1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 61 #include <net/net_namespace.h> 62 #include <net/icmp.h> 63 #include <net/inet_hashtables.h> 64 #include <net/tcp.h> 65 #include <net/transp_v6.h> 66 #include <net/ipv6.h> 67 #include <net/inet_common.h> 68 #include <net/timewait_sock.h> 69 #include <net/xfrm.h> 70 #include <net/secure_seq.h> 71 #include <net/busy_poll.h> 72 73 #include <linux/inet.h> 74 #include <linux/ipv6.h> 75 #include <linux/stddef.h> 76 #include <linux/proc_fs.h> 77 #include <linux/seq_file.h> 78 #include <linux/inetdevice.h> 79 80 #include <crypto/hash.h> 81 #include <linux/scatterlist.h> 82 83 #include <trace/events/tcp.h> 84 85 #ifdef CONFIG_TCP_MD5SIG 86 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 87 __be32 daddr, __be32 saddr, const struct tcphdr *th); 88 #endif 89 90 struct inet_hashinfo tcp_hashinfo; 91 EXPORT_SYMBOL(tcp_hashinfo); 92 93 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 94 { 95 return secure_tcp_seq(ip_hdr(skb)->daddr, 96 ip_hdr(skb)->saddr, 97 tcp_hdr(skb)->dest, 98 tcp_hdr(skb)->source); 99 } 100 101 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 102 { 103 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 104 } 105 106 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 107 { 108 const struct inet_timewait_sock *tw = inet_twsk(sktw); 109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 110 struct tcp_sock *tp = tcp_sk(sk); 111 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; 112 113 if (reuse == 2) { 114 /* Still does not detect *everything* that goes through 115 * lo, since we require a loopback src or dst address 116 * or direct binding to 'lo' interface. 117 */ 118 bool loopback = false; 119 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 120 loopback = true; 121 #if IS_ENABLED(CONFIG_IPV6) 122 if (tw->tw_family == AF_INET6) { 123 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 124 (ipv6_addr_v4mapped(&tw->tw_v6_daddr) && 125 (tw->tw_v6_daddr.s6_addr[12] == 127)) || 126 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 127 (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) && 128 (tw->tw_v6_rcv_saddr.s6_addr[12] == 127))) 129 loopback = true; 130 } else 131 #endif 132 { 133 if (ipv4_is_loopback(tw->tw_daddr) || 134 ipv4_is_loopback(tw->tw_rcv_saddr)) 135 loopback = true; 136 } 137 if (!loopback) 138 reuse = 0; 139 } 140 141 /* With PAWS, it is safe from the viewpoint 142 of data integrity. Even without PAWS it is safe provided sequence 143 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 144 145 Actually, the idea is close to VJ's one, only timestamp cache is 146 held not per host, but per port pair and TW bucket is used as state 147 holder. 148 149 If TW bucket has been already destroyed we fall back to VJ's scheme 150 and use initial timestamp retrieved from peer table. 151 */ 152 if (tcptw->tw_ts_recent_stamp && 153 (!twp || (reuse && time_after32(ktime_get_seconds(), 154 tcptw->tw_ts_recent_stamp)))) { 155 /* In case of repair and re-using TIME-WAIT sockets we still 156 * want to be sure that it is safe as above but honor the 157 * sequence numbers and time stamps set as part of the repair 158 * process. 159 * 160 * Without this check re-using a TIME-WAIT socket with TCP 161 * repair would accumulate a -1 on the repair assigned 162 * sequence number. The first time it is reused the sequence 163 * is -1, the second time -2, etc. This fixes that issue 164 * without appearing to create any others. 165 */ 166 if (likely(!tp->repair)) { 167 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 168 if (tp->write_seq == 0) 169 tp->write_seq = 1; 170 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 171 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 172 } 173 sock_hold(sktw); 174 return 1; 175 } 176 177 return 0; 178 } 179 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 180 181 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 182 int addr_len) 183 { 184 /* This check is replicated from tcp_v4_connect() and intended to 185 * prevent BPF program called below from accessing bytes that are out 186 * of the bound specified by user in addr_len. 187 */ 188 if (addr_len < sizeof(struct sockaddr_in)) 189 return -EINVAL; 190 191 sock_owned_by_me(sk); 192 193 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 194 } 195 196 /* This will initiate an outgoing connection. */ 197 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 198 { 199 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 200 struct inet_sock *inet = inet_sk(sk); 201 struct tcp_sock *tp = tcp_sk(sk); 202 __be16 orig_sport, orig_dport; 203 __be32 daddr, nexthop; 204 struct flowi4 *fl4; 205 struct rtable *rt; 206 int err; 207 struct ip_options_rcu *inet_opt; 208 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 209 210 if (addr_len < sizeof(struct sockaddr_in)) 211 return -EINVAL; 212 213 if (usin->sin_family != AF_INET) 214 return -EAFNOSUPPORT; 215 216 nexthop = daddr = usin->sin_addr.s_addr; 217 inet_opt = rcu_dereference_protected(inet->inet_opt, 218 lockdep_sock_is_held(sk)); 219 if (inet_opt && inet_opt->opt.srr) { 220 if (!daddr) 221 return -EINVAL; 222 nexthop = inet_opt->opt.faddr; 223 } 224 225 orig_sport = inet->inet_sport; 226 orig_dport = usin->sin_port; 227 fl4 = &inet->cork.fl.u.ip4; 228 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 229 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 230 IPPROTO_TCP, 231 orig_sport, orig_dport, sk); 232 if (IS_ERR(rt)) { 233 err = PTR_ERR(rt); 234 if (err == -ENETUNREACH) 235 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 236 return err; 237 } 238 239 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 240 ip_rt_put(rt); 241 return -ENETUNREACH; 242 } 243 244 if (!inet_opt || !inet_opt->opt.srr) 245 daddr = fl4->daddr; 246 247 if (!inet->inet_saddr) 248 inet->inet_saddr = fl4->saddr; 249 sk_rcv_saddr_set(sk, inet->inet_saddr); 250 251 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 252 /* Reset inherited state */ 253 tp->rx_opt.ts_recent = 0; 254 tp->rx_opt.ts_recent_stamp = 0; 255 if (likely(!tp->repair)) 256 tp->write_seq = 0; 257 } 258 259 inet->inet_dport = usin->sin_port; 260 sk_daddr_set(sk, daddr); 261 262 inet_csk(sk)->icsk_ext_hdr_len = 0; 263 if (inet_opt) 264 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 265 266 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 267 268 /* Socket identity is still unknown (sport may be zero). 269 * However we set state to SYN-SENT and not releasing socket 270 * lock select source port, enter ourselves into the hash tables and 271 * complete initialization after this. 272 */ 273 tcp_set_state(sk, TCP_SYN_SENT); 274 err = inet_hash_connect(tcp_death_row, sk); 275 if (err) 276 goto failure; 277 278 sk_set_txhash(sk); 279 280 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 281 inet->inet_sport, inet->inet_dport, sk); 282 if (IS_ERR(rt)) { 283 err = PTR_ERR(rt); 284 rt = NULL; 285 goto failure; 286 } 287 /* OK, now commit destination to socket. */ 288 sk->sk_gso_type = SKB_GSO_TCPV4; 289 sk_setup_caps(sk, &rt->dst); 290 rt = NULL; 291 292 if (likely(!tp->repair)) { 293 if (!tp->write_seq) 294 tp->write_seq = secure_tcp_seq(inet->inet_saddr, 295 inet->inet_daddr, 296 inet->inet_sport, 297 usin->sin_port); 298 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 299 inet->inet_saddr, 300 inet->inet_daddr); 301 } 302 303 inet->inet_id = tp->write_seq ^ jiffies; 304 305 if (tcp_fastopen_defer_connect(sk, &err)) 306 return err; 307 if (err) 308 goto failure; 309 310 err = tcp_connect(sk); 311 312 if (err) 313 goto failure; 314 315 return 0; 316 317 failure: 318 /* 319 * This unhashes the socket and releases the local port, 320 * if necessary. 321 */ 322 tcp_set_state(sk, TCP_CLOSE); 323 ip_rt_put(rt); 324 sk->sk_route_caps = 0; 325 inet->inet_dport = 0; 326 return err; 327 } 328 EXPORT_SYMBOL(tcp_v4_connect); 329 330 /* 331 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 332 * It can be called through tcp_release_cb() if socket was owned by user 333 * at the time tcp_v4_err() was called to handle ICMP message. 334 */ 335 void tcp_v4_mtu_reduced(struct sock *sk) 336 { 337 struct inet_sock *inet = inet_sk(sk); 338 struct dst_entry *dst; 339 u32 mtu; 340 341 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 342 return; 343 mtu = tcp_sk(sk)->mtu_info; 344 dst = inet_csk_update_pmtu(sk, mtu); 345 if (!dst) 346 return; 347 348 /* Something is about to be wrong... Remember soft error 349 * for the case, if this connection will not able to recover. 350 */ 351 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 352 sk->sk_err_soft = EMSGSIZE; 353 354 mtu = dst_mtu(dst); 355 356 if (inet->pmtudisc != IP_PMTUDISC_DONT && 357 ip_sk_accept_pmtu(sk) && 358 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 359 tcp_sync_mss(sk, mtu); 360 361 /* Resend the TCP packet because it's 362 * clear that the old packet has been 363 * dropped. This is the new "fast" path mtu 364 * discovery. 365 */ 366 tcp_simple_retransmit(sk); 367 } /* else let the usual retransmit timer handle it */ 368 } 369 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 370 371 static void do_redirect(struct sk_buff *skb, struct sock *sk) 372 { 373 struct dst_entry *dst = __sk_dst_check(sk, 0); 374 375 if (dst) 376 dst->ops->redirect(dst, sk, skb); 377 } 378 379 380 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 381 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 382 { 383 struct request_sock *req = inet_reqsk(sk); 384 struct net *net = sock_net(sk); 385 386 /* ICMPs are not backlogged, hence we cannot get 387 * an established socket here. 388 */ 389 if (seq != tcp_rsk(req)->snt_isn) { 390 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 391 } else if (abort) { 392 /* 393 * Still in SYN_RECV, just remove it silently. 394 * There is no good way to pass the error to the newly 395 * created socket, and POSIX does not want network 396 * errors returned from accept(). 397 */ 398 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 399 tcp_listendrop(req->rsk_listener); 400 } 401 reqsk_put(req); 402 } 403 EXPORT_SYMBOL(tcp_req_err); 404 405 /* 406 * This routine is called by the ICMP module when it gets some 407 * sort of error condition. If err < 0 then the socket should 408 * be closed and the error returned to the user. If err > 0 409 * it's just the icmp type << 8 | icmp code. After adjustment 410 * header points to the first 8 bytes of the tcp header. We need 411 * to find the appropriate port. 412 * 413 * The locking strategy used here is very "optimistic". When 414 * someone else accesses the socket the ICMP is just dropped 415 * and for some paths there is no check at all. 416 * A more general error queue to queue errors for later handling 417 * is probably better. 418 * 419 */ 420 421 int tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 422 { 423 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 424 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 425 struct inet_connection_sock *icsk; 426 struct tcp_sock *tp; 427 struct inet_sock *inet; 428 const int type = icmp_hdr(icmp_skb)->type; 429 const int code = icmp_hdr(icmp_skb)->code; 430 struct sock *sk; 431 struct sk_buff *skb; 432 struct request_sock *fastopen; 433 u32 seq, snd_una; 434 s32 remaining; 435 u32 delta_us; 436 int err; 437 struct net *net = dev_net(icmp_skb->dev); 438 439 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 440 th->dest, iph->saddr, ntohs(th->source), 441 inet_iif(icmp_skb), 0); 442 if (!sk) { 443 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 444 return -ENOENT; 445 } 446 if (sk->sk_state == TCP_TIME_WAIT) { 447 inet_twsk_put(inet_twsk(sk)); 448 return 0; 449 } 450 seq = ntohl(th->seq); 451 if (sk->sk_state == TCP_NEW_SYN_RECV) { 452 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 453 type == ICMP_TIME_EXCEEDED || 454 (type == ICMP_DEST_UNREACH && 455 (code == ICMP_NET_UNREACH || 456 code == ICMP_HOST_UNREACH))); 457 return 0; 458 } 459 460 bh_lock_sock(sk); 461 /* If too many ICMPs get dropped on busy 462 * servers this needs to be solved differently. 463 * We do take care of PMTU discovery (RFC1191) special case : 464 * we can receive locally generated ICMP messages while socket is held. 465 */ 466 if (sock_owned_by_user(sk)) { 467 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 468 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 469 } 470 if (sk->sk_state == TCP_CLOSE) 471 goto out; 472 473 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 474 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 475 goto out; 476 } 477 478 icsk = inet_csk(sk); 479 tp = tcp_sk(sk); 480 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 481 fastopen = tp->fastopen_rsk; 482 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 483 if (sk->sk_state != TCP_LISTEN && 484 !between(seq, snd_una, tp->snd_nxt)) { 485 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 486 goto out; 487 } 488 489 switch (type) { 490 case ICMP_REDIRECT: 491 if (!sock_owned_by_user(sk)) 492 do_redirect(icmp_skb, sk); 493 goto out; 494 case ICMP_SOURCE_QUENCH: 495 /* Just silently ignore these. */ 496 goto out; 497 case ICMP_PARAMETERPROB: 498 err = EPROTO; 499 break; 500 case ICMP_DEST_UNREACH: 501 if (code > NR_ICMP_UNREACH) 502 goto out; 503 504 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 505 /* We are not interested in TCP_LISTEN and open_requests 506 * (SYN-ACKs send out by Linux are always <576bytes so 507 * they should go through unfragmented). 508 */ 509 if (sk->sk_state == TCP_LISTEN) 510 goto out; 511 512 tp->mtu_info = info; 513 if (!sock_owned_by_user(sk)) { 514 tcp_v4_mtu_reduced(sk); 515 } else { 516 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 517 sock_hold(sk); 518 } 519 goto out; 520 } 521 522 err = icmp_err_convert[code].errno; 523 /* check if icmp_skb allows revert of backoff 524 * (see draft-zimmermann-tcp-lcd) */ 525 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 526 break; 527 if (seq != tp->snd_una || !icsk->icsk_retransmits || 528 !icsk->icsk_backoff || fastopen) 529 break; 530 531 if (sock_owned_by_user(sk)) 532 break; 533 534 skb = tcp_rtx_queue_head(sk); 535 if (WARN_ON_ONCE(!skb)) 536 break; 537 538 icsk->icsk_backoff--; 539 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 540 TCP_TIMEOUT_INIT; 541 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 542 543 544 tcp_mstamp_refresh(tp); 545 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 546 remaining = icsk->icsk_rto - 547 usecs_to_jiffies(delta_us); 548 549 if (remaining > 0) { 550 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 551 remaining, TCP_RTO_MAX); 552 } else { 553 /* RTO revert clocked out retransmission. 554 * Will retransmit now */ 555 tcp_retransmit_timer(sk); 556 } 557 558 break; 559 case ICMP_TIME_EXCEEDED: 560 err = EHOSTUNREACH; 561 break; 562 default: 563 goto out; 564 } 565 566 switch (sk->sk_state) { 567 case TCP_SYN_SENT: 568 case TCP_SYN_RECV: 569 /* Only in fast or simultaneous open. If a fast open socket is 570 * is already accepted it is treated as a connected one below. 571 */ 572 if (fastopen && !fastopen->sk) 573 break; 574 575 if (!sock_owned_by_user(sk)) { 576 sk->sk_err = err; 577 578 sk->sk_error_report(sk); 579 580 tcp_done(sk); 581 } else { 582 sk->sk_err_soft = err; 583 } 584 goto out; 585 } 586 587 /* If we've already connected we will keep trying 588 * until we time out, or the user gives up. 589 * 590 * rfc1122 4.2.3.9 allows to consider as hard errors 591 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 592 * but it is obsoleted by pmtu discovery). 593 * 594 * Note, that in modern internet, where routing is unreliable 595 * and in each dark corner broken firewalls sit, sending random 596 * errors ordered by their masters even this two messages finally lose 597 * their original sense (even Linux sends invalid PORT_UNREACHs) 598 * 599 * Now we are in compliance with RFCs. 600 * --ANK (980905) 601 */ 602 603 inet = inet_sk(sk); 604 if (!sock_owned_by_user(sk) && inet->recverr) { 605 sk->sk_err = err; 606 sk->sk_error_report(sk); 607 } else { /* Only an error on timeout */ 608 sk->sk_err_soft = err; 609 } 610 611 out: 612 bh_unlock_sock(sk); 613 sock_put(sk); 614 return 0; 615 } 616 617 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 618 { 619 struct tcphdr *th = tcp_hdr(skb); 620 621 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 622 skb->csum_start = skb_transport_header(skb) - skb->head; 623 skb->csum_offset = offsetof(struct tcphdr, check); 624 } 625 626 /* This routine computes an IPv4 TCP checksum. */ 627 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 628 { 629 const struct inet_sock *inet = inet_sk(sk); 630 631 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 632 } 633 EXPORT_SYMBOL(tcp_v4_send_check); 634 635 /* 636 * This routine will send an RST to the other tcp. 637 * 638 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 639 * for reset. 640 * Answer: if a packet caused RST, it is not for a socket 641 * existing in our system, if it is matched to a socket, 642 * it is just duplicate segment or bug in other side's TCP. 643 * So that we build reply only basing on parameters 644 * arrived with segment. 645 * Exception: precedence violation. We do not implement it in any case. 646 */ 647 648 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 649 { 650 const struct tcphdr *th = tcp_hdr(skb); 651 struct { 652 struct tcphdr th; 653 #ifdef CONFIG_TCP_MD5SIG 654 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 655 #endif 656 } rep; 657 struct ip_reply_arg arg; 658 #ifdef CONFIG_TCP_MD5SIG 659 struct tcp_md5sig_key *key = NULL; 660 const __u8 *hash_location = NULL; 661 unsigned char newhash[16]; 662 int genhash; 663 struct sock *sk1 = NULL; 664 #endif 665 u64 transmit_time = 0; 666 struct sock *ctl_sk; 667 struct net *net; 668 669 /* Never send a reset in response to a reset. */ 670 if (th->rst) 671 return; 672 673 /* If sk not NULL, it means we did a successful lookup and incoming 674 * route had to be correct. prequeue might have dropped our dst. 675 */ 676 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 677 return; 678 679 /* Swap the send and the receive. */ 680 memset(&rep, 0, sizeof(rep)); 681 rep.th.dest = th->source; 682 rep.th.source = th->dest; 683 rep.th.doff = sizeof(struct tcphdr) / 4; 684 rep.th.rst = 1; 685 686 if (th->ack) { 687 rep.th.seq = th->ack_seq; 688 } else { 689 rep.th.ack = 1; 690 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 691 skb->len - (th->doff << 2)); 692 } 693 694 memset(&arg, 0, sizeof(arg)); 695 arg.iov[0].iov_base = (unsigned char *)&rep; 696 arg.iov[0].iov_len = sizeof(rep.th); 697 698 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 699 #ifdef CONFIG_TCP_MD5SIG 700 rcu_read_lock(); 701 hash_location = tcp_parse_md5sig_option(th); 702 if (sk && sk_fullsock(sk)) { 703 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 704 &ip_hdr(skb)->saddr, AF_INET); 705 } else if (hash_location) { 706 /* 707 * active side is lost. Try to find listening socket through 708 * source port, and then find md5 key through listening socket. 709 * we are not loose security here: 710 * Incoming packet is checked with md5 hash with finding key, 711 * no RST generated if md5 hash doesn't match. 712 */ 713 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 714 ip_hdr(skb)->saddr, 715 th->source, ip_hdr(skb)->daddr, 716 ntohs(th->source), inet_iif(skb), 717 tcp_v4_sdif(skb)); 718 /* don't send rst if it can't find key */ 719 if (!sk1) 720 goto out; 721 722 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 723 &ip_hdr(skb)->saddr, AF_INET); 724 if (!key) 725 goto out; 726 727 728 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 729 if (genhash || memcmp(hash_location, newhash, 16) != 0) 730 goto out; 731 732 } 733 734 if (key) { 735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 736 (TCPOPT_NOP << 16) | 737 (TCPOPT_MD5SIG << 8) | 738 TCPOLEN_MD5SIG); 739 /* Update length and the length the header thinks exists */ 740 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 741 rep.th.doff = arg.iov[0].iov_len / 4; 742 743 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 744 key, ip_hdr(skb)->saddr, 745 ip_hdr(skb)->daddr, &rep.th); 746 } 747 #endif 748 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 749 ip_hdr(skb)->saddr, /* XXX */ 750 arg.iov[0].iov_len, IPPROTO_TCP, 0); 751 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 752 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 753 754 /* When socket is gone, all binding information is lost. 755 * routing might fail in this case. No choice here, if we choose to force 756 * input interface, we will misroute in case of asymmetric route. 757 */ 758 if (sk) { 759 arg.bound_dev_if = sk->sk_bound_dev_if; 760 if (sk_fullsock(sk)) 761 trace_tcp_send_reset(sk, skb); 762 } 763 764 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 765 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 766 767 arg.tos = ip_hdr(skb)->tos; 768 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 769 local_bh_disable(); 770 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); 771 if (sk) { 772 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 773 inet_twsk(sk)->tw_mark : sk->sk_mark; 774 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 775 inet_twsk(sk)->tw_priority : sk->sk_priority; 776 transmit_time = tcp_transmit_time(sk); 777 } 778 ip_send_unicast_reply(ctl_sk, 779 skb, &TCP_SKB_CB(skb)->header.h4.opt, 780 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 781 &arg, arg.iov[0].iov_len, 782 transmit_time); 783 784 ctl_sk->sk_mark = 0; 785 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 786 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 787 local_bh_enable(); 788 789 #ifdef CONFIG_TCP_MD5SIG 790 out: 791 rcu_read_unlock(); 792 #endif 793 } 794 795 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 796 outside socket context is ugly, certainly. What can I do? 797 */ 798 799 static void tcp_v4_send_ack(const struct sock *sk, 800 struct sk_buff *skb, u32 seq, u32 ack, 801 u32 win, u32 tsval, u32 tsecr, int oif, 802 struct tcp_md5sig_key *key, 803 int reply_flags, u8 tos) 804 { 805 const struct tcphdr *th = tcp_hdr(skb); 806 struct { 807 struct tcphdr th; 808 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 809 #ifdef CONFIG_TCP_MD5SIG 810 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 811 #endif 812 ]; 813 } rep; 814 struct net *net = sock_net(sk); 815 struct ip_reply_arg arg; 816 struct sock *ctl_sk; 817 u64 transmit_time; 818 819 memset(&rep.th, 0, sizeof(struct tcphdr)); 820 memset(&arg, 0, sizeof(arg)); 821 822 arg.iov[0].iov_base = (unsigned char *)&rep; 823 arg.iov[0].iov_len = sizeof(rep.th); 824 if (tsecr) { 825 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 826 (TCPOPT_TIMESTAMP << 8) | 827 TCPOLEN_TIMESTAMP); 828 rep.opt[1] = htonl(tsval); 829 rep.opt[2] = htonl(tsecr); 830 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 831 } 832 833 /* Swap the send and the receive. */ 834 rep.th.dest = th->source; 835 rep.th.source = th->dest; 836 rep.th.doff = arg.iov[0].iov_len / 4; 837 rep.th.seq = htonl(seq); 838 rep.th.ack_seq = htonl(ack); 839 rep.th.ack = 1; 840 rep.th.window = htons(win); 841 842 #ifdef CONFIG_TCP_MD5SIG 843 if (key) { 844 int offset = (tsecr) ? 3 : 0; 845 846 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 847 (TCPOPT_NOP << 16) | 848 (TCPOPT_MD5SIG << 8) | 849 TCPOLEN_MD5SIG); 850 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 851 rep.th.doff = arg.iov[0].iov_len/4; 852 853 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 854 key, ip_hdr(skb)->saddr, 855 ip_hdr(skb)->daddr, &rep.th); 856 } 857 #endif 858 arg.flags = reply_flags; 859 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 860 ip_hdr(skb)->saddr, /* XXX */ 861 arg.iov[0].iov_len, IPPROTO_TCP, 0); 862 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 863 if (oif) 864 arg.bound_dev_if = oif; 865 arg.tos = tos; 866 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 867 local_bh_disable(); 868 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); 869 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 870 inet_twsk(sk)->tw_mark : sk->sk_mark; 871 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 872 inet_twsk(sk)->tw_priority : sk->sk_priority; 873 transmit_time = tcp_transmit_time(sk); 874 ip_send_unicast_reply(ctl_sk, 875 skb, &TCP_SKB_CB(skb)->header.h4.opt, 876 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 877 &arg, arg.iov[0].iov_len, 878 transmit_time); 879 880 ctl_sk->sk_mark = 0; 881 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 882 local_bh_enable(); 883 } 884 885 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 886 { 887 struct inet_timewait_sock *tw = inet_twsk(sk); 888 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 889 890 tcp_v4_send_ack(sk, skb, 891 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 892 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 893 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 894 tcptw->tw_ts_recent, 895 tw->tw_bound_dev_if, 896 tcp_twsk_md5_key(tcptw), 897 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 898 tw->tw_tos 899 ); 900 901 inet_twsk_put(tw); 902 } 903 904 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 905 struct request_sock *req) 906 { 907 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 908 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 909 */ 910 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 911 tcp_sk(sk)->snd_nxt; 912 913 /* RFC 7323 2.3 914 * The window field (SEG.WND) of every outgoing segment, with the 915 * exception of <SYN> segments, MUST be right-shifted by 916 * Rcv.Wind.Shift bits: 917 */ 918 tcp_v4_send_ack(sk, skb, seq, 919 tcp_rsk(req)->rcv_nxt, 920 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 921 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 922 req->ts_recent, 923 0, 924 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr, 925 AF_INET), 926 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 927 ip_hdr(skb)->tos); 928 } 929 930 /* 931 * Send a SYN-ACK after having received a SYN. 932 * This still operates on a request_sock only, not on a big 933 * socket. 934 */ 935 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 936 struct flowi *fl, 937 struct request_sock *req, 938 struct tcp_fastopen_cookie *foc, 939 enum tcp_synack_type synack_type) 940 { 941 const struct inet_request_sock *ireq = inet_rsk(req); 942 struct flowi4 fl4; 943 int err = -1; 944 struct sk_buff *skb; 945 946 /* First, grab a route. */ 947 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 948 return -1; 949 950 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 951 952 if (skb) { 953 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 954 955 rcu_read_lock(); 956 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 957 ireq->ir_rmt_addr, 958 rcu_dereference(ireq->ireq_opt)); 959 rcu_read_unlock(); 960 err = net_xmit_eval(err); 961 } 962 963 return err; 964 } 965 966 /* 967 * IPv4 request_sock destructor. 968 */ 969 static void tcp_v4_reqsk_destructor(struct request_sock *req) 970 { 971 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 972 } 973 974 #ifdef CONFIG_TCP_MD5SIG 975 /* 976 * RFC2385 MD5 checksumming requires a mapping of 977 * IP address->MD5 Key. 978 * We need to maintain these in the sk structure. 979 */ 980 981 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed); 982 EXPORT_SYMBOL(tcp_md5_needed); 983 984 /* Find the Key structure for an address. */ 985 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, 986 const union tcp_md5_addr *addr, 987 int family) 988 { 989 const struct tcp_sock *tp = tcp_sk(sk); 990 struct tcp_md5sig_key *key; 991 const struct tcp_md5sig_info *md5sig; 992 __be32 mask; 993 struct tcp_md5sig_key *best_match = NULL; 994 bool match; 995 996 /* caller either holds rcu_read_lock() or socket lock */ 997 md5sig = rcu_dereference_check(tp->md5sig_info, 998 lockdep_sock_is_held(sk)); 999 if (!md5sig) 1000 return NULL; 1001 1002 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 1003 if (key->family != family) 1004 continue; 1005 1006 if (family == AF_INET) { 1007 mask = inet_make_mask(key->prefixlen); 1008 match = (key->addr.a4.s_addr & mask) == 1009 (addr->a4.s_addr & mask); 1010 #if IS_ENABLED(CONFIG_IPV6) 1011 } else if (family == AF_INET6) { 1012 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1013 key->prefixlen); 1014 #endif 1015 } else { 1016 match = false; 1017 } 1018 1019 if (match && (!best_match || 1020 key->prefixlen > best_match->prefixlen)) 1021 best_match = key; 1022 } 1023 return best_match; 1024 } 1025 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1026 1027 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1028 const union tcp_md5_addr *addr, 1029 int family, u8 prefixlen) 1030 { 1031 const struct tcp_sock *tp = tcp_sk(sk); 1032 struct tcp_md5sig_key *key; 1033 unsigned int size = sizeof(struct in_addr); 1034 const struct tcp_md5sig_info *md5sig; 1035 1036 /* caller either holds rcu_read_lock() or socket lock */ 1037 md5sig = rcu_dereference_check(tp->md5sig_info, 1038 lockdep_sock_is_held(sk)); 1039 if (!md5sig) 1040 return NULL; 1041 #if IS_ENABLED(CONFIG_IPV6) 1042 if (family == AF_INET6) 1043 size = sizeof(struct in6_addr); 1044 #endif 1045 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 1046 if (key->family != family) 1047 continue; 1048 if (!memcmp(&key->addr, addr, size) && 1049 key->prefixlen == prefixlen) 1050 return key; 1051 } 1052 return NULL; 1053 } 1054 1055 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1056 const struct sock *addr_sk) 1057 { 1058 const union tcp_md5_addr *addr; 1059 1060 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1061 return tcp_md5_do_lookup(sk, addr, AF_INET); 1062 } 1063 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1064 1065 /* This can be called on a newly created socket, from other files */ 1066 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1067 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen, 1068 gfp_t gfp) 1069 { 1070 /* Add Key to the list */ 1071 struct tcp_md5sig_key *key; 1072 struct tcp_sock *tp = tcp_sk(sk); 1073 struct tcp_md5sig_info *md5sig; 1074 1075 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1076 if (key) { 1077 /* Pre-existing entry - just update that one. */ 1078 memcpy(key->key, newkey, newkeylen); 1079 key->keylen = newkeylen; 1080 return 0; 1081 } 1082 1083 md5sig = rcu_dereference_protected(tp->md5sig_info, 1084 lockdep_sock_is_held(sk)); 1085 if (!md5sig) { 1086 md5sig = kmalloc(sizeof(*md5sig), gfp); 1087 if (!md5sig) 1088 return -ENOMEM; 1089 1090 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1091 INIT_HLIST_HEAD(&md5sig->head); 1092 rcu_assign_pointer(tp->md5sig_info, md5sig); 1093 } 1094 1095 key = sock_kmalloc(sk, sizeof(*key), gfp); 1096 if (!key) 1097 return -ENOMEM; 1098 if (!tcp_alloc_md5sig_pool()) { 1099 sock_kfree_s(sk, key, sizeof(*key)); 1100 return -ENOMEM; 1101 } 1102 1103 memcpy(key->key, newkey, newkeylen); 1104 key->keylen = newkeylen; 1105 key->family = family; 1106 key->prefixlen = prefixlen; 1107 memcpy(&key->addr, addr, 1108 (family == AF_INET6) ? sizeof(struct in6_addr) : 1109 sizeof(struct in_addr)); 1110 hlist_add_head_rcu(&key->node, &md5sig->head); 1111 return 0; 1112 } 1113 EXPORT_SYMBOL(tcp_md5_do_add); 1114 1115 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1116 u8 prefixlen) 1117 { 1118 struct tcp_md5sig_key *key; 1119 1120 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1121 if (!key) 1122 return -ENOENT; 1123 hlist_del_rcu(&key->node); 1124 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1125 kfree_rcu(key, rcu); 1126 return 0; 1127 } 1128 EXPORT_SYMBOL(tcp_md5_do_del); 1129 1130 static void tcp_clear_md5_list(struct sock *sk) 1131 { 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 struct tcp_md5sig_key *key; 1134 struct hlist_node *n; 1135 struct tcp_md5sig_info *md5sig; 1136 1137 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1138 1139 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1140 hlist_del_rcu(&key->node); 1141 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1142 kfree_rcu(key, rcu); 1143 } 1144 } 1145 1146 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1147 char __user *optval, int optlen) 1148 { 1149 struct tcp_md5sig cmd; 1150 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1151 u8 prefixlen = 32; 1152 1153 if (optlen < sizeof(cmd)) 1154 return -EINVAL; 1155 1156 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1157 return -EFAULT; 1158 1159 if (sin->sin_family != AF_INET) 1160 return -EINVAL; 1161 1162 if (optname == TCP_MD5SIG_EXT && 1163 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1164 prefixlen = cmd.tcpm_prefixlen; 1165 if (prefixlen > 32) 1166 return -EINVAL; 1167 } 1168 1169 if (!cmd.tcpm_keylen) 1170 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1171 AF_INET, prefixlen); 1172 1173 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1174 return -EINVAL; 1175 1176 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1177 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen, 1178 GFP_KERNEL); 1179 } 1180 1181 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1182 __be32 daddr, __be32 saddr, 1183 const struct tcphdr *th, int nbytes) 1184 { 1185 struct tcp4_pseudohdr *bp; 1186 struct scatterlist sg; 1187 struct tcphdr *_th; 1188 1189 bp = hp->scratch; 1190 bp->saddr = saddr; 1191 bp->daddr = daddr; 1192 bp->pad = 0; 1193 bp->protocol = IPPROTO_TCP; 1194 bp->len = cpu_to_be16(nbytes); 1195 1196 _th = (struct tcphdr *)(bp + 1); 1197 memcpy(_th, th, sizeof(*th)); 1198 _th->check = 0; 1199 1200 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1201 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1202 sizeof(*bp) + sizeof(*th)); 1203 return crypto_ahash_update(hp->md5_req); 1204 } 1205 1206 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1207 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1208 { 1209 struct tcp_md5sig_pool *hp; 1210 struct ahash_request *req; 1211 1212 hp = tcp_get_md5sig_pool(); 1213 if (!hp) 1214 goto clear_hash_noput; 1215 req = hp->md5_req; 1216 1217 if (crypto_ahash_init(req)) 1218 goto clear_hash; 1219 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1220 goto clear_hash; 1221 if (tcp_md5_hash_key(hp, key)) 1222 goto clear_hash; 1223 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1224 if (crypto_ahash_final(req)) 1225 goto clear_hash; 1226 1227 tcp_put_md5sig_pool(); 1228 return 0; 1229 1230 clear_hash: 1231 tcp_put_md5sig_pool(); 1232 clear_hash_noput: 1233 memset(md5_hash, 0, 16); 1234 return 1; 1235 } 1236 1237 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1238 const struct sock *sk, 1239 const struct sk_buff *skb) 1240 { 1241 struct tcp_md5sig_pool *hp; 1242 struct ahash_request *req; 1243 const struct tcphdr *th = tcp_hdr(skb); 1244 __be32 saddr, daddr; 1245 1246 if (sk) { /* valid for establish/request sockets */ 1247 saddr = sk->sk_rcv_saddr; 1248 daddr = sk->sk_daddr; 1249 } else { 1250 const struct iphdr *iph = ip_hdr(skb); 1251 saddr = iph->saddr; 1252 daddr = iph->daddr; 1253 } 1254 1255 hp = tcp_get_md5sig_pool(); 1256 if (!hp) 1257 goto clear_hash_noput; 1258 req = hp->md5_req; 1259 1260 if (crypto_ahash_init(req)) 1261 goto clear_hash; 1262 1263 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1264 goto clear_hash; 1265 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1266 goto clear_hash; 1267 if (tcp_md5_hash_key(hp, key)) 1268 goto clear_hash; 1269 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1270 if (crypto_ahash_final(req)) 1271 goto clear_hash; 1272 1273 tcp_put_md5sig_pool(); 1274 return 0; 1275 1276 clear_hash: 1277 tcp_put_md5sig_pool(); 1278 clear_hash_noput: 1279 memset(md5_hash, 0, 16); 1280 return 1; 1281 } 1282 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1283 1284 #endif 1285 1286 /* Called with rcu_read_lock() */ 1287 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1288 const struct sk_buff *skb) 1289 { 1290 #ifdef CONFIG_TCP_MD5SIG 1291 /* 1292 * This gets called for each TCP segment that arrives 1293 * so we want to be efficient. 1294 * We have 3 drop cases: 1295 * o No MD5 hash and one expected. 1296 * o MD5 hash and we're not expecting one. 1297 * o MD5 hash and its wrong. 1298 */ 1299 const __u8 *hash_location = NULL; 1300 struct tcp_md5sig_key *hash_expected; 1301 const struct iphdr *iph = ip_hdr(skb); 1302 const struct tcphdr *th = tcp_hdr(skb); 1303 int genhash; 1304 unsigned char newhash[16]; 1305 1306 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1307 AF_INET); 1308 hash_location = tcp_parse_md5sig_option(th); 1309 1310 /* We've parsed the options - do we have a hash? */ 1311 if (!hash_expected && !hash_location) 1312 return false; 1313 1314 if (hash_expected && !hash_location) { 1315 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1316 return true; 1317 } 1318 1319 if (!hash_expected && hash_location) { 1320 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1321 return true; 1322 } 1323 1324 /* Okay, so this is hash_expected and hash_location - 1325 * so we need to calculate the checksum. 1326 */ 1327 genhash = tcp_v4_md5_hash_skb(newhash, 1328 hash_expected, 1329 NULL, skb); 1330 1331 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1332 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1333 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1334 &iph->saddr, ntohs(th->source), 1335 &iph->daddr, ntohs(th->dest), 1336 genhash ? " tcp_v4_calc_md5_hash failed" 1337 : ""); 1338 return true; 1339 } 1340 return false; 1341 #endif 1342 return false; 1343 } 1344 1345 static void tcp_v4_init_req(struct request_sock *req, 1346 const struct sock *sk_listener, 1347 struct sk_buff *skb) 1348 { 1349 struct inet_request_sock *ireq = inet_rsk(req); 1350 struct net *net = sock_net(sk_listener); 1351 1352 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1353 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1354 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1355 } 1356 1357 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1358 struct flowi *fl, 1359 const struct request_sock *req) 1360 { 1361 return inet_csk_route_req(sk, &fl->u.ip4, req); 1362 } 1363 1364 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1365 .family = PF_INET, 1366 .obj_size = sizeof(struct tcp_request_sock), 1367 .rtx_syn_ack = tcp_rtx_synack, 1368 .send_ack = tcp_v4_reqsk_send_ack, 1369 .destructor = tcp_v4_reqsk_destructor, 1370 .send_reset = tcp_v4_send_reset, 1371 .syn_ack_timeout = tcp_syn_ack_timeout, 1372 }; 1373 1374 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1375 .mss_clamp = TCP_MSS_DEFAULT, 1376 #ifdef CONFIG_TCP_MD5SIG 1377 .req_md5_lookup = tcp_v4_md5_lookup, 1378 .calc_md5_hash = tcp_v4_md5_hash_skb, 1379 #endif 1380 .init_req = tcp_v4_init_req, 1381 #ifdef CONFIG_SYN_COOKIES 1382 .cookie_init_seq = cookie_v4_init_sequence, 1383 #endif 1384 .route_req = tcp_v4_route_req, 1385 .init_seq = tcp_v4_init_seq, 1386 .init_ts_off = tcp_v4_init_ts_off, 1387 .send_synack = tcp_v4_send_synack, 1388 }; 1389 1390 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1391 { 1392 /* Never answer to SYNs send to broadcast or multicast */ 1393 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1394 goto drop; 1395 1396 return tcp_conn_request(&tcp_request_sock_ops, 1397 &tcp_request_sock_ipv4_ops, sk, skb); 1398 1399 drop: 1400 tcp_listendrop(sk); 1401 return 0; 1402 } 1403 EXPORT_SYMBOL(tcp_v4_conn_request); 1404 1405 1406 /* 1407 * The three way handshake has completed - we got a valid synack - 1408 * now create the new socket. 1409 */ 1410 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1411 struct request_sock *req, 1412 struct dst_entry *dst, 1413 struct request_sock *req_unhash, 1414 bool *own_req) 1415 { 1416 struct inet_request_sock *ireq; 1417 struct inet_sock *newinet; 1418 struct tcp_sock *newtp; 1419 struct sock *newsk; 1420 #ifdef CONFIG_TCP_MD5SIG 1421 struct tcp_md5sig_key *key; 1422 #endif 1423 struct ip_options_rcu *inet_opt; 1424 1425 if (sk_acceptq_is_full(sk)) 1426 goto exit_overflow; 1427 1428 newsk = tcp_create_openreq_child(sk, req, skb); 1429 if (!newsk) 1430 goto exit_nonewsk; 1431 1432 newsk->sk_gso_type = SKB_GSO_TCPV4; 1433 inet_sk_rx_dst_set(newsk, skb); 1434 1435 newtp = tcp_sk(newsk); 1436 newinet = inet_sk(newsk); 1437 ireq = inet_rsk(req); 1438 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1439 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1440 newsk->sk_bound_dev_if = ireq->ir_iif; 1441 newinet->inet_saddr = ireq->ir_loc_addr; 1442 inet_opt = rcu_dereference(ireq->ireq_opt); 1443 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1444 newinet->mc_index = inet_iif(skb); 1445 newinet->mc_ttl = ip_hdr(skb)->ttl; 1446 newinet->rcv_tos = ip_hdr(skb)->tos; 1447 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1448 if (inet_opt) 1449 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1450 newinet->inet_id = newtp->write_seq ^ jiffies; 1451 1452 if (!dst) { 1453 dst = inet_csk_route_child_sock(sk, newsk, req); 1454 if (!dst) 1455 goto put_and_exit; 1456 } else { 1457 /* syncookie case : see end of cookie_v4_check() */ 1458 } 1459 sk_setup_caps(newsk, dst); 1460 1461 tcp_ca_openreq_child(newsk, dst); 1462 1463 tcp_sync_mss(newsk, dst_mtu(dst)); 1464 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1465 1466 tcp_initialize_rcv_mss(newsk); 1467 1468 #ifdef CONFIG_TCP_MD5SIG 1469 /* Copy over the MD5 key from the original socket */ 1470 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1471 AF_INET); 1472 if (key) { 1473 /* 1474 * We're using one, so create a matching key 1475 * on the newsk structure. If we fail to get 1476 * memory, then we end up not copying the key 1477 * across. Shucks. 1478 */ 1479 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1480 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC); 1481 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1482 } 1483 #endif 1484 1485 if (__inet_inherit_port(sk, newsk) < 0) 1486 goto put_and_exit; 1487 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1488 if (likely(*own_req)) { 1489 tcp_move_syn(newtp, req); 1490 ireq->ireq_opt = NULL; 1491 } else { 1492 newinet->inet_opt = NULL; 1493 } 1494 return newsk; 1495 1496 exit_overflow: 1497 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1498 exit_nonewsk: 1499 dst_release(dst); 1500 exit: 1501 tcp_listendrop(sk); 1502 return NULL; 1503 put_and_exit: 1504 newinet->inet_opt = NULL; 1505 inet_csk_prepare_forced_close(newsk); 1506 tcp_done(newsk); 1507 goto exit; 1508 } 1509 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1510 1511 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1512 { 1513 #ifdef CONFIG_SYN_COOKIES 1514 const struct tcphdr *th = tcp_hdr(skb); 1515 1516 if (!th->syn) 1517 sk = cookie_v4_check(sk, skb); 1518 #endif 1519 return sk; 1520 } 1521 1522 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1523 struct tcphdr *th, u32 *cookie) 1524 { 1525 u16 mss = 0; 1526 #ifdef CONFIG_SYN_COOKIES 1527 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1528 &tcp_request_sock_ipv4_ops, sk, th); 1529 if (mss) { 1530 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1531 tcp_synq_overflow(sk); 1532 } 1533 #endif 1534 return mss; 1535 } 1536 1537 /* The socket must have it's spinlock held when we get 1538 * here, unless it is a TCP_LISTEN socket. 1539 * 1540 * We have a potential double-lock case here, so even when 1541 * doing backlog processing we use the BH locking scheme. 1542 * This is because we cannot sleep with the original spinlock 1543 * held. 1544 */ 1545 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1546 { 1547 struct sock *rsk; 1548 1549 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1550 struct dst_entry *dst = sk->sk_rx_dst; 1551 1552 sock_rps_save_rxhash(sk, skb); 1553 sk_mark_napi_id(sk, skb); 1554 if (dst) { 1555 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1556 !dst->ops->check(dst, 0)) { 1557 dst_release(dst); 1558 sk->sk_rx_dst = NULL; 1559 } 1560 } 1561 tcp_rcv_established(sk, skb); 1562 return 0; 1563 } 1564 1565 if (tcp_checksum_complete(skb)) 1566 goto csum_err; 1567 1568 if (sk->sk_state == TCP_LISTEN) { 1569 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1570 1571 if (!nsk) 1572 goto discard; 1573 if (nsk != sk) { 1574 if (tcp_child_process(sk, nsk, skb)) { 1575 rsk = nsk; 1576 goto reset; 1577 } 1578 return 0; 1579 } 1580 } else 1581 sock_rps_save_rxhash(sk, skb); 1582 1583 if (tcp_rcv_state_process(sk, skb)) { 1584 rsk = sk; 1585 goto reset; 1586 } 1587 return 0; 1588 1589 reset: 1590 tcp_v4_send_reset(rsk, skb); 1591 discard: 1592 kfree_skb(skb); 1593 /* Be careful here. If this function gets more complicated and 1594 * gcc suffers from register pressure on the x86, sk (in %ebx) 1595 * might be destroyed here. This current version compiles correctly, 1596 * but you have been warned. 1597 */ 1598 return 0; 1599 1600 csum_err: 1601 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1602 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1603 goto discard; 1604 } 1605 EXPORT_SYMBOL(tcp_v4_do_rcv); 1606 1607 int tcp_v4_early_demux(struct sk_buff *skb) 1608 { 1609 const struct iphdr *iph; 1610 const struct tcphdr *th; 1611 struct sock *sk; 1612 1613 if (skb->pkt_type != PACKET_HOST) 1614 return 0; 1615 1616 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1617 return 0; 1618 1619 iph = ip_hdr(skb); 1620 th = tcp_hdr(skb); 1621 1622 if (th->doff < sizeof(struct tcphdr) / 4) 1623 return 0; 1624 1625 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1626 iph->saddr, th->source, 1627 iph->daddr, ntohs(th->dest), 1628 skb->skb_iif, inet_sdif(skb)); 1629 if (sk) { 1630 skb->sk = sk; 1631 skb->destructor = sock_edemux; 1632 if (sk_fullsock(sk)) { 1633 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1634 1635 if (dst) 1636 dst = dst_check(dst, 0); 1637 if (dst && 1638 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1639 skb_dst_set_noref(skb, dst); 1640 } 1641 } 1642 return 0; 1643 } 1644 1645 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1646 { 1647 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1648 struct skb_shared_info *shinfo; 1649 const struct tcphdr *th; 1650 struct tcphdr *thtail; 1651 struct sk_buff *tail; 1652 unsigned int hdrlen; 1653 bool fragstolen; 1654 u32 gso_segs; 1655 int delta; 1656 1657 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1658 * we can fix skb->truesize to its real value to avoid future drops. 1659 * This is valid because skb is not yet charged to the socket. 1660 * It has been noticed pure SACK packets were sometimes dropped 1661 * (if cooked by drivers without copybreak feature). 1662 */ 1663 skb_condense(skb); 1664 1665 skb_dst_drop(skb); 1666 1667 if (unlikely(tcp_checksum_complete(skb))) { 1668 bh_unlock_sock(sk); 1669 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1670 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1671 return true; 1672 } 1673 1674 /* Attempt coalescing to last skb in backlog, even if we are 1675 * above the limits. 1676 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 1677 */ 1678 th = (const struct tcphdr *)skb->data; 1679 hdrlen = th->doff * 4; 1680 shinfo = skb_shinfo(skb); 1681 1682 if (!shinfo->gso_size) 1683 shinfo->gso_size = skb->len - hdrlen; 1684 1685 if (!shinfo->gso_segs) 1686 shinfo->gso_segs = 1; 1687 1688 tail = sk->sk_backlog.tail; 1689 if (!tail) 1690 goto no_coalesce; 1691 thtail = (struct tcphdr *)tail->data; 1692 1693 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 1694 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 1695 ((TCP_SKB_CB(tail)->tcp_flags | 1696 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 1697 !((TCP_SKB_CB(tail)->tcp_flags & 1698 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 1699 ((TCP_SKB_CB(tail)->tcp_flags ^ 1700 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 1701 #ifdef CONFIG_TLS_DEVICE 1702 tail->decrypted != skb->decrypted || 1703 #endif 1704 thtail->doff != th->doff || 1705 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 1706 goto no_coalesce; 1707 1708 __skb_pull(skb, hdrlen); 1709 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 1710 thtail->window = th->window; 1711 1712 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 1713 1714 if (after(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq)) 1715 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 1716 1717 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 1718 * thtail->fin, so that the fast path in tcp_rcv_established() 1719 * is not entered if we append a packet with a FIN. 1720 * SYN, RST, URG are not present. 1721 * ACK is set on both packets. 1722 * PSH : we do not really care in TCP stack, 1723 * at least for 'GRO' packets. 1724 */ 1725 thtail->fin |= th->fin; 1726 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1727 1728 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1729 TCP_SKB_CB(tail)->has_rxtstamp = true; 1730 tail->tstamp = skb->tstamp; 1731 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 1732 } 1733 1734 /* Not as strict as GRO. We only need to carry mss max value */ 1735 skb_shinfo(tail)->gso_size = max(shinfo->gso_size, 1736 skb_shinfo(tail)->gso_size); 1737 1738 gso_segs = skb_shinfo(tail)->gso_segs + shinfo->gso_segs; 1739 skb_shinfo(tail)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 1740 1741 sk->sk_backlog.len += delta; 1742 __NET_INC_STATS(sock_net(sk), 1743 LINUX_MIB_TCPBACKLOGCOALESCE); 1744 kfree_skb_partial(skb, fragstolen); 1745 return false; 1746 } 1747 __skb_push(skb, hdrlen); 1748 1749 no_coalesce: 1750 /* Only socket owner can try to collapse/prune rx queues 1751 * to reduce memory overhead, so add a little headroom here. 1752 * Few sockets backlog are possibly concurrently non empty. 1753 */ 1754 limit += 64*1024; 1755 1756 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1757 bh_unlock_sock(sk); 1758 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1759 return true; 1760 } 1761 return false; 1762 } 1763 EXPORT_SYMBOL(tcp_add_backlog); 1764 1765 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1766 { 1767 struct tcphdr *th = (struct tcphdr *)skb->data; 1768 1769 return sk_filter_trim_cap(sk, skb, th->doff * 4); 1770 } 1771 EXPORT_SYMBOL(tcp_filter); 1772 1773 static void tcp_v4_restore_cb(struct sk_buff *skb) 1774 { 1775 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1776 sizeof(struct inet_skb_parm)); 1777 } 1778 1779 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1780 const struct tcphdr *th) 1781 { 1782 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1783 * barrier() makes sure compiler wont play fool^Waliasing games. 1784 */ 1785 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1786 sizeof(struct inet_skb_parm)); 1787 barrier(); 1788 1789 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1790 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1791 skb->len - th->doff * 4); 1792 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1793 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1794 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1795 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1796 TCP_SKB_CB(skb)->sacked = 0; 1797 TCP_SKB_CB(skb)->has_rxtstamp = 1798 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1799 } 1800 1801 /* 1802 * From tcp_input.c 1803 */ 1804 1805 int tcp_v4_rcv(struct sk_buff *skb) 1806 { 1807 struct net *net = dev_net(skb->dev); 1808 struct sk_buff *skb_to_free; 1809 int sdif = inet_sdif(skb); 1810 const struct iphdr *iph; 1811 const struct tcphdr *th; 1812 bool refcounted; 1813 struct sock *sk; 1814 int ret; 1815 1816 if (skb->pkt_type != PACKET_HOST) 1817 goto discard_it; 1818 1819 /* Count it even if it's bad */ 1820 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1821 1822 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1823 goto discard_it; 1824 1825 th = (const struct tcphdr *)skb->data; 1826 1827 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1828 goto bad_packet; 1829 if (!pskb_may_pull(skb, th->doff * 4)) 1830 goto discard_it; 1831 1832 /* An explanation is required here, I think. 1833 * Packet length and doff are validated by header prediction, 1834 * provided case of th->doff==0 is eliminated. 1835 * So, we defer the checks. */ 1836 1837 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1838 goto csum_error; 1839 1840 th = (const struct tcphdr *)skb->data; 1841 iph = ip_hdr(skb); 1842 lookup: 1843 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1844 th->dest, sdif, &refcounted); 1845 if (!sk) 1846 goto no_tcp_socket; 1847 1848 process: 1849 if (sk->sk_state == TCP_TIME_WAIT) 1850 goto do_time_wait; 1851 1852 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1853 struct request_sock *req = inet_reqsk(sk); 1854 bool req_stolen = false; 1855 struct sock *nsk; 1856 1857 sk = req->rsk_listener; 1858 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1859 sk_drops_add(sk, skb); 1860 reqsk_put(req); 1861 goto discard_it; 1862 } 1863 if (tcp_checksum_complete(skb)) { 1864 reqsk_put(req); 1865 goto csum_error; 1866 } 1867 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1868 inet_csk_reqsk_queue_drop_and_put(sk, req); 1869 goto lookup; 1870 } 1871 /* We own a reference on the listener, increase it again 1872 * as we might lose it too soon. 1873 */ 1874 sock_hold(sk); 1875 refcounted = true; 1876 nsk = NULL; 1877 if (!tcp_filter(sk, skb)) { 1878 th = (const struct tcphdr *)skb->data; 1879 iph = ip_hdr(skb); 1880 tcp_v4_fill_cb(skb, iph, th); 1881 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 1882 } 1883 if (!nsk) { 1884 reqsk_put(req); 1885 if (req_stolen) { 1886 /* Another cpu got exclusive access to req 1887 * and created a full blown socket. 1888 * Try to feed this packet to this socket 1889 * instead of discarding it. 1890 */ 1891 tcp_v4_restore_cb(skb); 1892 sock_put(sk); 1893 goto lookup; 1894 } 1895 goto discard_and_relse; 1896 } 1897 if (nsk == sk) { 1898 reqsk_put(req); 1899 tcp_v4_restore_cb(skb); 1900 } else if (tcp_child_process(sk, nsk, skb)) { 1901 tcp_v4_send_reset(nsk, skb); 1902 goto discard_and_relse; 1903 } else { 1904 sock_put(sk); 1905 return 0; 1906 } 1907 } 1908 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1909 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1910 goto discard_and_relse; 1911 } 1912 1913 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1914 goto discard_and_relse; 1915 1916 if (tcp_v4_inbound_md5_hash(sk, skb)) 1917 goto discard_and_relse; 1918 1919 nf_reset(skb); 1920 1921 if (tcp_filter(sk, skb)) 1922 goto discard_and_relse; 1923 th = (const struct tcphdr *)skb->data; 1924 iph = ip_hdr(skb); 1925 tcp_v4_fill_cb(skb, iph, th); 1926 1927 skb->dev = NULL; 1928 1929 if (sk->sk_state == TCP_LISTEN) { 1930 ret = tcp_v4_do_rcv(sk, skb); 1931 goto put_and_return; 1932 } 1933 1934 sk_incoming_cpu_update(sk); 1935 1936 bh_lock_sock_nested(sk); 1937 tcp_segs_in(tcp_sk(sk), skb); 1938 ret = 0; 1939 if (!sock_owned_by_user(sk)) { 1940 skb_to_free = sk->sk_rx_skb_cache; 1941 sk->sk_rx_skb_cache = NULL; 1942 ret = tcp_v4_do_rcv(sk, skb); 1943 } else { 1944 if (tcp_add_backlog(sk, skb)) 1945 goto discard_and_relse; 1946 skb_to_free = NULL; 1947 } 1948 bh_unlock_sock(sk); 1949 if (skb_to_free) 1950 __kfree_skb(skb_to_free); 1951 1952 put_and_return: 1953 if (refcounted) 1954 sock_put(sk); 1955 1956 return ret; 1957 1958 no_tcp_socket: 1959 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1960 goto discard_it; 1961 1962 tcp_v4_fill_cb(skb, iph, th); 1963 1964 if (tcp_checksum_complete(skb)) { 1965 csum_error: 1966 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1967 bad_packet: 1968 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1969 } else { 1970 tcp_v4_send_reset(NULL, skb); 1971 } 1972 1973 discard_it: 1974 /* Discard frame. */ 1975 kfree_skb(skb); 1976 return 0; 1977 1978 discard_and_relse: 1979 sk_drops_add(sk, skb); 1980 if (refcounted) 1981 sock_put(sk); 1982 goto discard_it; 1983 1984 do_time_wait: 1985 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1986 inet_twsk_put(inet_twsk(sk)); 1987 goto discard_it; 1988 } 1989 1990 tcp_v4_fill_cb(skb, iph, th); 1991 1992 if (tcp_checksum_complete(skb)) { 1993 inet_twsk_put(inet_twsk(sk)); 1994 goto csum_error; 1995 } 1996 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1997 case TCP_TW_SYN: { 1998 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1999 &tcp_hashinfo, skb, 2000 __tcp_hdrlen(th), 2001 iph->saddr, th->source, 2002 iph->daddr, th->dest, 2003 inet_iif(skb), 2004 sdif); 2005 if (sk2) { 2006 inet_twsk_deschedule_put(inet_twsk(sk)); 2007 sk = sk2; 2008 tcp_v4_restore_cb(skb); 2009 refcounted = false; 2010 goto process; 2011 } 2012 } 2013 /* to ACK */ 2014 /* fall through */ 2015 case TCP_TW_ACK: 2016 tcp_v4_timewait_ack(sk, skb); 2017 break; 2018 case TCP_TW_RST: 2019 tcp_v4_send_reset(sk, skb); 2020 inet_twsk_deschedule_put(inet_twsk(sk)); 2021 goto discard_it; 2022 case TCP_TW_SUCCESS:; 2023 } 2024 goto discard_it; 2025 } 2026 2027 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2028 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2029 .twsk_unique = tcp_twsk_unique, 2030 .twsk_destructor= tcp_twsk_destructor, 2031 }; 2032 2033 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2034 { 2035 struct dst_entry *dst = skb_dst(skb); 2036 2037 if (dst && dst_hold_safe(dst)) { 2038 sk->sk_rx_dst = dst; 2039 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 2040 } 2041 } 2042 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2043 2044 const struct inet_connection_sock_af_ops ipv4_specific = { 2045 .queue_xmit = ip_queue_xmit, 2046 .send_check = tcp_v4_send_check, 2047 .rebuild_header = inet_sk_rebuild_header, 2048 .sk_rx_dst_set = inet_sk_rx_dst_set, 2049 .conn_request = tcp_v4_conn_request, 2050 .syn_recv_sock = tcp_v4_syn_recv_sock, 2051 .net_header_len = sizeof(struct iphdr), 2052 .setsockopt = ip_setsockopt, 2053 .getsockopt = ip_getsockopt, 2054 .addr2sockaddr = inet_csk_addr2sockaddr, 2055 .sockaddr_len = sizeof(struct sockaddr_in), 2056 #ifdef CONFIG_COMPAT 2057 .compat_setsockopt = compat_ip_setsockopt, 2058 .compat_getsockopt = compat_ip_getsockopt, 2059 #endif 2060 .mtu_reduced = tcp_v4_mtu_reduced, 2061 }; 2062 EXPORT_SYMBOL(ipv4_specific); 2063 2064 #ifdef CONFIG_TCP_MD5SIG 2065 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2066 .md5_lookup = tcp_v4_md5_lookup, 2067 .calc_md5_hash = tcp_v4_md5_hash_skb, 2068 .md5_parse = tcp_v4_parse_md5_keys, 2069 }; 2070 #endif 2071 2072 /* NOTE: A lot of things set to zero explicitly by call to 2073 * sk_alloc() so need not be done here. 2074 */ 2075 static int tcp_v4_init_sock(struct sock *sk) 2076 { 2077 struct inet_connection_sock *icsk = inet_csk(sk); 2078 2079 tcp_init_sock(sk); 2080 2081 icsk->icsk_af_ops = &ipv4_specific; 2082 2083 #ifdef CONFIG_TCP_MD5SIG 2084 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2085 #endif 2086 2087 return 0; 2088 } 2089 2090 void tcp_v4_destroy_sock(struct sock *sk) 2091 { 2092 struct tcp_sock *tp = tcp_sk(sk); 2093 2094 trace_tcp_destroy_sock(sk); 2095 2096 tcp_clear_xmit_timers(sk); 2097 2098 tcp_cleanup_congestion_control(sk); 2099 2100 tcp_cleanup_ulp(sk); 2101 2102 /* Cleanup up the write buffer. */ 2103 tcp_write_queue_purge(sk); 2104 2105 /* Check if we want to disable active TFO */ 2106 tcp_fastopen_active_disable_ofo_check(sk); 2107 2108 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2109 skb_rbtree_purge(&tp->out_of_order_queue); 2110 2111 #ifdef CONFIG_TCP_MD5SIG 2112 /* Clean up the MD5 key list, if any */ 2113 if (tp->md5sig_info) { 2114 tcp_clear_md5_list(sk); 2115 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 2116 tp->md5sig_info = NULL; 2117 } 2118 #endif 2119 2120 /* Clean up a referenced TCP bind bucket. */ 2121 if (inet_csk(sk)->icsk_bind_hash) 2122 inet_put_port(sk); 2123 2124 BUG_ON(tp->fastopen_rsk); 2125 2126 /* If socket is aborted during connect operation */ 2127 tcp_free_fastopen_req(tp); 2128 tcp_fastopen_destroy_cipher(sk); 2129 tcp_saved_syn_free(tp); 2130 2131 sk_sockets_allocated_dec(sk); 2132 } 2133 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2134 2135 #ifdef CONFIG_PROC_FS 2136 /* Proc filesystem TCP sock list dumping. */ 2137 2138 /* 2139 * Get next listener socket follow cur. If cur is NULL, get first socket 2140 * starting from bucket given in st->bucket; when st->bucket is zero the 2141 * very first socket in the hash table is returned. 2142 */ 2143 static void *listening_get_next(struct seq_file *seq, void *cur) 2144 { 2145 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2146 struct tcp_iter_state *st = seq->private; 2147 struct net *net = seq_file_net(seq); 2148 struct inet_listen_hashbucket *ilb; 2149 struct sock *sk = cur; 2150 2151 if (!sk) { 2152 get_head: 2153 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2154 spin_lock(&ilb->lock); 2155 sk = sk_head(&ilb->head); 2156 st->offset = 0; 2157 goto get_sk; 2158 } 2159 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2160 ++st->num; 2161 ++st->offset; 2162 2163 sk = sk_next(sk); 2164 get_sk: 2165 sk_for_each_from(sk) { 2166 if (!net_eq(sock_net(sk), net)) 2167 continue; 2168 if (sk->sk_family == afinfo->family) 2169 return sk; 2170 } 2171 spin_unlock(&ilb->lock); 2172 st->offset = 0; 2173 if (++st->bucket < INET_LHTABLE_SIZE) 2174 goto get_head; 2175 return NULL; 2176 } 2177 2178 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2179 { 2180 struct tcp_iter_state *st = seq->private; 2181 void *rc; 2182 2183 st->bucket = 0; 2184 st->offset = 0; 2185 rc = listening_get_next(seq, NULL); 2186 2187 while (rc && *pos) { 2188 rc = listening_get_next(seq, rc); 2189 --*pos; 2190 } 2191 return rc; 2192 } 2193 2194 static inline bool empty_bucket(const struct tcp_iter_state *st) 2195 { 2196 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2197 } 2198 2199 /* 2200 * Get first established socket starting from bucket given in st->bucket. 2201 * If st->bucket is zero, the very first socket in the hash is returned. 2202 */ 2203 static void *established_get_first(struct seq_file *seq) 2204 { 2205 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2206 struct tcp_iter_state *st = seq->private; 2207 struct net *net = seq_file_net(seq); 2208 void *rc = NULL; 2209 2210 st->offset = 0; 2211 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2212 struct sock *sk; 2213 struct hlist_nulls_node *node; 2214 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2215 2216 /* Lockless fast path for the common case of empty buckets */ 2217 if (empty_bucket(st)) 2218 continue; 2219 2220 spin_lock_bh(lock); 2221 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2222 if (sk->sk_family != afinfo->family || 2223 !net_eq(sock_net(sk), net)) { 2224 continue; 2225 } 2226 rc = sk; 2227 goto out; 2228 } 2229 spin_unlock_bh(lock); 2230 } 2231 out: 2232 return rc; 2233 } 2234 2235 static void *established_get_next(struct seq_file *seq, void *cur) 2236 { 2237 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2238 struct sock *sk = cur; 2239 struct hlist_nulls_node *node; 2240 struct tcp_iter_state *st = seq->private; 2241 struct net *net = seq_file_net(seq); 2242 2243 ++st->num; 2244 ++st->offset; 2245 2246 sk = sk_nulls_next(sk); 2247 2248 sk_nulls_for_each_from(sk, node) { 2249 if (sk->sk_family == afinfo->family && 2250 net_eq(sock_net(sk), net)) 2251 return sk; 2252 } 2253 2254 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2255 ++st->bucket; 2256 return established_get_first(seq); 2257 } 2258 2259 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2260 { 2261 struct tcp_iter_state *st = seq->private; 2262 void *rc; 2263 2264 st->bucket = 0; 2265 rc = established_get_first(seq); 2266 2267 while (rc && pos) { 2268 rc = established_get_next(seq, rc); 2269 --pos; 2270 } 2271 return rc; 2272 } 2273 2274 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2275 { 2276 void *rc; 2277 struct tcp_iter_state *st = seq->private; 2278 2279 st->state = TCP_SEQ_STATE_LISTENING; 2280 rc = listening_get_idx(seq, &pos); 2281 2282 if (!rc) { 2283 st->state = TCP_SEQ_STATE_ESTABLISHED; 2284 rc = established_get_idx(seq, pos); 2285 } 2286 2287 return rc; 2288 } 2289 2290 static void *tcp_seek_last_pos(struct seq_file *seq) 2291 { 2292 struct tcp_iter_state *st = seq->private; 2293 int offset = st->offset; 2294 int orig_num = st->num; 2295 void *rc = NULL; 2296 2297 switch (st->state) { 2298 case TCP_SEQ_STATE_LISTENING: 2299 if (st->bucket >= INET_LHTABLE_SIZE) 2300 break; 2301 st->state = TCP_SEQ_STATE_LISTENING; 2302 rc = listening_get_next(seq, NULL); 2303 while (offset-- && rc) 2304 rc = listening_get_next(seq, rc); 2305 if (rc) 2306 break; 2307 st->bucket = 0; 2308 st->state = TCP_SEQ_STATE_ESTABLISHED; 2309 /* Fallthrough */ 2310 case TCP_SEQ_STATE_ESTABLISHED: 2311 if (st->bucket > tcp_hashinfo.ehash_mask) 2312 break; 2313 rc = established_get_first(seq); 2314 while (offset-- && rc) 2315 rc = established_get_next(seq, rc); 2316 } 2317 2318 st->num = orig_num; 2319 2320 return rc; 2321 } 2322 2323 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2324 { 2325 struct tcp_iter_state *st = seq->private; 2326 void *rc; 2327 2328 if (*pos && *pos == st->last_pos) { 2329 rc = tcp_seek_last_pos(seq); 2330 if (rc) 2331 goto out; 2332 } 2333 2334 st->state = TCP_SEQ_STATE_LISTENING; 2335 st->num = 0; 2336 st->bucket = 0; 2337 st->offset = 0; 2338 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2339 2340 out: 2341 st->last_pos = *pos; 2342 return rc; 2343 } 2344 EXPORT_SYMBOL(tcp_seq_start); 2345 2346 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2347 { 2348 struct tcp_iter_state *st = seq->private; 2349 void *rc = NULL; 2350 2351 if (v == SEQ_START_TOKEN) { 2352 rc = tcp_get_idx(seq, 0); 2353 goto out; 2354 } 2355 2356 switch (st->state) { 2357 case TCP_SEQ_STATE_LISTENING: 2358 rc = listening_get_next(seq, v); 2359 if (!rc) { 2360 st->state = TCP_SEQ_STATE_ESTABLISHED; 2361 st->bucket = 0; 2362 st->offset = 0; 2363 rc = established_get_first(seq); 2364 } 2365 break; 2366 case TCP_SEQ_STATE_ESTABLISHED: 2367 rc = established_get_next(seq, v); 2368 break; 2369 } 2370 out: 2371 ++*pos; 2372 st->last_pos = *pos; 2373 return rc; 2374 } 2375 EXPORT_SYMBOL(tcp_seq_next); 2376 2377 void tcp_seq_stop(struct seq_file *seq, void *v) 2378 { 2379 struct tcp_iter_state *st = seq->private; 2380 2381 switch (st->state) { 2382 case TCP_SEQ_STATE_LISTENING: 2383 if (v != SEQ_START_TOKEN) 2384 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2385 break; 2386 case TCP_SEQ_STATE_ESTABLISHED: 2387 if (v) 2388 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2389 break; 2390 } 2391 } 2392 EXPORT_SYMBOL(tcp_seq_stop); 2393 2394 static void get_openreq4(const struct request_sock *req, 2395 struct seq_file *f, int i) 2396 { 2397 const struct inet_request_sock *ireq = inet_rsk(req); 2398 long delta = req->rsk_timer.expires - jiffies; 2399 2400 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2401 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2402 i, 2403 ireq->ir_loc_addr, 2404 ireq->ir_num, 2405 ireq->ir_rmt_addr, 2406 ntohs(ireq->ir_rmt_port), 2407 TCP_SYN_RECV, 2408 0, 0, /* could print option size, but that is af dependent. */ 2409 1, /* timers active (only the expire timer) */ 2410 jiffies_delta_to_clock_t(delta), 2411 req->num_timeout, 2412 from_kuid_munged(seq_user_ns(f), 2413 sock_i_uid(req->rsk_listener)), 2414 0, /* non standard timer */ 2415 0, /* open_requests have no inode */ 2416 0, 2417 req); 2418 } 2419 2420 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2421 { 2422 int timer_active; 2423 unsigned long timer_expires; 2424 const struct tcp_sock *tp = tcp_sk(sk); 2425 const struct inet_connection_sock *icsk = inet_csk(sk); 2426 const struct inet_sock *inet = inet_sk(sk); 2427 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2428 __be32 dest = inet->inet_daddr; 2429 __be32 src = inet->inet_rcv_saddr; 2430 __u16 destp = ntohs(inet->inet_dport); 2431 __u16 srcp = ntohs(inet->inet_sport); 2432 int rx_queue; 2433 int state; 2434 2435 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2436 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2437 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2438 timer_active = 1; 2439 timer_expires = icsk->icsk_timeout; 2440 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2441 timer_active = 4; 2442 timer_expires = icsk->icsk_timeout; 2443 } else if (timer_pending(&sk->sk_timer)) { 2444 timer_active = 2; 2445 timer_expires = sk->sk_timer.expires; 2446 } else { 2447 timer_active = 0; 2448 timer_expires = jiffies; 2449 } 2450 2451 state = inet_sk_state_load(sk); 2452 if (state == TCP_LISTEN) 2453 rx_queue = sk->sk_ack_backlog; 2454 else 2455 /* Because we don't lock the socket, 2456 * we might find a transient negative value. 2457 */ 2458 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2459 2460 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2461 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2462 i, src, srcp, dest, destp, state, 2463 tp->write_seq - tp->snd_una, 2464 rx_queue, 2465 timer_active, 2466 jiffies_delta_to_clock_t(timer_expires - jiffies), 2467 icsk->icsk_retransmits, 2468 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2469 icsk->icsk_probes_out, 2470 sock_i_ino(sk), 2471 refcount_read(&sk->sk_refcnt), sk, 2472 jiffies_to_clock_t(icsk->icsk_rto), 2473 jiffies_to_clock_t(icsk->icsk_ack.ato), 2474 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2475 tp->snd_cwnd, 2476 state == TCP_LISTEN ? 2477 fastopenq->max_qlen : 2478 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2479 } 2480 2481 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2482 struct seq_file *f, int i) 2483 { 2484 long delta = tw->tw_timer.expires - jiffies; 2485 __be32 dest, src; 2486 __u16 destp, srcp; 2487 2488 dest = tw->tw_daddr; 2489 src = tw->tw_rcv_saddr; 2490 destp = ntohs(tw->tw_dport); 2491 srcp = ntohs(tw->tw_sport); 2492 2493 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2494 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2495 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2496 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2497 refcount_read(&tw->tw_refcnt), tw); 2498 } 2499 2500 #define TMPSZ 150 2501 2502 static int tcp4_seq_show(struct seq_file *seq, void *v) 2503 { 2504 struct tcp_iter_state *st; 2505 struct sock *sk = v; 2506 2507 seq_setwidth(seq, TMPSZ - 1); 2508 if (v == SEQ_START_TOKEN) { 2509 seq_puts(seq, " sl local_address rem_address st tx_queue " 2510 "rx_queue tr tm->when retrnsmt uid timeout " 2511 "inode"); 2512 goto out; 2513 } 2514 st = seq->private; 2515 2516 if (sk->sk_state == TCP_TIME_WAIT) 2517 get_timewait4_sock(v, seq, st->num); 2518 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2519 get_openreq4(v, seq, st->num); 2520 else 2521 get_tcp4_sock(v, seq, st->num); 2522 out: 2523 seq_pad(seq, '\n'); 2524 return 0; 2525 } 2526 2527 static const struct seq_operations tcp4_seq_ops = { 2528 .show = tcp4_seq_show, 2529 .start = tcp_seq_start, 2530 .next = tcp_seq_next, 2531 .stop = tcp_seq_stop, 2532 }; 2533 2534 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2535 .family = AF_INET, 2536 }; 2537 2538 static int __net_init tcp4_proc_init_net(struct net *net) 2539 { 2540 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 2541 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 2542 return -ENOMEM; 2543 return 0; 2544 } 2545 2546 static void __net_exit tcp4_proc_exit_net(struct net *net) 2547 { 2548 remove_proc_entry("tcp", net->proc_net); 2549 } 2550 2551 static struct pernet_operations tcp4_net_ops = { 2552 .init = tcp4_proc_init_net, 2553 .exit = tcp4_proc_exit_net, 2554 }; 2555 2556 int __init tcp4_proc_init(void) 2557 { 2558 return register_pernet_subsys(&tcp4_net_ops); 2559 } 2560 2561 void tcp4_proc_exit(void) 2562 { 2563 unregister_pernet_subsys(&tcp4_net_ops); 2564 } 2565 #endif /* CONFIG_PROC_FS */ 2566 2567 struct proto tcp_prot = { 2568 .name = "TCP", 2569 .owner = THIS_MODULE, 2570 .close = tcp_close, 2571 .pre_connect = tcp_v4_pre_connect, 2572 .connect = tcp_v4_connect, 2573 .disconnect = tcp_disconnect, 2574 .accept = inet_csk_accept, 2575 .ioctl = tcp_ioctl, 2576 .init = tcp_v4_init_sock, 2577 .destroy = tcp_v4_destroy_sock, 2578 .shutdown = tcp_shutdown, 2579 .setsockopt = tcp_setsockopt, 2580 .getsockopt = tcp_getsockopt, 2581 .keepalive = tcp_set_keepalive, 2582 .recvmsg = tcp_recvmsg, 2583 .sendmsg = tcp_sendmsg, 2584 .sendpage = tcp_sendpage, 2585 .backlog_rcv = tcp_v4_do_rcv, 2586 .release_cb = tcp_release_cb, 2587 .hash = inet_hash, 2588 .unhash = inet_unhash, 2589 .get_port = inet_csk_get_port, 2590 .enter_memory_pressure = tcp_enter_memory_pressure, 2591 .leave_memory_pressure = tcp_leave_memory_pressure, 2592 .stream_memory_free = tcp_stream_memory_free, 2593 .sockets_allocated = &tcp_sockets_allocated, 2594 .orphan_count = &tcp_orphan_count, 2595 .memory_allocated = &tcp_memory_allocated, 2596 .memory_pressure = &tcp_memory_pressure, 2597 .sysctl_mem = sysctl_tcp_mem, 2598 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2599 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 2600 .max_header = MAX_TCP_HEADER, 2601 .obj_size = sizeof(struct tcp_sock), 2602 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2603 .twsk_prot = &tcp_timewait_sock_ops, 2604 .rsk_prot = &tcp_request_sock_ops, 2605 .h.hashinfo = &tcp_hashinfo, 2606 .no_autobind = true, 2607 #ifdef CONFIG_COMPAT 2608 .compat_setsockopt = compat_tcp_setsockopt, 2609 .compat_getsockopt = compat_tcp_getsockopt, 2610 #endif 2611 .diag_destroy = tcp_abort, 2612 }; 2613 EXPORT_SYMBOL(tcp_prot); 2614 2615 static void __net_exit tcp_sk_exit(struct net *net) 2616 { 2617 int cpu; 2618 2619 if (net->ipv4.tcp_congestion_control) 2620 module_put(net->ipv4.tcp_congestion_control->owner); 2621 2622 for_each_possible_cpu(cpu) 2623 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2624 free_percpu(net->ipv4.tcp_sk); 2625 } 2626 2627 static int __net_init tcp_sk_init(struct net *net) 2628 { 2629 int res, cpu, cnt; 2630 2631 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2632 if (!net->ipv4.tcp_sk) 2633 return -ENOMEM; 2634 2635 for_each_possible_cpu(cpu) { 2636 struct sock *sk; 2637 2638 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2639 IPPROTO_TCP, net); 2640 if (res) 2641 goto fail; 2642 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2643 2644 /* Please enforce IP_DF and IPID==0 for RST and 2645 * ACK sent in SYN-RECV and TIME-WAIT state. 2646 */ 2647 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 2648 2649 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2650 } 2651 2652 net->ipv4.sysctl_tcp_ecn = 2; 2653 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2654 2655 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2656 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 2657 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2658 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2659 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 2660 2661 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2662 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2663 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2664 2665 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2666 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2667 net->ipv4.sysctl_tcp_syncookies = 1; 2668 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2669 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2670 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2671 net->ipv4.sysctl_tcp_orphan_retries = 0; 2672 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2673 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2674 net->ipv4.sysctl_tcp_tw_reuse = 2; 2675 2676 cnt = tcp_hashinfo.ehash_mask + 1; 2677 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 2678 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; 2679 2680 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256); 2681 net->ipv4.sysctl_tcp_sack = 1; 2682 net->ipv4.sysctl_tcp_window_scaling = 1; 2683 net->ipv4.sysctl_tcp_timestamps = 1; 2684 net->ipv4.sysctl_tcp_early_retrans = 3; 2685 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 2686 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 2687 net->ipv4.sysctl_tcp_retrans_collapse = 1; 2688 net->ipv4.sysctl_tcp_max_reordering = 300; 2689 net->ipv4.sysctl_tcp_dsack = 1; 2690 net->ipv4.sysctl_tcp_app_win = 31; 2691 net->ipv4.sysctl_tcp_adv_win_scale = 1; 2692 net->ipv4.sysctl_tcp_frto = 2; 2693 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 2694 /* This limits the percentage of the congestion window which we 2695 * will allow a single TSO frame to consume. Building TSO frames 2696 * which are too large can cause TCP streams to be bursty. 2697 */ 2698 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 2699 /* Default TSQ limit of 16 TSO segments */ 2700 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 2701 /* rfc5961 challenge ack rate limiting */ 2702 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 2703 net->ipv4.sysctl_tcp_min_tso_segs = 2; 2704 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 2705 net->ipv4.sysctl_tcp_autocorking = 1; 2706 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 2707 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 2708 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 2709 if (net != &init_net) { 2710 memcpy(net->ipv4.sysctl_tcp_rmem, 2711 init_net.ipv4.sysctl_tcp_rmem, 2712 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 2713 memcpy(net->ipv4.sysctl_tcp_wmem, 2714 init_net.ipv4.sysctl_tcp_wmem, 2715 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 2716 } 2717 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 2718 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 2719 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 2720 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); 2721 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60; 2722 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 2723 2724 /* Reno is always built in */ 2725 if (!net_eq(net, &init_net) && 2726 try_module_get(init_net.ipv4.tcp_congestion_control->owner)) 2727 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 2728 else 2729 net->ipv4.tcp_congestion_control = &tcp_reno; 2730 2731 return 0; 2732 fail: 2733 tcp_sk_exit(net); 2734 2735 return res; 2736 } 2737 2738 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2739 { 2740 struct net *net; 2741 2742 inet_twsk_purge(&tcp_hashinfo, AF_INET); 2743 2744 list_for_each_entry(net, net_exit_list, exit_list) 2745 tcp_fastopen_ctx_destroy(net); 2746 } 2747 2748 static struct pernet_operations __net_initdata tcp_sk_ops = { 2749 .init = tcp_sk_init, 2750 .exit = tcp_sk_exit, 2751 .exit_batch = tcp_sk_exit_batch, 2752 }; 2753 2754 void __init tcp_v4_init(void) 2755 { 2756 if (register_pernet_subsys(&tcp_sk_ops)) 2757 panic("Failed to create the TCP control socket.\n"); 2758 } 2759