1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/inet.h> 79 #include <linux/ipv6.h> 80 #include <linux/stddef.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 #include <linux/inetdevice.h> 84 85 #include <crypto/hash.h> 86 #include <linux/scatterlist.h> 87 88 #include <trace/events/tcp.h> 89 90 #ifdef CONFIG_TCP_MD5SIG 91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 92 __be32 daddr, __be32 saddr, const struct tcphdr *th); 93 #endif 94 95 struct inet_hashinfo tcp_hashinfo; 96 EXPORT_SYMBOL(tcp_hashinfo); 97 98 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 99 { 100 return secure_tcp_seq(ip_hdr(skb)->daddr, 101 ip_hdr(skb)->saddr, 102 tcp_hdr(skb)->dest, 103 tcp_hdr(skb)->source); 104 } 105 106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 107 { 108 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 109 } 110 111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 112 { 113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 114 struct tcp_sock *tp = tcp_sk(sk); 115 116 /* With PAWS, it is safe from the viewpoint 117 of data integrity. Even without PAWS it is safe provided sequence 118 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 119 120 Actually, the idea is close to VJ's one, only timestamp cache is 121 held not per host, but per port pair and TW bucket is used as state 122 holder. 123 124 If TW bucket has been already destroyed we fall back to VJ's scheme 125 and use initial timestamp retrieved from peer table. 126 */ 127 if (tcptw->tw_ts_recent_stamp && 128 (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse && 129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 131 if (tp->write_seq == 0) 132 tp->write_seq = 1; 133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 135 sock_hold(sktw); 136 return 1; 137 } 138 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 142 143 /* This will initiate an outgoing connection. */ 144 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 145 { 146 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 147 struct inet_sock *inet = inet_sk(sk); 148 struct tcp_sock *tp = tcp_sk(sk); 149 __be16 orig_sport, orig_dport; 150 __be32 daddr, nexthop; 151 struct flowi4 *fl4; 152 struct rtable *rt; 153 int err; 154 struct ip_options_rcu *inet_opt; 155 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 156 157 if (addr_len < sizeof(struct sockaddr_in)) 158 return -EINVAL; 159 160 if (usin->sin_family != AF_INET) 161 return -EAFNOSUPPORT; 162 163 nexthop = daddr = usin->sin_addr.s_addr; 164 inet_opt = rcu_dereference_protected(inet->inet_opt, 165 lockdep_sock_is_held(sk)); 166 if (inet_opt && inet_opt->opt.srr) { 167 if (!daddr) 168 return -EINVAL; 169 nexthop = inet_opt->opt.faddr; 170 } 171 172 orig_sport = inet->inet_sport; 173 orig_dport = usin->sin_port; 174 fl4 = &inet->cork.fl.u.ip4; 175 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 176 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 177 IPPROTO_TCP, 178 orig_sport, orig_dport, sk); 179 if (IS_ERR(rt)) { 180 err = PTR_ERR(rt); 181 if (err == -ENETUNREACH) 182 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 183 return err; 184 } 185 186 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 187 ip_rt_put(rt); 188 return -ENETUNREACH; 189 } 190 191 if (!inet_opt || !inet_opt->opt.srr) 192 daddr = fl4->daddr; 193 194 if (!inet->inet_saddr) 195 inet->inet_saddr = fl4->saddr; 196 sk_rcv_saddr_set(sk, inet->inet_saddr); 197 198 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 199 /* Reset inherited state */ 200 tp->rx_opt.ts_recent = 0; 201 tp->rx_opt.ts_recent_stamp = 0; 202 if (likely(!tp->repair)) 203 tp->write_seq = 0; 204 } 205 206 inet->inet_dport = usin->sin_port; 207 sk_daddr_set(sk, daddr); 208 209 inet_csk(sk)->icsk_ext_hdr_len = 0; 210 if (inet_opt) 211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 212 213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 214 215 /* Socket identity is still unknown (sport may be zero). 216 * However we set state to SYN-SENT and not releasing socket 217 * lock select source port, enter ourselves into the hash tables and 218 * complete initialization after this. 219 */ 220 tcp_set_state(sk, TCP_SYN_SENT); 221 err = inet_hash_connect(tcp_death_row, sk); 222 if (err) 223 goto failure; 224 225 sk_set_txhash(sk); 226 227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 228 inet->inet_sport, inet->inet_dport, sk); 229 if (IS_ERR(rt)) { 230 err = PTR_ERR(rt); 231 rt = NULL; 232 goto failure; 233 } 234 /* OK, now commit destination to socket. */ 235 sk->sk_gso_type = SKB_GSO_TCPV4; 236 sk_setup_caps(sk, &rt->dst); 237 rt = NULL; 238 239 if (likely(!tp->repair)) { 240 if (!tp->write_seq) 241 tp->write_seq = secure_tcp_seq(inet->inet_saddr, 242 inet->inet_daddr, 243 inet->inet_sport, 244 usin->sin_port); 245 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 246 inet->inet_saddr, 247 inet->inet_daddr); 248 } 249 250 inet->inet_id = tp->write_seq ^ jiffies; 251 252 if (tcp_fastopen_defer_connect(sk, &err)) 253 return err; 254 if (err) 255 goto failure; 256 257 err = tcp_connect(sk); 258 259 if (err) 260 goto failure; 261 262 return 0; 263 264 failure: 265 /* 266 * This unhashes the socket and releases the local port, 267 * if necessary. 268 */ 269 tcp_set_state(sk, TCP_CLOSE); 270 ip_rt_put(rt); 271 sk->sk_route_caps = 0; 272 inet->inet_dport = 0; 273 return err; 274 } 275 EXPORT_SYMBOL(tcp_v4_connect); 276 277 /* 278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 279 * It can be called through tcp_release_cb() if socket was owned by user 280 * at the time tcp_v4_err() was called to handle ICMP message. 281 */ 282 void tcp_v4_mtu_reduced(struct sock *sk) 283 { 284 struct inet_sock *inet = inet_sk(sk); 285 struct dst_entry *dst; 286 u32 mtu; 287 288 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 289 return; 290 mtu = tcp_sk(sk)->mtu_info; 291 dst = inet_csk_update_pmtu(sk, mtu); 292 if (!dst) 293 return; 294 295 /* Something is about to be wrong... Remember soft error 296 * for the case, if this connection will not able to recover. 297 */ 298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 299 sk->sk_err_soft = EMSGSIZE; 300 301 mtu = dst_mtu(dst); 302 303 if (inet->pmtudisc != IP_PMTUDISC_DONT && 304 ip_sk_accept_pmtu(sk) && 305 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 306 tcp_sync_mss(sk, mtu); 307 308 /* Resend the TCP packet because it's 309 * clear that the old packet has been 310 * dropped. This is the new "fast" path mtu 311 * discovery. 312 */ 313 tcp_simple_retransmit(sk); 314 } /* else let the usual retransmit timer handle it */ 315 } 316 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 317 318 static void do_redirect(struct sk_buff *skb, struct sock *sk) 319 { 320 struct dst_entry *dst = __sk_dst_check(sk, 0); 321 322 if (dst) 323 dst->ops->redirect(dst, sk, skb); 324 } 325 326 327 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 328 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 329 { 330 struct request_sock *req = inet_reqsk(sk); 331 struct net *net = sock_net(sk); 332 333 /* ICMPs are not backlogged, hence we cannot get 334 * an established socket here. 335 */ 336 if (seq != tcp_rsk(req)->snt_isn) { 337 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 338 } else if (abort) { 339 /* 340 * Still in SYN_RECV, just remove it silently. 341 * There is no good way to pass the error to the newly 342 * created socket, and POSIX does not want network 343 * errors returned from accept(). 344 */ 345 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 346 tcp_listendrop(req->rsk_listener); 347 } 348 reqsk_put(req); 349 } 350 EXPORT_SYMBOL(tcp_req_err); 351 352 /* 353 * This routine is called by the ICMP module when it gets some 354 * sort of error condition. If err < 0 then the socket should 355 * be closed and the error returned to the user. If err > 0 356 * it's just the icmp type << 8 | icmp code. After adjustment 357 * header points to the first 8 bytes of the tcp header. We need 358 * to find the appropriate port. 359 * 360 * The locking strategy used here is very "optimistic". When 361 * someone else accesses the socket the ICMP is just dropped 362 * and for some paths there is no check at all. 363 * A more general error queue to queue errors for later handling 364 * is probably better. 365 * 366 */ 367 368 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 369 { 370 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 371 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 372 struct inet_connection_sock *icsk; 373 struct tcp_sock *tp; 374 struct inet_sock *inet; 375 const int type = icmp_hdr(icmp_skb)->type; 376 const int code = icmp_hdr(icmp_skb)->code; 377 struct sock *sk; 378 struct sk_buff *skb; 379 struct request_sock *fastopen; 380 u32 seq, snd_una; 381 s32 remaining; 382 u32 delta_us; 383 int err; 384 struct net *net = dev_net(icmp_skb->dev); 385 386 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 387 th->dest, iph->saddr, ntohs(th->source), 388 inet_iif(icmp_skb), 0); 389 if (!sk) { 390 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 391 return; 392 } 393 if (sk->sk_state == TCP_TIME_WAIT) { 394 inet_twsk_put(inet_twsk(sk)); 395 return; 396 } 397 seq = ntohl(th->seq); 398 if (sk->sk_state == TCP_NEW_SYN_RECV) 399 return tcp_req_err(sk, seq, 400 type == ICMP_PARAMETERPROB || 401 type == ICMP_TIME_EXCEEDED || 402 (type == ICMP_DEST_UNREACH && 403 (code == ICMP_NET_UNREACH || 404 code == ICMP_HOST_UNREACH))); 405 406 bh_lock_sock(sk); 407 /* If too many ICMPs get dropped on busy 408 * servers this needs to be solved differently. 409 * We do take care of PMTU discovery (RFC1191) special case : 410 * we can receive locally generated ICMP messages while socket is held. 411 */ 412 if (sock_owned_by_user(sk)) { 413 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 414 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 415 } 416 if (sk->sk_state == TCP_CLOSE) 417 goto out; 418 419 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 420 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 421 goto out; 422 } 423 424 icsk = inet_csk(sk); 425 tp = tcp_sk(sk); 426 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 427 fastopen = tp->fastopen_rsk; 428 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 429 if (sk->sk_state != TCP_LISTEN && 430 !between(seq, snd_una, tp->snd_nxt)) { 431 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 432 goto out; 433 } 434 435 switch (type) { 436 case ICMP_REDIRECT: 437 if (!sock_owned_by_user(sk)) 438 do_redirect(icmp_skb, sk); 439 goto out; 440 case ICMP_SOURCE_QUENCH: 441 /* Just silently ignore these. */ 442 goto out; 443 case ICMP_PARAMETERPROB: 444 err = EPROTO; 445 break; 446 case ICMP_DEST_UNREACH: 447 if (code > NR_ICMP_UNREACH) 448 goto out; 449 450 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 451 /* We are not interested in TCP_LISTEN and open_requests 452 * (SYN-ACKs send out by Linux are always <576bytes so 453 * they should go through unfragmented). 454 */ 455 if (sk->sk_state == TCP_LISTEN) 456 goto out; 457 458 tp->mtu_info = info; 459 if (!sock_owned_by_user(sk)) { 460 tcp_v4_mtu_reduced(sk); 461 } else { 462 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 463 sock_hold(sk); 464 } 465 goto out; 466 } 467 468 err = icmp_err_convert[code].errno; 469 /* check if icmp_skb allows revert of backoff 470 * (see draft-zimmermann-tcp-lcd) */ 471 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 472 break; 473 if (seq != tp->snd_una || !icsk->icsk_retransmits || 474 !icsk->icsk_backoff || fastopen) 475 break; 476 477 if (sock_owned_by_user(sk)) 478 break; 479 480 icsk->icsk_backoff--; 481 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 482 TCP_TIMEOUT_INIT; 483 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 484 485 skb = tcp_rtx_queue_head(sk); 486 BUG_ON(!skb); 487 488 tcp_mstamp_refresh(tp); 489 delta_us = (u32)(tp->tcp_mstamp - skb->skb_mstamp); 490 remaining = icsk->icsk_rto - 491 usecs_to_jiffies(delta_us); 492 493 if (remaining > 0) { 494 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 495 remaining, TCP_RTO_MAX); 496 } else { 497 /* RTO revert clocked out retransmission. 498 * Will retransmit now */ 499 tcp_retransmit_timer(sk); 500 } 501 502 break; 503 case ICMP_TIME_EXCEEDED: 504 err = EHOSTUNREACH; 505 break; 506 default: 507 goto out; 508 } 509 510 switch (sk->sk_state) { 511 case TCP_SYN_SENT: 512 case TCP_SYN_RECV: 513 /* Only in fast or simultaneous open. If a fast open socket is 514 * is already accepted it is treated as a connected one below. 515 */ 516 if (fastopen && !fastopen->sk) 517 break; 518 519 if (!sock_owned_by_user(sk)) { 520 sk->sk_err = err; 521 522 sk->sk_error_report(sk); 523 524 tcp_done(sk); 525 } else { 526 sk->sk_err_soft = err; 527 } 528 goto out; 529 } 530 531 /* If we've already connected we will keep trying 532 * until we time out, or the user gives up. 533 * 534 * rfc1122 4.2.3.9 allows to consider as hard errors 535 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 536 * but it is obsoleted by pmtu discovery). 537 * 538 * Note, that in modern internet, where routing is unreliable 539 * and in each dark corner broken firewalls sit, sending random 540 * errors ordered by their masters even this two messages finally lose 541 * their original sense (even Linux sends invalid PORT_UNREACHs) 542 * 543 * Now we are in compliance with RFCs. 544 * --ANK (980905) 545 */ 546 547 inet = inet_sk(sk); 548 if (!sock_owned_by_user(sk) && inet->recverr) { 549 sk->sk_err = err; 550 sk->sk_error_report(sk); 551 } else { /* Only an error on timeout */ 552 sk->sk_err_soft = err; 553 } 554 555 out: 556 bh_unlock_sock(sk); 557 sock_put(sk); 558 } 559 560 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 561 { 562 struct tcphdr *th = tcp_hdr(skb); 563 564 if (skb->ip_summed == CHECKSUM_PARTIAL) { 565 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 566 skb->csum_start = skb_transport_header(skb) - skb->head; 567 skb->csum_offset = offsetof(struct tcphdr, check); 568 } else { 569 th->check = tcp_v4_check(skb->len, saddr, daddr, 570 csum_partial(th, 571 th->doff << 2, 572 skb->csum)); 573 } 574 } 575 576 /* This routine computes an IPv4 TCP checksum. */ 577 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 578 { 579 const struct inet_sock *inet = inet_sk(sk); 580 581 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 582 } 583 EXPORT_SYMBOL(tcp_v4_send_check); 584 585 /* 586 * This routine will send an RST to the other tcp. 587 * 588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 589 * for reset. 590 * Answer: if a packet caused RST, it is not for a socket 591 * existing in our system, if it is matched to a socket, 592 * it is just duplicate segment or bug in other side's TCP. 593 * So that we build reply only basing on parameters 594 * arrived with segment. 595 * Exception: precedence violation. We do not implement it in any case. 596 */ 597 598 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 599 { 600 const struct tcphdr *th = tcp_hdr(skb); 601 struct { 602 struct tcphdr th; 603 #ifdef CONFIG_TCP_MD5SIG 604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 605 #endif 606 } rep; 607 struct ip_reply_arg arg; 608 #ifdef CONFIG_TCP_MD5SIG 609 struct tcp_md5sig_key *key = NULL; 610 const __u8 *hash_location = NULL; 611 unsigned char newhash[16]; 612 int genhash; 613 struct sock *sk1 = NULL; 614 #endif 615 struct net *net; 616 617 /* Never send a reset in response to a reset. */ 618 if (th->rst) 619 return; 620 621 /* If sk not NULL, it means we did a successful lookup and incoming 622 * route had to be correct. prequeue might have dropped our dst. 623 */ 624 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 625 return; 626 627 /* Swap the send and the receive. */ 628 memset(&rep, 0, sizeof(rep)); 629 rep.th.dest = th->source; 630 rep.th.source = th->dest; 631 rep.th.doff = sizeof(struct tcphdr) / 4; 632 rep.th.rst = 1; 633 634 if (th->ack) { 635 rep.th.seq = th->ack_seq; 636 } else { 637 rep.th.ack = 1; 638 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 639 skb->len - (th->doff << 2)); 640 } 641 642 memset(&arg, 0, sizeof(arg)); 643 arg.iov[0].iov_base = (unsigned char *)&rep; 644 arg.iov[0].iov_len = sizeof(rep.th); 645 646 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 647 #ifdef CONFIG_TCP_MD5SIG 648 rcu_read_lock(); 649 hash_location = tcp_parse_md5sig_option(th); 650 if (sk && sk_fullsock(sk)) { 651 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 652 &ip_hdr(skb)->saddr, AF_INET); 653 } else if (hash_location) { 654 /* 655 * active side is lost. Try to find listening socket through 656 * source port, and then find md5 key through listening socket. 657 * we are not loose security here: 658 * Incoming packet is checked with md5 hash with finding key, 659 * no RST generated if md5 hash doesn't match. 660 */ 661 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 662 ip_hdr(skb)->saddr, 663 th->source, ip_hdr(skb)->daddr, 664 ntohs(th->source), inet_iif(skb), 665 tcp_v4_sdif(skb)); 666 /* don't send rst if it can't find key */ 667 if (!sk1) 668 goto out; 669 670 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 671 &ip_hdr(skb)->saddr, AF_INET); 672 if (!key) 673 goto out; 674 675 676 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 677 if (genhash || memcmp(hash_location, newhash, 16) != 0) 678 goto out; 679 680 } 681 682 if (key) { 683 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 684 (TCPOPT_NOP << 16) | 685 (TCPOPT_MD5SIG << 8) | 686 TCPOLEN_MD5SIG); 687 /* Update length and the length the header thinks exists */ 688 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 689 rep.th.doff = arg.iov[0].iov_len / 4; 690 691 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 692 key, ip_hdr(skb)->saddr, 693 ip_hdr(skb)->daddr, &rep.th); 694 } 695 #endif 696 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 697 ip_hdr(skb)->saddr, /* XXX */ 698 arg.iov[0].iov_len, IPPROTO_TCP, 0); 699 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 700 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 701 702 /* When socket is gone, all binding information is lost. 703 * routing might fail in this case. No choice here, if we choose to force 704 * input interface, we will misroute in case of asymmetric route. 705 */ 706 if (sk) { 707 arg.bound_dev_if = sk->sk_bound_dev_if; 708 trace_tcp_send_reset(sk, skb); 709 } 710 711 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 712 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 713 714 arg.tos = ip_hdr(skb)->tos; 715 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 716 local_bh_disable(); 717 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 718 skb, &TCP_SKB_CB(skb)->header.h4.opt, 719 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 720 &arg, arg.iov[0].iov_len); 721 722 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 723 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 724 local_bh_enable(); 725 726 #ifdef CONFIG_TCP_MD5SIG 727 out: 728 rcu_read_unlock(); 729 #endif 730 } 731 732 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 733 outside socket context is ugly, certainly. What can I do? 734 */ 735 736 static void tcp_v4_send_ack(const struct sock *sk, 737 struct sk_buff *skb, u32 seq, u32 ack, 738 u32 win, u32 tsval, u32 tsecr, int oif, 739 struct tcp_md5sig_key *key, 740 int reply_flags, u8 tos) 741 { 742 const struct tcphdr *th = tcp_hdr(skb); 743 struct { 744 struct tcphdr th; 745 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 746 #ifdef CONFIG_TCP_MD5SIG 747 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 748 #endif 749 ]; 750 } rep; 751 struct net *net = sock_net(sk); 752 struct ip_reply_arg arg; 753 754 memset(&rep.th, 0, sizeof(struct tcphdr)); 755 memset(&arg, 0, sizeof(arg)); 756 757 arg.iov[0].iov_base = (unsigned char *)&rep; 758 arg.iov[0].iov_len = sizeof(rep.th); 759 if (tsecr) { 760 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 761 (TCPOPT_TIMESTAMP << 8) | 762 TCPOLEN_TIMESTAMP); 763 rep.opt[1] = htonl(tsval); 764 rep.opt[2] = htonl(tsecr); 765 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 766 } 767 768 /* Swap the send and the receive. */ 769 rep.th.dest = th->source; 770 rep.th.source = th->dest; 771 rep.th.doff = arg.iov[0].iov_len / 4; 772 rep.th.seq = htonl(seq); 773 rep.th.ack_seq = htonl(ack); 774 rep.th.ack = 1; 775 rep.th.window = htons(win); 776 777 #ifdef CONFIG_TCP_MD5SIG 778 if (key) { 779 int offset = (tsecr) ? 3 : 0; 780 781 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 782 (TCPOPT_NOP << 16) | 783 (TCPOPT_MD5SIG << 8) | 784 TCPOLEN_MD5SIG); 785 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 786 rep.th.doff = arg.iov[0].iov_len/4; 787 788 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 789 key, ip_hdr(skb)->saddr, 790 ip_hdr(skb)->daddr, &rep.th); 791 } 792 #endif 793 arg.flags = reply_flags; 794 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 795 ip_hdr(skb)->saddr, /* XXX */ 796 arg.iov[0].iov_len, IPPROTO_TCP, 0); 797 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 798 if (oif) 799 arg.bound_dev_if = oif; 800 arg.tos = tos; 801 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 802 local_bh_disable(); 803 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 804 skb, &TCP_SKB_CB(skb)->header.h4.opt, 805 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 806 &arg, arg.iov[0].iov_len); 807 808 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 809 local_bh_enable(); 810 } 811 812 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 813 { 814 struct inet_timewait_sock *tw = inet_twsk(sk); 815 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 816 817 tcp_v4_send_ack(sk, skb, 818 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 819 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 820 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 821 tcptw->tw_ts_recent, 822 tw->tw_bound_dev_if, 823 tcp_twsk_md5_key(tcptw), 824 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 825 tw->tw_tos 826 ); 827 828 inet_twsk_put(tw); 829 } 830 831 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 832 struct request_sock *req) 833 { 834 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 835 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 836 */ 837 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 838 tcp_sk(sk)->snd_nxt; 839 840 /* RFC 7323 2.3 841 * The window field (SEG.WND) of every outgoing segment, with the 842 * exception of <SYN> segments, MUST be right-shifted by 843 * Rcv.Wind.Shift bits: 844 */ 845 tcp_v4_send_ack(sk, skb, seq, 846 tcp_rsk(req)->rcv_nxt, 847 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 848 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 849 req->ts_recent, 850 0, 851 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 852 AF_INET), 853 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 854 ip_hdr(skb)->tos); 855 } 856 857 /* 858 * Send a SYN-ACK after having received a SYN. 859 * This still operates on a request_sock only, not on a big 860 * socket. 861 */ 862 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 863 struct flowi *fl, 864 struct request_sock *req, 865 struct tcp_fastopen_cookie *foc, 866 enum tcp_synack_type synack_type) 867 { 868 const struct inet_request_sock *ireq = inet_rsk(req); 869 struct flowi4 fl4; 870 int err = -1; 871 struct sk_buff *skb; 872 873 /* First, grab a route. */ 874 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 875 return -1; 876 877 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 878 879 if (skb) { 880 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 881 882 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 883 ireq->ir_rmt_addr, 884 ireq_opt_deref(ireq)); 885 err = net_xmit_eval(err); 886 } 887 888 return err; 889 } 890 891 /* 892 * IPv4 request_sock destructor. 893 */ 894 static void tcp_v4_reqsk_destructor(struct request_sock *req) 895 { 896 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 897 } 898 899 #ifdef CONFIG_TCP_MD5SIG 900 /* 901 * RFC2385 MD5 checksumming requires a mapping of 902 * IP address->MD5 Key. 903 * We need to maintain these in the sk structure. 904 */ 905 906 /* Find the Key structure for an address. */ 907 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 908 const union tcp_md5_addr *addr, 909 int family) 910 { 911 const struct tcp_sock *tp = tcp_sk(sk); 912 struct tcp_md5sig_key *key; 913 const struct tcp_md5sig_info *md5sig; 914 __be32 mask; 915 struct tcp_md5sig_key *best_match = NULL; 916 bool match; 917 918 /* caller either holds rcu_read_lock() or socket lock */ 919 md5sig = rcu_dereference_check(tp->md5sig_info, 920 lockdep_sock_is_held(sk)); 921 if (!md5sig) 922 return NULL; 923 924 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 925 if (key->family != family) 926 continue; 927 928 if (family == AF_INET) { 929 mask = inet_make_mask(key->prefixlen); 930 match = (key->addr.a4.s_addr & mask) == 931 (addr->a4.s_addr & mask); 932 #if IS_ENABLED(CONFIG_IPV6) 933 } else if (family == AF_INET6) { 934 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 935 key->prefixlen); 936 #endif 937 } else { 938 match = false; 939 } 940 941 if (match && (!best_match || 942 key->prefixlen > best_match->prefixlen)) 943 best_match = key; 944 } 945 return best_match; 946 } 947 EXPORT_SYMBOL(tcp_md5_do_lookup); 948 949 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 950 const union tcp_md5_addr *addr, 951 int family, u8 prefixlen) 952 { 953 const struct tcp_sock *tp = tcp_sk(sk); 954 struct tcp_md5sig_key *key; 955 unsigned int size = sizeof(struct in_addr); 956 const struct tcp_md5sig_info *md5sig; 957 958 /* caller either holds rcu_read_lock() or socket lock */ 959 md5sig = rcu_dereference_check(tp->md5sig_info, 960 lockdep_sock_is_held(sk)); 961 if (!md5sig) 962 return NULL; 963 #if IS_ENABLED(CONFIG_IPV6) 964 if (family == AF_INET6) 965 size = sizeof(struct in6_addr); 966 #endif 967 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 968 if (key->family != family) 969 continue; 970 if (!memcmp(&key->addr, addr, size) && 971 key->prefixlen == prefixlen) 972 return key; 973 } 974 return NULL; 975 } 976 977 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 978 const struct sock *addr_sk) 979 { 980 const union tcp_md5_addr *addr; 981 982 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 983 return tcp_md5_do_lookup(sk, addr, AF_INET); 984 } 985 EXPORT_SYMBOL(tcp_v4_md5_lookup); 986 987 /* This can be called on a newly created socket, from other files */ 988 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 989 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen, 990 gfp_t gfp) 991 { 992 /* Add Key to the list */ 993 struct tcp_md5sig_key *key; 994 struct tcp_sock *tp = tcp_sk(sk); 995 struct tcp_md5sig_info *md5sig; 996 997 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 998 if (key) { 999 /* Pre-existing entry - just update that one. */ 1000 memcpy(key->key, newkey, newkeylen); 1001 key->keylen = newkeylen; 1002 return 0; 1003 } 1004 1005 md5sig = rcu_dereference_protected(tp->md5sig_info, 1006 lockdep_sock_is_held(sk)); 1007 if (!md5sig) { 1008 md5sig = kmalloc(sizeof(*md5sig), gfp); 1009 if (!md5sig) 1010 return -ENOMEM; 1011 1012 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1013 INIT_HLIST_HEAD(&md5sig->head); 1014 rcu_assign_pointer(tp->md5sig_info, md5sig); 1015 } 1016 1017 key = sock_kmalloc(sk, sizeof(*key), gfp); 1018 if (!key) 1019 return -ENOMEM; 1020 if (!tcp_alloc_md5sig_pool()) { 1021 sock_kfree_s(sk, key, sizeof(*key)); 1022 return -ENOMEM; 1023 } 1024 1025 memcpy(key->key, newkey, newkeylen); 1026 key->keylen = newkeylen; 1027 key->family = family; 1028 key->prefixlen = prefixlen; 1029 memcpy(&key->addr, addr, 1030 (family == AF_INET6) ? sizeof(struct in6_addr) : 1031 sizeof(struct in_addr)); 1032 hlist_add_head_rcu(&key->node, &md5sig->head); 1033 return 0; 1034 } 1035 EXPORT_SYMBOL(tcp_md5_do_add); 1036 1037 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1038 u8 prefixlen) 1039 { 1040 struct tcp_md5sig_key *key; 1041 1042 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1043 if (!key) 1044 return -ENOENT; 1045 hlist_del_rcu(&key->node); 1046 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1047 kfree_rcu(key, rcu); 1048 return 0; 1049 } 1050 EXPORT_SYMBOL(tcp_md5_do_del); 1051 1052 static void tcp_clear_md5_list(struct sock *sk) 1053 { 1054 struct tcp_sock *tp = tcp_sk(sk); 1055 struct tcp_md5sig_key *key; 1056 struct hlist_node *n; 1057 struct tcp_md5sig_info *md5sig; 1058 1059 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1060 1061 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1062 hlist_del_rcu(&key->node); 1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1064 kfree_rcu(key, rcu); 1065 } 1066 } 1067 1068 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1069 char __user *optval, int optlen) 1070 { 1071 struct tcp_md5sig cmd; 1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1073 u8 prefixlen = 32; 1074 1075 if (optlen < sizeof(cmd)) 1076 return -EINVAL; 1077 1078 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1079 return -EFAULT; 1080 1081 if (sin->sin_family != AF_INET) 1082 return -EINVAL; 1083 1084 if (optname == TCP_MD5SIG_EXT && 1085 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1086 prefixlen = cmd.tcpm_prefixlen; 1087 if (prefixlen > 32) 1088 return -EINVAL; 1089 } 1090 1091 if (!cmd.tcpm_keylen) 1092 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1093 AF_INET, prefixlen); 1094 1095 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1096 return -EINVAL; 1097 1098 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1099 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen, 1100 GFP_KERNEL); 1101 } 1102 1103 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1104 __be32 daddr, __be32 saddr, 1105 const struct tcphdr *th, int nbytes) 1106 { 1107 struct tcp4_pseudohdr *bp; 1108 struct scatterlist sg; 1109 struct tcphdr *_th; 1110 1111 bp = hp->scratch; 1112 bp->saddr = saddr; 1113 bp->daddr = daddr; 1114 bp->pad = 0; 1115 bp->protocol = IPPROTO_TCP; 1116 bp->len = cpu_to_be16(nbytes); 1117 1118 _th = (struct tcphdr *)(bp + 1); 1119 memcpy(_th, th, sizeof(*th)); 1120 _th->check = 0; 1121 1122 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1123 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1124 sizeof(*bp) + sizeof(*th)); 1125 return crypto_ahash_update(hp->md5_req); 1126 } 1127 1128 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1129 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1130 { 1131 struct tcp_md5sig_pool *hp; 1132 struct ahash_request *req; 1133 1134 hp = tcp_get_md5sig_pool(); 1135 if (!hp) 1136 goto clear_hash_noput; 1137 req = hp->md5_req; 1138 1139 if (crypto_ahash_init(req)) 1140 goto clear_hash; 1141 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1142 goto clear_hash; 1143 if (tcp_md5_hash_key(hp, key)) 1144 goto clear_hash; 1145 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1146 if (crypto_ahash_final(req)) 1147 goto clear_hash; 1148 1149 tcp_put_md5sig_pool(); 1150 return 0; 1151 1152 clear_hash: 1153 tcp_put_md5sig_pool(); 1154 clear_hash_noput: 1155 memset(md5_hash, 0, 16); 1156 return 1; 1157 } 1158 1159 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1160 const struct sock *sk, 1161 const struct sk_buff *skb) 1162 { 1163 struct tcp_md5sig_pool *hp; 1164 struct ahash_request *req; 1165 const struct tcphdr *th = tcp_hdr(skb); 1166 __be32 saddr, daddr; 1167 1168 if (sk) { /* valid for establish/request sockets */ 1169 saddr = sk->sk_rcv_saddr; 1170 daddr = sk->sk_daddr; 1171 } else { 1172 const struct iphdr *iph = ip_hdr(skb); 1173 saddr = iph->saddr; 1174 daddr = iph->daddr; 1175 } 1176 1177 hp = tcp_get_md5sig_pool(); 1178 if (!hp) 1179 goto clear_hash_noput; 1180 req = hp->md5_req; 1181 1182 if (crypto_ahash_init(req)) 1183 goto clear_hash; 1184 1185 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1186 goto clear_hash; 1187 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1188 goto clear_hash; 1189 if (tcp_md5_hash_key(hp, key)) 1190 goto clear_hash; 1191 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1192 if (crypto_ahash_final(req)) 1193 goto clear_hash; 1194 1195 tcp_put_md5sig_pool(); 1196 return 0; 1197 1198 clear_hash: 1199 tcp_put_md5sig_pool(); 1200 clear_hash_noput: 1201 memset(md5_hash, 0, 16); 1202 return 1; 1203 } 1204 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1205 1206 #endif 1207 1208 /* Called with rcu_read_lock() */ 1209 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1210 const struct sk_buff *skb) 1211 { 1212 #ifdef CONFIG_TCP_MD5SIG 1213 /* 1214 * This gets called for each TCP segment that arrives 1215 * so we want to be efficient. 1216 * We have 3 drop cases: 1217 * o No MD5 hash and one expected. 1218 * o MD5 hash and we're not expecting one. 1219 * o MD5 hash and its wrong. 1220 */ 1221 const __u8 *hash_location = NULL; 1222 struct tcp_md5sig_key *hash_expected; 1223 const struct iphdr *iph = ip_hdr(skb); 1224 const struct tcphdr *th = tcp_hdr(skb); 1225 int genhash; 1226 unsigned char newhash[16]; 1227 1228 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1229 AF_INET); 1230 hash_location = tcp_parse_md5sig_option(th); 1231 1232 /* We've parsed the options - do we have a hash? */ 1233 if (!hash_expected && !hash_location) 1234 return false; 1235 1236 if (hash_expected && !hash_location) { 1237 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1238 return true; 1239 } 1240 1241 if (!hash_expected && hash_location) { 1242 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1243 return true; 1244 } 1245 1246 /* Okay, so this is hash_expected and hash_location - 1247 * so we need to calculate the checksum. 1248 */ 1249 genhash = tcp_v4_md5_hash_skb(newhash, 1250 hash_expected, 1251 NULL, skb); 1252 1253 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1254 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1255 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1256 &iph->saddr, ntohs(th->source), 1257 &iph->daddr, ntohs(th->dest), 1258 genhash ? " tcp_v4_calc_md5_hash failed" 1259 : ""); 1260 return true; 1261 } 1262 return false; 1263 #endif 1264 return false; 1265 } 1266 1267 static void tcp_v4_init_req(struct request_sock *req, 1268 const struct sock *sk_listener, 1269 struct sk_buff *skb) 1270 { 1271 struct inet_request_sock *ireq = inet_rsk(req); 1272 struct net *net = sock_net(sk_listener); 1273 1274 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1275 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1276 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1277 } 1278 1279 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1280 struct flowi *fl, 1281 const struct request_sock *req) 1282 { 1283 return inet_csk_route_req(sk, &fl->u.ip4, req); 1284 } 1285 1286 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1287 .family = PF_INET, 1288 .obj_size = sizeof(struct tcp_request_sock), 1289 .rtx_syn_ack = tcp_rtx_synack, 1290 .send_ack = tcp_v4_reqsk_send_ack, 1291 .destructor = tcp_v4_reqsk_destructor, 1292 .send_reset = tcp_v4_send_reset, 1293 .syn_ack_timeout = tcp_syn_ack_timeout, 1294 }; 1295 1296 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1297 .mss_clamp = TCP_MSS_DEFAULT, 1298 #ifdef CONFIG_TCP_MD5SIG 1299 .req_md5_lookup = tcp_v4_md5_lookup, 1300 .calc_md5_hash = tcp_v4_md5_hash_skb, 1301 #endif 1302 .init_req = tcp_v4_init_req, 1303 #ifdef CONFIG_SYN_COOKIES 1304 .cookie_init_seq = cookie_v4_init_sequence, 1305 #endif 1306 .route_req = tcp_v4_route_req, 1307 .init_seq = tcp_v4_init_seq, 1308 .init_ts_off = tcp_v4_init_ts_off, 1309 .send_synack = tcp_v4_send_synack, 1310 }; 1311 1312 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1313 { 1314 /* Never answer to SYNs send to broadcast or multicast */ 1315 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1316 goto drop; 1317 1318 return tcp_conn_request(&tcp_request_sock_ops, 1319 &tcp_request_sock_ipv4_ops, sk, skb); 1320 1321 drop: 1322 tcp_listendrop(sk); 1323 return 0; 1324 } 1325 EXPORT_SYMBOL(tcp_v4_conn_request); 1326 1327 1328 /* 1329 * The three way handshake has completed - we got a valid synack - 1330 * now create the new socket. 1331 */ 1332 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1333 struct request_sock *req, 1334 struct dst_entry *dst, 1335 struct request_sock *req_unhash, 1336 bool *own_req) 1337 { 1338 struct inet_request_sock *ireq; 1339 struct inet_sock *newinet; 1340 struct tcp_sock *newtp; 1341 struct sock *newsk; 1342 #ifdef CONFIG_TCP_MD5SIG 1343 struct tcp_md5sig_key *key; 1344 #endif 1345 struct ip_options_rcu *inet_opt; 1346 1347 if (sk_acceptq_is_full(sk)) 1348 goto exit_overflow; 1349 1350 newsk = tcp_create_openreq_child(sk, req, skb); 1351 if (!newsk) 1352 goto exit_nonewsk; 1353 1354 newsk->sk_gso_type = SKB_GSO_TCPV4; 1355 inet_sk_rx_dst_set(newsk, skb); 1356 1357 newtp = tcp_sk(newsk); 1358 newinet = inet_sk(newsk); 1359 ireq = inet_rsk(req); 1360 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1361 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1362 newsk->sk_bound_dev_if = ireq->ir_iif; 1363 newinet->inet_saddr = ireq->ir_loc_addr; 1364 inet_opt = rcu_dereference(ireq->ireq_opt); 1365 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1366 newinet->mc_index = inet_iif(skb); 1367 newinet->mc_ttl = ip_hdr(skb)->ttl; 1368 newinet->rcv_tos = ip_hdr(skb)->tos; 1369 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1370 if (inet_opt) 1371 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1372 newinet->inet_id = newtp->write_seq ^ jiffies; 1373 1374 if (!dst) { 1375 dst = inet_csk_route_child_sock(sk, newsk, req); 1376 if (!dst) 1377 goto put_and_exit; 1378 } else { 1379 /* syncookie case : see end of cookie_v4_check() */ 1380 } 1381 sk_setup_caps(newsk, dst); 1382 1383 tcp_ca_openreq_child(newsk, dst); 1384 1385 tcp_sync_mss(newsk, dst_mtu(dst)); 1386 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1387 1388 tcp_initialize_rcv_mss(newsk); 1389 1390 #ifdef CONFIG_TCP_MD5SIG 1391 /* Copy over the MD5 key from the original socket */ 1392 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1393 AF_INET); 1394 if (key) { 1395 /* 1396 * We're using one, so create a matching key 1397 * on the newsk structure. If we fail to get 1398 * memory, then we end up not copying the key 1399 * across. Shucks. 1400 */ 1401 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1402 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC); 1403 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1404 } 1405 #endif 1406 1407 if (__inet_inherit_port(sk, newsk) < 0) 1408 goto put_and_exit; 1409 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1410 if (likely(*own_req)) { 1411 tcp_move_syn(newtp, req); 1412 ireq->ireq_opt = NULL; 1413 } else { 1414 newinet->inet_opt = NULL; 1415 } 1416 return newsk; 1417 1418 exit_overflow: 1419 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1420 exit_nonewsk: 1421 dst_release(dst); 1422 exit: 1423 tcp_listendrop(sk); 1424 return NULL; 1425 put_and_exit: 1426 newinet->inet_opt = NULL; 1427 inet_csk_prepare_forced_close(newsk); 1428 tcp_done(newsk); 1429 goto exit; 1430 } 1431 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1432 1433 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1434 { 1435 #ifdef CONFIG_SYN_COOKIES 1436 const struct tcphdr *th = tcp_hdr(skb); 1437 1438 if (!th->syn) 1439 sk = cookie_v4_check(sk, skb); 1440 #endif 1441 return sk; 1442 } 1443 1444 /* The socket must have it's spinlock held when we get 1445 * here, unless it is a TCP_LISTEN socket. 1446 * 1447 * We have a potential double-lock case here, so even when 1448 * doing backlog processing we use the BH locking scheme. 1449 * This is because we cannot sleep with the original spinlock 1450 * held. 1451 */ 1452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1453 { 1454 struct sock *rsk; 1455 1456 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1457 struct dst_entry *dst = sk->sk_rx_dst; 1458 1459 sock_rps_save_rxhash(sk, skb); 1460 sk_mark_napi_id(sk, skb); 1461 if (dst) { 1462 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1463 !dst->ops->check(dst, 0)) { 1464 dst_release(dst); 1465 sk->sk_rx_dst = NULL; 1466 } 1467 } 1468 tcp_rcv_established(sk, skb, tcp_hdr(skb)); 1469 return 0; 1470 } 1471 1472 if (tcp_checksum_complete(skb)) 1473 goto csum_err; 1474 1475 if (sk->sk_state == TCP_LISTEN) { 1476 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1477 1478 if (!nsk) 1479 goto discard; 1480 if (nsk != sk) { 1481 if (tcp_child_process(sk, nsk, skb)) { 1482 rsk = nsk; 1483 goto reset; 1484 } 1485 return 0; 1486 } 1487 } else 1488 sock_rps_save_rxhash(sk, skb); 1489 1490 if (tcp_rcv_state_process(sk, skb)) { 1491 rsk = sk; 1492 goto reset; 1493 } 1494 return 0; 1495 1496 reset: 1497 tcp_v4_send_reset(rsk, skb); 1498 discard: 1499 kfree_skb(skb); 1500 /* Be careful here. If this function gets more complicated and 1501 * gcc suffers from register pressure on the x86, sk (in %ebx) 1502 * might be destroyed here. This current version compiles correctly, 1503 * but you have been warned. 1504 */ 1505 return 0; 1506 1507 csum_err: 1508 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1509 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1510 goto discard; 1511 } 1512 EXPORT_SYMBOL(tcp_v4_do_rcv); 1513 1514 int tcp_v4_early_demux(struct sk_buff *skb) 1515 { 1516 const struct iphdr *iph; 1517 const struct tcphdr *th; 1518 struct sock *sk; 1519 1520 if (skb->pkt_type != PACKET_HOST) 1521 return 0; 1522 1523 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1524 return 0; 1525 1526 iph = ip_hdr(skb); 1527 th = tcp_hdr(skb); 1528 1529 if (th->doff < sizeof(struct tcphdr) / 4) 1530 return 0; 1531 1532 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1533 iph->saddr, th->source, 1534 iph->daddr, ntohs(th->dest), 1535 skb->skb_iif, inet_sdif(skb)); 1536 if (sk) { 1537 skb->sk = sk; 1538 skb->destructor = sock_edemux; 1539 if (sk_fullsock(sk)) { 1540 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1541 1542 if (dst) 1543 dst = dst_check(dst, 0); 1544 if (dst && 1545 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1546 skb_dst_set_noref(skb, dst); 1547 } 1548 } 1549 return 0; 1550 } 1551 1552 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1553 { 1554 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1555 1556 /* Only socket owner can try to collapse/prune rx queues 1557 * to reduce memory overhead, so add a little headroom here. 1558 * Few sockets backlog are possibly concurrently non empty. 1559 */ 1560 limit += 64*1024; 1561 1562 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1563 * we can fix skb->truesize to its real value to avoid future drops. 1564 * This is valid because skb is not yet charged to the socket. 1565 * It has been noticed pure SACK packets were sometimes dropped 1566 * (if cooked by drivers without copybreak feature). 1567 */ 1568 skb_condense(skb); 1569 1570 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1571 bh_unlock_sock(sk); 1572 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1573 return true; 1574 } 1575 return false; 1576 } 1577 EXPORT_SYMBOL(tcp_add_backlog); 1578 1579 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1580 { 1581 struct tcphdr *th = (struct tcphdr *)skb->data; 1582 unsigned int eaten = skb->len; 1583 int err; 1584 1585 err = sk_filter_trim_cap(sk, skb, th->doff * 4); 1586 if (!err) { 1587 eaten -= skb->len; 1588 TCP_SKB_CB(skb)->end_seq -= eaten; 1589 } 1590 return err; 1591 } 1592 EXPORT_SYMBOL(tcp_filter); 1593 1594 /* 1595 * From tcp_input.c 1596 */ 1597 1598 int tcp_v4_rcv(struct sk_buff *skb) 1599 { 1600 struct net *net = dev_net(skb->dev); 1601 int sdif = inet_sdif(skb); 1602 const struct iphdr *iph; 1603 const struct tcphdr *th; 1604 bool refcounted; 1605 struct sock *sk; 1606 int ret; 1607 1608 if (skb->pkt_type != PACKET_HOST) 1609 goto discard_it; 1610 1611 /* Count it even if it's bad */ 1612 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1613 1614 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1615 goto discard_it; 1616 1617 th = (const struct tcphdr *)skb->data; 1618 1619 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1620 goto bad_packet; 1621 if (!pskb_may_pull(skb, th->doff * 4)) 1622 goto discard_it; 1623 1624 /* An explanation is required here, I think. 1625 * Packet length and doff are validated by header prediction, 1626 * provided case of th->doff==0 is eliminated. 1627 * So, we defer the checks. */ 1628 1629 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1630 goto csum_error; 1631 1632 th = (const struct tcphdr *)skb->data; 1633 iph = ip_hdr(skb); 1634 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1635 * barrier() makes sure compiler wont play fool^Waliasing games. 1636 */ 1637 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1638 sizeof(struct inet_skb_parm)); 1639 barrier(); 1640 1641 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1642 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1643 skb->len - th->doff * 4); 1644 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1645 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1646 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1647 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1648 TCP_SKB_CB(skb)->sacked = 0; 1649 TCP_SKB_CB(skb)->has_rxtstamp = 1650 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1651 1652 lookup: 1653 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1654 th->dest, sdif, &refcounted); 1655 if (!sk) 1656 goto no_tcp_socket; 1657 1658 process: 1659 if (sk->sk_state == TCP_TIME_WAIT) 1660 goto do_time_wait; 1661 1662 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1663 struct request_sock *req = inet_reqsk(sk); 1664 struct sock *nsk; 1665 1666 sk = req->rsk_listener; 1667 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1668 sk_drops_add(sk, skb); 1669 reqsk_put(req); 1670 goto discard_it; 1671 } 1672 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1673 inet_csk_reqsk_queue_drop_and_put(sk, req); 1674 goto lookup; 1675 } 1676 /* We own a reference on the listener, increase it again 1677 * as we might lose it too soon. 1678 */ 1679 sock_hold(sk); 1680 refcounted = true; 1681 nsk = NULL; 1682 if (!tcp_filter(sk, skb)) 1683 nsk = tcp_check_req(sk, skb, req, false); 1684 if (!nsk) { 1685 reqsk_put(req); 1686 goto discard_and_relse; 1687 } 1688 if (nsk == sk) { 1689 reqsk_put(req); 1690 } else if (tcp_child_process(sk, nsk, skb)) { 1691 tcp_v4_send_reset(nsk, skb); 1692 goto discard_and_relse; 1693 } else { 1694 sock_put(sk); 1695 return 0; 1696 } 1697 } 1698 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1699 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1700 goto discard_and_relse; 1701 } 1702 1703 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1704 goto discard_and_relse; 1705 1706 if (tcp_v4_inbound_md5_hash(sk, skb)) 1707 goto discard_and_relse; 1708 1709 nf_reset(skb); 1710 1711 if (tcp_filter(sk, skb)) 1712 goto discard_and_relse; 1713 th = (const struct tcphdr *)skb->data; 1714 iph = ip_hdr(skb); 1715 1716 skb->dev = NULL; 1717 1718 if (sk->sk_state == TCP_LISTEN) { 1719 ret = tcp_v4_do_rcv(sk, skb); 1720 goto put_and_return; 1721 } 1722 1723 sk_incoming_cpu_update(sk); 1724 1725 bh_lock_sock_nested(sk); 1726 tcp_segs_in(tcp_sk(sk), skb); 1727 ret = 0; 1728 if (!sock_owned_by_user(sk)) { 1729 ret = tcp_v4_do_rcv(sk, skb); 1730 } else if (tcp_add_backlog(sk, skb)) { 1731 goto discard_and_relse; 1732 } 1733 bh_unlock_sock(sk); 1734 1735 put_and_return: 1736 if (refcounted) 1737 sock_put(sk); 1738 1739 return ret; 1740 1741 no_tcp_socket: 1742 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1743 goto discard_it; 1744 1745 if (tcp_checksum_complete(skb)) { 1746 csum_error: 1747 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1748 bad_packet: 1749 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1750 } else { 1751 tcp_v4_send_reset(NULL, skb); 1752 } 1753 1754 discard_it: 1755 /* Discard frame. */ 1756 kfree_skb(skb); 1757 return 0; 1758 1759 discard_and_relse: 1760 sk_drops_add(sk, skb); 1761 if (refcounted) 1762 sock_put(sk); 1763 goto discard_it; 1764 1765 do_time_wait: 1766 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1767 inet_twsk_put(inet_twsk(sk)); 1768 goto discard_it; 1769 } 1770 1771 if (tcp_checksum_complete(skb)) { 1772 inet_twsk_put(inet_twsk(sk)); 1773 goto csum_error; 1774 } 1775 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1776 case TCP_TW_SYN: { 1777 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1778 &tcp_hashinfo, skb, 1779 __tcp_hdrlen(th), 1780 iph->saddr, th->source, 1781 iph->daddr, th->dest, 1782 inet_iif(skb), 1783 sdif); 1784 if (sk2) { 1785 inet_twsk_deschedule_put(inet_twsk(sk)); 1786 sk = sk2; 1787 refcounted = false; 1788 goto process; 1789 } 1790 } 1791 /* to ACK */ 1792 /* fall through */ 1793 case TCP_TW_ACK: 1794 tcp_v4_timewait_ack(sk, skb); 1795 break; 1796 case TCP_TW_RST: 1797 tcp_v4_send_reset(sk, skb); 1798 inet_twsk_deschedule_put(inet_twsk(sk)); 1799 goto discard_it; 1800 case TCP_TW_SUCCESS:; 1801 } 1802 goto discard_it; 1803 } 1804 1805 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1806 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1807 .twsk_unique = tcp_twsk_unique, 1808 .twsk_destructor= tcp_twsk_destructor, 1809 }; 1810 1811 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1812 { 1813 struct dst_entry *dst = skb_dst(skb); 1814 1815 if (dst && dst_hold_safe(dst)) { 1816 sk->sk_rx_dst = dst; 1817 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1818 } 1819 } 1820 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1821 1822 const struct inet_connection_sock_af_ops ipv4_specific = { 1823 .queue_xmit = ip_queue_xmit, 1824 .send_check = tcp_v4_send_check, 1825 .rebuild_header = inet_sk_rebuild_header, 1826 .sk_rx_dst_set = inet_sk_rx_dst_set, 1827 .conn_request = tcp_v4_conn_request, 1828 .syn_recv_sock = tcp_v4_syn_recv_sock, 1829 .net_header_len = sizeof(struct iphdr), 1830 .setsockopt = ip_setsockopt, 1831 .getsockopt = ip_getsockopt, 1832 .addr2sockaddr = inet_csk_addr2sockaddr, 1833 .sockaddr_len = sizeof(struct sockaddr_in), 1834 #ifdef CONFIG_COMPAT 1835 .compat_setsockopt = compat_ip_setsockopt, 1836 .compat_getsockopt = compat_ip_getsockopt, 1837 #endif 1838 .mtu_reduced = tcp_v4_mtu_reduced, 1839 }; 1840 EXPORT_SYMBOL(ipv4_specific); 1841 1842 #ifdef CONFIG_TCP_MD5SIG 1843 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1844 .md5_lookup = tcp_v4_md5_lookup, 1845 .calc_md5_hash = tcp_v4_md5_hash_skb, 1846 .md5_parse = tcp_v4_parse_md5_keys, 1847 }; 1848 #endif 1849 1850 /* NOTE: A lot of things set to zero explicitly by call to 1851 * sk_alloc() so need not be done here. 1852 */ 1853 static int tcp_v4_init_sock(struct sock *sk) 1854 { 1855 struct inet_connection_sock *icsk = inet_csk(sk); 1856 1857 tcp_init_sock(sk); 1858 1859 icsk->icsk_af_ops = &ipv4_specific; 1860 1861 #ifdef CONFIG_TCP_MD5SIG 1862 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1863 #endif 1864 1865 return 0; 1866 } 1867 1868 void tcp_v4_destroy_sock(struct sock *sk) 1869 { 1870 struct tcp_sock *tp = tcp_sk(sk); 1871 1872 trace_tcp_destroy_sock(sk); 1873 1874 tcp_clear_xmit_timers(sk); 1875 1876 tcp_cleanup_congestion_control(sk); 1877 1878 tcp_cleanup_ulp(sk); 1879 1880 /* Cleanup up the write buffer. */ 1881 tcp_write_queue_purge(sk); 1882 1883 /* Check if we want to disable active TFO */ 1884 tcp_fastopen_active_disable_ofo_check(sk); 1885 1886 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1887 skb_rbtree_purge(&tp->out_of_order_queue); 1888 1889 #ifdef CONFIG_TCP_MD5SIG 1890 /* Clean up the MD5 key list, if any */ 1891 if (tp->md5sig_info) { 1892 tcp_clear_md5_list(sk); 1893 kfree_rcu(tp->md5sig_info, rcu); 1894 tp->md5sig_info = NULL; 1895 } 1896 #endif 1897 1898 /* Clean up a referenced TCP bind bucket. */ 1899 if (inet_csk(sk)->icsk_bind_hash) 1900 inet_put_port(sk); 1901 1902 BUG_ON(tp->fastopen_rsk); 1903 1904 /* If socket is aborted during connect operation */ 1905 tcp_free_fastopen_req(tp); 1906 tcp_fastopen_destroy_cipher(sk); 1907 tcp_saved_syn_free(tp); 1908 1909 sk_sockets_allocated_dec(sk); 1910 } 1911 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1912 1913 #ifdef CONFIG_PROC_FS 1914 /* Proc filesystem TCP sock list dumping. */ 1915 1916 /* 1917 * Get next listener socket follow cur. If cur is NULL, get first socket 1918 * starting from bucket given in st->bucket; when st->bucket is zero the 1919 * very first socket in the hash table is returned. 1920 */ 1921 static void *listening_get_next(struct seq_file *seq, void *cur) 1922 { 1923 struct tcp_iter_state *st = seq->private; 1924 struct net *net = seq_file_net(seq); 1925 struct inet_listen_hashbucket *ilb; 1926 struct sock *sk = cur; 1927 1928 if (!sk) { 1929 get_head: 1930 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1931 spin_lock(&ilb->lock); 1932 sk = sk_head(&ilb->head); 1933 st->offset = 0; 1934 goto get_sk; 1935 } 1936 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1937 ++st->num; 1938 ++st->offset; 1939 1940 sk = sk_next(sk); 1941 get_sk: 1942 sk_for_each_from(sk) { 1943 if (!net_eq(sock_net(sk), net)) 1944 continue; 1945 if (sk->sk_family == st->family) 1946 return sk; 1947 } 1948 spin_unlock(&ilb->lock); 1949 st->offset = 0; 1950 if (++st->bucket < INET_LHTABLE_SIZE) 1951 goto get_head; 1952 return NULL; 1953 } 1954 1955 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 1956 { 1957 struct tcp_iter_state *st = seq->private; 1958 void *rc; 1959 1960 st->bucket = 0; 1961 st->offset = 0; 1962 rc = listening_get_next(seq, NULL); 1963 1964 while (rc && *pos) { 1965 rc = listening_get_next(seq, rc); 1966 --*pos; 1967 } 1968 return rc; 1969 } 1970 1971 static inline bool empty_bucket(const struct tcp_iter_state *st) 1972 { 1973 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 1974 } 1975 1976 /* 1977 * Get first established socket starting from bucket given in st->bucket. 1978 * If st->bucket is zero, the very first socket in the hash is returned. 1979 */ 1980 static void *established_get_first(struct seq_file *seq) 1981 { 1982 struct tcp_iter_state *st = seq->private; 1983 struct net *net = seq_file_net(seq); 1984 void *rc = NULL; 1985 1986 st->offset = 0; 1987 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 1988 struct sock *sk; 1989 struct hlist_nulls_node *node; 1990 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 1991 1992 /* Lockless fast path for the common case of empty buckets */ 1993 if (empty_bucket(st)) 1994 continue; 1995 1996 spin_lock_bh(lock); 1997 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 1998 if (sk->sk_family != st->family || 1999 !net_eq(sock_net(sk), net)) { 2000 continue; 2001 } 2002 rc = sk; 2003 goto out; 2004 } 2005 spin_unlock_bh(lock); 2006 } 2007 out: 2008 return rc; 2009 } 2010 2011 static void *established_get_next(struct seq_file *seq, void *cur) 2012 { 2013 struct sock *sk = cur; 2014 struct hlist_nulls_node *node; 2015 struct tcp_iter_state *st = seq->private; 2016 struct net *net = seq_file_net(seq); 2017 2018 ++st->num; 2019 ++st->offset; 2020 2021 sk = sk_nulls_next(sk); 2022 2023 sk_nulls_for_each_from(sk, node) { 2024 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2025 return sk; 2026 } 2027 2028 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2029 ++st->bucket; 2030 return established_get_first(seq); 2031 } 2032 2033 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2034 { 2035 struct tcp_iter_state *st = seq->private; 2036 void *rc; 2037 2038 st->bucket = 0; 2039 rc = established_get_first(seq); 2040 2041 while (rc && pos) { 2042 rc = established_get_next(seq, rc); 2043 --pos; 2044 } 2045 return rc; 2046 } 2047 2048 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2049 { 2050 void *rc; 2051 struct tcp_iter_state *st = seq->private; 2052 2053 st->state = TCP_SEQ_STATE_LISTENING; 2054 rc = listening_get_idx(seq, &pos); 2055 2056 if (!rc) { 2057 st->state = TCP_SEQ_STATE_ESTABLISHED; 2058 rc = established_get_idx(seq, pos); 2059 } 2060 2061 return rc; 2062 } 2063 2064 static void *tcp_seek_last_pos(struct seq_file *seq) 2065 { 2066 struct tcp_iter_state *st = seq->private; 2067 int offset = st->offset; 2068 int orig_num = st->num; 2069 void *rc = NULL; 2070 2071 switch (st->state) { 2072 case TCP_SEQ_STATE_LISTENING: 2073 if (st->bucket >= INET_LHTABLE_SIZE) 2074 break; 2075 st->state = TCP_SEQ_STATE_LISTENING; 2076 rc = listening_get_next(seq, NULL); 2077 while (offset-- && rc) 2078 rc = listening_get_next(seq, rc); 2079 if (rc) 2080 break; 2081 st->bucket = 0; 2082 st->state = TCP_SEQ_STATE_ESTABLISHED; 2083 /* Fallthrough */ 2084 case TCP_SEQ_STATE_ESTABLISHED: 2085 if (st->bucket > tcp_hashinfo.ehash_mask) 2086 break; 2087 rc = established_get_first(seq); 2088 while (offset-- && rc) 2089 rc = established_get_next(seq, rc); 2090 } 2091 2092 st->num = orig_num; 2093 2094 return rc; 2095 } 2096 2097 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2098 { 2099 struct tcp_iter_state *st = seq->private; 2100 void *rc; 2101 2102 if (*pos && *pos == st->last_pos) { 2103 rc = tcp_seek_last_pos(seq); 2104 if (rc) 2105 goto out; 2106 } 2107 2108 st->state = TCP_SEQ_STATE_LISTENING; 2109 st->num = 0; 2110 st->bucket = 0; 2111 st->offset = 0; 2112 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2113 2114 out: 2115 st->last_pos = *pos; 2116 return rc; 2117 } 2118 2119 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2120 { 2121 struct tcp_iter_state *st = seq->private; 2122 void *rc = NULL; 2123 2124 if (v == SEQ_START_TOKEN) { 2125 rc = tcp_get_idx(seq, 0); 2126 goto out; 2127 } 2128 2129 switch (st->state) { 2130 case TCP_SEQ_STATE_LISTENING: 2131 rc = listening_get_next(seq, v); 2132 if (!rc) { 2133 st->state = TCP_SEQ_STATE_ESTABLISHED; 2134 st->bucket = 0; 2135 st->offset = 0; 2136 rc = established_get_first(seq); 2137 } 2138 break; 2139 case TCP_SEQ_STATE_ESTABLISHED: 2140 rc = established_get_next(seq, v); 2141 break; 2142 } 2143 out: 2144 ++*pos; 2145 st->last_pos = *pos; 2146 return rc; 2147 } 2148 2149 static void tcp_seq_stop(struct seq_file *seq, void *v) 2150 { 2151 struct tcp_iter_state *st = seq->private; 2152 2153 switch (st->state) { 2154 case TCP_SEQ_STATE_LISTENING: 2155 if (v != SEQ_START_TOKEN) 2156 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2157 break; 2158 case TCP_SEQ_STATE_ESTABLISHED: 2159 if (v) 2160 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2161 break; 2162 } 2163 } 2164 2165 int tcp_seq_open(struct inode *inode, struct file *file) 2166 { 2167 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2168 struct tcp_iter_state *s; 2169 int err; 2170 2171 err = seq_open_net(inode, file, &afinfo->seq_ops, 2172 sizeof(struct tcp_iter_state)); 2173 if (err < 0) 2174 return err; 2175 2176 s = ((struct seq_file *)file->private_data)->private; 2177 s->family = afinfo->family; 2178 s->last_pos = 0; 2179 return 0; 2180 } 2181 EXPORT_SYMBOL(tcp_seq_open); 2182 2183 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2184 { 2185 int rc = 0; 2186 struct proc_dir_entry *p; 2187 2188 afinfo->seq_ops.start = tcp_seq_start; 2189 afinfo->seq_ops.next = tcp_seq_next; 2190 afinfo->seq_ops.stop = tcp_seq_stop; 2191 2192 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2193 afinfo->seq_fops, afinfo); 2194 if (!p) 2195 rc = -ENOMEM; 2196 return rc; 2197 } 2198 EXPORT_SYMBOL(tcp_proc_register); 2199 2200 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2201 { 2202 remove_proc_entry(afinfo->name, net->proc_net); 2203 } 2204 EXPORT_SYMBOL(tcp_proc_unregister); 2205 2206 static void get_openreq4(const struct request_sock *req, 2207 struct seq_file *f, int i) 2208 { 2209 const struct inet_request_sock *ireq = inet_rsk(req); 2210 long delta = req->rsk_timer.expires - jiffies; 2211 2212 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2213 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2214 i, 2215 ireq->ir_loc_addr, 2216 ireq->ir_num, 2217 ireq->ir_rmt_addr, 2218 ntohs(ireq->ir_rmt_port), 2219 TCP_SYN_RECV, 2220 0, 0, /* could print option size, but that is af dependent. */ 2221 1, /* timers active (only the expire timer) */ 2222 jiffies_delta_to_clock_t(delta), 2223 req->num_timeout, 2224 from_kuid_munged(seq_user_ns(f), 2225 sock_i_uid(req->rsk_listener)), 2226 0, /* non standard timer */ 2227 0, /* open_requests have no inode */ 2228 0, 2229 req); 2230 } 2231 2232 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2233 { 2234 int timer_active; 2235 unsigned long timer_expires; 2236 const struct tcp_sock *tp = tcp_sk(sk); 2237 const struct inet_connection_sock *icsk = inet_csk(sk); 2238 const struct inet_sock *inet = inet_sk(sk); 2239 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2240 __be32 dest = inet->inet_daddr; 2241 __be32 src = inet->inet_rcv_saddr; 2242 __u16 destp = ntohs(inet->inet_dport); 2243 __u16 srcp = ntohs(inet->inet_sport); 2244 int rx_queue; 2245 int state; 2246 2247 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2248 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2249 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2250 timer_active = 1; 2251 timer_expires = icsk->icsk_timeout; 2252 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2253 timer_active = 4; 2254 timer_expires = icsk->icsk_timeout; 2255 } else if (timer_pending(&sk->sk_timer)) { 2256 timer_active = 2; 2257 timer_expires = sk->sk_timer.expires; 2258 } else { 2259 timer_active = 0; 2260 timer_expires = jiffies; 2261 } 2262 2263 state = sk_state_load(sk); 2264 if (state == TCP_LISTEN) 2265 rx_queue = sk->sk_ack_backlog; 2266 else 2267 /* Because we don't lock the socket, 2268 * we might find a transient negative value. 2269 */ 2270 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2271 2272 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2273 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2274 i, src, srcp, dest, destp, state, 2275 tp->write_seq - tp->snd_una, 2276 rx_queue, 2277 timer_active, 2278 jiffies_delta_to_clock_t(timer_expires - jiffies), 2279 icsk->icsk_retransmits, 2280 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2281 icsk->icsk_probes_out, 2282 sock_i_ino(sk), 2283 refcount_read(&sk->sk_refcnt), sk, 2284 jiffies_to_clock_t(icsk->icsk_rto), 2285 jiffies_to_clock_t(icsk->icsk_ack.ato), 2286 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2287 tp->snd_cwnd, 2288 state == TCP_LISTEN ? 2289 fastopenq->max_qlen : 2290 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2291 } 2292 2293 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2294 struct seq_file *f, int i) 2295 { 2296 long delta = tw->tw_timer.expires - jiffies; 2297 __be32 dest, src; 2298 __u16 destp, srcp; 2299 2300 dest = tw->tw_daddr; 2301 src = tw->tw_rcv_saddr; 2302 destp = ntohs(tw->tw_dport); 2303 srcp = ntohs(tw->tw_sport); 2304 2305 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2306 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2307 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2308 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2309 refcount_read(&tw->tw_refcnt), tw); 2310 } 2311 2312 #define TMPSZ 150 2313 2314 static int tcp4_seq_show(struct seq_file *seq, void *v) 2315 { 2316 struct tcp_iter_state *st; 2317 struct sock *sk = v; 2318 2319 seq_setwidth(seq, TMPSZ - 1); 2320 if (v == SEQ_START_TOKEN) { 2321 seq_puts(seq, " sl local_address rem_address st tx_queue " 2322 "rx_queue tr tm->when retrnsmt uid timeout " 2323 "inode"); 2324 goto out; 2325 } 2326 st = seq->private; 2327 2328 if (sk->sk_state == TCP_TIME_WAIT) 2329 get_timewait4_sock(v, seq, st->num); 2330 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2331 get_openreq4(v, seq, st->num); 2332 else 2333 get_tcp4_sock(v, seq, st->num); 2334 out: 2335 seq_pad(seq, '\n'); 2336 return 0; 2337 } 2338 2339 static const struct file_operations tcp_afinfo_seq_fops = { 2340 .owner = THIS_MODULE, 2341 .open = tcp_seq_open, 2342 .read = seq_read, 2343 .llseek = seq_lseek, 2344 .release = seq_release_net 2345 }; 2346 2347 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2348 .name = "tcp", 2349 .family = AF_INET, 2350 .seq_fops = &tcp_afinfo_seq_fops, 2351 .seq_ops = { 2352 .show = tcp4_seq_show, 2353 }, 2354 }; 2355 2356 static int __net_init tcp4_proc_init_net(struct net *net) 2357 { 2358 return tcp_proc_register(net, &tcp4_seq_afinfo); 2359 } 2360 2361 static void __net_exit tcp4_proc_exit_net(struct net *net) 2362 { 2363 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2364 } 2365 2366 static struct pernet_operations tcp4_net_ops = { 2367 .init = tcp4_proc_init_net, 2368 .exit = tcp4_proc_exit_net, 2369 }; 2370 2371 int __init tcp4_proc_init(void) 2372 { 2373 return register_pernet_subsys(&tcp4_net_ops); 2374 } 2375 2376 void tcp4_proc_exit(void) 2377 { 2378 unregister_pernet_subsys(&tcp4_net_ops); 2379 } 2380 #endif /* CONFIG_PROC_FS */ 2381 2382 struct proto tcp_prot = { 2383 .name = "TCP", 2384 .owner = THIS_MODULE, 2385 .close = tcp_close, 2386 .connect = tcp_v4_connect, 2387 .disconnect = tcp_disconnect, 2388 .accept = inet_csk_accept, 2389 .ioctl = tcp_ioctl, 2390 .init = tcp_v4_init_sock, 2391 .destroy = tcp_v4_destroy_sock, 2392 .shutdown = tcp_shutdown, 2393 .setsockopt = tcp_setsockopt, 2394 .getsockopt = tcp_getsockopt, 2395 .keepalive = tcp_set_keepalive, 2396 .recvmsg = tcp_recvmsg, 2397 .sendmsg = tcp_sendmsg, 2398 .sendpage = tcp_sendpage, 2399 .backlog_rcv = tcp_v4_do_rcv, 2400 .release_cb = tcp_release_cb, 2401 .hash = inet_hash, 2402 .unhash = inet_unhash, 2403 .get_port = inet_csk_get_port, 2404 .enter_memory_pressure = tcp_enter_memory_pressure, 2405 .leave_memory_pressure = tcp_leave_memory_pressure, 2406 .stream_memory_free = tcp_stream_memory_free, 2407 .sockets_allocated = &tcp_sockets_allocated, 2408 .orphan_count = &tcp_orphan_count, 2409 .memory_allocated = &tcp_memory_allocated, 2410 .memory_pressure = &tcp_memory_pressure, 2411 .sysctl_mem = sysctl_tcp_mem, 2412 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2413 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 2414 .max_header = MAX_TCP_HEADER, 2415 .obj_size = sizeof(struct tcp_sock), 2416 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2417 .twsk_prot = &tcp_timewait_sock_ops, 2418 .rsk_prot = &tcp_request_sock_ops, 2419 .h.hashinfo = &tcp_hashinfo, 2420 .no_autobind = true, 2421 #ifdef CONFIG_COMPAT 2422 .compat_setsockopt = compat_tcp_setsockopt, 2423 .compat_getsockopt = compat_tcp_getsockopt, 2424 #endif 2425 .diag_destroy = tcp_abort, 2426 }; 2427 EXPORT_SYMBOL(tcp_prot); 2428 2429 static void __net_exit tcp_sk_exit(struct net *net) 2430 { 2431 int cpu; 2432 2433 module_put(net->ipv4.tcp_congestion_control->owner); 2434 2435 for_each_possible_cpu(cpu) 2436 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2437 free_percpu(net->ipv4.tcp_sk); 2438 } 2439 2440 static int __net_init tcp_sk_init(struct net *net) 2441 { 2442 int res, cpu, cnt; 2443 2444 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2445 if (!net->ipv4.tcp_sk) 2446 return -ENOMEM; 2447 2448 for_each_possible_cpu(cpu) { 2449 struct sock *sk; 2450 2451 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2452 IPPROTO_TCP, net); 2453 if (res) 2454 goto fail; 2455 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2456 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2457 } 2458 2459 net->ipv4.sysctl_tcp_ecn = 2; 2460 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2461 2462 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2463 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2464 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2465 2466 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2467 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2468 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2469 2470 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2471 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2472 net->ipv4.sysctl_tcp_syncookies = 1; 2473 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2474 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2475 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2476 net->ipv4.sysctl_tcp_orphan_retries = 0; 2477 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2478 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2479 net->ipv4.sysctl_tcp_tw_reuse = 0; 2480 2481 cnt = tcp_hashinfo.ehash_mask + 1; 2482 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2; 2483 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; 2484 2485 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256); 2486 net->ipv4.sysctl_tcp_sack = 1; 2487 net->ipv4.sysctl_tcp_window_scaling = 1; 2488 net->ipv4.sysctl_tcp_timestamps = 1; 2489 net->ipv4.sysctl_tcp_early_retrans = 3; 2490 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 2491 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 2492 net->ipv4.sysctl_tcp_retrans_collapse = 1; 2493 net->ipv4.sysctl_tcp_max_reordering = 300; 2494 net->ipv4.sysctl_tcp_dsack = 1; 2495 net->ipv4.sysctl_tcp_app_win = 31; 2496 net->ipv4.sysctl_tcp_adv_win_scale = 1; 2497 net->ipv4.sysctl_tcp_frto = 2; 2498 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 2499 /* This limits the percentage of the congestion window which we 2500 * will allow a single TSO frame to consume. Building TSO frames 2501 * which are too large can cause TCP streams to be bursty. 2502 */ 2503 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 2504 /* Default TSQ limit of four TSO segments */ 2505 net->ipv4.sysctl_tcp_limit_output_bytes = 262144; 2506 /* rfc5961 challenge ack rate limiting */ 2507 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 2508 net->ipv4.sysctl_tcp_min_tso_segs = 2; 2509 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 2510 net->ipv4.sysctl_tcp_autocorking = 1; 2511 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 2512 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 2513 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 2514 if (net != &init_net) { 2515 memcpy(net->ipv4.sysctl_tcp_rmem, 2516 init_net.ipv4.sysctl_tcp_rmem, 2517 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 2518 memcpy(net->ipv4.sysctl_tcp_wmem, 2519 init_net.ipv4.sysctl_tcp_wmem, 2520 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 2521 } 2522 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 2523 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); 2524 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60; 2525 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 2526 2527 /* Reno is always built in */ 2528 if (!net_eq(net, &init_net) && 2529 try_module_get(init_net.ipv4.tcp_congestion_control->owner)) 2530 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 2531 else 2532 net->ipv4.tcp_congestion_control = &tcp_reno; 2533 2534 return 0; 2535 fail: 2536 tcp_sk_exit(net); 2537 2538 return res; 2539 } 2540 2541 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2542 { 2543 struct net *net; 2544 2545 inet_twsk_purge(&tcp_hashinfo, AF_INET); 2546 2547 list_for_each_entry(net, net_exit_list, exit_list) 2548 tcp_fastopen_ctx_destroy(net); 2549 } 2550 2551 static struct pernet_operations __net_initdata tcp_sk_ops = { 2552 .init = tcp_sk_init, 2553 .exit = tcp_sk_exit, 2554 .exit_batch = tcp_sk_exit_batch, 2555 }; 2556 2557 void __init tcp_v4_init(void) 2558 { 2559 if (register_pernet_subsys(&tcp_sk_ops)) 2560 panic("Failed to create the TCP control socket.\n"); 2561 } 2562