1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/tcp_memcontrol.h> 77 #include <net/busy_poll.h> 78 79 #include <linux/inet.h> 80 #include <linux/ipv6.h> 81 #include <linux/stddef.h> 82 #include <linux/proc_fs.h> 83 #include <linux/seq_file.h> 84 85 #include <linux/crypto.h> 86 #include <linux/scatterlist.h> 87 88 int sysctl_tcp_tw_reuse __read_mostly; 89 int sysctl_tcp_low_latency __read_mostly; 90 EXPORT_SYMBOL(sysctl_tcp_low_latency); 91 92 #ifdef CONFIG_TCP_MD5SIG 93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 94 __be32 daddr, __be32 saddr, const struct tcphdr *th); 95 #endif 96 97 struct inet_hashinfo tcp_hashinfo; 98 EXPORT_SYMBOL(tcp_hashinfo); 99 100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 101 { 102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 103 ip_hdr(skb)->saddr, 104 tcp_hdr(skb)->dest, 105 tcp_hdr(skb)->source); 106 } 107 108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 109 { 110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 111 struct tcp_sock *tp = tcp_sk(sk); 112 113 /* With PAWS, it is safe from the viewpoint 114 of data integrity. Even without PAWS it is safe provided sequence 115 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 116 117 Actually, the idea is close to VJ's one, only timestamp cache is 118 held not per host, but per port pair and TW bucket is used as state 119 holder. 120 121 If TW bucket has been already destroyed we fall back to VJ's scheme 122 and use initial timestamp retrieved from peer table. 123 */ 124 if (tcptw->tw_ts_recent_stamp && 125 (twp == NULL || (sysctl_tcp_tw_reuse && 126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 128 if (tp->write_seq == 0) 129 tp->write_seq = 1; 130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 132 sock_hold(sktw); 133 return 1; 134 } 135 136 return 0; 137 } 138 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 139 140 /* This will initiate an outgoing connection. */ 141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 142 { 143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 144 struct inet_sock *inet = inet_sk(sk); 145 struct tcp_sock *tp = tcp_sk(sk); 146 __be16 orig_sport, orig_dport; 147 __be32 daddr, nexthop; 148 struct flowi4 *fl4; 149 struct rtable *rt; 150 int err; 151 struct ip_options_rcu *inet_opt; 152 153 if (addr_len < sizeof(struct sockaddr_in)) 154 return -EINVAL; 155 156 if (usin->sin_family != AF_INET) 157 return -EAFNOSUPPORT; 158 159 nexthop = daddr = usin->sin_addr.s_addr; 160 inet_opt = rcu_dereference_protected(inet->inet_opt, 161 sock_owned_by_user(sk)); 162 if (inet_opt && inet_opt->opt.srr) { 163 if (!daddr) 164 return -EINVAL; 165 nexthop = inet_opt->opt.faddr; 166 } 167 168 orig_sport = inet->inet_sport; 169 orig_dport = usin->sin_port; 170 fl4 = &inet->cork.fl.u.ip4; 171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 173 IPPROTO_TCP, 174 orig_sport, orig_dport, sk); 175 if (IS_ERR(rt)) { 176 err = PTR_ERR(rt); 177 if (err == -ENETUNREACH) 178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 179 return err; 180 } 181 182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 183 ip_rt_put(rt); 184 return -ENETUNREACH; 185 } 186 187 if (!inet_opt || !inet_opt->opt.srr) 188 daddr = fl4->daddr; 189 190 if (!inet->inet_saddr) 191 inet->inet_saddr = fl4->saddr; 192 sk_rcv_saddr_set(sk, inet->inet_saddr); 193 194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 195 /* Reset inherited state */ 196 tp->rx_opt.ts_recent = 0; 197 tp->rx_opt.ts_recent_stamp = 0; 198 if (likely(!tp->repair)) 199 tp->write_seq = 0; 200 } 201 202 if (tcp_death_row.sysctl_tw_recycle && 203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 204 tcp_fetch_timewait_stamp(sk, &rt->dst); 205 206 inet->inet_dport = usin->sin_port; 207 sk_daddr_set(sk, daddr); 208 209 inet_csk(sk)->icsk_ext_hdr_len = 0; 210 if (inet_opt) 211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 212 213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 214 215 /* Socket identity is still unknown (sport may be zero). 216 * However we set state to SYN-SENT and not releasing socket 217 * lock select source port, enter ourselves into the hash tables and 218 * complete initialization after this. 219 */ 220 tcp_set_state(sk, TCP_SYN_SENT); 221 err = inet_hash_connect(&tcp_death_row, sk); 222 if (err) 223 goto failure; 224 225 inet_set_txhash(sk); 226 227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 228 inet->inet_sport, inet->inet_dport, sk); 229 if (IS_ERR(rt)) { 230 err = PTR_ERR(rt); 231 rt = NULL; 232 goto failure; 233 } 234 /* OK, now commit destination to socket. */ 235 sk->sk_gso_type = SKB_GSO_TCPV4; 236 sk_setup_caps(sk, &rt->dst); 237 238 if (!tp->write_seq && likely(!tp->repair)) 239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 240 inet->inet_daddr, 241 inet->inet_sport, 242 usin->sin_port); 243 244 inet->inet_id = tp->write_seq ^ jiffies; 245 246 err = tcp_connect(sk); 247 248 rt = NULL; 249 if (err) 250 goto failure; 251 252 return 0; 253 254 failure: 255 /* 256 * This unhashes the socket and releases the local port, 257 * if necessary. 258 */ 259 tcp_set_state(sk, TCP_CLOSE); 260 ip_rt_put(rt); 261 sk->sk_route_caps = 0; 262 inet->inet_dport = 0; 263 return err; 264 } 265 EXPORT_SYMBOL(tcp_v4_connect); 266 267 /* 268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 269 * It can be called through tcp_release_cb() if socket was owned by user 270 * at the time tcp_v4_err() was called to handle ICMP message. 271 */ 272 void tcp_v4_mtu_reduced(struct sock *sk) 273 { 274 struct dst_entry *dst; 275 struct inet_sock *inet = inet_sk(sk); 276 u32 mtu = tcp_sk(sk)->mtu_info; 277 278 dst = inet_csk_update_pmtu(sk, mtu); 279 if (!dst) 280 return; 281 282 /* Something is about to be wrong... Remember soft error 283 * for the case, if this connection will not able to recover. 284 */ 285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 286 sk->sk_err_soft = EMSGSIZE; 287 288 mtu = dst_mtu(dst); 289 290 if (inet->pmtudisc != IP_PMTUDISC_DONT && 291 ip_sk_accept_pmtu(sk) && 292 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 293 tcp_sync_mss(sk, mtu); 294 295 /* Resend the TCP packet because it's 296 * clear that the old packet has been 297 * dropped. This is the new "fast" path mtu 298 * discovery. 299 */ 300 tcp_simple_retransmit(sk); 301 } /* else let the usual retransmit timer handle it */ 302 } 303 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 304 305 static void do_redirect(struct sk_buff *skb, struct sock *sk) 306 { 307 struct dst_entry *dst = __sk_dst_check(sk, 0); 308 309 if (dst) 310 dst->ops->redirect(dst, sk, skb); 311 } 312 313 314 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 315 void tcp_req_err(struct sock *sk, u32 seq) 316 { 317 struct request_sock *req = inet_reqsk(sk); 318 struct net *net = sock_net(sk); 319 320 /* ICMPs are not backlogged, hence we cannot get 321 * an established socket here. 322 */ 323 WARN_ON(req->sk); 324 325 if (seq != tcp_rsk(req)->snt_isn) { 326 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 327 reqsk_put(req); 328 } else { 329 /* 330 * Still in SYN_RECV, just remove it silently. 331 * There is no good way to pass the error to the newly 332 * created socket, and POSIX does not want network 333 * errors returned from accept(). 334 */ 335 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS); 336 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 337 } 338 } 339 EXPORT_SYMBOL(tcp_req_err); 340 341 /* 342 * This routine is called by the ICMP module when it gets some 343 * sort of error condition. If err < 0 then the socket should 344 * be closed and the error returned to the user. If err > 0 345 * it's just the icmp type << 8 | icmp code. After adjustment 346 * header points to the first 8 bytes of the tcp header. We need 347 * to find the appropriate port. 348 * 349 * The locking strategy used here is very "optimistic". When 350 * someone else accesses the socket the ICMP is just dropped 351 * and for some paths there is no check at all. 352 * A more general error queue to queue errors for later handling 353 * is probably better. 354 * 355 */ 356 357 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 358 { 359 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 360 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 361 struct inet_connection_sock *icsk; 362 struct tcp_sock *tp; 363 struct inet_sock *inet; 364 const int type = icmp_hdr(icmp_skb)->type; 365 const int code = icmp_hdr(icmp_skb)->code; 366 struct sock *sk; 367 struct sk_buff *skb; 368 struct request_sock *fastopen; 369 __u32 seq, snd_una; 370 __u32 remaining; 371 int err; 372 struct net *net = dev_net(icmp_skb->dev); 373 374 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 375 th->dest, iph->saddr, ntohs(th->source), 376 inet_iif(icmp_skb)); 377 if (!sk) { 378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 379 return; 380 } 381 if (sk->sk_state == TCP_TIME_WAIT) { 382 inet_twsk_put(inet_twsk(sk)); 383 return; 384 } 385 seq = ntohl(th->seq); 386 if (sk->sk_state == TCP_NEW_SYN_RECV) 387 return tcp_req_err(sk, seq); 388 389 bh_lock_sock(sk); 390 /* If too many ICMPs get dropped on busy 391 * servers this needs to be solved differently. 392 * We do take care of PMTU discovery (RFC1191) special case : 393 * we can receive locally generated ICMP messages while socket is held. 394 */ 395 if (sock_owned_by_user(sk)) { 396 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 397 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 398 } 399 if (sk->sk_state == TCP_CLOSE) 400 goto out; 401 402 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 403 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 404 goto out; 405 } 406 407 icsk = inet_csk(sk); 408 tp = tcp_sk(sk); 409 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 410 fastopen = tp->fastopen_rsk; 411 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 412 if (sk->sk_state != TCP_LISTEN && 413 !between(seq, snd_una, tp->snd_nxt)) { 414 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 415 goto out; 416 } 417 418 switch (type) { 419 case ICMP_REDIRECT: 420 do_redirect(icmp_skb, sk); 421 goto out; 422 case ICMP_SOURCE_QUENCH: 423 /* Just silently ignore these. */ 424 goto out; 425 case ICMP_PARAMETERPROB: 426 err = EPROTO; 427 break; 428 case ICMP_DEST_UNREACH: 429 if (code > NR_ICMP_UNREACH) 430 goto out; 431 432 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 433 /* We are not interested in TCP_LISTEN and open_requests 434 * (SYN-ACKs send out by Linux are always <576bytes so 435 * they should go through unfragmented). 436 */ 437 if (sk->sk_state == TCP_LISTEN) 438 goto out; 439 440 tp->mtu_info = info; 441 if (!sock_owned_by_user(sk)) { 442 tcp_v4_mtu_reduced(sk); 443 } else { 444 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 445 sock_hold(sk); 446 } 447 goto out; 448 } 449 450 err = icmp_err_convert[code].errno; 451 /* check if icmp_skb allows revert of backoff 452 * (see draft-zimmermann-tcp-lcd) */ 453 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 454 break; 455 if (seq != tp->snd_una || !icsk->icsk_retransmits || 456 !icsk->icsk_backoff || fastopen) 457 break; 458 459 if (sock_owned_by_user(sk)) 460 break; 461 462 icsk->icsk_backoff--; 463 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 464 TCP_TIMEOUT_INIT; 465 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 466 467 skb = tcp_write_queue_head(sk); 468 BUG_ON(!skb); 469 470 remaining = icsk->icsk_rto - 471 min(icsk->icsk_rto, 472 tcp_time_stamp - tcp_skb_timestamp(skb)); 473 474 if (remaining) { 475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 476 remaining, TCP_RTO_MAX); 477 } else { 478 /* RTO revert clocked out retransmission. 479 * Will retransmit now */ 480 tcp_retransmit_timer(sk); 481 } 482 483 break; 484 case ICMP_TIME_EXCEEDED: 485 err = EHOSTUNREACH; 486 break; 487 default: 488 goto out; 489 } 490 491 switch (sk->sk_state) { 492 case TCP_SYN_SENT: 493 case TCP_SYN_RECV: 494 /* Only in fast or simultaneous open. If a fast open socket is 495 * is already accepted it is treated as a connected one below. 496 */ 497 if (fastopen && fastopen->sk == NULL) 498 break; 499 500 if (!sock_owned_by_user(sk)) { 501 sk->sk_err = err; 502 503 sk->sk_error_report(sk); 504 505 tcp_done(sk); 506 } else { 507 sk->sk_err_soft = err; 508 } 509 goto out; 510 } 511 512 /* If we've already connected we will keep trying 513 * until we time out, or the user gives up. 514 * 515 * rfc1122 4.2.3.9 allows to consider as hard errors 516 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 517 * but it is obsoleted by pmtu discovery). 518 * 519 * Note, that in modern internet, where routing is unreliable 520 * and in each dark corner broken firewalls sit, sending random 521 * errors ordered by their masters even this two messages finally lose 522 * their original sense (even Linux sends invalid PORT_UNREACHs) 523 * 524 * Now we are in compliance with RFCs. 525 * --ANK (980905) 526 */ 527 528 inet = inet_sk(sk); 529 if (!sock_owned_by_user(sk) && inet->recverr) { 530 sk->sk_err = err; 531 sk->sk_error_report(sk); 532 } else { /* Only an error on timeout */ 533 sk->sk_err_soft = err; 534 } 535 536 out: 537 bh_unlock_sock(sk); 538 sock_put(sk); 539 } 540 541 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 542 { 543 struct tcphdr *th = tcp_hdr(skb); 544 545 if (skb->ip_summed == CHECKSUM_PARTIAL) { 546 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 547 skb->csum_start = skb_transport_header(skb) - skb->head; 548 skb->csum_offset = offsetof(struct tcphdr, check); 549 } else { 550 th->check = tcp_v4_check(skb->len, saddr, daddr, 551 csum_partial(th, 552 th->doff << 2, 553 skb->csum)); 554 } 555 } 556 557 /* This routine computes an IPv4 TCP checksum. */ 558 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 559 { 560 const struct inet_sock *inet = inet_sk(sk); 561 562 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 563 } 564 EXPORT_SYMBOL(tcp_v4_send_check); 565 566 /* 567 * This routine will send an RST to the other tcp. 568 * 569 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 570 * for reset. 571 * Answer: if a packet caused RST, it is not for a socket 572 * existing in our system, if it is matched to a socket, 573 * it is just duplicate segment or bug in other side's TCP. 574 * So that we build reply only basing on parameters 575 * arrived with segment. 576 * Exception: precedence violation. We do not implement it in any case. 577 */ 578 579 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) 580 { 581 const struct tcphdr *th = tcp_hdr(skb); 582 struct { 583 struct tcphdr th; 584 #ifdef CONFIG_TCP_MD5SIG 585 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 586 #endif 587 } rep; 588 struct ip_reply_arg arg; 589 #ifdef CONFIG_TCP_MD5SIG 590 struct tcp_md5sig_key *key; 591 const __u8 *hash_location = NULL; 592 unsigned char newhash[16]; 593 int genhash; 594 struct sock *sk1 = NULL; 595 #endif 596 struct net *net; 597 598 /* Never send a reset in response to a reset. */ 599 if (th->rst) 600 return; 601 602 /* If sk not NULL, it means we did a successful lookup and incoming 603 * route had to be correct. prequeue might have dropped our dst. 604 */ 605 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 606 return; 607 608 /* Swap the send and the receive. */ 609 memset(&rep, 0, sizeof(rep)); 610 rep.th.dest = th->source; 611 rep.th.source = th->dest; 612 rep.th.doff = sizeof(struct tcphdr) / 4; 613 rep.th.rst = 1; 614 615 if (th->ack) { 616 rep.th.seq = th->ack_seq; 617 } else { 618 rep.th.ack = 1; 619 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 620 skb->len - (th->doff << 2)); 621 } 622 623 memset(&arg, 0, sizeof(arg)); 624 arg.iov[0].iov_base = (unsigned char *)&rep; 625 arg.iov[0].iov_len = sizeof(rep.th); 626 627 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 628 #ifdef CONFIG_TCP_MD5SIG 629 hash_location = tcp_parse_md5sig_option(th); 630 if (!sk && hash_location) { 631 /* 632 * active side is lost. Try to find listening socket through 633 * source port, and then find md5 key through listening socket. 634 * we are not loose security here: 635 * Incoming packet is checked with md5 hash with finding key, 636 * no RST generated if md5 hash doesn't match. 637 */ 638 sk1 = __inet_lookup_listener(net, 639 &tcp_hashinfo, ip_hdr(skb)->saddr, 640 th->source, ip_hdr(skb)->daddr, 641 ntohs(th->source), inet_iif(skb)); 642 /* don't send rst if it can't find key */ 643 if (!sk1) 644 return; 645 rcu_read_lock(); 646 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 647 &ip_hdr(skb)->saddr, AF_INET); 648 if (!key) 649 goto release_sk1; 650 651 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 652 if (genhash || memcmp(hash_location, newhash, 16) != 0) 653 goto release_sk1; 654 } else { 655 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 656 &ip_hdr(skb)->saddr, 657 AF_INET) : NULL; 658 } 659 660 if (key) { 661 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 662 (TCPOPT_NOP << 16) | 663 (TCPOPT_MD5SIG << 8) | 664 TCPOLEN_MD5SIG); 665 /* Update length and the length the header thinks exists */ 666 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 667 rep.th.doff = arg.iov[0].iov_len / 4; 668 669 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 670 key, ip_hdr(skb)->saddr, 671 ip_hdr(skb)->daddr, &rep.th); 672 } 673 #endif 674 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 675 ip_hdr(skb)->saddr, /* XXX */ 676 arg.iov[0].iov_len, IPPROTO_TCP, 0); 677 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 678 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 679 /* When socket is gone, all binding information is lost. 680 * routing might fail in this case. No choice here, if we choose to force 681 * input interface, we will misroute in case of asymmetric route. 682 */ 683 if (sk) 684 arg.bound_dev_if = sk->sk_bound_dev_if; 685 686 arg.tos = ip_hdr(skb)->tos; 687 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 688 skb, &TCP_SKB_CB(skb)->header.h4.opt, 689 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 690 &arg, arg.iov[0].iov_len); 691 692 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 693 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 694 695 #ifdef CONFIG_TCP_MD5SIG 696 release_sk1: 697 if (sk1) { 698 rcu_read_unlock(); 699 sock_put(sk1); 700 } 701 #endif 702 } 703 704 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 705 outside socket context is ugly, certainly. What can I do? 706 */ 707 708 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 709 u32 win, u32 tsval, u32 tsecr, int oif, 710 struct tcp_md5sig_key *key, 711 int reply_flags, u8 tos) 712 { 713 const struct tcphdr *th = tcp_hdr(skb); 714 struct { 715 struct tcphdr th; 716 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 717 #ifdef CONFIG_TCP_MD5SIG 718 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 719 #endif 720 ]; 721 } rep; 722 struct ip_reply_arg arg; 723 struct net *net = dev_net(skb_dst(skb)->dev); 724 725 memset(&rep.th, 0, sizeof(struct tcphdr)); 726 memset(&arg, 0, sizeof(arg)); 727 728 arg.iov[0].iov_base = (unsigned char *)&rep; 729 arg.iov[0].iov_len = sizeof(rep.th); 730 if (tsecr) { 731 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 732 (TCPOPT_TIMESTAMP << 8) | 733 TCPOLEN_TIMESTAMP); 734 rep.opt[1] = htonl(tsval); 735 rep.opt[2] = htonl(tsecr); 736 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 737 } 738 739 /* Swap the send and the receive. */ 740 rep.th.dest = th->source; 741 rep.th.source = th->dest; 742 rep.th.doff = arg.iov[0].iov_len / 4; 743 rep.th.seq = htonl(seq); 744 rep.th.ack_seq = htonl(ack); 745 rep.th.ack = 1; 746 rep.th.window = htons(win); 747 748 #ifdef CONFIG_TCP_MD5SIG 749 if (key) { 750 int offset = (tsecr) ? 3 : 0; 751 752 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 753 (TCPOPT_NOP << 16) | 754 (TCPOPT_MD5SIG << 8) | 755 TCPOLEN_MD5SIG); 756 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 757 rep.th.doff = arg.iov[0].iov_len/4; 758 759 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 760 key, ip_hdr(skb)->saddr, 761 ip_hdr(skb)->daddr, &rep.th); 762 } 763 #endif 764 arg.flags = reply_flags; 765 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 766 ip_hdr(skb)->saddr, /* XXX */ 767 arg.iov[0].iov_len, IPPROTO_TCP, 0); 768 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 769 if (oif) 770 arg.bound_dev_if = oif; 771 arg.tos = tos; 772 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 773 skb, &TCP_SKB_CB(skb)->header.h4.opt, 774 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 775 &arg, arg.iov[0].iov_len); 776 777 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 778 } 779 780 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 781 { 782 struct inet_timewait_sock *tw = inet_twsk(sk); 783 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 784 785 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 786 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 787 tcp_time_stamp + tcptw->tw_ts_offset, 788 tcptw->tw_ts_recent, 789 tw->tw_bound_dev_if, 790 tcp_twsk_md5_key(tcptw), 791 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 792 tw->tw_tos 793 ); 794 795 inet_twsk_put(tw); 796 } 797 798 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb, 799 struct request_sock *req) 800 { 801 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 802 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 803 */ 804 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ? 805 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, 806 tcp_rsk(req)->rcv_nxt, req->rcv_wnd, 807 tcp_time_stamp, 808 req->ts_recent, 809 0, 810 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 811 AF_INET), 812 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 813 ip_hdr(skb)->tos); 814 } 815 816 /* 817 * Send a SYN-ACK after having received a SYN. 818 * This still operates on a request_sock only, not on a big 819 * socket. 820 */ 821 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst, 822 struct flowi *fl, 823 struct request_sock *req, 824 u16 queue_mapping, 825 struct tcp_fastopen_cookie *foc) 826 { 827 const struct inet_request_sock *ireq = inet_rsk(req); 828 struct flowi4 fl4; 829 int err = -1; 830 struct sk_buff *skb; 831 832 /* First, grab a route. */ 833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 834 return -1; 835 836 skb = tcp_make_synack(sk, dst, req, foc); 837 838 if (skb) { 839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 840 841 skb_set_queue_mapping(skb, queue_mapping); 842 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 843 ireq->ir_rmt_addr, 844 ireq->opt); 845 err = net_xmit_eval(err); 846 } 847 848 return err; 849 } 850 851 /* 852 * IPv4 request_sock destructor. 853 */ 854 static void tcp_v4_reqsk_destructor(struct request_sock *req) 855 { 856 kfree(inet_rsk(req)->opt); 857 } 858 859 /* 860 * Return true if a syncookie should be sent 861 */ 862 bool tcp_syn_flood_action(struct sock *sk, 863 const struct sk_buff *skb, 864 const char *proto) 865 { 866 const char *msg = "Dropping request"; 867 bool want_cookie = false; 868 struct listen_sock *lopt; 869 870 #ifdef CONFIG_SYN_COOKIES 871 if (sysctl_tcp_syncookies) { 872 msg = "Sending cookies"; 873 want_cookie = true; 874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 875 } else 876 #endif 877 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 878 879 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 880 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) { 881 lopt->synflood_warned = 1; 882 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 883 proto, ntohs(tcp_hdr(skb)->dest), msg); 884 } 885 return want_cookie; 886 } 887 EXPORT_SYMBOL(tcp_syn_flood_action); 888 889 #ifdef CONFIG_TCP_MD5SIG 890 /* 891 * RFC2385 MD5 checksumming requires a mapping of 892 * IP address->MD5 Key. 893 * We need to maintain these in the sk structure. 894 */ 895 896 /* Find the Key structure for an address. */ 897 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk, 898 const union tcp_md5_addr *addr, 899 int family) 900 { 901 const struct tcp_sock *tp = tcp_sk(sk); 902 struct tcp_md5sig_key *key; 903 unsigned int size = sizeof(struct in_addr); 904 const struct tcp_md5sig_info *md5sig; 905 906 /* caller either holds rcu_read_lock() or socket lock */ 907 md5sig = rcu_dereference_check(tp->md5sig_info, 908 sock_owned_by_user(sk) || 909 lockdep_is_held(&sk->sk_lock.slock)); 910 if (!md5sig) 911 return NULL; 912 #if IS_ENABLED(CONFIG_IPV6) 913 if (family == AF_INET6) 914 size = sizeof(struct in6_addr); 915 #endif 916 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 917 if (key->family != family) 918 continue; 919 if (!memcmp(&key->addr, addr, size)) 920 return key; 921 } 922 return NULL; 923 } 924 EXPORT_SYMBOL(tcp_md5_do_lookup); 925 926 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, 927 const struct sock *addr_sk) 928 { 929 union tcp_md5_addr *addr; 930 931 addr = (union tcp_md5_addr *)&sk->sk_daddr; 932 return tcp_md5_do_lookup(sk, addr, AF_INET); 933 } 934 EXPORT_SYMBOL(tcp_v4_md5_lookup); 935 936 /* This can be called on a newly created socket, from other files */ 937 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 938 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 939 { 940 /* Add Key to the list */ 941 struct tcp_md5sig_key *key; 942 struct tcp_sock *tp = tcp_sk(sk); 943 struct tcp_md5sig_info *md5sig; 944 945 key = tcp_md5_do_lookup(sk, addr, family); 946 if (key) { 947 /* Pre-existing entry - just update that one. */ 948 memcpy(key->key, newkey, newkeylen); 949 key->keylen = newkeylen; 950 return 0; 951 } 952 953 md5sig = rcu_dereference_protected(tp->md5sig_info, 954 sock_owned_by_user(sk)); 955 if (!md5sig) { 956 md5sig = kmalloc(sizeof(*md5sig), gfp); 957 if (!md5sig) 958 return -ENOMEM; 959 960 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 961 INIT_HLIST_HEAD(&md5sig->head); 962 rcu_assign_pointer(tp->md5sig_info, md5sig); 963 } 964 965 key = sock_kmalloc(sk, sizeof(*key), gfp); 966 if (!key) 967 return -ENOMEM; 968 if (!tcp_alloc_md5sig_pool()) { 969 sock_kfree_s(sk, key, sizeof(*key)); 970 return -ENOMEM; 971 } 972 973 memcpy(key->key, newkey, newkeylen); 974 key->keylen = newkeylen; 975 key->family = family; 976 memcpy(&key->addr, addr, 977 (family == AF_INET6) ? sizeof(struct in6_addr) : 978 sizeof(struct in_addr)); 979 hlist_add_head_rcu(&key->node, &md5sig->head); 980 return 0; 981 } 982 EXPORT_SYMBOL(tcp_md5_do_add); 983 984 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 985 { 986 struct tcp_md5sig_key *key; 987 988 key = tcp_md5_do_lookup(sk, addr, family); 989 if (!key) 990 return -ENOENT; 991 hlist_del_rcu(&key->node); 992 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 993 kfree_rcu(key, rcu); 994 return 0; 995 } 996 EXPORT_SYMBOL(tcp_md5_do_del); 997 998 static void tcp_clear_md5_list(struct sock *sk) 999 { 1000 struct tcp_sock *tp = tcp_sk(sk); 1001 struct tcp_md5sig_key *key; 1002 struct hlist_node *n; 1003 struct tcp_md5sig_info *md5sig; 1004 1005 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1006 1007 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1008 hlist_del_rcu(&key->node); 1009 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1010 kfree_rcu(key, rcu); 1011 } 1012 } 1013 1014 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1015 int optlen) 1016 { 1017 struct tcp_md5sig cmd; 1018 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1019 1020 if (optlen < sizeof(cmd)) 1021 return -EINVAL; 1022 1023 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1024 return -EFAULT; 1025 1026 if (sin->sin_family != AF_INET) 1027 return -EINVAL; 1028 1029 if (!cmd.tcpm_keylen) 1030 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1031 AF_INET); 1032 1033 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1034 return -EINVAL; 1035 1036 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1037 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1038 GFP_KERNEL); 1039 } 1040 1041 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1042 __be32 daddr, __be32 saddr, int nbytes) 1043 { 1044 struct tcp4_pseudohdr *bp; 1045 struct scatterlist sg; 1046 1047 bp = &hp->md5_blk.ip4; 1048 1049 /* 1050 * 1. the TCP pseudo-header (in the order: source IP address, 1051 * destination IP address, zero-padded protocol number, and 1052 * segment length) 1053 */ 1054 bp->saddr = saddr; 1055 bp->daddr = daddr; 1056 bp->pad = 0; 1057 bp->protocol = IPPROTO_TCP; 1058 bp->len = cpu_to_be16(nbytes); 1059 1060 sg_init_one(&sg, bp, sizeof(*bp)); 1061 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1062 } 1063 1064 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1065 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1066 { 1067 struct tcp_md5sig_pool *hp; 1068 struct hash_desc *desc; 1069 1070 hp = tcp_get_md5sig_pool(); 1071 if (!hp) 1072 goto clear_hash_noput; 1073 desc = &hp->md5_desc; 1074 1075 if (crypto_hash_init(desc)) 1076 goto clear_hash; 1077 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1078 goto clear_hash; 1079 if (tcp_md5_hash_header(hp, th)) 1080 goto clear_hash; 1081 if (tcp_md5_hash_key(hp, key)) 1082 goto clear_hash; 1083 if (crypto_hash_final(desc, md5_hash)) 1084 goto clear_hash; 1085 1086 tcp_put_md5sig_pool(); 1087 return 0; 1088 1089 clear_hash: 1090 tcp_put_md5sig_pool(); 1091 clear_hash_noput: 1092 memset(md5_hash, 0, 16); 1093 return 1; 1094 } 1095 1096 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1097 const struct sock *sk, 1098 const struct sk_buff *skb) 1099 { 1100 struct tcp_md5sig_pool *hp; 1101 struct hash_desc *desc; 1102 const struct tcphdr *th = tcp_hdr(skb); 1103 __be32 saddr, daddr; 1104 1105 if (sk) { /* valid for establish/request sockets */ 1106 saddr = sk->sk_rcv_saddr; 1107 daddr = sk->sk_daddr; 1108 } else { 1109 const struct iphdr *iph = ip_hdr(skb); 1110 saddr = iph->saddr; 1111 daddr = iph->daddr; 1112 } 1113 1114 hp = tcp_get_md5sig_pool(); 1115 if (!hp) 1116 goto clear_hash_noput; 1117 desc = &hp->md5_desc; 1118 1119 if (crypto_hash_init(desc)) 1120 goto clear_hash; 1121 1122 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1123 goto clear_hash; 1124 if (tcp_md5_hash_header(hp, th)) 1125 goto clear_hash; 1126 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1127 goto clear_hash; 1128 if (tcp_md5_hash_key(hp, key)) 1129 goto clear_hash; 1130 if (crypto_hash_final(desc, md5_hash)) 1131 goto clear_hash; 1132 1133 tcp_put_md5sig_pool(); 1134 return 0; 1135 1136 clear_hash: 1137 tcp_put_md5sig_pool(); 1138 clear_hash_noput: 1139 memset(md5_hash, 0, 16); 1140 return 1; 1141 } 1142 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1143 1144 /* Called with rcu_read_lock() */ 1145 static bool tcp_v4_inbound_md5_hash(struct sock *sk, 1146 const struct sk_buff *skb) 1147 { 1148 /* 1149 * This gets called for each TCP segment that arrives 1150 * so we want to be efficient. 1151 * We have 3 drop cases: 1152 * o No MD5 hash and one expected. 1153 * o MD5 hash and we're not expecting one. 1154 * o MD5 hash and its wrong. 1155 */ 1156 const __u8 *hash_location = NULL; 1157 struct tcp_md5sig_key *hash_expected; 1158 const struct iphdr *iph = ip_hdr(skb); 1159 const struct tcphdr *th = tcp_hdr(skb); 1160 int genhash; 1161 unsigned char newhash[16]; 1162 1163 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1164 AF_INET); 1165 hash_location = tcp_parse_md5sig_option(th); 1166 1167 /* We've parsed the options - do we have a hash? */ 1168 if (!hash_expected && !hash_location) 1169 return false; 1170 1171 if (hash_expected && !hash_location) { 1172 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1173 return true; 1174 } 1175 1176 if (!hash_expected && hash_location) { 1177 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1178 return true; 1179 } 1180 1181 /* Okay, so this is hash_expected and hash_location - 1182 * so we need to calculate the checksum. 1183 */ 1184 genhash = tcp_v4_md5_hash_skb(newhash, 1185 hash_expected, 1186 NULL, skb); 1187 1188 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1189 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1190 &iph->saddr, ntohs(th->source), 1191 &iph->daddr, ntohs(th->dest), 1192 genhash ? " tcp_v4_calc_md5_hash failed" 1193 : ""); 1194 return true; 1195 } 1196 return false; 1197 } 1198 #endif 1199 1200 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk_listener, 1201 struct sk_buff *skb) 1202 { 1203 struct inet_request_sock *ireq = inet_rsk(req); 1204 1205 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1206 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1207 ireq->no_srccheck = inet_sk(sk_listener)->transparent; 1208 ireq->opt = tcp_v4_save_options(skb); 1209 } 1210 1211 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl, 1212 const struct request_sock *req, 1213 bool *strict) 1214 { 1215 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req); 1216 1217 if (strict) { 1218 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr) 1219 *strict = true; 1220 else 1221 *strict = false; 1222 } 1223 1224 return dst; 1225 } 1226 1227 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1228 .family = PF_INET, 1229 .obj_size = sizeof(struct tcp_request_sock), 1230 .rtx_syn_ack = tcp_rtx_synack, 1231 .send_ack = tcp_v4_reqsk_send_ack, 1232 .destructor = tcp_v4_reqsk_destructor, 1233 .send_reset = tcp_v4_send_reset, 1234 .syn_ack_timeout = tcp_syn_ack_timeout, 1235 }; 1236 1237 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1238 .mss_clamp = TCP_MSS_DEFAULT, 1239 #ifdef CONFIG_TCP_MD5SIG 1240 .req_md5_lookup = tcp_v4_md5_lookup, 1241 .calc_md5_hash = tcp_v4_md5_hash_skb, 1242 #endif 1243 .init_req = tcp_v4_init_req, 1244 #ifdef CONFIG_SYN_COOKIES 1245 .cookie_init_seq = cookie_v4_init_sequence, 1246 #endif 1247 .route_req = tcp_v4_route_req, 1248 .init_seq = tcp_v4_init_sequence, 1249 .send_synack = tcp_v4_send_synack, 1250 .queue_hash_add = inet_csk_reqsk_queue_hash_add, 1251 }; 1252 1253 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1254 { 1255 /* Never answer to SYNs send to broadcast or multicast */ 1256 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1257 goto drop; 1258 1259 return tcp_conn_request(&tcp_request_sock_ops, 1260 &tcp_request_sock_ipv4_ops, sk, skb); 1261 1262 drop: 1263 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1264 return 0; 1265 } 1266 EXPORT_SYMBOL(tcp_v4_conn_request); 1267 1268 1269 /* 1270 * The three way handshake has completed - we got a valid synack - 1271 * now create the new socket. 1272 */ 1273 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, 1274 struct request_sock *req, 1275 struct dst_entry *dst) 1276 { 1277 struct inet_request_sock *ireq; 1278 struct inet_sock *newinet; 1279 struct tcp_sock *newtp; 1280 struct sock *newsk; 1281 #ifdef CONFIG_TCP_MD5SIG 1282 struct tcp_md5sig_key *key; 1283 #endif 1284 struct ip_options_rcu *inet_opt; 1285 1286 if (sk_acceptq_is_full(sk)) 1287 goto exit_overflow; 1288 1289 newsk = tcp_create_openreq_child(sk, req, skb); 1290 if (!newsk) 1291 goto exit_nonewsk; 1292 1293 newsk->sk_gso_type = SKB_GSO_TCPV4; 1294 inet_sk_rx_dst_set(newsk, skb); 1295 1296 newtp = tcp_sk(newsk); 1297 newinet = inet_sk(newsk); 1298 ireq = inet_rsk(req); 1299 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1300 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1301 newinet->inet_saddr = ireq->ir_loc_addr; 1302 inet_opt = ireq->opt; 1303 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1304 ireq->opt = NULL; 1305 newinet->mc_index = inet_iif(skb); 1306 newinet->mc_ttl = ip_hdr(skb)->ttl; 1307 newinet->rcv_tos = ip_hdr(skb)->tos; 1308 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1309 inet_set_txhash(newsk); 1310 if (inet_opt) 1311 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1312 newinet->inet_id = newtp->write_seq ^ jiffies; 1313 1314 if (!dst) { 1315 dst = inet_csk_route_child_sock(sk, newsk, req); 1316 if (!dst) 1317 goto put_and_exit; 1318 } else { 1319 /* syncookie case : see end of cookie_v4_check() */ 1320 } 1321 sk_setup_caps(newsk, dst); 1322 1323 tcp_ca_openreq_child(newsk, dst); 1324 1325 tcp_sync_mss(newsk, dst_mtu(dst)); 1326 newtp->advmss = dst_metric_advmss(dst); 1327 if (tcp_sk(sk)->rx_opt.user_mss && 1328 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1329 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1330 1331 tcp_initialize_rcv_mss(newsk); 1332 1333 #ifdef CONFIG_TCP_MD5SIG 1334 /* Copy over the MD5 key from the original socket */ 1335 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1336 AF_INET); 1337 if (key != NULL) { 1338 /* 1339 * We're using one, so create a matching key 1340 * on the newsk structure. If we fail to get 1341 * memory, then we end up not copying the key 1342 * across. Shucks. 1343 */ 1344 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1345 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1346 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1347 } 1348 #endif 1349 1350 if (__inet_inherit_port(sk, newsk) < 0) 1351 goto put_and_exit; 1352 __inet_hash_nolisten(newsk, NULL); 1353 1354 return newsk; 1355 1356 exit_overflow: 1357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1358 exit_nonewsk: 1359 dst_release(dst); 1360 exit: 1361 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1362 return NULL; 1363 put_and_exit: 1364 inet_csk_prepare_forced_close(newsk); 1365 tcp_done(newsk); 1366 goto exit; 1367 } 1368 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1369 1370 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) 1371 { 1372 const struct tcphdr *th = tcp_hdr(skb); 1373 const struct iphdr *iph = ip_hdr(skb); 1374 struct request_sock *req; 1375 struct sock *nsk; 1376 1377 req = inet_csk_search_req(sk, th->source, iph->saddr, iph->daddr); 1378 if (req) { 1379 nsk = tcp_check_req(sk, skb, req, false); 1380 reqsk_put(req); 1381 return nsk; 1382 } 1383 1384 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr, 1385 th->source, iph->daddr, th->dest, inet_iif(skb)); 1386 1387 if (nsk) { 1388 if (nsk->sk_state != TCP_TIME_WAIT) { 1389 bh_lock_sock(nsk); 1390 return nsk; 1391 } 1392 inet_twsk_put(inet_twsk(nsk)); 1393 return NULL; 1394 } 1395 1396 #ifdef CONFIG_SYN_COOKIES 1397 if (!th->syn) 1398 sk = cookie_v4_check(sk, skb); 1399 #endif 1400 return sk; 1401 } 1402 1403 /* The socket must have it's spinlock held when we get 1404 * here. 1405 * 1406 * We have a potential double-lock case here, so even when 1407 * doing backlog processing we use the BH locking scheme. 1408 * This is because we cannot sleep with the original spinlock 1409 * held. 1410 */ 1411 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1412 { 1413 struct sock *rsk; 1414 1415 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1416 struct dst_entry *dst = sk->sk_rx_dst; 1417 1418 sock_rps_save_rxhash(sk, skb); 1419 sk_mark_napi_id(sk, skb); 1420 if (dst) { 1421 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1422 dst->ops->check(dst, 0) == NULL) { 1423 dst_release(dst); 1424 sk->sk_rx_dst = NULL; 1425 } 1426 } 1427 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len); 1428 return 0; 1429 } 1430 1431 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) 1432 goto csum_err; 1433 1434 if (sk->sk_state == TCP_LISTEN) { 1435 struct sock *nsk = tcp_v4_hnd_req(sk, skb); 1436 if (!nsk) 1437 goto discard; 1438 1439 if (nsk != sk) { 1440 sock_rps_save_rxhash(nsk, skb); 1441 sk_mark_napi_id(sk, skb); 1442 if (tcp_child_process(sk, nsk, skb)) { 1443 rsk = nsk; 1444 goto reset; 1445 } 1446 return 0; 1447 } 1448 } else 1449 sock_rps_save_rxhash(sk, skb); 1450 1451 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { 1452 rsk = sk; 1453 goto reset; 1454 } 1455 return 0; 1456 1457 reset: 1458 tcp_v4_send_reset(rsk, skb); 1459 discard: 1460 kfree_skb(skb); 1461 /* Be careful here. If this function gets more complicated and 1462 * gcc suffers from register pressure on the x86, sk (in %ebx) 1463 * might be destroyed here. This current version compiles correctly, 1464 * but you have been warned. 1465 */ 1466 return 0; 1467 1468 csum_err: 1469 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 1470 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1471 goto discard; 1472 } 1473 EXPORT_SYMBOL(tcp_v4_do_rcv); 1474 1475 void tcp_v4_early_demux(struct sk_buff *skb) 1476 { 1477 const struct iphdr *iph; 1478 const struct tcphdr *th; 1479 struct sock *sk; 1480 1481 if (skb->pkt_type != PACKET_HOST) 1482 return; 1483 1484 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1485 return; 1486 1487 iph = ip_hdr(skb); 1488 th = tcp_hdr(skb); 1489 1490 if (th->doff < sizeof(struct tcphdr) / 4) 1491 return; 1492 1493 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1494 iph->saddr, th->source, 1495 iph->daddr, ntohs(th->dest), 1496 skb->skb_iif); 1497 if (sk) { 1498 skb->sk = sk; 1499 skb->destructor = sock_edemux; 1500 if (sk_fullsock(sk)) { 1501 struct dst_entry *dst = sk->sk_rx_dst; 1502 1503 if (dst) 1504 dst = dst_check(dst, 0); 1505 if (dst && 1506 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1507 skb_dst_set_noref(skb, dst); 1508 } 1509 } 1510 } 1511 1512 /* Packet is added to VJ-style prequeue for processing in process 1513 * context, if a reader task is waiting. Apparently, this exciting 1514 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93) 1515 * failed somewhere. Latency? Burstiness? Well, at least now we will 1516 * see, why it failed. 8)8) --ANK 1517 * 1518 */ 1519 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb) 1520 { 1521 struct tcp_sock *tp = tcp_sk(sk); 1522 1523 if (sysctl_tcp_low_latency || !tp->ucopy.task) 1524 return false; 1525 1526 if (skb->len <= tcp_hdrlen(skb) && 1527 skb_queue_len(&tp->ucopy.prequeue) == 0) 1528 return false; 1529 1530 /* Before escaping RCU protected region, we need to take care of skb 1531 * dst. Prequeue is only enabled for established sockets. 1532 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst 1533 * Instead of doing full sk_rx_dst validity here, let's perform 1534 * an optimistic check. 1535 */ 1536 if (likely(sk->sk_rx_dst)) 1537 skb_dst_drop(skb); 1538 else 1539 skb_dst_force(skb); 1540 1541 __skb_queue_tail(&tp->ucopy.prequeue, skb); 1542 tp->ucopy.memory += skb->truesize; 1543 if (tp->ucopy.memory > sk->sk_rcvbuf) { 1544 struct sk_buff *skb1; 1545 1546 BUG_ON(sock_owned_by_user(sk)); 1547 1548 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) { 1549 sk_backlog_rcv(sk, skb1); 1550 NET_INC_STATS_BH(sock_net(sk), 1551 LINUX_MIB_TCPPREQUEUEDROPPED); 1552 } 1553 1554 tp->ucopy.memory = 0; 1555 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) { 1556 wake_up_interruptible_sync_poll(sk_sleep(sk), 1557 POLLIN | POLLRDNORM | POLLRDBAND); 1558 if (!inet_csk_ack_scheduled(sk)) 1559 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1560 (3 * tcp_rto_min(sk)) / 4, 1561 TCP_RTO_MAX); 1562 } 1563 return true; 1564 } 1565 EXPORT_SYMBOL(tcp_prequeue); 1566 1567 /* 1568 * From tcp_input.c 1569 */ 1570 1571 int tcp_v4_rcv(struct sk_buff *skb) 1572 { 1573 const struct iphdr *iph; 1574 const struct tcphdr *th; 1575 struct sock *sk; 1576 int ret; 1577 struct net *net = dev_net(skb->dev); 1578 1579 if (skb->pkt_type != PACKET_HOST) 1580 goto discard_it; 1581 1582 /* Count it even if it's bad */ 1583 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1584 1585 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1586 goto discard_it; 1587 1588 th = tcp_hdr(skb); 1589 1590 if (th->doff < sizeof(struct tcphdr) / 4) 1591 goto bad_packet; 1592 if (!pskb_may_pull(skb, th->doff * 4)) 1593 goto discard_it; 1594 1595 /* An explanation is required here, I think. 1596 * Packet length and doff are validated by header prediction, 1597 * provided case of th->doff==0 is eliminated. 1598 * So, we defer the checks. */ 1599 1600 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1601 goto csum_error; 1602 1603 th = tcp_hdr(skb); 1604 iph = ip_hdr(skb); 1605 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1606 * barrier() makes sure compiler wont play fool^Waliasing games. 1607 */ 1608 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1609 sizeof(struct inet_skb_parm)); 1610 barrier(); 1611 1612 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1613 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1614 skb->len - th->doff * 4); 1615 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1616 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1617 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1618 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1619 TCP_SKB_CB(skb)->sacked = 0; 1620 1621 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 1622 if (!sk) 1623 goto no_tcp_socket; 1624 1625 process: 1626 if (sk->sk_state == TCP_TIME_WAIT) 1627 goto do_time_wait; 1628 1629 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1630 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 1631 goto discard_and_relse; 1632 } 1633 1634 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1635 goto discard_and_relse; 1636 1637 #ifdef CONFIG_TCP_MD5SIG 1638 /* 1639 * We really want to reject the packet as early as possible 1640 * if: 1641 * o We're expecting an MD5'd packet and this is no MD5 tcp option 1642 * o There is an MD5 option and we're not expecting one 1643 */ 1644 if (tcp_v4_inbound_md5_hash(sk, skb)) 1645 goto discard_and_relse; 1646 #endif 1647 1648 nf_reset(skb); 1649 1650 if (sk_filter(sk, skb)) 1651 goto discard_and_relse; 1652 1653 sk_incoming_cpu_update(sk); 1654 skb->dev = NULL; 1655 1656 bh_lock_sock_nested(sk); 1657 ret = 0; 1658 if (!sock_owned_by_user(sk)) { 1659 if (!tcp_prequeue(sk, skb)) 1660 ret = tcp_v4_do_rcv(sk, skb); 1661 } else if (unlikely(sk_add_backlog(sk, skb, 1662 sk->sk_rcvbuf + sk->sk_sndbuf))) { 1663 bh_unlock_sock(sk); 1664 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP); 1665 goto discard_and_relse; 1666 } 1667 bh_unlock_sock(sk); 1668 1669 sock_put(sk); 1670 1671 return ret; 1672 1673 no_tcp_socket: 1674 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1675 goto discard_it; 1676 1677 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 1678 csum_error: 1679 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS); 1680 bad_packet: 1681 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 1682 } else { 1683 tcp_v4_send_reset(NULL, skb); 1684 } 1685 1686 discard_it: 1687 /* Discard frame. */ 1688 kfree_skb(skb); 1689 return 0; 1690 1691 discard_and_relse: 1692 sock_put(sk); 1693 goto discard_it; 1694 1695 do_time_wait: 1696 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1697 inet_twsk_put(inet_twsk(sk)); 1698 goto discard_it; 1699 } 1700 1701 if (skb->len < (th->doff << 2)) { 1702 inet_twsk_put(inet_twsk(sk)); 1703 goto bad_packet; 1704 } 1705 if (tcp_checksum_complete(skb)) { 1706 inet_twsk_put(inet_twsk(sk)); 1707 goto csum_error; 1708 } 1709 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1710 case TCP_TW_SYN: { 1711 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1712 &tcp_hashinfo, 1713 iph->saddr, th->source, 1714 iph->daddr, th->dest, 1715 inet_iif(skb)); 1716 if (sk2) { 1717 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); 1718 inet_twsk_put(inet_twsk(sk)); 1719 sk = sk2; 1720 goto process; 1721 } 1722 /* Fall through to ACK */ 1723 } 1724 case TCP_TW_ACK: 1725 tcp_v4_timewait_ack(sk, skb); 1726 break; 1727 case TCP_TW_RST: 1728 goto no_tcp_socket; 1729 case TCP_TW_SUCCESS:; 1730 } 1731 goto discard_it; 1732 } 1733 1734 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1735 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1736 .twsk_unique = tcp_twsk_unique, 1737 .twsk_destructor= tcp_twsk_destructor, 1738 }; 1739 1740 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1741 { 1742 struct dst_entry *dst = skb_dst(skb); 1743 1744 if (dst) { 1745 dst_hold(dst); 1746 sk->sk_rx_dst = dst; 1747 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1748 } 1749 } 1750 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1751 1752 const struct inet_connection_sock_af_ops ipv4_specific = { 1753 .queue_xmit = ip_queue_xmit, 1754 .send_check = tcp_v4_send_check, 1755 .rebuild_header = inet_sk_rebuild_header, 1756 .sk_rx_dst_set = inet_sk_rx_dst_set, 1757 .conn_request = tcp_v4_conn_request, 1758 .syn_recv_sock = tcp_v4_syn_recv_sock, 1759 .net_header_len = sizeof(struct iphdr), 1760 .setsockopt = ip_setsockopt, 1761 .getsockopt = ip_getsockopt, 1762 .addr2sockaddr = inet_csk_addr2sockaddr, 1763 .sockaddr_len = sizeof(struct sockaddr_in), 1764 .bind_conflict = inet_csk_bind_conflict, 1765 #ifdef CONFIG_COMPAT 1766 .compat_setsockopt = compat_ip_setsockopt, 1767 .compat_getsockopt = compat_ip_getsockopt, 1768 #endif 1769 .mtu_reduced = tcp_v4_mtu_reduced, 1770 }; 1771 EXPORT_SYMBOL(ipv4_specific); 1772 1773 #ifdef CONFIG_TCP_MD5SIG 1774 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1775 .md5_lookup = tcp_v4_md5_lookup, 1776 .calc_md5_hash = tcp_v4_md5_hash_skb, 1777 .md5_parse = tcp_v4_parse_md5_keys, 1778 }; 1779 #endif 1780 1781 /* NOTE: A lot of things set to zero explicitly by call to 1782 * sk_alloc() so need not be done here. 1783 */ 1784 static int tcp_v4_init_sock(struct sock *sk) 1785 { 1786 struct inet_connection_sock *icsk = inet_csk(sk); 1787 1788 tcp_init_sock(sk); 1789 1790 icsk->icsk_af_ops = &ipv4_specific; 1791 1792 #ifdef CONFIG_TCP_MD5SIG 1793 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1794 #endif 1795 1796 return 0; 1797 } 1798 1799 void tcp_v4_destroy_sock(struct sock *sk) 1800 { 1801 struct tcp_sock *tp = tcp_sk(sk); 1802 1803 tcp_clear_xmit_timers(sk); 1804 1805 tcp_cleanup_congestion_control(sk); 1806 1807 /* Cleanup up the write buffer. */ 1808 tcp_write_queue_purge(sk); 1809 1810 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1811 __skb_queue_purge(&tp->out_of_order_queue); 1812 1813 #ifdef CONFIG_TCP_MD5SIG 1814 /* Clean up the MD5 key list, if any */ 1815 if (tp->md5sig_info) { 1816 tcp_clear_md5_list(sk); 1817 kfree_rcu(tp->md5sig_info, rcu); 1818 tp->md5sig_info = NULL; 1819 } 1820 #endif 1821 1822 /* Clean prequeue, it must be empty really */ 1823 __skb_queue_purge(&tp->ucopy.prequeue); 1824 1825 /* Clean up a referenced TCP bind bucket. */ 1826 if (inet_csk(sk)->icsk_bind_hash) 1827 inet_put_port(sk); 1828 1829 BUG_ON(tp->fastopen_rsk != NULL); 1830 1831 /* If socket is aborted during connect operation */ 1832 tcp_free_fastopen_req(tp); 1833 1834 sk_sockets_allocated_dec(sk); 1835 sock_release_memcg(sk); 1836 } 1837 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1838 1839 #ifdef CONFIG_PROC_FS 1840 /* Proc filesystem TCP sock list dumping. */ 1841 1842 /* 1843 * Get next listener socket follow cur. If cur is NULL, get first socket 1844 * starting from bucket given in st->bucket; when st->bucket is zero the 1845 * very first socket in the hash table is returned. 1846 */ 1847 static void *listening_get_next(struct seq_file *seq, void *cur) 1848 { 1849 struct inet_connection_sock *icsk; 1850 struct hlist_nulls_node *node; 1851 struct sock *sk = cur; 1852 struct inet_listen_hashbucket *ilb; 1853 struct tcp_iter_state *st = seq->private; 1854 struct net *net = seq_file_net(seq); 1855 1856 if (!sk) { 1857 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1858 spin_lock_bh(&ilb->lock); 1859 sk = sk_nulls_head(&ilb->head); 1860 st->offset = 0; 1861 goto get_sk; 1862 } 1863 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1864 ++st->num; 1865 ++st->offset; 1866 1867 if (st->state == TCP_SEQ_STATE_OPENREQ) { 1868 struct request_sock *req = cur; 1869 1870 icsk = inet_csk(st->syn_wait_sk); 1871 req = req->dl_next; 1872 while (1) { 1873 while (req) { 1874 if (req->rsk_ops->family == st->family) { 1875 cur = req; 1876 goto out; 1877 } 1878 req = req->dl_next; 1879 } 1880 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) 1881 break; 1882 get_req: 1883 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; 1884 } 1885 sk = sk_nulls_next(st->syn_wait_sk); 1886 st->state = TCP_SEQ_STATE_LISTENING; 1887 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 1888 } else { 1889 icsk = inet_csk(sk); 1890 spin_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 1891 if (reqsk_queue_len(&icsk->icsk_accept_queue)) 1892 goto start_req; 1893 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 1894 sk = sk_nulls_next(sk); 1895 } 1896 get_sk: 1897 sk_nulls_for_each_from(sk, node) { 1898 if (!net_eq(sock_net(sk), net)) 1899 continue; 1900 if (sk->sk_family == st->family) { 1901 cur = sk; 1902 goto out; 1903 } 1904 icsk = inet_csk(sk); 1905 spin_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 1906 if (reqsk_queue_len(&icsk->icsk_accept_queue)) { 1907 start_req: 1908 st->uid = sock_i_uid(sk); 1909 st->syn_wait_sk = sk; 1910 st->state = TCP_SEQ_STATE_OPENREQ; 1911 st->sbucket = 0; 1912 goto get_req; 1913 } 1914 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 1915 } 1916 spin_unlock_bh(&ilb->lock); 1917 st->offset = 0; 1918 if (++st->bucket < INET_LHTABLE_SIZE) { 1919 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1920 spin_lock_bh(&ilb->lock); 1921 sk = sk_nulls_head(&ilb->head); 1922 goto get_sk; 1923 } 1924 cur = NULL; 1925 out: 1926 return cur; 1927 } 1928 1929 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 1930 { 1931 struct tcp_iter_state *st = seq->private; 1932 void *rc; 1933 1934 st->bucket = 0; 1935 st->offset = 0; 1936 rc = listening_get_next(seq, NULL); 1937 1938 while (rc && *pos) { 1939 rc = listening_get_next(seq, rc); 1940 --*pos; 1941 } 1942 return rc; 1943 } 1944 1945 static inline bool empty_bucket(const struct tcp_iter_state *st) 1946 { 1947 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 1948 } 1949 1950 /* 1951 * Get first established socket starting from bucket given in st->bucket. 1952 * If st->bucket is zero, the very first socket in the hash is returned. 1953 */ 1954 static void *established_get_first(struct seq_file *seq) 1955 { 1956 struct tcp_iter_state *st = seq->private; 1957 struct net *net = seq_file_net(seq); 1958 void *rc = NULL; 1959 1960 st->offset = 0; 1961 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 1962 struct sock *sk; 1963 struct hlist_nulls_node *node; 1964 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 1965 1966 /* Lockless fast path for the common case of empty buckets */ 1967 if (empty_bucket(st)) 1968 continue; 1969 1970 spin_lock_bh(lock); 1971 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 1972 if (sk->sk_family != st->family || 1973 !net_eq(sock_net(sk), net)) { 1974 continue; 1975 } 1976 rc = sk; 1977 goto out; 1978 } 1979 spin_unlock_bh(lock); 1980 } 1981 out: 1982 return rc; 1983 } 1984 1985 static void *established_get_next(struct seq_file *seq, void *cur) 1986 { 1987 struct sock *sk = cur; 1988 struct hlist_nulls_node *node; 1989 struct tcp_iter_state *st = seq->private; 1990 struct net *net = seq_file_net(seq); 1991 1992 ++st->num; 1993 ++st->offset; 1994 1995 sk = sk_nulls_next(sk); 1996 1997 sk_nulls_for_each_from(sk, node) { 1998 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 1999 return sk; 2000 } 2001 2002 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2003 ++st->bucket; 2004 return established_get_first(seq); 2005 } 2006 2007 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2008 { 2009 struct tcp_iter_state *st = seq->private; 2010 void *rc; 2011 2012 st->bucket = 0; 2013 rc = established_get_first(seq); 2014 2015 while (rc && pos) { 2016 rc = established_get_next(seq, rc); 2017 --pos; 2018 } 2019 return rc; 2020 } 2021 2022 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2023 { 2024 void *rc; 2025 struct tcp_iter_state *st = seq->private; 2026 2027 st->state = TCP_SEQ_STATE_LISTENING; 2028 rc = listening_get_idx(seq, &pos); 2029 2030 if (!rc) { 2031 st->state = TCP_SEQ_STATE_ESTABLISHED; 2032 rc = established_get_idx(seq, pos); 2033 } 2034 2035 return rc; 2036 } 2037 2038 static void *tcp_seek_last_pos(struct seq_file *seq) 2039 { 2040 struct tcp_iter_state *st = seq->private; 2041 int offset = st->offset; 2042 int orig_num = st->num; 2043 void *rc = NULL; 2044 2045 switch (st->state) { 2046 case TCP_SEQ_STATE_OPENREQ: 2047 case TCP_SEQ_STATE_LISTENING: 2048 if (st->bucket >= INET_LHTABLE_SIZE) 2049 break; 2050 st->state = TCP_SEQ_STATE_LISTENING; 2051 rc = listening_get_next(seq, NULL); 2052 while (offset-- && rc) 2053 rc = listening_get_next(seq, rc); 2054 if (rc) 2055 break; 2056 st->bucket = 0; 2057 st->state = TCP_SEQ_STATE_ESTABLISHED; 2058 /* Fallthrough */ 2059 case TCP_SEQ_STATE_ESTABLISHED: 2060 if (st->bucket > tcp_hashinfo.ehash_mask) 2061 break; 2062 rc = established_get_first(seq); 2063 while (offset-- && rc) 2064 rc = established_get_next(seq, rc); 2065 } 2066 2067 st->num = orig_num; 2068 2069 return rc; 2070 } 2071 2072 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2073 { 2074 struct tcp_iter_state *st = seq->private; 2075 void *rc; 2076 2077 if (*pos && *pos == st->last_pos) { 2078 rc = tcp_seek_last_pos(seq); 2079 if (rc) 2080 goto out; 2081 } 2082 2083 st->state = TCP_SEQ_STATE_LISTENING; 2084 st->num = 0; 2085 st->bucket = 0; 2086 st->offset = 0; 2087 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2088 2089 out: 2090 st->last_pos = *pos; 2091 return rc; 2092 } 2093 2094 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2095 { 2096 struct tcp_iter_state *st = seq->private; 2097 void *rc = NULL; 2098 2099 if (v == SEQ_START_TOKEN) { 2100 rc = tcp_get_idx(seq, 0); 2101 goto out; 2102 } 2103 2104 switch (st->state) { 2105 case TCP_SEQ_STATE_OPENREQ: 2106 case TCP_SEQ_STATE_LISTENING: 2107 rc = listening_get_next(seq, v); 2108 if (!rc) { 2109 st->state = TCP_SEQ_STATE_ESTABLISHED; 2110 st->bucket = 0; 2111 st->offset = 0; 2112 rc = established_get_first(seq); 2113 } 2114 break; 2115 case TCP_SEQ_STATE_ESTABLISHED: 2116 rc = established_get_next(seq, v); 2117 break; 2118 } 2119 out: 2120 ++*pos; 2121 st->last_pos = *pos; 2122 return rc; 2123 } 2124 2125 static void tcp_seq_stop(struct seq_file *seq, void *v) 2126 { 2127 struct tcp_iter_state *st = seq->private; 2128 2129 switch (st->state) { 2130 case TCP_SEQ_STATE_OPENREQ: 2131 if (v) { 2132 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); 2133 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2134 } 2135 case TCP_SEQ_STATE_LISTENING: 2136 if (v != SEQ_START_TOKEN) 2137 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2138 break; 2139 case TCP_SEQ_STATE_ESTABLISHED: 2140 if (v) 2141 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2142 break; 2143 } 2144 } 2145 2146 int tcp_seq_open(struct inode *inode, struct file *file) 2147 { 2148 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2149 struct tcp_iter_state *s; 2150 int err; 2151 2152 err = seq_open_net(inode, file, &afinfo->seq_ops, 2153 sizeof(struct tcp_iter_state)); 2154 if (err < 0) 2155 return err; 2156 2157 s = ((struct seq_file *)file->private_data)->private; 2158 s->family = afinfo->family; 2159 s->last_pos = 0; 2160 return 0; 2161 } 2162 EXPORT_SYMBOL(tcp_seq_open); 2163 2164 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2165 { 2166 int rc = 0; 2167 struct proc_dir_entry *p; 2168 2169 afinfo->seq_ops.start = tcp_seq_start; 2170 afinfo->seq_ops.next = tcp_seq_next; 2171 afinfo->seq_ops.stop = tcp_seq_stop; 2172 2173 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2174 afinfo->seq_fops, afinfo); 2175 if (!p) 2176 rc = -ENOMEM; 2177 return rc; 2178 } 2179 EXPORT_SYMBOL(tcp_proc_register); 2180 2181 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2182 { 2183 remove_proc_entry(afinfo->name, net->proc_net); 2184 } 2185 EXPORT_SYMBOL(tcp_proc_unregister); 2186 2187 static void get_openreq4(const struct request_sock *req, 2188 struct seq_file *f, int i, kuid_t uid) 2189 { 2190 const struct inet_request_sock *ireq = inet_rsk(req); 2191 long delta = req->rsk_timer.expires - jiffies; 2192 2193 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2194 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2195 i, 2196 ireq->ir_loc_addr, 2197 ireq->ir_num, 2198 ireq->ir_rmt_addr, 2199 ntohs(ireq->ir_rmt_port), 2200 TCP_SYN_RECV, 2201 0, 0, /* could print option size, but that is af dependent. */ 2202 1, /* timers active (only the expire timer) */ 2203 jiffies_delta_to_clock_t(delta), 2204 req->num_timeout, 2205 from_kuid_munged(seq_user_ns(f), uid), 2206 0, /* non standard timer */ 2207 0, /* open_requests have no inode */ 2208 0, 2209 req); 2210 } 2211 2212 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2213 { 2214 int timer_active; 2215 unsigned long timer_expires; 2216 const struct tcp_sock *tp = tcp_sk(sk); 2217 const struct inet_connection_sock *icsk = inet_csk(sk); 2218 const struct inet_sock *inet = inet_sk(sk); 2219 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq; 2220 __be32 dest = inet->inet_daddr; 2221 __be32 src = inet->inet_rcv_saddr; 2222 __u16 destp = ntohs(inet->inet_dport); 2223 __u16 srcp = ntohs(inet->inet_sport); 2224 int rx_queue; 2225 2226 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2227 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2228 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2229 timer_active = 1; 2230 timer_expires = icsk->icsk_timeout; 2231 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2232 timer_active = 4; 2233 timer_expires = icsk->icsk_timeout; 2234 } else if (timer_pending(&sk->sk_timer)) { 2235 timer_active = 2; 2236 timer_expires = sk->sk_timer.expires; 2237 } else { 2238 timer_active = 0; 2239 timer_expires = jiffies; 2240 } 2241 2242 if (sk->sk_state == TCP_LISTEN) 2243 rx_queue = sk->sk_ack_backlog; 2244 else 2245 /* 2246 * because we dont lock socket, we might find a transient negative value 2247 */ 2248 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2249 2250 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2251 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2252 i, src, srcp, dest, destp, sk->sk_state, 2253 tp->write_seq - tp->snd_una, 2254 rx_queue, 2255 timer_active, 2256 jiffies_delta_to_clock_t(timer_expires - jiffies), 2257 icsk->icsk_retransmits, 2258 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2259 icsk->icsk_probes_out, 2260 sock_i_ino(sk), 2261 atomic_read(&sk->sk_refcnt), sk, 2262 jiffies_to_clock_t(icsk->icsk_rto), 2263 jiffies_to_clock_t(icsk->icsk_ack.ato), 2264 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2265 tp->snd_cwnd, 2266 sk->sk_state == TCP_LISTEN ? 2267 (fastopenq ? fastopenq->max_qlen : 0) : 2268 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2269 } 2270 2271 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2272 struct seq_file *f, int i) 2273 { 2274 __be32 dest, src; 2275 __u16 destp, srcp; 2276 s32 delta = tw->tw_ttd - inet_tw_time_stamp(); 2277 2278 dest = tw->tw_daddr; 2279 src = tw->tw_rcv_saddr; 2280 destp = ntohs(tw->tw_dport); 2281 srcp = ntohs(tw->tw_sport); 2282 2283 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2284 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2285 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2286 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2287 atomic_read(&tw->tw_refcnt), tw); 2288 } 2289 2290 #define TMPSZ 150 2291 2292 static int tcp4_seq_show(struct seq_file *seq, void *v) 2293 { 2294 struct tcp_iter_state *st; 2295 struct sock *sk = v; 2296 2297 seq_setwidth(seq, TMPSZ - 1); 2298 if (v == SEQ_START_TOKEN) { 2299 seq_puts(seq, " sl local_address rem_address st tx_queue " 2300 "rx_queue tr tm->when retrnsmt uid timeout " 2301 "inode"); 2302 goto out; 2303 } 2304 st = seq->private; 2305 2306 switch (st->state) { 2307 case TCP_SEQ_STATE_LISTENING: 2308 case TCP_SEQ_STATE_ESTABLISHED: 2309 if (sk->sk_state == TCP_TIME_WAIT) 2310 get_timewait4_sock(v, seq, st->num); 2311 else 2312 get_tcp4_sock(v, seq, st->num); 2313 break; 2314 case TCP_SEQ_STATE_OPENREQ: 2315 get_openreq4(v, seq, st->num, st->uid); 2316 break; 2317 } 2318 out: 2319 seq_pad(seq, '\n'); 2320 return 0; 2321 } 2322 2323 static const struct file_operations tcp_afinfo_seq_fops = { 2324 .owner = THIS_MODULE, 2325 .open = tcp_seq_open, 2326 .read = seq_read, 2327 .llseek = seq_lseek, 2328 .release = seq_release_net 2329 }; 2330 2331 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2332 .name = "tcp", 2333 .family = AF_INET, 2334 .seq_fops = &tcp_afinfo_seq_fops, 2335 .seq_ops = { 2336 .show = tcp4_seq_show, 2337 }, 2338 }; 2339 2340 static int __net_init tcp4_proc_init_net(struct net *net) 2341 { 2342 return tcp_proc_register(net, &tcp4_seq_afinfo); 2343 } 2344 2345 static void __net_exit tcp4_proc_exit_net(struct net *net) 2346 { 2347 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2348 } 2349 2350 static struct pernet_operations tcp4_net_ops = { 2351 .init = tcp4_proc_init_net, 2352 .exit = tcp4_proc_exit_net, 2353 }; 2354 2355 int __init tcp4_proc_init(void) 2356 { 2357 return register_pernet_subsys(&tcp4_net_ops); 2358 } 2359 2360 void tcp4_proc_exit(void) 2361 { 2362 unregister_pernet_subsys(&tcp4_net_ops); 2363 } 2364 #endif /* CONFIG_PROC_FS */ 2365 2366 struct proto tcp_prot = { 2367 .name = "TCP", 2368 .owner = THIS_MODULE, 2369 .close = tcp_close, 2370 .connect = tcp_v4_connect, 2371 .disconnect = tcp_disconnect, 2372 .accept = inet_csk_accept, 2373 .ioctl = tcp_ioctl, 2374 .init = tcp_v4_init_sock, 2375 .destroy = tcp_v4_destroy_sock, 2376 .shutdown = tcp_shutdown, 2377 .setsockopt = tcp_setsockopt, 2378 .getsockopt = tcp_getsockopt, 2379 .recvmsg = tcp_recvmsg, 2380 .sendmsg = tcp_sendmsg, 2381 .sendpage = tcp_sendpage, 2382 .backlog_rcv = tcp_v4_do_rcv, 2383 .release_cb = tcp_release_cb, 2384 .hash = inet_hash, 2385 .unhash = inet_unhash, 2386 .get_port = inet_csk_get_port, 2387 .enter_memory_pressure = tcp_enter_memory_pressure, 2388 .stream_memory_free = tcp_stream_memory_free, 2389 .sockets_allocated = &tcp_sockets_allocated, 2390 .orphan_count = &tcp_orphan_count, 2391 .memory_allocated = &tcp_memory_allocated, 2392 .memory_pressure = &tcp_memory_pressure, 2393 .sysctl_mem = sysctl_tcp_mem, 2394 .sysctl_wmem = sysctl_tcp_wmem, 2395 .sysctl_rmem = sysctl_tcp_rmem, 2396 .max_header = MAX_TCP_HEADER, 2397 .obj_size = sizeof(struct tcp_sock), 2398 .slab_flags = SLAB_DESTROY_BY_RCU, 2399 .twsk_prot = &tcp_timewait_sock_ops, 2400 .rsk_prot = &tcp_request_sock_ops, 2401 .h.hashinfo = &tcp_hashinfo, 2402 .no_autobind = true, 2403 #ifdef CONFIG_COMPAT 2404 .compat_setsockopt = compat_tcp_setsockopt, 2405 .compat_getsockopt = compat_tcp_getsockopt, 2406 #endif 2407 #ifdef CONFIG_MEMCG_KMEM 2408 .init_cgroup = tcp_init_cgroup, 2409 .destroy_cgroup = tcp_destroy_cgroup, 2410 .proto_cgroup = tcp_proto_cgroup, 2411 #endif 2412 }; 2413 EXPORT_SYMBOL(tcp_prot); 2414 2415 static void __net_exit tcp_sk_exit(struct net *net) 2416 { 2417 int cpu; 2418 2419 for_each_possible_cpu(cpu) 2420 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2421 free_percpu(net->ipv4.tcp_sk); 2422 } 2423 2424 static int __net_init tcp_sk_init(struct net *net) 2425 { 2426 int res, cpu; 2427 2428 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2429 if (!net->ipv4.tcp_sk) 2430 return -ENOMEM; 2431 2432 for_each_possible_cpu(cpu) { 2433 struct sock *sk; 2434 2435 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2436 IPPROTO_TCP, net); 2437 if (res) 2438 goto fail; 2439 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2440 } 2441 net->ipv4.sysctl_tcp_ecn = 2; 2442 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2443 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2444 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2445 return 0; 2446 2447 fail: 2448 tcp_sk_exit(net); 2449 2450 return res; 2451 } 2452 2453 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2454 { 2455 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2456 } 2457 2458 static struct pernet_operations __net_initdata tcp_sk_ops = { 2459 .init = tcp_sk_init, 2460 .exit = tcp_sk_exit, 2461 .exit_batch = tcp_sk_exit_batch, 2462 }; 2463 2464 void __init tcp_v4_init(void) 2465 { 2466 inet_hashinfo_init(&tcp_hashinfo); 2467 if (register_pernet_subsys(&tcp_sk_ops)) 2468 panic("Failed to create the TCP control socket.\n"); 2469 } 2470