xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision d236d361)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 
84 #include <crypto/hash.h>
85 #include <linux/scatterlist.h>
86 
87 int sysctl_tcp_low_latency __read_mostly;
88 
89 #ifdef CONFIG_TCP_MD5SIG
90 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
91 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
92 #endif
93 
94 struct inet_hashinfo tcp_hashinfo;
95 EXPORT_SYMBOL(tcp_hashinfo);
96 
97 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
98 {
99 	return secure_tcp_seq(ip_hdr(skb)->daddr,
100 			      ip_hdr(skb)->saddr,
101 			      tcp_hdr(skb)->dest,
102 			      tcp_hdr(skb)->source);
103 }
104 
105 static u32 tcp_v4_init_ts_off(const struct sk_buff *skb)
106 {
107 	return secure_tcp_ts_off(ip_hdr(skb)->daddr,
108 				 ip_hdr(skb)->saddr);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 	struct tcp_sock *tp = tcp_sk(sk);
115 
116 	/* With PAWS, it is safe from the viewpoint
117 	   of data integrity. Even without PAWS it is safe provided sequence
118 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119 
120 	   Actually, the idea is close to VJ's one, only timestamp cache is
121 	   held not per host, but per port pair and TW bucket is used as state
122 	   holder.
123 
124 	   If TW bucket has been already destroyed we fall back to VJ's scheme
125 	   and use initial timestamp retrieved from peer table.
126 	 */
127 	if (tcptw->tw_ts_recent_stamp &&
128 	    (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse &&
129 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 		if (tp->write_seq == 0)
132 			tp->write_seq = 1;
133 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
134 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 		sock_hold(sktw);
136 		return 1;
137 	}
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
142 
143 /* This will initiate an outgoing connection. */
144 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
145 {
146 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct tcp_sock *tp = tcp_sk(sk);
149 	__be16 orig_sport, orig_dport;
150 	__be32 daddr, nexthop;
151 	struct flowi4 *fl4;
152 	struct rtable *rt;
153 	int err;
154 	struct ip_options_rcu *inet_opt;
155 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
156 
157 	if (addr_len < sizeof(struct sockaddr_in))
158 		return -EINVAL;
159 
160 	if (usin->sin_family != AF_INET)
161 		return -EAFNOSUPPORT;
162 
163 	nexthop = daddr = usin->sin_addr.s_addr;
164 	inet_opt = rcu_dereference_protected(inet->inet_opt,
165 					     lockdep_sock_is_held(sk));
166 	if (inet_opt && inet_opt->opt.srr) {
167 		if (!daddr)
168 			return -EINVAL;
169 		nexthop = inet_opt->opt.faddr;
170 	}
171 
172 	orig_sport = inet->inet_sport;
173 	orig_dport = usin->sin_port;
174 	fl4 = &inet->cork.fl.u.ip4;
175 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
176 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
177 			      IPPROTO_TCP,
178 			      orig_sport, orig_dport, sk);
179 	if (IS_ERR(rt)) {
180 		err = PTR_ERR(rt);
181 		if (err == -ENETUNREACH)
182 			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
183 		return err;
184 	}
185 
186 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187 		ip_rt_put(rt);
188 		return -ENETUNREACH;
189 	}
190 
191 	if (!inet_opt || !inet_opt->opt.srr)
192 		daddr = fl4->daddr;
193 
194 	if (!inet->inet_saddr)
195 		inet->inet_saddr = fl4->saddr;
196 	sk_rcv_saddr_set(sk, inet->inet_saddr);
197 
198 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
199 		/* Reset inherited state */
200 		tp->rx_opt.ts_recent	   = 0;
201 		tp->rx_opt.ts_recent_stamp = 0;
202 		if (likely(!tp->repair))
203 			tp->write_seq	   = 0;
204 	}
205 
206 	inet->inet_dport = usin->sin_port;
207 	sk_daddr_set(sk, daddr);
208 
209 	inet_csk(sk)->icsk_ext_hdr_len = 0;
210 	if (inet_opt)
211 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212 
213 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214 
215 	/* Socket identity is still unknown (sport may be zero).
216 	 * However we set state to SYN-SENT and not releasing socket
217 	 * lock select source port, enter ourselves into the hash tables and
218 	 * complete initialization after this.
219 	 */
220 	tcp_set_state(sk, TCP_SYN_SENT);
221 	err = inet_hash_connect(tcp_death_row, sk);
222 	if (err)
223 		goto failure;
224 
225 	sk_set_txhash(sk);
226 
227 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 			       inet->inet_sport, inet->inet_dport, sk);
229 	if (IS_ERR(rt)) {
230 		err = PTR_ERR(rt);
231 		rt = NULL;
232 		goto failure;
233 	}
234 	/* OK, now commit destination to socket.  */
235 	sk->sk_gso_type = SKB_GSO_TCPV4;
236 	sk_setup_caps(sk, &rt->dst);
237 	rt = NULL;
238 
239 	if (likely(!tp->repair)) {
240 		if (!tp->write_seq)
241 			tp->write_seq = secure_tcp_seq(inet->inet_saddr,
242 						       inet->inet_daddr,
243 						       inet->inet_sport,
244 						       usin->sin_port);
245 		tp->tsoffset = secure_tcp_ts_off(inet->inet_saddr,
246 						 inet->inet_daddr);
247 	}
248 
249 	inet->inet_id = tp->write_seq ^ jiffies;
250 
251 	if (tcp_fastopen_defer_connect(sk, &err))
252 		return err;
253 	if (err)
254 		goto failure;
255 
256 	err = tcp_connect(sk);
257 
258 	if (err)
259 		goto failure;
260 
261 	return 0;
262 
263 failure:
264 	/*
265 	 * This unhashes the socket and releases the local port,
266 	 * if necessary.
267 	 */
268 	tcp_set_state(sk, TCP_CLOSE);
269 	ip_rt_put(rt);
270 	sk->sk_route_caps = 0;
271 	inet->inet_dport = 0;
272 	return err;
273 }
274 EXPORT_SYMBOL(tcp_v4_connect);
275 
276 /*
277  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
278  * It can be called through tcp_release_cb() if socket was owned by user
279  * at the time tcp_v4_err() was called to handle ICMP message.
280  */
281 void tcp_v4_mtu_reduced(struct sock *sk)
282 {
283 	struct inet_sock *inet = inet_sk(sk);
284 	struct dst_entry *dst;
285 	u32 mtu;
286 
287 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
288 		return;
289 	mtu = tcp_sk(sk)->mtu_info;
290 	dst = inet_csk_update_pmtu(sk, mtu);
291 	if (!dst)
292 		return;
293 
294 	/* Something is about to be wrong... Remember soft error
295 	 * for the case, if this connection will not able to recover.
296 	 */
297 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 		sk->sk_err_soft = EMSGSIZE;
299 
300 	mtu = dst_mtu(dst);
301 
302 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 	    ip_sk_accept_pmtu(sk) &&
304 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305 		tcp_sync_mss(sk, mtu);
306 
307 		/* Resend the TCP packet because it's
308 		 * clear that the old packet has been
309 		 * dropped. This is the new "fast" path mtu
310 		 * discovery.
311 		 */
312 		tcp_simple_retransmit(sk);
313 	} /* else let the usual retransmit timer handle it */
314 }
315 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
316 
317 static void do_redirect(struct sk_buff *skb, struct sock *sk)
318 {
319 	struct dst_entry *dst = __sk_dst_check(sk, 0);
320 
321 	if (dst)
322 		dst->ops->redirect(dst, sk, skb);
323 }
324 
325 
326 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
327 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
328 {
329 	struct request_sock *req = inet_reqsk(sk);
330 	struct net *net = sock_net(sk);
331 
332 	/* ICMPs are not backlogged, hence we cannot get
333 	 * an established socket here.
334 	 */
335 	if (seq != tcp_rsk(req)->snt_isn) {
336 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
337 	} else if (abort) {
338 		/*
339 		 * Still in SYN_RECV, just remove it silently.
340 		 * There is no good way to pass the error to the newly
341 		 * created socket, and POSIX does not want network
342 		 * errors returned from accept().
343 		 */
344 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
345 		tcp_listendrop(req->rsk_listener);
346 	}
347 	reqsk_put(req);
348 }
349 EXPORT_SYMBOL(tcp_req_err);
350 
351 /*
352  * This routine is called by the ICMP module when it gets some
353  * sort of error condition.  If err < 0 then the socket should
354  * be closed and the error returned to the user.  If err > 0
355  * it's just the icmp type << 8 | icmp code.  After adjustment
356  * header points to the first 8 bytes of the tcp header.  We need
357  * to find the appropriate port.
358  *
359  * The locking strategy used here is very "optimistic". When
360  * someone else accesses the socket the ICMP is just dropped
361  * and for some paths there is no check at all.
362  * A more general error queue to queue errors for later handling
363  * is probably better.
364  *
365  */
366 
367 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
368 {
369 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
370 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
371 	struct inet_connection_sock *icsk;
372 	struct tcp_sock *tp;
373 	struct inet_sock *inet;
374 	const int type = icmp_hdr(icmp_skb)->type;
375 	const int code = icmp_hdr(icmp_skb)->code;
376 	struct sock *sk;
377 	struct sk_buff *skb;
378 	struct request_sock *fastopen;
379 	__u32 seq, snd_una;
380 	__u32 remaining;
381 	int err;
382 	struct net *net = dev_net(icmp_skb->dev);
383 
384 	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
385 				       th->dest, iph->saddr, ntohs(th->source),
386 				       inet_iif(icmp_skb));
387 	if (!sk) {
388 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
389 		return;
390 	}
391 	if (sk->sk_state == TCP_TIME_WAIT) {
392 		inet_twsk_put(inet_twsk(sk));
393 		return;
394 	}
395 	seq = ntohl(th->seq);
396 	if (sk->sk_state == TCP_NEW_SYN_RECV)
397 		return tcp_req_err(sk, seq,
398 				  type == ICMP_PARAMETERPROB ||
399 				  type == ICMP_TIME_EXCEEDED ||
400 				  (type == ICMP_DEST_UNREACH &&
401 				   (code == ICMP_NET_UNREACH ||
402 				    code == ICMP_HOST_UNREACH)));
403 
404 	bh_lock_sock(sk);
405 	/* If too many ICMPs get dropped on busy
406 	 * servers this needs to be solved differently.
407 	 * We do take care of PMTU discovery (RFC1191) special case :
408 	 * we can receive locally generated ICMP messages while socket is held.
409 	 */
410 	if (sock_owned_by_user(sk)) {
411 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
412 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
413 	}
414 	if (sk->sk_state == TCP_CLOSE)
415 		goto out;
416 
417 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
418 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
419 		goto out;
420 	}
421 
422 	icsk = inet_csk(sk);
423 	tp = tcp_sk(sk);
424 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
425 	fastopen = tp->fastopen_rsk;
426 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
427 	if (sk->sk_state != TCP_LISTEN &&
428 	    !between(seq, snd_una, tp->snd_nxt)) {
429 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
430 		goto out;
431 	}
432 
433 	switch (type) {
434 	case ICMP_REDIRECT:
435 		if (!sock_owned_by_user(sk))
436 			do_redirect(icmp_skb, sk);
437 		goto out;
438 	case ICMP_SOURCE_QUENCH:
439 		/* Just silently ignore these. */
440 		goto out;
441 	case ICMP_PARAMETERPROB:
442 		err = EPROTO;
443 		break;
444 	case ICMP_DEST_UNREACH:
445 		if (code > NR_ICMP_UNREACH)
446 			goto out;
447 
448 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
449 			/* We are not interested in TCP_LISTEN and open_requests
450 			 * (SYN-ACKs send out by Linux are always <576bytes so
451 			 * they should go through unfragmented).
452 			 */
453 			if (sk->sk_state == TCP_LISTEN)
454 				goto out;
455 
456 			tp->mtu_info = info;
457 			if (!sock_owned_by_user(sk)) {
458 				tcp_v4_mtu_reduced(sk);
459 			} else {
460 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
461 					sock_hold(sk);
462 			}
463 			goto out;
464 		}
465 
466 		err = icmp_err_convert[code].errno;
467 		/* check if icmp_skb allows revert of backoff
468 		 * (see draft-zimmermann-tcp-lcd) */
469 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
470 			break;
471 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
472 		    !icsk->icsk_backoff || fastopen)
473 			break;
474 
475 		if (sock_owned_by_user(sk))
476 			break;
477 
478 		icsk->icsk_backoff--;
479 		icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
480 					       TCP_TIMEOUT_INIT;
481 		icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
482 
483 		skb = tcp_write_queue_head(sk);
484 		BUG_ON(!skb);
485 
486 		remaining = icsk->icsk_rto -
487 			    min(icsk->icsk_rto,
488 				tcp_time_stamp - tcp_skb_timestamp(skb));
489 
490 		if (remaining) {
491 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
492 						  remaining, TCP_RTO_MAX);
493 		} else {
494 			/* RTO revert clocked out retransmission.
495 			 * Will retransmit now */
496 			tcp_retransmit_timer(sk);
497 		}
498 
499 		break;
500 	case ICMP_TIME_EXCEEDED:
501 		err = EHOSTUNREACH;
502 		break;
503 	default:
504 		goto out;
505 	}
506 
507 	switch (sk->sk_state) {
508 	case TCP_SYN_SENT:
509 	case TCP_SYN_RECV:
510 		/* Only in fast or simultaneous open. If a fast open socket is
511 		 * is already accepted it is treated as a connected one below.
512 		 */
513 		if (fastopen && !fastopen->sk)
514 			break;
515 
516 		if (!sock_owned_by_user(sk)) {
517 			sk->sk_err = err;
518 
519 			sk->sk_error_report(sk);
520 
521 			tcp_done(sk);
522 		} else {
523 			sk->sk_err_soft = err;
524 		}
525 		goto out;
526 	}
527 
528 	/* If we've already connected we will keep trying
529 	 * until we time out, or the user gives up.
530 	 *
531 	 * rfc1122 4.2.3.9 allows to consider as hard errors
532 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
533 	 * but it is obsoleted by pmtu discovery).
534 	 *
535 	 * Note, that in modern internet, where routing is unreliable
536 	 * and in each dark corner broken firewalls sit, sending random
537 	 * errors ordered by their masters even this two messages finally lose
538 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
539 	 *
540 	 * Now we are in compliance with RFCs.
541 	 *							--ANK (980905)
542 	 */
543 
544 	inet = inet_sk(sk);
545 	if (!sock_owned_by_user(sk) && inet->recverr) {
546 		sk->sk_err = err;
547 		sk->sk_error_report(sk);
548 	} else	{ /* Only an error on timeout */
549 		sk->sk_err_soft = err;
550 	}
551 
552 out:
553 	bh_unlock_sock(sk);
554 	sock_put(sk);
555 }
556 
557 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
558 {
559 	struct tcphdr *th = tcp_hdr(skb);
560 
561 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
562 		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
563 		skb->csum_start = skb_transport_header(skb) - skb->head;
564 		skb->csum_offset = offsetof(struct tcphdr, check);
565 	} else {
566 		th->check = tcp_v4_check(skb->len, saddr, daddr,
567 					 csum_partial(th,
568 						      th->doff << 2,
569 						      skb->csum));
570 	}
571 }
572 
573 /* This routine computes an IPv4 TCP checksum. */
574 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
575 {
576 	const struct inet_sock *inet = inet_sk(sk);
577 
578 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
579 }
580 EXPORT_SYMBOL(tcp_v4_send_check);
581 
582 /*
583  *	This routine will send an RST to the other tcp.
584  *
585  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
586  *		      for reset.
587  *	Answer: if a packet caused RST, it is not for a socket
588  *		existing in our system, if it is matched to a socket,
589  *		it is just duplicate segment or bug in other side's TCP.
590  *		So that we build reply only basing on parameters
591  *		arrived with segment.
592  *	Exception: precedence violation. We do not implement it in any case.
593  */
594 
595 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
596 {
597 	const struct tcphdr *th = tcp_hdr(skb);
598 	struct {
599 		struct tcphdr th;
600 #ifdef CONFIG_TCP_MD5SIG
601 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
602 #endif
603 	} rep;
604 	struct ip_reply_arg arg;
605 #ifdef CONFIG_TCP_MD5SIG
606 	struct tcp_md5sig_key *key = NULL;
607 	const __u8 *hash_location = NULL;
608 	unsigned char newhash[16];
609 	int genhash;
610 	struct sock *sk1 = NULL;
611 #endif
612 	struct net *net;
613 
614 	/* Never send a reset in response to a reset. */
615 	if (th->rst)
616 		return;
617 
618 	/* If sk not NULL, it means we did a successful lookup and incoming
619 	 * route had to be correct. prequeue might have dropped our dst.
620 	 */
621 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
622 		return;
623 
624 	/* Swap the send and the receive. */
625 	memset(&rep, 0, sizeof(rep));
626 	rep.th.dest   = th->source;
627 	rep.th.source = th->dest;
628 	rep.th.doff   = sizeof(struct tcphdr) / 4;
629 	rep.th.rst    = 1;
630 
631 	if (th->ack) {
632 		rep.th.seq = th->ack_seq;
633 	} else {
634 		rep.th.ack = 1;
635 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 				       skb->len - (th->doff << 2));
637 	}
638 
639 	memset(&arg, 0, sizeof(arg));
640 	arg.iov[0].iov_base = (unsigned char *)&rep;
641 	arg.iov[0].iov_len  = sizeof(rep.th);
642 
643 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
644 #ifdef CONFIG_TCP_MD5SIG
645 	rcu_read_lock();
646 	hash_location = tcp_parse_md5sig_option(th);
647 	if (sk && sk_fullsock(sk)) {
648 		key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
649 					&ip_hdr(skb)->saddr, AF_INET);
650 	} else if (hash_location) {
651 		/*
652 		 * active side is lost. Try to find listening socket through
653 		 * source port, and then find md5 key through listening socket.
654 		 * we are not loose security here:
655 		 * Incoming packet is checked with md5 hash with finding key,
656 		 * no RST generated if md5 hash doesn't match.
657 		 */
658 		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
659 					     ip_hdr(skb)->saddr,
660 					     th->source, ip_hdr(skb)->daddr,
661 					     ntohs(th->source), inet_iif(skb));
662 		/* don't send rst if it can't find key */
663 		if (!sk1)
664 			goto out;
665 
666 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667 					&ip_hdr(skb)->saddr, AF_INET);
668 		if (!key)
669 			goto out;
670 
671 
672 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
673 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
674 			goto out;
675 
676 	}
677 
678 	if (key) {
679 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
680 				   (TCPOPT_NOP << 16) |
681 				   (TCPOPT_MD5SIG << 8) |
682 				   TCPOLEN_MD5SIG);
683 		/* Update length and the length the header thinks exists */
684 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
685 		rep.th.doff = arg.iov[0].iov_len / 4;
686 
687 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
688 				     key, ip_hdr(skb)->saddr,
689 				     ip_hdr(skb)->daddr, &rep.th);
690 	}
691 #endif
692 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
693 				      ip_hdr(skb)->saddr, /* XXX */
694 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
695 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
696 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
697 
698 	/* When socket is gone, all binding information is lost.
699 	 * routing might fail in this case. No choice here, if we choose to force
700 	 * input interface, we will misroute in case of asymmetric route.
701 	 */
702 	if (sk)
703 		arg.bound_dev_if = sk->sk_bound_dev_if;
704 
705 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
706 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
707 
708 	arg.tos = ip_hdr(skb)->tos;
709 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
710 	local_bh_disable();
711 	ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
712 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
713 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
714 			      &arg, arg.iov[0].iov_len);
715 
716 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
717 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
718 	local_bh_enable();
719 
720 #ifdef CONFIG_TCP_MD5SIG
721 out:
722 	rcu_read_unlock();
723 #endif
724 }
725 
726 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
727    outside socket context is ugly, certainly. What can I do?
728  */
729 
730 static void tcp_v4_send_ack(const struct sock *sk,
731 			    struct sk_buff *skb, u32 seq, u32 ack,
732 			    u32 win, u32 tsval, u32 tsecr, int oif,
733 			    struct tcp_md5sig_key *key,
734 			    int reply_flags, u8 tos)
735 {
736 	const struct tcphdr *th = tcp_hdr(skb);
737 	struct {
738 		struct tcphdr th;
739 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
740 #ifdef CONFIG_TCP_MD5SIG
741 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
742 #endif
743 			];
744 	} rep;
745 	struct net *net = sock_net(sk);
746 	struct ip_reply_arg arg;
747 
748 	memset(&rep.th, 0, sizeof(struct tcphdr));
749 	memset(&arg, 0, sizeof(arg));
750 
751 	arg.iov[0].iov_base = (unsigned char *)&rep;
752 	arg.iov[0].iov_len  = sizeof(rep.th);
753 	if (tsecr) {
754 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
755 				   (TCPOPT_TIMESTAMP << 8) |
756 				   TCPOLEN_TIMESTAMP);
757 		rep.opt[1] = htonl(tsval);
758 		rep.opt[2] = htonl(tsecr);
759 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
760 	}
761 
762 	/* Swap the send and the receive. */
763 	rep.th.dest    = th->source;
764 	rep.th.source  = th->dest;
765 	rep.th.doff    = arg.iov[0].iov_len / 4;
766 	rep.th.seq     = htonl(seq);
767 	rep.th.ack_seq = htonl(ack);
768 	rep.th.ack     = 1;
769 	rep.th.window  = htons(win);
770 
771 #ifdef CONFIG_TCP_MD5SIG
772 	if (key) {
773 		int offset = (tsecr) ? 3 : 0;
774 
775 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
776 					  (TCPOPT_NOP << 16) |
777 					  (TCPOPT_MD5SIG << 8) |
778 					  TCPOLEN_MD5SIG);
779 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
780 		rep.th.doff = arg.iov[0].iov_len/4;
781 
782 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
783 				    key, ip_hdr(skb)->saddr,
784 				    ip_hdr(skb)->daddr, &rep.th);
785 	}
786 #endif
787 	arg.flags = reply_flags;
788 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
789 				      ip_hdr(skb)->saddr, /* XXX */
790 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
791 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
792 	if (oif)
793 		arg.bound_dev_if = oif;
794 	arg.tos = tos;
795 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
796 	local_bh_disable();
797 	ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
798 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
799 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
800 			      &arg, arg.iov[0].iov_len);
801 
802 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
803 	local_bh_enable();
804 }
805 
806 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
807 {
808 	struct inet_timewait_sock *tw = inet_twsk(sk);
809 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
810 
811 	tcp_v4_send_ack(sk, skb,
812 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
813 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
814 			tcp_time_stamp + tcptw->tw_ts_offset,
815 			tcptw->tw_ts_recent,
816 			tw->tw_bound_dev_if,
817 			tcp_twsk_md5_key(tcptw),
818 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
819 			tw->tw_tos
820 			);
821 
822 	inet_twsk_put(tw);
823 }
824 
825 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
826 				  struct request_sock *req)
827 {
828 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
829 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
830 	 */
831 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
832 					     tcp_sk(sk)->snd_nxt;
833 
834 	/* RFC 7323 2.3
835 	 * The window field (SEG.WND) of every outgoing segment, with the
836 	 * exception of <SYN> segments, MUST be right-shifted by
837 	 * Rcv.Wind.Shift bits:
838 	 */
839 	tcp_v4_send_ack(sk, skb, seq,
840 			tcp_rsk(req)->rcv_nxt,
841 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
842 			tcp_time_stamp + tcp_rsk(req)->ts_off,
843 			req->ts_recent,
844 			0,
845 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
846 					  AF_INET),
847 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
848 			ip_hdr(skb)->tos);
849 }
850 
851 /*
852  *	Send a SYN-ACK after having received a SYN.
853  *	This still operates on a request_sock only, not on a big
854  *	socket.
855  */
856 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
857 			      struct flowi *fl,
858 			      struct request_sock *req,
859 			      struct tcp_fastopen_cookie *foc,
860 			      enum tcp_synack_type synack_type)
861 {
862 	const struct inet_request_sock *ireq = inet_rsk(req);
863 	struct flowi4 fl4;
864 	int err = -1;
865 	struct sk_buff *skb;
866 
867 	/* First, grab a route. */
868 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
869 		return -1;
870 
871 	skb = tcp_make_synack(sk, dst, req, foc, synack_type);
872 
873 	if (skb) {
874 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
875 
876 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
877 					    ireq->ir_rmt_addr,
878 					    ireq->opt);
879 		err = net_xmit_eval(err);
880 	}
881 
882 	return err;
883 }
884 
885 /*
886  *	IPv4 request_sock destructor.
887  */
888 static void tcp_v4_reqsk_destructor(struct request_sock *req)
889 {
890 	kfree(inet_rsk(req)->opt);
891 }
892 
893 #ifdef CONFIG_TCP_MD5SIG
894 /*
895  * RFC2385 MD5 checksumming requires a mapping of
896  * IP address->MD5 Key.
897  * We need to maintain these in the sk structure.
898  */
899 
900 /* Find the Key structure for an address.  */
901 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
902 					 const union tcp_md5_addr *addr,
903 					 int family)
904 {
905 	const struct tcp_sock *tp = tcp_sk(sk);
906 	struct tcp_md5sig_key *key;
907 	unsigned int size = sizeof(struct in_addr);
908 	const struct tcp_md5sig_info *md5sig;
909 
910 	/* caller either holds rcu_read_lock() or socket lock */
911 	md5sig = rcu_dereference_check(tp->md5sig_info,
912 				       lockdep_sock_is_held(sk));
913 	if (!md5sig)
914 		return NULL;
915 #if IS_ENABLED(CONFIG_IPV6)
916 	if (family == AF_INET6)
917 		size = sizeof(struct in6_addr);
918 #endif
919 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
920 		if (key->family != family)
921 			continue;
922 		if (!memcmp(&key->addr, addr, size))
923 			return key;
924 	}
925 	return NULL;
926 }
927 EXPORT_SYMBOL(tcp_md5_do_lookup);
928 
929 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
930 					 const struct sock *addr_sk)
931 {
932 	const union tcp_md5_addr *addr;
933 
934 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
935 	return tcp_md5_do_lookup(sk, addr, AF_INET);
936 }
937 EXPORT_SYMBOL(tcp_v4_md5_lookup);
938 
939 /* This can be called on a newly created socket, from other files */
940 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
941 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
942 {
943 	/* Add Key to the list */
944 	struct tcp_md5sig_key *key;
945 	struct tcp_sock *tp = tcp_sk(sk);
946 	struct tcp_md5sig_info *md5sig;
947 
948 	key = tcp_md5_do_lookup(sk, addr, family);
949 	if (key) {
950 		/* Pre-existing entry - just update that one. */
951 		memcpy(key->key, newkey, newkeylen);
952 		key->keylen = newkeylen;
953 		return 0;
954 	}
955 
956 	md5sig = rcu_dereference_protected(tp->md5sig_info,
957 					   lockdep_sock_is_held(sk));
958 	if (!md5sig) {
959 		md5sig = kmalloc(sizeof(*md5sig), gfp);
960 		if (!md5sig)
961 			return -ENOMEM;
962 
963 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
964 		INIT_HLIST_HEAD(&md5sig->head);
965 		rcu_assign_pointer(tp->md5sig_info, md5sig);
966 	}
967 
968 	key = sock_kmalloc(sk, sizeof(*key), gfp);
969 	if (!key)
970 		return -ENOMEM;
971 	if (!tcp_alloc_md5sig_pool()) {
972 		sock_kfree_s(sk, key, sizeof(*key));
973 		return -ENOMEM;
974 	}
975 
976 	memcpy(key->key, newkey, newkeylen);
977 	key->keylen = newkeylen;
978 	key->family = family;
979 	memcpy(&key->addr, addr,
980 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
981 				      sizeof(struct in_addr));
982 	hlist_add_head_rcu(&key->node, &md5sig->head);
983 	return 0;
984 }
985 EXPORT_SYMBOL(tcp_md5_do_add);
986 
987 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
988 {
989 	struct tcp_md5sig_key *key;
990 
991 	key = tcp_md5_do_lookup(sk, addr, family);
992 	if (!key)
993 		return -ENOENT;
994 	hlist_del_rcu(&key->node);
995 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
996 	kfree_rcu(key, rcu);
997 	return 0;
998 }
999 EXPORT_SYMBOL(tcp_md5_do_del);
1000 
1001 static void tcp_clear_md5_list(struct sock *sk)
1002 {
1003 	struct tcp_sock *tp = tcp_sk(sk);
1004 	struct tcp_md5sig_key *key;
1005 	struct hlist_node *n;
1006 	struct tcp_md5sig_info *md5sig;
1007 
1008 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1009 
1010 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1011 		hlist_del_rcu(&key->node);
1012 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1013 		kfree_rcu(key, rcu);
1014 	}
1015 }
1016 
1017 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1018 				 int optlen)
1019 {
1020 	struct tcp_md5sig cmd;
1021 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1022 
1023 	if (optlen < sizeof(cmd))
1024 		return -EINVAL;
1025 
1026 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1027 		return -EFAULT;
1028 
1029 	if (sin->sin_family != AF_INET)
1030 		return -EINVAL;
1031 
1032 	if (!cmd.tcpm_keylen)
1033 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1034 				      AF_INET);
1035 
1036 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1037 		return -EINVAL;
1038 
1039 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1040 			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1041 			      GFP_KERNEL);
1042 }
1043 
1044 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1045 				   __be32 daddr, __be32 saddr,
1046 				   const struct tcphdr *th, int nbytes)
1047 {
1048 	struct tcp4_pseudohdr *bp;
1049 	struct scatterlist sg;
1050 	struct tcphdr *_th;
1051 
1052 	bp = hp->scratch;
1053 	bp->saddr = saddr;
1054 	bp->daddr = daddr;
1055 	bp->pad = 0;
1056 	bp->protocol = IPPROTO_TCP;
1057 	bp->len = cpu_to_be16(nbytes);
1058 
1059 	_th = (struct tcphdr *)(bp + 1);
1060 	memcpy(_th, th, sizeof(*th));
1061 	_th->check = 0;
1062 
1063 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1064 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1065 				sizeof(*bp) + sizeof(*th));
1066 	return crypto_ahash_update(hp->md5_req);
1067 }
1068 
1069 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1070 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1071 {
1072 	struct tcp_md5sig_pool *hp;
1073 	struct ahash_request *req;
1074 
1075 	hp = tcp_get_md5sig_pool();
1076 	if (!hp)
1077 		goto clear_hash_noput;
1078 	req = hp->md5_req;
1079 
1080 	if (crypto_ahash_init(req))
1081 		goto clear_hash;
1082 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1083 		goto clear_hash;
1084 	if (tcp_md5_hash_key(hp, key))
1085 		goto clear_hash;
1086 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1087 	if (crypto_ahash_final(req))
1088 		goto clear_hash;
1089 
1090 	tcp_put_md5sig_pool();
1091 	return 0;
1092 
1093 clear_hash:
1094 	tcp_put_md5sig_pool();
1095 clear_hash_noput:
1096 	memset(md5_hash, 0, 16);
1097 	return 1;
1098 }
1099 
1100 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1101 			const struct sock *sk,
1102 			const struct sk_buff *skb)
1103 {
1104 	struct tcp_md5sig_pool *hp;
1105 	struct ahash_request *req;
1106 	const struct tcphdr *th = tcp_hdr(skb);
1107 	__be32 saddr, daddr;
1108 
1109 	if (sk) { /* valid for establish/request sockets */
1110 		saddr = sk->sk_rcv_saddr;
1111 		daddr = sk->sk_daddr;
1112 	} else {
1113 		const struct iphdr *iph = ip_hdr(skb);
1114 		saddr = iph->saddr;
1115 		daddr = iph->daddr;
1116 	}
1117 
1118 	hp = tcp_get_md5sig_pool();
1119 	if (!hp)
1120 		goto clear_hash_noput;
1121 	req = hp->md5_req;
1122 
1123 	if (crypto_ahash_init(req))
1124 		goto clear_hash;
1125 
1126 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1127 		goto clear_hash;
1128 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1129 		goto clear_hash;
1130 	if (tcp_md5_hash_key(hp, key))
1131 		goto clear_hash;
1132 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1133 	if (crypto_ahash_final(req))
1134 		goto clear_hash;
1135 
1136 	tcp_put_md5sig_pool();
1137 	return 0;
1138 
1139 clear_hash:
1140 	tcp_put_md5sig_pool();
1141 clear_hash_noput:
1142 	memset(md5_hash, 0, 16);
1143 	return 1;
1144 }
1145 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1146 
1147 #endif
1148 
1149 /* Called with rcu_read_lock() */
1150 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1151 				    const struct sk_buff *skb)
1152 {
1153 #ifdef CONFIG_TCP_MD5SIG
1154 	/*
1155 	 * This gets called for each TCP segment that arrives
1156 	 * so we want to be efficient.
1157 	 * We have 3 drop cases:
1158 	 * o No MD5 hash and one expected.
1159 	 * o MD5 hash and we're not expecting one.
1160 	 * o MD5 hash and its wrong.
1161 	 */
1162 	const __u8 *hash_location = NULL;
1163 	struct tcp_md5sig_key *hash_expected;
1164 	const struct iphdr *iph = ip_hdr(skb);
1165 	const struct tcphdr *th = tcp_hdr(skb);
1166 	int genhash;
1167 	unsigned char newhash[16];
1168 
1169 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1170 					  AF_INET);
1171 	hash_location = tcp_parse_md5sig_option(th);
1172 
1173 	/* We've parsed the options - do we have a hash? */
1174 	if (!hash_expected && !hash_location)
1175 		return false;
1176 
1177 	if (hash_expected && !hash_location) {
1178 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1179 		return true;
1180 	}
1181 
1182 	if (!hash_expected && hash_location) {
1183 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1184 		return true;
1185 	}
1186 
1187 	/* Okay, so this is hash_expected and hash_location -
1188 	 * so we need to calculate the checksum.
1189 	 */
1190 	genhash = tcp_v4_md5_hash_skb(newhash,
1191 				      hash_expected,
1192 				      NULL, skb);
1193 
1194 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1195 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1196 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1197 				     &iph->saddr, ntohs(th->source),
1198 				     &iph->daddr, ntohs(th->dest),
1199 				     genhash ? " tcp_v4_calc_md5_hash failed"
1200 				     : "");
1201 		return true;
1202 	}
1203 	return false;
1204 #endif
1205 	return false;
1206 }
1207 
1208 static void tcp_v4_init_req(struct request_sock *req,
1209 			    const struct sock *sk_listener,
1210 			    struct sk_buff *skb)
1211 {
1212 	struct inet_request_sock *ireq = inet_rsk(req);
1213 
1214 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1215 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1216 	ireq->opt = tcp_v4_save_options(skb);
1217 }
1218 
1219 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1220 					  struct flowi *fl,
1221 					  const struct request_sock *req)
1222 {
1223 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1224 }
1225 
1226 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1227 	.family		=	PF_INET,
1228 	.obj_size	=	sizeof(struct tcp_request_sock),
1229 	.rtx_syn_ack	=	tcp_rtx_synack,
1230 	.send_ack	=	tcp_v4_reqsk_send_ack,
1231 	.destructor	=	tcp_v4_reqsk_destructor,
1232 	.send_reset	=	tcp_v4_send_reset,
1233 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1234 };
1235 
1236 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1237 	.mss_clamp	=	TCP_MSS_DEFAULT,
1238 #ifdef CONFIG_TCP_MD5SIG
1239 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1240 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1241 #endif
1242 	.init_req	=	tcp_v4_init_req,
1243 #ifdef CONFIG_SYN_COOKIES
1244 	.cookie_init_seq =	cookie_v4_init_sequence,
1245 #endif
1246 	.route_req	=	tcp_v4_route_req,
1247 	.init_seq	=	tcp_v4_init_seq,
1248 	.init_ts_off	=	tcp_v4_init_ts_off,
1249 	.send_synack	=	tcp_v4_send_synack,
1250 };
1251 
1252 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1253 {
1254 	/* Never answer to SYNs send to broadcast or multicast */
1255 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1256 		goto drop;
1257 
1258 	return tcp_conn_request(&tcp_request_sock_ops,
1259 				&tcp_request_sock_ipv4_ops, sk, skb);
1260 
1261 drop:
1262 	tcp_listendrop(sk);
1263 	return 0;
1264 }
1265 EXPORT_SYMBOL(tcp_v4_conn_request);
1266 
1267 
1268 /*
1269  * The three way handshake has completed - we got a valid synack -
1270  * now create the new socket.
1271  */
1272 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1273 				  struct request_sock *req,
1274 				  struct dst_entry *dst,
1275 				  struct request_sock *req_unhash,
1276 				  bool *own_req)
1277 {
1278 	struct inet_request_sock *ireq;
1279 	struct inet_sock *newinet;
1280 	struct tcp_sock *newtp;
1281 	struct sock *newsk;
1282 #ifdef CONFIG_TCP_MD5SIG
1283 	struct tcp_md5sig_key *key;
1284 #endif
1285 	struct ip_options_rcu *inet_opt;
1286 
1287 	if (sk_acceptq_is_full(sk))
1288 		goto exit_overflow;
1289 
1290 	newsk = tcp_create_openreq_child(sk, req, skb);
1291 	if (!newsk)
1292 		goto exit_nonewsk;
1293 
1294 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1295 	inet_sk_rx_dst_set(newsk, skb);
1296 
1297 	newtp		      = tcp_sk(newsk);
1298 	newinet		      = inet_sk(newsk);
1299 	ireq		      = inet_rsk(req);
1300 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1301 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1302 	newsk->sk_bound_dev_if = ireq->ir_iif;
1303 	newinet->inet_saddr	      = ireq->ir_loc_addr;
1304 	inet_opt	      = ireq->opt;
1305 	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1306 	ireq->opt	      = NULL;
1307 	newinet->mc_index     = inet_iif(skb);
1308 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1309 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1310 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1311 	if (inet_opt)
1312 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1313 	newinet->inet_id = newtp->write_seq ^ jiffies;
1314 
1315 	if (!dst) {
1316 		dst = inet_csk_route_child_sock(sk, newsk, req);
1317 		if (!dst)
1318 			goto put_and_exit;
1319 	} else {
1320 		/* syncookie case : see end of cookie_v4_check() */
1321 	}
1322 	sk_setup_caps(newsk, dst);
1323 
1324 	tcp_ca_openreq_child(newsk, dst);
1325 
1326 	tcp_sync_mss(newsk, dst_mtu(dst));
1327 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1328 
1329 	tcp_initialize_rcv_mss(newsk);
1330 
1331 #ifdef CONFIG_TCP_MD5SIG
1332 	/* Copy over the MD5 key from the original socket */
1333 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1334 				AF_INET);
1335 	if (key) {
1336 		/*
1337 		 * We're using one, so create a matching key
1338 		 * on the newsk structure. If we fail to get
1339 		 * memory, then we end up not copying the key
1340 		 * across. Shucks.
1341 		 */
1342 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1343 			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1344 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1345 	}
1346 #endif
1347 
1348 	if (__inet_inherit_port(sk, newsk) < 0)
1349 		goto put_and_exit;
1350 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1351 	if (*own_req)
1352 		tcp_move_syn(newtp, req);
1353 
1354 	return newsk;
1355 
1356 exit_overflow:
1357 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1358 exit_nonewsk:
1359 	dst_release(dst);
1360 exit:
1361 	tcp_listendrop(sk);
1362 	return NULL;
1363 put_and_exit:
1364 	inet_csk_prepare_forced_close(newsk);
1365 	tcp_done(newsk);
1366 	goto exit;
1367 }
1368 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1369 
1370 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1371 {
1372 #ifdef CONFIG_SYN_COOKIES
1373 	const struct tcphdr *th = tcp_hdr(skb);
1374 
1375 	if (!th->syn)
1376 		sk = cookie_v4_check(sk, skb);
1377 #endif
1378 	return sk;
1379 }
1380 
1381 /* The socket must have it's spinlock held when we get
1382  * here, unless it is a TCP_LISTEN socket.
1383  *
1384  * We have a potential double-lock case here, so even when
1385  * doing backlog processing we use the BH locking scheme.
1386  * This is because we cannot sleep with the original spinlock
1387  * held.
1388  */
1389 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1390 {
1391 	struct sock *rsk;
1392 
1393 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1394 		struct dst_entry *dst = sk->sk_rx_dst;
1395 
1396 		sock_rps_save_rxhash(sk, skb);
1397 		sk_mark_napi_id(sk, skb);
1398 		if (dst) {
1399 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1400 			    !dst->ops->check(dst, 0)) {
1401 				dst_release(dst);
1402 				sk->sk_rx_dst = NULL;
1403 			}
1404 		}
1405 		tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1406 		return 0;
1407 	}
1408 
1409 	if (tcp_checksum_complete(skb))
1410 		goto csum_err;
1411 
1412 	if (sk->sk_state == TCP_LISTEN) {
1413 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1414 
1415 		if (!nsk)
1416 			goto discard;
1417 		if (nsk != sk) {
1418 			if (tcp_child_process(sk, nsk, skb)) {
1419 				rsk = nsk;
1420 				goto reset;
1421 			}
1422 			return 0;
1423 		}
1424 	} else
1425 		sock_rps_save_rxhash(sk, skb);
1426 
1427 	if (tcp_rcv_state_process(sk, skb)) {
1428 		rsk = sk;
1429 		goto reset;
1430 	}
1431 	return 0;
1432 
1433 reset:
1434 	tcp_v4_send_reset(rsk, skb);
1435 discard:
1436 	kfree_skb(skb);
1437 	/* Be careful here. If this function gets more complicated and
1438 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1439 	 * might be destroyed here. This current version compiles correctly,
1440 	 * but you have been warned.
1441 	 */
1442 	return 0;
1443 
1444 csum_err:
1445 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1446 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1447 	goto discard;
1448 }
1449 EXPORT_SYMBOL(tcp_v4_do_rcv);
1450 
1451 void tcp_v4_early_demux(struct sk_buff *skb)
1452 {
1453 	const struct iphdr *iph;
1454 	const struct tcphdr *th;
1455 	struct sock *sk;
1456 
1457 	if (skb->pkt_type != PACKET_HOST)
1458 		return;
1459 
1460 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1461 		return;
1462 
1463 	iph = ip_hdr(skb);
1464 	th = tcp_hdr(skb);
1465 
1466 	if (th->doff < sizeof(struct tcphdr) / 4)
1467 		return;
1468 
1469 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1470 				       iph->saddr, th->source,
1471 				       iph->daddr, ntohs(th->dest),
1472 				       skb->skb_iif);
1473 	if (sk) {
1474 		skb->sk = sk;
1475 		skb->destructor = sock_edemux;
1476 		if (sk_fullsock(sk)) {
1477 			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1478 
1479 			if (dst)
1480 				dst = dst_check(dst, 0);
1481 			if (dst &&
1482 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1483 				skb_dst_set_noref(skb, dst);
1484 		}
1485 	}
1486 }
1487 
1488 /* Packet is added to VJ-style prequeue for processing in process
1489  * context, if a reader task is waiting. Apparently, this exciting
1490  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1491  * failed somewhere. Latency? Burstiness? Well, at least now we will
1492  * see, why it failed. 8)8)				  --ANK
1493  *
1494  */
1495 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1496 {
1497 	struct tcp_sock *tp = tcp_sk(sk);
1498 
1499 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
1500 		return false;
1501 
1502 	if (skb->len <= tcp_hdrlen(skb) &&
1503 	    skb_queue_len(&tp->ucopy.prequeue) == 0)
1504 		return false;
1505 
1506 	/* Before escaping RCU protected region, we need to take care of skb
1507 	 * dst. Prequeue is only enabled for established sockets.
1508 	 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1509 	 * Instead of doing full sk_rx_dst validity here, let's perform
1510 	 * an optimistic check.
1511 	 */
1512 	if (likely(sk->sk_rx_dst))
1513 		skb_dst_drop(skb);
1514 	else
1515 		skb_dst_force_safe(skb);
1516 
1517 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1518 	tp->ucopy.memory += skb->truesize;
1519 	if (skb_queue_len(&tp->ucopy.prequeue) >= 32 ||
1520 	    tp->ucopy.memory + atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
1521 		struct sk_buff *skb1;
1522 
1523 		BUG_ON(sock_owned_by_user(sk));
1524 		__NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUEDROPPED,
1525 				skb_queue_len(&tp->ucopy.prequeue));
1526 
1527 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1528 			sk_backlog_rcv(sk, skb1);
1529 
1530 		tp->ucopy.memory = 0;
1531 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1532 		wake_up_interruptible_sync_poll(sk_sleep(sk),
1533 					   POLLIN | POLLRDNORM | POLLRDBAND);
1534 		if (!inet_csk_ack_scheduled(sk))
1535 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1536 						  (3 * tcp_rto_min(sk)) / 4,
1537 						  TCP_RTO_MAX);
1538 	}
1539 	return true;
1540 }
1541 EXPORT_SYMBOL(tcp_prequeue);
1542 
1543 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1544 {
1545 	u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1546 
1547 	/* Only socket owner can try to collapse/prune rx queues
1548 	 * to reduce memory overhead, so add a little headroom here.
1549 	 * Few sockets backlog are possibly concurrently non empty.
1550 	 */
1551 	limit += 64*1024;
1552 
1553 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1554 	 * we can fix skb->truesize to its real value to avoid future drops.
1555 	 * This is valid because skb is not yet charged to the socket.
1556 	 * It has been noticed pure SACK packets were sometimes dropped
1557 	 * (if cooked by drivers without copybreak feature).
1558 	 */
1559 	skb_condense(skb);
1560 
1561 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1562 		bh_unlock_sock(sk);
1563 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1564 		return true;
1565 	}
1566 	return false;
1567 }
1568 EXPORT_SYMBOL(tcp_add_backlog);
1569 
1570 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1571 {
1572 	struct tcphdr *th = (struct tcphdr *)skb->data;
1573 	unsigned int eaten = skb->len;
1574 	int err;
1575 
1576 	err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1577 	if (!err) {
1578 		eaten -= skb->len;
1579 		TCP_SKB_CB(skb)->end_seq -= eaten;
1580 	}
1581 	return err;
1582 }
1583 EXPORT_SYMBOL(tcp_filter);
1584 
1585 /*
1586  *	From tcp_input.c
1587  */
1588 
1589 int tcp_v4_rcv(struct sk_buff *skb)
1590 {
1591 	struct net *net = dev_net(skb->dev);
1592 	const struct iphdr *iph;
1593 	const struct tcphdr *th;
1594 	bool refcounted;
1595 	struct sock *sk;
1596 	int ret;
1597 
1598 	if (skb->pkt_type != PACKET_HOST)
1599 		goto discard_it;
1600 
1601 	/* Count it even if it's bad */
1602 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1603 
1604 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1605 		goto discard_it;
1606 
1607 	th = (const struct tcphdr *)skb->data;
1608 
1609 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1610 		goto bad_packet;
1611 	if (!pskb_may_pull(skb, th->doff * 4))
1612 		goto discard_it;
1613 
1614 	/* An explanation is required here, I think.
1615 	 * Packet length and doff are validated by header prediction,
1616 	 * provided case of th->doff==0 is eliminated.
1617 	 * So, we defer the checks. */
1618 
1619 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1620 		goto csum_error;
1621 
1622 	th = (const struct tcphdr *)skb->data;
1623 	iph = ip_hdr(skb);
1624 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1625 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1626 	 */
1627 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1628 		sizeof(struct inet_skb_parm));
1629 	barrier();
1630 
1631 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1632 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1633 				    skb->len - th->doff * 4);
1634 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1635 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1636 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1637 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1638 	TCP_SKB_CB(skb)->sacked	 = 0;
1639 
1640 lookup:
1641 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1642 			       th->dest, &refcounted);
1643 	if (!sk)
1644 		goto no_tcp_socket;
1645 
1646 process:
1647 	if (sk->sk_state == TCP_TIME_WAIT)
1648 		goto do_time_wait;
1649 
1650 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1651 		struct request_sock *req = inet_reqsk(sk);
1652 		struct sock *nsk;
1653 
1654 		sk = req->rsk_listener;
1655 		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1656 			sk_drops_add(sk, skb);
1657 			reqsk_put(req);
1658 			goto discard_it;
1659 		}
1660 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1661 			inet_csk_reqsk_queue_drop_and_put(sk, req);
1662 			goto lookup;
1663 		}
1664 		/* We own a reference on the listener, increase it again
1665 		 * as we might lose it too soon.
1666 		 */
1667 		sock_hold(sk);
1668 		refcounted = true;
1669 		nsk = tcp_check_req(sk, skb, req, false);
1670 		if (!nsk) {
1671 			reqsk_put(req);
1672 			goto discard_and_relse;
1673 		}
1674 		if (nsk == sk) {
1675 			reqsk_put(req);
1676 		} else if (tcp_child_process(sk, nsk, skb)) {
1677 			tcp_v4_send_reset(nsk, skb);
1678 			goto discard_and_relse;
1679 		} else {
1680 			sock_put(sk);
1681 			return 0;
1682 		}
1683 	}
1684 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1685 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1686 		goto discard_and_relse;
1687 	}
1688 
1689 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1690 		goto discard_and_relse;
1691 
1692 	if (tcp_v4_inbound_md5_hash(sk, skb))
1693 		goto discard_and_relse;
1694 
1695 	nf_reset(skb);
1696 
1697 	if (tcp_filter(sk, skb))
1698 		goto discard_and_relse;
1699 	th = (const struct tcphdr *)skb->data;
1700 	iph = ip_hdr(skb);
1701 
1702 	skb->dev = NULL;
1703 
1704 	if (sk->sk_state == TCP_LISTEN) {
1705 		ret = tcp_v4_do_rcv(sk, skb);
1706 		goto put_and_return;
1707 	}
1708 
1709 	sk_incoming_cpu_update(sk);
1710 
1711 	bh_lock_sock_nested(sk);
1712 	tcp_segs_in(tcp_sk(sk), skb);
1713 	ret = 0;
1714 	if (!sock_owned_by_user(sk)) {
1715 		if (!tcp_prequeue(sk, skb))
1716 			ret = tcp_v4_do_rcv(sk, skb);
1717 	} else if (tcp_add_backlog(sk, skb)) {
1718 		goto discard_and_relse;
1719 	}
1720 	bh_unlock_sock(sk);
1721 
1722 put_and_return:
1723 	if (refcounted)
1724 		sock_put(sk);
1725 
1726 	return ret;
1727 
1728 no_tcp_socket:
1729 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1730 		goto discard_it;
1731 
1732 	if (tcp_checksum_complete(skb)) {
1733 csum_error:
1734 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1735 bad_packet:
1736 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
1737 	} else {
1738 		tcp_v4_send_reset(NULL, skb);
1739 	}
1740 
1741 discard_it:
1742 	/* Discard frame. */
1743 	kfree_skb(skb);
1744 	return 0;
1745 
1746 discard_and_relse:
1747 	sk_drops_add(sk, skb);
1748 	if (refcounted)
1749 		sock_put(sk);
1750 	goto discard_it;
1751 
1752 do_time_wait:
1753 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1754 		inet_twsk_put(inet_twsk(sk));
1755 		goto discard_it;
1756 	}
1757 
1758 	if (tcp_checksum_complete(skb)) {
1759 		inet_twsk_put(inet_twsk(sk));
1760 		goto csum_error;
1761 	}
1762 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1763 	case TCP_TW_SYN: {
1764 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1765 							&tcp_hashinfo, skb,
1766 							__tcp_hdrlen(th),
1767 							iph->saddr, th->source,
1768 							iph->daddr, th->dest,
1769 							inet_iif(skb));
1770 		if (sk2) {
1771 			inet_twsk_deschedule_put(inet_twsk(sk));
1772 			sk = sk2;
1773 			refcounted = false;
1774 			goto process;
1775 		}
1776 		/* Fall through to ACK */
1777 	}
1778 	case TCP_TW_ACK:
1779 		tcp_v4_timewait_ack(sk, skb);
1780 		break;
1781 	case TCP_TW_RST:
1782 		tcp_v4_send_reset(sk, skb);
1783 		inet_twsk_deschedule_put(inet_twsk(sk));
1784 		goto discard_it;
1785 	case TCP_TW_SUCCESS:;
1786 	}
1787 	goto discard_it;
1788 }
1789 
1790 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1791 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1792 	.twsk_unique	= tcp_twsk_unique,
1793 	.twsk_destructor= tcp_twsk_destructor,
1794 };
1795 
1796 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1797 {
1798 	struct dst_entry *dst = skb_dst(skb);
1799 
1800 	if (dst && dst_hold_safe(dst)) {
1801 		sk->sk_rx_dst = dst;
1802 		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1803 	}
1804 }
1805 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1806 
1807 const struct inet_connection_sock_af_ops ipv4_specific = {
1808 	.queue_xmit	   = ip_queue_xmit,
1809 	.send_check	   = tcp_v4_send_check,
1810 	.rebuild_header	   = inet_sk_rebuild_header,
1811 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
1812 	.conn_request	   = tcp_v4_conn_request,
1813 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1814 	.net_header_len	   = sizeof(struct iphdr),
1815 	.setsockopt	   = ip_setsockopt,
1816 	.getsockopt	   = ip_getsockopt,
1817 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1818 	.sockaddr_len	   = sizeof(struct sockaddr_in),
1819 #ifdef CONFIG_COMPAT
1820 	.compat_setsockopt = compat_ip_setsockopt,
1821 	.compat_getsockopt = compat_ip_getsockopt,
1822 #endif
1823 	.mtu_reduced	   = tcp_v4_mtu_reduced,
1824 };
1825 EXPORT_SYMBOL(ipv4_specific);
1826 
1827 #ifdef CONFIG_TCP_MD5SIG
1828 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1829 	.md5_lookup		= tcp_v4_md5_lookup,
1830 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1831 	.md5_parse		= tcp_v4_parse_md5_keys,
1832 };
1833 #endif
1834 
1835 /* NOTE: A lot of things set to zero explicitly by call to
1836  *       sk_alloc() so need not be done here.
1837  */
1838 static int tcp_v4_init_sock(struct sock *sk)
1839 {
1840 	struct inet_connection_sock *icsk = inet_csk(sk);
1841 
1842 	tcp_init_sock(sk);
1843 
1844 	icsk->icsk_af_ops = &ipv4_specific;
1845 
1846 #ifdef CONFIG_TCP_MD5SIG
1847 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1848 #endif
1849 
1850 	return 0;
1851 }
1852 
1853 void tcp_v4_destroy_sock(struct sock *sk)
1854 {
1855 	struct tcp_sock *tp = tcp_sk(sk);
1856 
1857 	tcp_clear_xmit_timers(sk);
1858 
1859 	tcp_cleanup_congestion_control(sk);
1860 
1861 	/* Cleanup up the write buffer. */
1862 	tcp_write_queue_purge(sk);
1863 
1864 	/* Check if we want to disable active TFO */
1865 	tcp_fastopen_active_disable_ofo_check(sk);
1866 
1867 	/* Cleans up our, hopefully empty, out_of_order_queue. */
1868 	skb_rbtree_purge(&tp->out_of_order_queue);
1869 
1870 #ifdef CONFIG_TCP_MD5SIG
1871 	/* Clean up the MD5 key list, if any */
1872 	if (tp->md5sig_info) {
1873 		tcp_clear_md5_list(sk);
1874 		kfree_rcu(tp->md5sig_info, rcu);
1875 		tp->md5sig_info = NULL;
1876 	}
1877 #endif
1878 
1879 	/* Clean prequeue, it must be empty really */
1880 	__skb_queue_purge(&tp->ucopy.prequeue);
1881 
1882 	/* Clean up a referenced TCP bind bucket. */
1883 	if (inet_csk(sk)->icsk_bind_hash)
1884 		inet_put_port(sk);
1885 
1886 	BUG_ON(tp->fastopen_rsk);
1887 
1888 	/* If socket is aborted during connect operation */
1889 	tcp_free_fastopen_req(tp);
1890 	tcp_saved_syn_free(tp);
1891 
1892 	sk_sockets_allocated_dec(sk);
1893 }
1894 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1895 
1896 #ifdef CONFIG_PROC_FS
1897 /* Proc filesystem TCP sock list dumping. */
1898 
1899 /*
1900  * Get next listener socket follow cur.  If cur is NULL, get first socket
1901  * starting from bucket given in st->bucket; when st->bucket is zero the
1902  * very first socket in the hash table is returned.
1903  */
1904 static void *listening_get_next(struct seq_file *seq, void *cur)
1905 {
1906 	struct tcp_iter_state *st = seq->private;
1907 	struct net *net = seq_file_net(seq);
1908 	struct inet_listen_hashbucket *ilb;
1909 	struct sock *sk = cur;
1910 
1911 	if (!sk) {
1912 get_head:
1913 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1914 		spin_lock(&ilb->lock);
1915 		sk = sk_head(&ilb->head);
1916 		st->offset = 0;
1917 		goto get_sk;
1918 	}
1919 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1920 	++st->num;
1921 	++st->offset;
1922 
1923 	sk = sk_next(sk);
1924 get_sk:
1925 	sk_for_each_from(sk) {
1926 		if (!net_eq(sock_net(sk), net))
1927 			continue;
1928 		if (sk->sk_family == st->family)
1929 			return sk;
1930 	}
1931 	spin_unlock(&ilb->lock);
1932 	st->offset = 0;
1933 	if (++st->bucket < INET_LHTABLE_SIZE)
1934 		goto get_head;
1935 	return NULL;
1936 }
1937 
1938 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1939 {
1940 	struct tcp_iter_state *st = seq->private;
1941 	void *rc;
1942 
1943 	st->bucket = 0;
1944 	st->offset = 0;
1945 	rc = listening_get_next(seq, NULL);
1946 
1947 	while (rc && *pos) {
1948 		rc = listening_get_next(seq, rc);
1949 		--*pos;
1950 	}
1951 	return rc;
1952 }
1953 
1954 static inline bool empty_bucket(const struct tcp_iter_state *st)
1955 {
1956 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1957 }
1958 
1959 /*
1960  * Get first established socket starting from bucket given in st->bucket.
1961  * If st->bucket is zero, the very first socket in the hash is returned.
1962  */
1963 static void *established_get_first(struct seq_file *seq)
1964 {
1965 	struct tcp_iter_state *st = seq->private;
1966 	struct net *net = seq_file_net(seq);
1967 	void *rc = NULL;
1968 
1969 	st->offset = 0;
1970 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1971 		struct sock *sk;
1972 		struct hlist_nulls_node *node;
1973 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1974 
1975 		/* Lockless fast path for the common case of empty buckets */
1976 		if (empty_bucket(st))
1977 			continue;
1978 
1979 		spin_lock_bh(lock);
1980 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1981 			if (sk->sk_family != st->family ||
1982 			    !net_eq(sock_net(sk), net)) {
1983 				continue;
1984 			}
1985 			rc = sk;
1986 			goto out;
1987 		}
1988 		spin_unlock_bh(lock);
1989 	}
1990 out:
1991 	return rc;
1992 }
1993 
1994 static void *established_get_next(struct seq_file *seq, void *cur)
1995 {
1996 	struct sock *sk = cur;
1997 	struct hlist_nulls_node *node;
1998 	struct tcp_iter_state *st = seq->private;
1999 	struct net *net = seq_file_net(seq);
2000 
2001 	++st->num;
2002 	++st->offset;
2003 
2004 	sk = sk_nulls_next(sk);
2005 
2006 	sk_nulls_for_each_from(sk, node) {
2007 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2008 			return sk;
2009 	}
2010 
2011 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2012 	++st->bucket;
2013 	return established_get_first(seq);
2014 }
2015 
2016 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2017 {
2018 	struct tcp_iter_state *st = seq->private;
2019 	void *rc;
2020 
2021 	st->bucket = 0;
2022 	rc = established_get_first(seq);
2023 
2024 	while (rc && pos) {
2025 		rc = established_get_next(seq, rc);
2026 		--pos;
2027 	}
2028 	return rc;
2029 }
2030 
2031 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2032 {
2033 	void *rc;
2034 	struct tcp_iter_state *st = seq->private;
2035 
2036 	st->state = TCP_SEQ_STATE_LISTENING;
2037 	rc	  = listening_get_idx(seq, &pos);
2038 
2039 	if (!rc) {
2040 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2041 		rc	  = established_get_idx(seq, pos);
2042 	}
2043 
2044 	return rc;
2045 }
2046 
2047 static void *tcp_seek_last_pos(struct seq_file *seq)
2048 {
2049 	struct tcp_iter_state *st = seq->private;
2050 	int offset = st->offset;
2051 	int orig_num = st->num;
2052 	void *rc = NULL;
2053 
2054 	switch (st->state) {
2055 	case TCP_SEQ_STATE_LISTENING:
2056 		if (st->bucket >= INET_LHTABLE_SIZE)
2057 			break;
2058 		st->state = TCP_SEQ_STATE_LISTENING;
2059 		rc = listening_get_next(seq, NULL);
2060 		while (offset-- && rc)
2061 			rc = listening_get_next(seq, rc);
2062 		if (rc)
2063 			break;
2064 		st->bucket = 0;
2065 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2066 		/* Fallthrough */
2067 	case TCP_SEQ_STATE_ESTABLISHED:
2068 		if (st->bucket > tcp_hashinfo.ehash_mask)
2069 			break;
2070 		rc = established_get_first(seq);
2071 		while (offset-- && rc)
2072 			rc = established_get_next(seq, rc);
2073 	}
2074 
2075 	st->num = orig_num;
2076 
2077 	return rc;
2078 }
2079 
2080 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2081 {
2082 	struct tcp_iter_state *st = seq->private;
2083 	void *rc;
2084 
2085 	if (*pos && *pos == st->last_pos) {
2086 		rc = tcp_seek_last_pos(seq);
2087 		if (rc)
2088 			goto out;
2089 	}
2090 
2091 	st->state = TCP_SEQ_STATE_LISTENING;
2092 	st->num = 0;
2093 	st->bucket = 0;
2094 	st->offset = 0;
2095 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2096 
2097 out:
2098 	st->last_pos = *pos;
2099 	return rc;
2100 }
2101 
2102 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2103 {
2104 	struct tcp_iter_state *st = seq->private;
2105 	void *rc = NULL;
2106 
2107 	if (v == SEQ_START_TOKEN) {
2108 		rc = tcp_get_idx(seq, 0);
2109 		goto out;
2110 	}
2111 
2112 	switch (st->state) {
2113 	case TCP_SEQ_STATE_LISTENING:
2114 		rc = listening_get_next(seq, v);
2115 		if (!rc) {
2116 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2117 			st->bucket = 0;
2118 			st->offset = 0;
2119 			rc	  = established_get_first(seq);
2120 		}
2121 		break;
2122 	case TCP_SEQ_STATE_ESTABLISHED:
2123 		rc = established_get_next(seq, v);
2124 		break;
2125 	}
2126 out:
2127 	++*pos;
2128 	st->last_pos = *pos;
2129 	return rc;
2130 }
2131 
2132 static void tcp_seq_stop(struct seq_file *seq, void *v)
2133 {
2134 	struct tcp_iter_state *st = seq->private;
2135 
2136 	switch (st->state) {
2137 	case TCP_SEQ_STATE_LISTENING:
2138 		if (v != SEQ_START_TOKEN)
2139 			spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2140 		break;
2141 	case TCP_SEQ_STATE_ESTABLISHED:
2142 		if (v)
2143 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2144 		break;
2145 	}
2146 }
2147 
2148 int tcp_seq_open(struct inode *inode, struct file *file)
2149 {
2150 	struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2151 	struct tcp_iter_state *s;
2152 	int err;
2153 
2154 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2155 			  sizeof(struct tcp_iter_state));
2156 	if (err < 0)
2157 		return err;
2158 
2159 	s = ((struct seq_file *)file->private_data)->private;
2160 	s->family		= afinfo->family;
2161 	s->last_pos		= 0;
2162 	return 0;
2163 }
2164 EXPORT_SYMBOL(tcp_seq_open);
2165 
2166 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2167 {
2168 	int rc = 0;
2169 	struct proc_dir_entry *p;
2170 
2171 	afinfo->seq_ops.start		= tcp_seq_start;
2172 	afinfo->seq_ops.next		= tcp_seq_next;
2173 	afinfo->seq_ops.stop		= tcp_seq_stop;
2174 
2175 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2176 			     afinfo->seq_fops, afinfo);
2177 	if (!p)
2178 		rc = -ENOMEM;
2179 	return rc;
2180 }
2181 EXPORT_SYMBOL(tcp_proc_register);
2182 
2183 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2184 {
2185 	remove_proc_entry(afinfo->name, net->proc_net);
2186 }
2187 EXPORT_SYMBOL(tcp_proc_unregister);
2188 
2189 static void get_openreq4(const struct request_sock *req,
2190 			 struct seq_file *f, int i)
2191 {
2192 	const struct inet_request_sock *ireq = inet_rsk(req);
2193 	long delta = req->rsk_timer.expires - jiffies;
2194 
2195 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2196 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2197 		i,
2198 		ireq->ir_loc_addr,
2199 		ireq->ir_num,
2200 		ireq->ir_rmt_addr,
2201 		ntohs(ireq->ir_rmt_port),
2202 		TCP_SYN_RECV,
2203 		0, 0, /* could print option size, but that is af dependent. */
2204 		1,    /* timers active (only the expire timer) */
2205 		jiffies_delta_to_clock_t(delta),
2206 		req->num_timeout,
2207 		from_kuid_munged(seq_user_ns(f),
2208 				 sock_i_uid(req->rsk_listener)),
2209 		0,  /* non standard timer */
2210 		0, /* open_requests have no inode */
2211 		0,
2212 		req);
2213 }
2214 
2215 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2216 {
2217 	int timer_active;
2218 	unsigned long timer_expires;
2219 	const struct tcp_sock *tp = tcp_sk(sk);
2220 	const struct inet_connection_sock *icsk = inet_csk(sk);
2221 	const struct inet_sock *inet = inet_sk(sk);
2222 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2223 	__be32 dest = inet->inet_daddr;
2224 	__be32 src = inet->inet_rcv_saddr;
2225 	__u16 destp = ntohs(inet->inet_dport);
2226 	__u16 srcp = ntohs(inet->inet_sport);
2227 	int rx_queue;
2228 	int state;
2229 
2230 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2231 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2232 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2233 		timer_active	= 1;
2234 		timer_expires	= icsk->icsk_timeout;
2235 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2236 		timer_active	= 4;
2237 		timer_expires	= icsk->icsk_timeout;
2238 	} else if (timer_pending(&sk->sk_timer)) {
2239 		timer_active	= 2;
2240 		timer_expires	= sk->sk_timer.expires;
2241 	} else {
2242 		timer_active	= 0;
2243 		timer_expires = jiffies;
2244 	}
2245 
2246 	state = sk_state_load(sk);
2247 	if (state == TCP_LISTEN)
2248 		rx_queue = sk->sk_ack_backlog;
2249 	else
2250 		/* Because we don't lock the socket,
2251 		 * we might find a transient negative value.
2252 		 */
2253 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2254 
2255 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2256 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2257 		i, src, srcp, dest, destp, state,
2258 		tp->write_seq - tp->snd_una,
2259 		rx_queue,
2260 		timer_active,
2261 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2262 		icsk->icsk_retransmits,
2263 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2264 		icsk->icsk_probes_out,
2265 		sock_i_ino(sk),
2266 		atomic_read(&sk->sk_refcnt), sk,
2267 		jiffies_to_clock_t(icsk->icsk_rto),
2268 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2269 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2270 		tp->snd_cwnd,
2271 		state == TCP_LISTEN ?
2272 		    fastopenq->max_qlen :
2273 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2274 }
2275 
2276 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2277 			       struct seq_file *f, int i)
2278 {
2279 	long delta = tw->tw_timer.expires - jiffies;
2280 	__be32 dest, src;
2281 	__u16 destp, srcp;
2282 
2283 	dest  = tw->tw_daddr;
2284 	src   = tw->tw_rcv_saddr;
2285 	destp = ntohs(tw->tw_dport);
2286 	srcp  = ntohs(tw->tw_sport);
2287 
2288 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2289 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2290 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2291 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2292 		atomic_read(&tw->tw_refcnt), tw);
2293 }
2294 
2295 #define TMPSZ 150
2296 
2297 static int tcp4_seq_show(struct seq_file *seq, void *v)
2298 {
2299 	struct tcp_iter_state *st;
2300 	struct sock *sk = v;
2301 
2302 	seq_setwidth(seq, TMPSZ - 1);
2303 	if (v == SEQ_START_TOKEN) {
2304 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2305 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2306 			   "inode");
2307 		goto out;
2308 	}
2309 	st = seq->private;
2310 
2311 	if (sk->sk_state == TCP_TIME_WAIT)
2312 		get_timewait4_sock(v, seq, st->num);
2313 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2314 		get_openreq4(v, seq, st->num);
2315 	else
2316 		get_tcp4_sock(v, seq, st->num);
2317 out:
2318 	seq_pad(seq, '\n');
2319 	return 0;
2320 }
2321 
2322 static const struct file_operations tcp_afinfo_seq_fops = {
2323 	.owner   = THIS_MODULE,
2324 	.open    = tcp_seq_open,
2325 	.read    = seq_read,
2326 	.llseek  = seq_lseek,
2327 	.release = seq_release_net
2328 };
2329 
2330 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2331 	.name		= "tcp",
2332 	.family		= AF_INET,
2333 	.seq_fops	= &tcp_afinfo_seq_fops,
2334 	.seq_ops	= {
2335 		.show		= tcp4_seq_show,
2336 	},
2337 };
2338 
2339 static int __net_init tcp4_proc_init_net(struct net *net)
2340 {
2341 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2342 }
2343 
2344 static void __net_exit tcp4_proc_exit_net(struct net *net)
2345 {
2346 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2347 }
2348 
2349 static struct pernet_operations tcp4_net_ops = {
2350 	.init = tcp4_proc_init_net,
2351 	.exit = tcp4_proc_exit_net,
2352 };
2353 
2354 int __init tcp4_proc_init(void)
2355 {
2356 	return register_pernet_subsys(&tcp4_net_ops);
2357 }
2358 
2359 void tcp4_proc_exit(void)
2360 {
2361 	unregister_pernet_subsys(&tcp4_net_ops);
2362 }
2363 #endif /* CONFIG_PROC_FS */
2364 
2365 struct proto tcp_prot = {
2366 	.name			= "TCP",
2367 	.owner			= THIS_MODULE,
2368 	.close			= tcp_close,
2369 	.connect		= tcp_v4_connect,
2370 	.disconnect		= tcp_disconnect,
2371 	.accept			= inet_csk_accept,
2372 	.ioctl			= tcp_ioctl,
2373 	.init			= tcp_v4_init_sock,
2374 	.destroy		= tcp_v4_destroy_sock,
2375 	.shutdown		= tcp_shutdown,
2376 	.setsockopt		= tcp_setsockopt,
2377 	.getsockopt		= tcp_getsockopt,
2378 	.keepalive		= tcp_set_keepalive,
2379 	.recvmsg		= tcp_recvmsg,
2380 	.sendmsg		= tcp_sendmsg,
2381 	.sendpage		= tcp_sendpage,
2382 	.backlog_rcv		= tcp_v4_do_rcv,
2383 	.release_cb		= tcp_release_cb,
2384 	.hash			= inet_hash,
2385 	.unhash			= inet_unhash,
2386 	.get_port		= inet_csk_get_port,
2387 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2388 	.stream_memory_free	= tcp_stream_memory_free,
2389 	.sockets_allocated	= &tcp_sockets_allocated,
2390 	.orphan_count		= &tcp_orphan_count,
2391 	.memory_allocated	= &tcp_memory_allocated,
2392 	.memory_pressure	= &tcp_memory_pressure,
2393 	.sysctl_mem		= sysctl_tcp_mem,
2394 	.sysctl_wmem		= sysctl_tcp_wmem,
2395 	.sysctl_rmem		= sysctl_tcp_rmem,
2396 	.max_header		= MAX_TCP_HEADER,
2397 	.obj_size		= sizeof(struct tcp_sock),
2398 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
2399 	.twsk_prot		= &tcp_timewait_sock_ops,
2400 	.rsk_prot		= &tcp_request_sock_ops,
2401 	.h.hashinfo		= &tcp_hashinfo,
2402 	.no_autobind		= true,
2403 #ifdef CONFIG_COMPAT
2404 	.compat_setsockopt	= compat_tcp_setsockopt,
2405 	.compat_getsockopt	= compat_tcp_getsockopt,
2406 #endif
2407 	.diag_destroy		= tcp_abort,
2408 };
2409 EXPORT_SYMBOL(tcp_prot);
2410 
2411 static void __net_exit tcp_sk_exit(struct net *net)
2412 {
2413 	int cpu;
2414 
2415 	for_each_possible_cpu(cpu)
2416 		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2417 	free_percpu(net->ipv4.tcp_sk);
2418 }
2419 
2420 static int __net_init tcp_sk_init(struct net *net)
2421 {
2422 	int res, cpu, cnt;
2423 
2424 	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2425 	if (!net->ipv4.tcp_sk)
2426 		return -ENOMEM;
2427 
2428 	for_each_possible_cpu(cpu) {
2429 		struct sock *sk;
2430 
2431 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2432 					   IPPROTO_TCP, net);
2433 		if (res)
2434 			goto fail;
2435 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2436 		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2437 	}
2438 
2439 	net->ipv4.sysctl_tcp_ecn = 2;
2440 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2441 
2442 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2443 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2444 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2445 
2446 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2447 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2448 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2449 
2450 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2451 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2452 	net->ipv4.sysctl_tcp_syncookies = 1;
2453 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2454 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2455 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2456 	net->ipv4.sysctl_tcp_orphan_retries = 0;
2457 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2458 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2459 	net->ipv4.sysctl_tcp_tw_reuse = 0;
2460 
2461 	cnt = tcp_hashinfo.ehash_mask + 1;
2462 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2;
2463 	net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2464 
2465 	net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2466 
2467 	return 0;
2468 fail:
2469 	tcp_sk_exit(net);
2470 
2471 	return res;
2472 }
2473 
2474 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2475 {
2476 	inet_twsk_purge(&tcp_hashinfo, AF_INET);
2477 }
2478 
2479 static struct pernet_operations __net_initdata tcp_sk_ops = {
2480        .init	   = tcp_sk_init,
2481        .exit	   = tcp_sk_exit,
2482        .exit_batch = tcp_sk_exit_batch,
2483 };
2484 
2485 void __init tcp_v4_init(void)
2486 {
2487 	if (register_pernet_subsys(&tcp_sk_ops))
2488 		panic("Failed to create the TCP control socket.\n");
2489 }
2490