	unsigned int end_sk;
2757 	unsigned int max_sk;
2758 	struct sock **batch;
2759 	bool st_bucket_done;
2760 };
2761 
2762 struct bpf_iter__tcp {
2763 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2764 	__bpf_md_ptr(struct sock_common *, sk_common);
2765 	uid_t uid __aligned(8);
2766 };
2767 
2768 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2769 			     struct sock_common *sk_common, uid_t uid)
2770 {
2771 	struct bpf_iter__tcp ctx;
2772 
2773 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2774 	ctx.meta = meta;
2775 	ctx.sk_common = sk_common;
2776 	ctx.uid = uid;
2777 	return bpf_iter_run_prog(prog, &ctx);
2778 }
2779 
2780 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2781 {
2782 	while (iter->cur_sk < iter->end_sk)
2783 		sock_put(iter->batch[iter->cur_sk++]);
2784 }
2785 
2786 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2787 				      unsigned int new_batch_sz)
2788 {
2789 	struct sock **new_batch;
2790 
2791 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2792 			     GFP_USER | __GFP_NOWARN);
2793 	if (!new_batch)
2794 		return -ENOMEM;
2795 
2796 	bpf_iter_tcp_put_batch(iter);
2797 	kvfree(iter->batch);
2798 	iter->batch = new_batch;
2799 	iter->max_sk = new_batch_sz;
2800 
2801 	return 0;
2802 }
2803 
2804 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2805 						 struct sock *start_sk)
2806 {
2807 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2808 	struct bpf_tcp_iter_state *iter = seq->private;
2809 	struct tcp_iter_state *st = &iter->state;
2810 	struct hlist_nulls_node *node;
2811 	unsigned int expected = 1;
2812 	struct sock *sk;
2813 
2814 	sock_hold(start_sk);
2815 	iter->batch[iter->end_sk++] = start_sk;
2816 
2817 	sk = sk_nulls_next(start_sk);
2818 	sk_nulls_for_each_from(sk, node) {
2819 		if (seq_sk_match(seq, sk)) {
2820 			if (iter->end_sk < iter->max_sk) {
2821 				sock_hold(sk);
2822 				iter->batch[iter->end_sk++] = sk;
2823 			}
2824 			expected++;
2825 		}
2826 	}
2827 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2828 
2829 	return expected;
2830 }
2831 
2832 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2833 						   struct sock *start_sk)
2834 {
2835 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2836 	struct bpf_tcp_iter_state *iter = seq->private;
2837 	struct tcp_iter_state *st = &iter->state;
2838 	struct hlist_nulls_node *node;
2839 	unsigned int expected = 1;
2840 	struct sock *sk;
2841 
2842 	sock_hold(start_sk);
2843 	iter->batch[iter->end_sk++] = start_sk;
2844 
2845 	sk = sk_nulls_next(start_sk);
2846 	sk_nulls_for_each_from(sk, node) {
2847 		if (seq_sk_match(seq, sk)) {
2848 			if (iter->end_sk < iter->max_sk) {
2849 				sock_hold(sk);
2850 				iter->batch[iter->end_sk++] = sk;
2851 			}
2852 			expected++;
2853 		}
2854 	}
2855 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2856 
2857 	return expected;
2858 }
2859 
2860 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2861 {
2862 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2863 	struct bpf_tcp_iter_state *iter = seq->private;
2864 	struct tcp_iter_state *st = &iter->state;
2865 	unsigned int expected;
2866 	bool resized = false;
2867 	struct sock *sk;
2868 
2869 	/* The st->bucket is done.  Directly advance to the next
2870 	 * bucket instead of having the tcp_seek_last_pos() to skip
2871 	 * one by one in the current bucket and eventually find out
2872 	 * it has to advance to the next bucket.
2873 	 */
2874 	if (iter->st_bucket_done) {
2875 		st->offset = 0;
2876 		st->bucket++;
2877 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2878 		    st->bucket > hinfo->lhash2_mask) {
2879 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2880 			st->bucket = 0;
2881 		}
2882 	}
2883 
2884 again:
2885 	/* Get a new batch */
2886 	iter->cur_sk = 0;
2887 	iter->end_sk = 0;
2888 	iter->st_bucket_done = false;
2889 
2890 	sk = tcp_seek_last_pos(seq);
2891 	if (!sk)
2892 		return NULL; /* Done */
2893 
2894 	if (st->state == TCP_SEQ_STATE_LISTENING)
2895 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2896 	else
2897 		expected = bpf_iter_tcp_established_batch(seq, sk);
2898 
2899 	if (iter->end_sk == expected) {
2900 		iter->st_bucket_done = true;
2901 		return sk;
2902 	}
2903 
2904 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2905 		resized = true;
2906 		goto again;
2907 	}
2908 
2909 	return sk;
2910 }
2911 
2912 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2913 {
2914 	/* bpf iter does not support lseek, so it always
2915 	 * continue from where it was stop()-ped.
2916 	 */
2917 	if (*pos)
2918 		return bpf_iter_tcp_batch(seq);
2919 
2920 	return SEQ_START_TOKEN;
2921 }
2922 
2923 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2924 {
2925 	struct bpf_tcp_iter_state *iter = seq->private;
2926 	struct tcp_iter_state *st = &iter->state;
2927 	struct sock *sk;
2928 
2929 	/* Whenever seq_next() is called, the iter->cur_sk is
2930 	 * done with seq_show(), so advance to the next sk in
2931 	 * the batch.
2932 	 */
2933 	if (iter->cur_sk < iter->end_sk) {
2934 		/* Keeping st->num consistent in tcp_iter_state.
2935 		 * bpf_iter_tcp does not use st->num.
2936 		 * meta.seq_num is used instead.
2937 		 */
2938 		st->num++;
2939 		/* Move st->offset to the next sk in the bucket such that
2940 		 * the future start() will resume at st->offset in
2941 		 * st->bucket.  See tcp_seek_last_pos().
2942 		 */
2943 		st->offset++;
2944 		sock_put(iter->batch[iter->cur_sk++]);
2945 	}
2946 
2947 	if (iter->cur_sk < iter->end_sk)
2948 		sk = iter->batch[iter->cur_sk];
2949 	else
2950 		sk = bpf_iter_tcp_batch(seq);
2951 
2952 	++*pos;
2953 	/* Keeping st->last_pos consistent in tcp_iter_state.
2954 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2955 	 */
2956 	st->last_pos = *pos;
2957 	return sk;
2958 }
2959 
2960 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2961 {
2962 	struct bpf_iter_meta meta;
2963 	struct bpf_prog *prog;
2964 	struct sock *sk = v;
2965 	bool slow;
2966 	uid_t uid;
2967 	int ret;
2968 
2969 	if (v == SEQ_START_TOKEN)
2970 		return 0;
2971 
2972 	if (sk_fullsock(sk))
2973 		slow = lock_sock_fast(sk);
2974 
2975 	if (unlikely(sk_unhashed(sk))) {
2976 		ret = SEQ_SKIP;
2977 		goto unlock;
2978 	}
2979 
2980 	if (sk->sk_state == TCP_TIME_WAIT) {
2981 		uid = 0;
2982 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2983 		const struct request_sock *req = v;
2984 
2985 		uid = from_kuid_munged(seq_user_ns(seq),
2986 				       sock_i_uid(req->rsk_listener));
2987 	} else {
2988 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2989 	}
2990 
2991 	meta.seq = seq;
2992 	prog = bpf_iter_get_info(&meta, false);
2993 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
2994 
2995 unlock:
2996 	if (sk_fullsock(sk))
2997 		unlock_sock_fast(sk, slow);
2998 	return ret;
2999 
3000 }
3001 
3002 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3003 {
3004 	struct bpf_tcp_iter_state *iter = seq->private;
3005 	struct bpf_iter_meta meta;
3006 	struct bpf_prog *prog;
3007 
3008 	if (!v) {
3009 		meta.seq = seq;
3010 		prog = bpf_iter_get_info(&meta, true);
3011 		if (prog)
3012 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3013 	}
3014 
3015 	if (iter->cur_sk < iter->end_sk) {
3016 		bpf_iter_tcp_put_batch(iter);
3017 		iter->st_bucket_done = false;
3018 	}
3019 }
3020 
3021 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3022 	.show		= bpf_iter_tcp_seq_show,
3023 	.start		= bpf_iter_tcp_seq_start,
3024 	.next		= bpf_iter_tcp_seq_next,
3025 	.stop		= bpf_iter_tcp_seq_stop,
3026 };
3027 #endif
3028 static unsigned short seq_file_family(const struct seq_file *seq)
3029 {
3030 	const struct tcp_seq_afinfo *afinfo;
3031 
3032 #ifdef CONFIG_BPF_SYSCALL
3033 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3034 	if (seq->op == &bpf_iter_tcp_seq_ops)
3035 		return AF_UNSPEC;
3036 #endif
3037 
3038 	/* Iterated from proc fs */
3039 	afinfo = pde_data(file_inode(seq->file));
3040 	return afinfo->family;
3041 }
3042 
3043 static const struct seq_operations tcp4_seq_ops = {
3044 	.show		= tcp4_seq_show,
3045 	.start		= tcp_seq_start,
3046 	.next		= tcp_seq_next,
3047 	.stop		= tcp_seq_stop,
3048 };
3049 
3050 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3051 	.family		= AF_INET,
3052 };
3053 
3054 static int __net_init tcp4_proc_init_net(struct net *net)
3055 {
3056 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3057 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3058 		return -ENOMEM;
3059 	return 0;
3060 }
3061 
3062 static void __net_exit tcp4_proc_exit_net(struct net *net)
3063 {
3064 	remove_proc_entry("tcp", net->proc_net);
3065 }
3066 
3067 static struct pernet_operations tcp4_net_ops = {
3068 	.init = tcp4_proc_init_net,
3069 	.exit = tcp4_proc_exit_net,
3070 };
3071 
3072 int __init tcp4_proc_init(void)
3073 {
3074 	return register_pernet_subsys(&tcp4_net_ops);
3075 }
3076 
3077 void tcp4_proc_exit(void)
3078 {
3079 	unregister_pernet_subsys(&tcp4_net_ops);
3080 }
3081 #endif /* CONFIG_PROC_FS */
3082 
3083 /* @wake is one when sk_stream_write_space() calls us.
3084  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3085  * This mimics the strategy used in sock_def_write_space().
3086  */
3087 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3088 {
3089 	const struct tcp_sock *tp = tcp_sk(sk);
3090 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3091 			    READ_ONCE(tp->snd_nxt);
3092 
3093 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3094 }
3095 EXPORT_SYMBOL(tcp_stream_memory_free);
3096 
3097 struct proto tcp_prot = {
3098 	.name			= "TCP",
3099 	.owner			= THIS_MODULE,
3100 	.close			= tcp_close,
3101 	.pre_connect		= tcp_v4_pre_connect,
3102 	.connect		= tcp_v4_connect,
3103 	.disconnect		= tcp_disconnect,
3104 	.accept			= inet_csk_accept,
3105 	.ioctl			= tcp_ioctl,
3106 	.init			= tcp_v4_init_sock,
3107 	.destroy		= tcp_v4_destroy_sock,
3108 	.shutdown		= tcp_shutdown,
3109 	.setsockopt		= tcp_setsockopt,
3110 	.getsockopt		= tcp_getsockopt,
3111 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3112 	.keepalive		= tcp_set_keepalive,
3113 	.recvmsg		= tcp_recvmsg,
3114 	.sendmsg		= tcp_sendmsg,
3115 	.sendpage		= tcp_sendpage,
3116 	.backlog_rcv		= tcp_v4_do_rcv,
3117 	.release_cb		= tcp_release_cb,
3118 	.hash			= inet_hash,
3119 	.unhash			= inet_unhash,
3120 	.get_port		= inet_csk_get_port,
3121 	.put_port		= inet_put_port,
3122 #ifdef CONFIG_BPF_SYSCALL
3123 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3124 #endif
3125 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3126 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3127 	.stream_memory_free	= tcp_stream_memory_free,
3128 	.sockets_allocated	= &tcp_sockets_allocated,
3129 	.orphan_count		= &tcp_orphan_count,
3130 
3131 	.memory_allocated	= &tcp_memory_allocated,
3132 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3133 
3134 	.memory_pressure	= &tcp_memory_pressure,
3135 	.sysctl_mem		= sysctl_tcp_mem,
3136 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3137 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3138 	.max_header		= MAX_TCP_HEADER,
3139 	.obj_size		= sizeof(struct tcp_sock),
3140 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3141 	.twsk_prot		= &tcp_timewait_sock_ops,
3142 	.rsk_prot		= &tcp_request_sock_ops,
3143 	.h.hashinfo		= NULL,
3144 	.no_autobind		= true,
3145 	.diag_destroy		= tcp_abort,
3146 };
3147 EXPORT_SYMBOL(tcp_prot);
3148 
3149 static void __net_exit tcp_sk_exit(struct net *net)
3150 {
3151 	if (net->ipv4.tcp_congestion_control)
3152 		bpf_module_put(net->ipv4.tcp_congestion_control,
3153 			       net->ipv4.tcp_congestion_control->owner);
3154 }
3155 
3156 static void __net_init tcp_set_hashinfo(struct net *net)
3157 {
3158 	struct inet_hashinfo *hinfo;
3159 	unsigned int ehash_entries;
3160 	struct net *old_net;
3161 
3162 	if (net_eq(net, &init_net))
3163 		goto fallback;
3164 
3165 	old_net = current->nsproxy->net_ns;
3166 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3167 	if (!ehash_entries)
3168 		goto fallback;
3169 
3170 	ehash_entries = roundup_pow_of_two(ehash_entries);
3171 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3172 	if (!hinfo) {
3173 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3174 			"for a netns, fallback to the global one\n",
3175 			ehash_entries);
3176 fallback:
3177 		hinfo = &tcp_hashinfo;
3178 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3179 	}
3180 
3181 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3182 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3183 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3184 }
3185 
3186 static int __net_init tcp_sk_init(struct net *net)
3187 {
3188 	net->ipv4.sysctl_tcp_ecn = 2;
3189 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3190 
3191 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3192 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3193 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3194 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3195 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3196 
3197 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3198 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3199 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3200 
3201 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3202 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3203 	net->ipv4.sysctl_tcp_syncookies = 1;
3204 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3205 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3206 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3207 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3208 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3209 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3210 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3211 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3212 
3213 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3214 	tcp_set_hashinfo(net);
3215 
3216 	net->ipv4.sysctl_tcp_sack = 1;
3217 	net->ipv4.sysctl_tcp_window_scaling = 1;
3218 	net->ipv4.sysctl_tcp_timestamps = 1;
3219 	net->ipv4.sysctl_tcp_early_retrans = 3;
3220 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3221 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3222 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3223 	net->ipv4.sysctl_tcp_max_reordering = 300;
3224 	net->ipv4.sysctl_tcp_dsack = 1;
3225 	net->ipv4.sysctl_tcp_app_win = 31;
3226 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3227 	net->ipv4.sysctl_tcp_frto = 2;
3228 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3229 	/* This limits the percentage of the congestion window which we
3230 	 * will allow a single TSO frame to consume.  Building TSO frames
3231 	 * which are too large can cause TCP streams to be bursty.
3232 	 */
3233 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3234 	/* Default TSQ limit of 16 TSO segments */
3235 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3236 
3237 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3238 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3239 
3240 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3241 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3242 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3243 	net->ipv4.sysctl_tcp_autocorking = 1;
3244 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3245 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3246 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3247 	if (net != &init_net) {
3248 		memcpy(net->ipv4.sysctl_tcp_rmem,
3249 		       init_net.ipv4.sysctl_tcp_rmem,
3250 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3251 		memcpy(net->ipv4.sysctl_tcp_wmem,
3252 		       init_net.ipv4.sysctl_tcp_wmem,
3253 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3254 	}
3255 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3256 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3257 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3258 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3259 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3260 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3261 
3262 	/* Set default values for PLB */
3263 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3264 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3265 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3266 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3267 	/* Default congestion threshold for PLB to mark a round is 50% */
3268 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3269 
3270 	/* Reno is always built in */
3271 	if (!net_eq(net, &init_net) &&
3272 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3273 			       init_net.ipv4.tcp_congestion_control->owner))
3274 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3275 	else
3276 		net->ipv4.tcp_congestion_control = &tcp_reno;
3277 
3278 	return 0;
3279 }
3280 
3281 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3282 {
3283 	struct net *net;
3284 
3285 	tcp_twsk_purge(net_exit_list, AF_INET);
3286 
3287 	list_for_each_entry(net, net_exit_list, exit_list) {
3288 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3289 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3290 		tcp_fastopen_ctx_destroy(net);
3291 	}
3292 }
3293 
3294 static struct pernet_operations __net_initdata tcp_sk_ops = {
3295        .init	   = tcp_sk_init,
3296        .exit	   = tcp_sk_exit,
3297        .exit_batch = tcp_sk_exit_batch,
3298 };
3299 
3300 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3301 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3302 		     struct sock_common *sk_common, uid_t uid)
3303 
3304 #define INIT_BATCH_SZ 16
3305 
3306 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3307 {
3308 	struct bpf_tcp_iter_state *iter = priv_data;
3309 	int err;
3310 
3311 	err = bpf_iter_init_seq_net(priv_data, aux);
3312 	if (err)
3313 		return err;
3314 
3315 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3316 	if (err) {
3317 		bpf_iter_fini_seq_net(priv_data);
3318 		return err;
3319 	}
3320 
3321 	return 0;
3322 }
3323 
3324 static void bpf_iter_fini_tcp(void *priv_data)
3325 {
3326 	struct bpf_tcp_iter_state *iter = priv_data;
3327 
3328 	bpf_iter_fini_seq_net(priv_data);
3329 	kvfree(iter->batch);
3330 }
3331 
3332 static const struct bpf_iter_seq_info tcp_seq_info = {
3333 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3334 	.init_seq_private	= bpf_iter_init_tcp,
3335 	.fini_seq_private	= bpf_iter_fini_tcp,
3336 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3337 };
3338 
3339 static const struct bpf_func_proto *
3340 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3341 			    const struct bpf_prog *prog)
3342 {
3343 	switch (func_id) {
3344 	case BPF_FUNC_setsockopt:
3345 		return &bpf_sk_setsockopt_proto;
3346 	case BPF_FUNC_getsockopt:
3347 		return &bpf_sk_getsockopt_proto;
3348 	default:
3349 		return NULL;
3350 	}
3351 }
3352 
3353 static struct bpf_iter_reg tcp_reg_info = {
3354 	.target			= "tcp",
3355 	.ctx_arg_info_size	= 1,
3356 	.ctx_arg_info		= {
3357 		{ offsetof(struct bpf_iter__tcp, sk_common),
3358 		  PTR_TO_BTF_ID_OR_NULL },
3359 	},
3360 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3361 	.seq_info		= &tcp_seq_info,
3362 };
3363 
3364 static void __init bpf_iter_register(void)
3365 {
3366 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3367 	if (bpf_iter_reg_target(&tcp_reg_info))
3368 		pr_warn("Warning: could not register bpf iterator tcp\n");
3369 }
3370 
3371 #endif
3372 
3373 void __init tcp_v4_init(void)
3374 {
3375 	int cpu, res;
3376 
3377 	for_each_possible_cpu(cpu) {
3378 		struct sock *sk;
3379 
3380 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3381 					   IPPROTO_TCP, &init_net);
3382 		if (res)
3383 			panic("Failed to create the TCP control socket.\n");
3384 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3385 
3386 		/* Please enforce IP_DF and IPID==0 for RST and
3387 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3388 		 */
3389 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3390 
3391 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3392 	}
3393 	if (register_pernet_subsys(&tcp_sk_ops))
3394 		panic("Failed to create the TCP control socket.\n");
3395 
3396 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3397 	bpf_iter_register();
3398 #endif
3399 }
3400