xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision d0e22329)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/inetdevice.h>
84 
85 #include <crypto/hash.h>
86 #include <linux/scatterlist.h>
87 
88 #include <trace/events/tcp.h>
89 
90 #ifdef CONFIG_TCP_MD5SIG
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
92 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
93 #endif
94 
95 struct inet_hashinfo tcp_hashinfo;
96 EXPORT_SYMBOL(tcp_hashinfo);
97 
98 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99 {
100 	return secure_tcp_seq(ip_hdr(skb)->daddr,
101 			      ip_hdr(skb)->saddr,
102 			      tcp_hdr(skb)->dest,
103 			      tcp_hdr(skb)->source);
104 }
105 
106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107 {
108 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 	int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
117 
118 	if (reuse == 2) {
119 		/* Still does not detect *everything* that goes through
120 		 * lo, since we require a loopback src or dst address
121 		 * or direct binding to 'lo' interface.
122 		 */
123 		bool loopback = false;
124 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
125 			loopback = true;
126 #if IS_ENABLED(CONFIG_IPV6)
127 		if (tw->tw_family == AF_INET6) {
128 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
129 			    (ipv6_addr_v4mapped(&tw->tw_v6_daddr) &&
130 			     (tw->tw_v6_daddr.s6_addr[12] == 127)) ||
131 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
132 			    (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) &&
133 			     (tw->tw_v6_rcv_saddr.s6_addr[12] == 127)))
134 				loopback = true;
135 		} else
136 #endif
137 		{
138 			if (ipv4_is_loopback(tw->tw_daddr) ||
139 			    ipv4_is_loopback(tw->tw_rcv_saddr))
140 				loopback = true;
141 		}
142 		if (!loopback)
143 			reuse = 0;
144 	}
145 
146 	/* With PAWS, it is safe from the viewpoint
147 	   of data integrity. Even without PAWS it is safe provided sequence
148 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
149 
150 	   Actually, the idea is close to VJ's one, only timestamp cache is
151 	   held not per host, but per port pair and TW bucket is used as state
152 	   holder.
153 
154 	   If TW bucket has been already destroyed we fall back to VJ's scheme
155 	   and use initial timestamp retrieved from peer table.
156 	 */
157 	if (tcptw->tw_ts_recent_stamp &&
158 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
159 					    tcptw->tw_ts_recent_stamp)))) {
160 		/* In case of repair and re-using TIME-WAIT sockets we still
161 		 * want to be sure that it is safe as above but honor the
162 		 * sequence numbers and time stamps set as part of the repair
163 		 * process.
164 		 *
165 		 * Without this check re-using a TIME-WAIT socket with TCP
166 		 * repair would accumulate a -1 on the repair assigned
167 		 * sequence number. The first time it is reused the sequence
168 		 * is -1, the second time -2, etc. This fixes that issue
169 		 * without appearing to create any others.
170 		 */
171 		if (likely(!tp->repair)) {
172 			tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
173 			if (tp->write_seq == 0)
174 				tp->write_seq = 1;
175 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
176 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
177 		}
178 		sock_hold(sktw);
179 		return 1;
180 	}
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
185 
186 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
187 			      int addr_len)
188 {
189 	/* This check is replicated from tcp_v4_connect() and intended to
190 	 * prevent BPF program called below from accessing bytes that are out
191 	 * of the bound specified by user in addr_len.
192 	 */
193 	if (addr_len < sizeof(struct sockaddr_in))
194 		return -EINVAL;
195 
196 	sock_owned_by_me(sk);
197 
198 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
199 }
200 
201 /* This will initiate an outgoing connection. */
202 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
203 {
204 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	__be16 orig_sport, orig_dport;
208 	__be32 daddr, nexthop;
209 	struct flowi4 *fl4;
210 	struct rtable *rt;
211 	int err;
212 	struct ip_options_rcu *inet_opt;
213 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
235 			      IPPROTO_TCP,
236 			      orig_sport, orig_dport, sk);
237 	if (IS_ERR(rt)) {
238 		err = PTR_ERR(rt);
239 		if (err == -ENETUNREACH)
240 			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
241 		return err;
242 	}
243 
244 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
245 		ip_rt_put(rt);
246 		return -ENETUNREACH;
247 	}
248 
249 	if (!inet_opt || !inet_opt->opt.srr)
250 		daddr = fl4->daddr;
251 
252 	if (!inet->inet_saddr)
253 		inet->inet_saddr = fl4->saddr;
254 	sk_rcv_saddr_set(sk, inet->inet_saddr);
255 
256 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
257 		/* Reset inherited state */
258 		tp->rx_opt.ts_recent	   = 0;
259 		tp->rx_opt.ts_recent_stamp = 0;
260 		if (likely(!tp->repair))
261 			tp->write_seq	   = 0;
262 	}
263 
264 	inet->inet_dport = usin->sin_port;
265 	sk_daddr_set(sk, daddr);
266 
267 	inet_csk(sk)->icsk_ext_hdr_len = 0;
268 	if (inet_opt)
269 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
270 
271 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
272 
273 	/* Socket identity is still unknown (sport may be zero).
274 	 * However we set state to SYN-SENT and not releasing socket
275 	 * lock select source port, enter ourselves into the hash tables and
276 	 * complete initialization after this.
277 	 */
278 	tcp_set_state(sk, TCP_SYN_SENT);
279 	err = inet_hash_connect(tcp_death_row, sk);
280 	if (err)
281 		goto failure;
282 
283 	sk_set_txhash(sk);
284 
285 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
286 			       inet->inet_sport, inet->inet_dport, sk);
287 	if (IS_ERR(rt)) {
288 		err = PTR_ERR(rt);
289 		rt = NULL;
290 		goto failure;
291 	}
292 	/* OK, now commit destination to socket.  */
293 	sk->sk_gso_type = SKB_GSO_TCPV4;
294 	sk_setup_caps(sk, &rt->dst);
295 	rt = NULL;
296 
297 	if (likely(!tp->repair)) {
298 		if (!tp->write_seq)
299 			tp->write_seq = secure_tcp_seq(inet->inet_saddr,
300 						       inet->inet_daddr,
301 						       inet->inet_sport,
302 						       usin->sin_port);
303 		tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
304 						 inet->inet_saddr,
305 						 inet->inet_daddr);
306 	}
307 
308 	inet->inet_id = tp->write_seq ^ jiffies;
309 
310 	if (tcp_fastopen_defer_connect(sk, &err))
311 		return err;
312 	if (err)
313 		goto failure;
314 
315 	err = tcp_connect(sk);
316 
317 	if (err)
318 		goto failure;
319 
320 	return 0;
321 
322 failure:
323 	/*
324 	 * This unhashes the socket and releases the local port,
325 	 * if necessary.
326 	 */
327 	tcp_set_state(sk, TCP_CLOSE);
328 	ip_rt_put(rt);
329 	sk->sk_route_caps = 0;
330 	inet->inet_dport = 0;
331 	return err;
332 }
333 EXPORT_SYMBOL(tcp_v4_connect);
334 
335 /*
336  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
337  * It can be called through tcp_release_cb() if socket was owned by user
338  * at the time tcp_v4_err() was called to handle ICMP message.
339  */
340 void tcp_v4_mtu_reduced(struct sock *sk)
341 {
342 	struct inet_sock *inet = inet_sk(sk);
343 	struct dst_entry *dst;
344 	u32 mtu;
345 
346 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
347 		return;
348 	mtu = tcp_sk(sk)->mtu_info;
349 	dst = inet_csk_update_pmtu(sk, mtu);
350 	if (!dst)
351 		return;
352 
353 	/* Something is about to be wrong... Remember soft error
354 	 * for the case, if this connection will not able to recover.
355 	 */
356 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
357 		sk->sk_err_soft = EMSGSIZE;
358 
359 	mtu = dst_mtu(dst);
360 
361 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
362 	    ip_sk_accept_pmtu(sk) &&
363 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
364 		tcp_sync_mss(sk, mtu);
365 
366 		/* Resend the TCP packet because it's
367 		 * clear that the old packet has been
368 		 * dropped. This is the new "fast" path mtu
369 		 * discovery.
370 		 */
371 		tcp_simple_retransmit(sk);
372 	} /* else let the usual retransmit timer handle it */
373 }
374 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
375 
376 static void do_redirect(struct sk_buff *skb, struct sock *sk)
377 {
378 	struct dst_entry *dst = __sk_dst_check(sk, 0);
379 
380 	if (dst)
381 		dst->ops->redirect(dst, sk, skb);
382 }
383 
384 
385 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
386 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
387 {
388 	struct request_sock *req = inet_reqsk(sk);
389 	struct net *net = sock_net(sk);
390 
391 	/* ICMPs are not backlogged, hence we cannot get
392 	 * an established socket here.
393 	 */
394 	if (seq != tcp_rsk(req)->snt_isn) {
395 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
396 	} else if (abort) {
397 		/*
398 		 * Still in SYN_RECV, just remove it silently.
399 		 * There is no good way to pass the error to the newly
400 		 * created socket, and POSIX does not want network
401 		 * errors returned from accept().
402 		 */
403 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
404 		tcp_listendrop(req->rsk_listener);
405 	}
406 	reqsk_put(req);
407 }
408 EXPORT_SYMBOL(tcp_req_err);
409 
410 /*
411  * This routine is called by the ICMP module when it gets some
412  * sort of error condition.  If err < 0 then the socket should
413  * be closed and the error returned to the user.  If err > 0
414  * it's just the icmp type << 8 | icmp code.  After adjustment
415  * header points to the first 8 bytes of the tcp header.  We need
416  * to find the appropriate port.
417  *
418  * The locking strategy used here is very "optimistic". When
419  * someone else accesses the socket the ICMP is just dropped
420  * and for some paths there is no check at all.
421  * A more general error queue to queue errors for later handling
422  * is probably better.
423  *
424  */
425 
426 int tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
427 {
428 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
429 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
430 	struct inet_connection_sock *icsk;
431 	struct tcp_sock *tp;
432 	struct inet_sock *inet;
433 	const int type = icmp_hdr(icmp_skb)->type;
434 	const int code = icmp_hdr(icmp_skb)->code;
435 	struct sock *sk;
436 	struct sk_buff *skb;
437 	struct request_sock *fastopen;
438 	u32 seq, snd_una;
439 	s32 remaining;
440 	u32 delta_us;
441 	int err;
442 	struct net *net = dev_net(icmp_skb->dev);
443 
444 	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
445 				       th->dest, iph->saddr, ntohs(th->source),
446 				       inet_iif(icmp_skb), 0);
447 	if (!sk) {
448 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
449 		return -ENOENT;
450 	}
451 	if (sk->sk_state == TCP_TIME_WAIT) {
452 		inet_twsk_put(inet_twsk(sk));
453 		return 0;
454 	}
455 	seq = ntohl(th->seq);
456 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
457 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
458 				     type == ICMP_TIME_EXCEEDED ||
459 				     (type == ICMP_DEST_UNREACH &&
460 				      (code == ICMP_NET_UNREACH ||
461 				       code == ICMP_HOST_UNREACH)));
462 		return 0;
463 	}
464 
465 	bh_lock_sock(sk);
466 	/* If too many ICMPs get dropped on busy
467 	 * servers this needs to be solved differently.
468 	 * We do take care of PMTU discovery (RFC1191) special case :
469 	 * we can receive locally generated ICMP messages while socket is held.
470 	 */
471 	if (sock_owned_by_user(sk)) {
472 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
473 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
474 	}
475 	if (sk->sk_state == TCP_CLOSE)
476 		goto out;
477 
478 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
479 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
480 		goto out;
481 	}
482 
483 	icsk = inet_csk(sk);
484 	tp = tcp_sk(sk);
485 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
486 	fastopen = tp->fastopen_rsk;
487 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
488 	if (sk->sk_state != TCP_LISTEN &&
489 	    !between(seq, snd_una, tp->snd_nxt)) {
490 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
491 		goto out;
492 	}
493 
494 	switch (type) {
495 	case ICMP_REDIRECT:
496 		if (!sock_owned_by_user(sk))
497 			do_redirect(icmp_skb, sk);
498 		goto out;
499 	case ICMP_SOURCE_QUENCH:
500 		/* Just silently ignore these. */
501 		goto out;
502 	case ICMP_PARAMETERPROB:
503 		err = EPROTO;
504 		break;
505 	case ICMP_DEST_UNREACH:
506 		if (code > NR_ICMP_UNREACH)
507 			goto out;
508 
509 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
510 			/* We are not interested in TCP_LISTEN and open_requests
511 			 * (SYN-ACKs send out by Linux are always <576bytes so
512 			 * they should go through unfragmented).
513 			 */
514 			if (sk->sk_state == TCP_LISTEN)
515 				goto out;
516 
517 			tp->mtu_info = info;
518 			if (!sock_owned_by_user(sk)) {
519 				tcp_v4_mtu_reduced(sk);
520 			} else {
521 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
522 					sock_hold(sk);
523 			}
524 			goto out;
525 		}
526 
527 		err = icmp_err_convert[code].errno;
528 		/* check if icmp_skb allows revert of backoff
529 		 * (see draft-zimmermann-tcp-lcd) */
530 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
531 			break;
532 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
533 		    !icsk->icsk_backoff || fastopen)
534 			break;
535 
536 		if (sock_owned_by_user(sk))
537 			break;
538 
539 		icsk->icsk_backoff--;
540 		icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
541 					       TCP_TIMEOUT_INIT;
542 		icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
543 
544 		skb = tcp_rtx_queue_head(sk);
545 
546 		tcp_mstamp_refresh(tp);
547 		delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
548 		remaining = icsk->icsk_rto -
549 			    usecs_to_jiffies(delta_us);
550 
551 		if (remaining > 0) {
552 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
553 						  remaining, TCP_RTO_MAX);
554 		} else {
555 			/* RTO revert clocked out retransmission.
556 			 * Will retransmit now */
557 			tcp_retransmit_timer(sk);
558 		}
559 
560 		break;
561 	case ICMP_TIME_EXCEEDED:
562 		err = EHOSTUNREACH;
563 		break;
564 	default:
565 		goto out;
566 	}
567 
568 	switch (sk->sk_state) {
569 	case TCP_SYN_SENT:
570 	case TCP_SYN_RECV:
571 		/* Only in fast or simultaneous open. If a fast open socket is
572 		 * is already accepted it is treated as a connected one below.
573 		 */
574 		if (fastopen && !fastopen->sk)
575 			break;
576 
577 		if (!sock_owned_by_user(sk)) {
578 			sk->sk_err = err;
579 
580 			sk->sk_error_report(sk);
581 
582 			tcp_done(sk);
583 		} else {
584 			sk->sk_err_soft = err;
585 		}
586 		goto out;
587 	}
588 
589 	/* If we've already connected we will keep trying
590 	 * until we time out, or the user gives up.
591 	 *
592 	 * rfc1122 4.2.3.9 allows to consider as hard errors
593 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
594 	 * but it is obsoleted by pmtu discovery).
595 	 *
596 	 * Note, that in modern internet, where routing is unreliable
597 	 * and in each dark corner broken firewalls sit, sending random
598 	 * errors ordered by their masters even this two messages finally lose
599 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
600 	 *
601 	 * Now we are in compliance with RFCs.
602 	 *							--ANK (980905)
603 	 */
604 
605 	inet = inet_sk(sk);
606 	if (!sock_owned_by_user(sk) && inet->recverr) {
607 		sk->sk_err = err;
608 		sk->sk_error_report(sk);
609 	} else	{ /* Only an error on timeout */
610 		sk->sk_err_soft = err;
611 	}
612 
613 out:
614 	bh_unlock_sock(sk);
615 	sock_put(sk);
616 	return 0;
617 }
618 
619 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
620 {
621 	struct tcphdr *th = tcp_hdr(skb);
622 
623 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
624 	skb->csum_start = skb_transport_header(skb) - skb->head;
625 	skb->csum_offset = offsetof(struct tcphdr, check);
626 }
627 
628 /* This routine computes an IPv4 TCP checksum. */
629 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
630 {
631 	const struct inet_sock *inet = inet_sk(sk);
632 
633 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
634 }
635 EXPORT_SYMBOL(tcp_v4_send_check);
636 
637 /*
638  *	This routine will send an RST to the other tcp.
639  *
640  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
641  *		      for reset.
642  *	Answer: if a packet caused RST, it is not for a socket
643  *		existing in our system, if it is matched to a socket,
644  *		it is just duplicate segment or bug in other side's TCP.
645  *		So that we build reply only basing on parameters
646  *		arrived with segment.
647  *	Exception: precedence violation. We do not implement it in any case.
648  */
649 
650 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
651 {
652 	const struct tcphdr *th = tcp_hdr(skb);
653 	struct {
654 		struct tcphdr th;
655 #ifdef CONFIG_TCP_MD5SIG
656 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
657 #endif
658 	} rep;
659 	struct ip_reply_arg arg;
660 #ifdef CONFIG_TCP_MD5SIG
661 	struct tcp_md5sig_key *key = NULL;
662 	const __u8 *hash_location = NULL;
663 	unsigned char newhash[16];
664 	int genhash;
665 	struct sock *sk1 = NULL;
666 #endif
667 	struct net *net;
668 	struct sock *ctl_sk;
669 
670 	/* Never send a reset in response to a reset. */
671 	if (th->rst)
672 		return;
673 
674 	/* If sk not NULL, it means we did a successful lookup and incoming
675 	 * route had to be correct. prequeue might have dropped our dst.
676 	 */
677 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
678 		return;
679 
680 	/* Swap the send and the receive. */
681 	memset(&rep, 0, sizeof(rep));
682 	rep.th.dest   = th->source;
683 	rep.th.source = th->dest;
684 	rep.th.doff   = sizeof(struct tcphdr) / 4;
685 	rep.th.rst    = 1;
686 
687 	if (th->ack) {
688 		rep.th.seq = th->ack_seq;
689 	} else {
690 		rep.th.ack = 1;
691 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
692 				       skb->len - (th->doff << 2));
693 	}
694 
695 	memset(&arg, 0, sizeof(arg));
696 	arg.iov[0].iov_base = (unsigned char *)&rep;
697 	arg.iov[0].iov_len  = sizeof(rep.th);
698 
699 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
700 #ifdef CONFIG_TCP_MD5SIG
701 	rcu_read_lock();
702 	hash_location = tcp_parse_md5sig_option(th);
703 	if (sk && sk_fullsock(sk)) {
704 		key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
705 					&ip_hdr(skb)->saddr, AF_INET);
706 	} else if (hash_location) {
707 		/*
708 		 * active side is lost. Try to find listening socket through
709 		 * source port, and then find md5 key through listening socket.
710 		 * we are not loose security here:
711 		 * Incoming packet is checked with md5 hash with finding key,
712 		 * no RST generated if md5 hash doesn't match.
713 		 */
714 		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
715 					     ip_hdr(skb)->saddr,
716 					     th->source, ip_hdr(skb)->daddr,
717 					     ntohs(th->source), inet_iif(skb),
718 					     tcp_v4_sdif(skb));
719 		/* don't send rst if it can't find key */
720 		if (!sk1)
721 			goto out;
722 
723 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
724 					&ip_hdr(skb)->saddr, AF_INET);
725 		if (!key)
726 			goto out;
727 
728 
729 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
730 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
731 			goto out;
732 
733 	}
734 
735 	if (key) {
736 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
737 				   (TCPOPT_NOP << 16) |
738 				   (TCPOPT_MD5SIG << 8) |
739 				   TCPOLEN_MD5SIG);
740 		/* Update length and the length the header thinks exists */
741 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
742 		rep.th.doff = arg.iov[0].iov_len / 4;
743 
744 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
745 				     key, ip_hdr(skb)->saddr,
746 				     ip_hdr(skb)->daddr, &rep.th);
747 	}
748 #endif
749 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
750 				      ip_hdr(skb)->saddr, /* XXX */
751 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
752 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
753 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
754 
755 	/* When socket is gone, all binding information is lost.
756 	 * routing might fail in this case. No choice here, if we choose to force
757 	 * input interface, we will misroute in case of asymmetric route.
758 	 */
759 	if (sk) {
760 		arg.bound_dev_if = sk->sk_bound_dev_if;
761 		if (sk_fullsock(sk))
762 			trace_tcp_send_reset(sk, skb);
763 	}
764 
765 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
766 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
767 
768 	arg.tos = ip_hdr(skb)->tos;
769 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
770 	local_bh_disable();
771 	ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk);
772 	if (sk)
773 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
774 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
775 	ip_send_unicast_reply(ctl_sk,
776 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
777 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
778 			      &arg, arg.iov[0].iov_len);
779 
780 	ctl_sk->sk_mark = 0;
781 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
782 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
783 	local_bh_enable();
784 
785 #ifdef CONFIG_TCP_MD5SIG
786 out:
787 	rcu_read_unlock();
788 #endif
789 }
790 
791 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
792    outside socket context is ugly, certainly. What can I do?
793  */
794 
795 static void tcp_v4_send_ack(const struct sock *sk,
796 			    struct sk_buff *skb, u32 seq, u32 ack,
797 			    u32 win, u32 tsval, u32 tsecr, int oif,
798 			    struct tcp_md5sig_key *key,
799 			    int reply_flags, u8 tos)
800 {
801 	const struct tcphdr *th = tcp_hdr(skb);
802 	struct {
803 		struct tcphdr th;
804 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
805 #ifdef CONFIG_TCP_MD5SIG
806 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
807 #endif
808 			];
809 	} rep;
810 	struct net *net = sock_net(sk);
811 	struct ip_reply_arg arg;
812 	struct sock *ctl_sk;
813 
814 	memset(&rep.th, 0, sizeof(struct tcphdr));
815 	memset(&arg, 0, sizeof(arg));
816 
817 	arg.iov[0].iov_base = (unsigned char *)&rep;
818 	arg.iov[0].iov_len  = sizeof(rep.th);
819 	if (tsecr) {
820 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
821 				   (TCPOPT_TIMESTAMP << 8) |
822 				   TCPOLEN_TIMESTAMP);
823 		rep.opt[1] = htonl(tsval);
824 		rep.opt[2] = htonl(tsecr);
825 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
826 	}
827 
828 	/* Swap the send and the receive. */
829 	rep.th.dest    = th->source;
830 	rep.th.source  = th->dest;
831 	rep.th.doff    = arg.iov[0].iov_len / 4;
832 	rep.th.seq     = htonl(seq);
833 	rep.th.ack_seq = htonl(ack);
834 	rep.th.ack     = 1;
835 	rep.th.window  = htons(win);
836 
837 #ifdef CONFIG_TCP_MD5SIG
838 	if (key) {
839 		int offset = (tsecr) ? 3 : 0;
840 
841 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
842 					  (TCPOPT_NOP << 16) |
843 					  (TCPOPT_MD5SIG << 8) |
844 					  TCPOLEN_MD5SIG);
845 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
846 		rep.th.doff = arg.iov[0].iov_len/4;
847 
848 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
849 				    key, ip_hdr(skb)->saddr,
850 				    ip_hdr(skb)->daddr, &rep.th);
851 	}
852 #endif
853 	arg.flags = reply_flags;
854 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
855 				      ip_hdr(skb)->saddr, /* XXX */
856 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
857 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
858 	if (oif)
859 		arg.bound_dev_if = oif;
860 	arg.tos = tos;
861 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
862 	local_bh_disable();
863 	ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk);
864 	if (sk)
865 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
866 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
867 	ip_send_unicast_reply(ctl_sk,
868 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
869 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
870 			      &arg, arg.iov[0].iov_len);
871 
872 	ctl_sk->sk_mark = 0;
873 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
874 	local_bh_enable();
875 }
876 
877 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
878 {
879 	struct inet_timewait_sock *tw = inet_twsk(sk);
880 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
881 
882 	tcp_v4_send_ack(sk, skb,
883 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
884 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
885 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
886 			tcptw->tw_ts_recent,
887 			tw->tw_bound_dev_if,
888 			tcp_twsk_md5_key(tcptw),
889 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
890 			tw->tw_tos
891 			);
892 
893 	inet_twsk_put(tw);
894 }
895 
896 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
897 				  struct request_sock *req)
898 {
899 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
900 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
901 	 */
902 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
903 					     tcp_sk(sk)->snd_nxt;
904 
905 	/* RFC 7323 2.3
906 	 * The window field (SEG.WND) of every outgoing segment, with the
907 	 * exception of <SYN> segments, MUST be right-shifted by
908 	 * Rcv.Wind.Shift bits:
909 	 */
910 	tcp_v4_send_ack(sk, skb, seq,
911 			tcp_rsk(req)->rcv_nxt,
912 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
913 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
914 			req->ts_recent,
915 			0,
916 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
917 					  AF_INET),
918 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
919 			ip_hdr(skb)->tos);
920 }
921 
922 /*
923  *	Send a SYN-ACK after having received a SYN.
924  *	This still operates on a request_sock only, not on a big
925  *	socket.
926  */
927 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
928 			      struct flowi *fl,
929 			      struct request_sock *req,
930 			      struct tcp_fastopen_cookie *foc,
931 			      enum tcp_synack_type synack_type)
932 {
933 	const struct inet_request_sock *ireq = inet_rsk(req);
934 	struct flowi4 fl4;
935 	int err = -1;
936 	struct sk_buff *skb;
937 
938 	/* First, grab a route. */
939 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
940 		return -1;
941 
942 	skb = tcp_make_synack(sk, dst, req, foc, synack_type);
943 
944 	if (skb) {
945 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
946 
947 		rcu_read_lock();
948 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
949 					    ireq->ir_rmt_addr,
950 					    rcu_dereference(ireq->ireq_opt));
951 		rcu_read_unlock();
952 		err = net_xmit_eval(err);
953 	}
954 
955 	return err;
956 }
957 
958 /*
959  *	IPv4 request_sock destructor.
960  */
961 static void tcp_v4_reqsk_destructor(struct request_sock *req)
962 {
963 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
964 }
965 
966 #ifdef CONFIG_TCP_MD5SIG
967 /*
968  * RFC2385 MD5 checksumming requires a mapping of
969  * IP address->MD5 Key.
970  * We need to maintain these in the sk structure.
971  */
972 
973 struct static_key tcp_md5_needed __read_mostly;
974 EXPORT_SYMBOL(tcp_md5_needed);
975 
976 /* Find the Key structure for an address.  */
977 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
978 					   const union tcp_md5_addr *addr,
979 					   int family)
980 {
981 	const struct tcp_sock *tp = tcp_sk(sk);
982 	struct tcp_md5sig_key *key;
983 	const struct tcp_md5sig_info *md5sig;
984 	__be32 mask;
985 	struct tcp_md5sig_key *best_match = NULL;
986 	bool match;
987 
988 	/* caller either holds rcu_read_lock() or socket lock */
989 	md5sig = rcu_dereference_check(tp->md5sig_info,
990 				       lockdep_sock_is_held(sk));
991 	if (!md5sig)
992 		return NULL;
993 
994 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
995 		if (key->family != family)
996 			continue;
997 
998 		if (family == AF_INET) {
999 			mask = inet_make_mask(key->prefixlen);
1000 			match = (key->addr.a4.s_addr & mask) ==
1001 				(addr->a4.s_addr & mask);
1002 #if IS_ENABLED(CONFIG_IPV6)
1003 		} else if (family == AF_INET6) {
1004 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1005 						  key->prefixlen);
1006 #endif
1007 		} else {
1008 			match = false;
1009 		}
1010 
1011 		if (match && (!best_match ||
1012 			      key->prefixlen > best_match->prefixlen))
1013 			best_match = key;
1014 	}
1015 	return best_match;
1016 }
1017 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1018 
1019 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1020 						      const union tcp_md5_addr *addr,
1021 						      int family, u8 prefixlen)
1022 {
1023 	const struct tcp_sock *tp = tcp_sk(sk);
1024 	struct tcp_md5sig_key *key;
1025 	unsigned int size = sizeof(struct in_addr);
1026 	const struct tcp_md5sig_info *md5sig;
1027 
1028 	/* caller either holds rcu_read_lock() or socket lock */
1029 	md5sig = rcu_dereference_check(tp->md5sig_info,
1030 				       lockdep_sock_is_held(sk));
1031 	if (!md5sig)
1032 		return NULL;
1033 #if IS_ENABLED(CONFIG_IPV6)
1034 	if (family == AF_INET6)
1035 		size = sizeof(struct in6_addr);
1036 #endif
1037 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
1038 		if (key->family != family)
1039 			continue;
1040 		if (!memcmp(&key->addr, addr, size) &&
1041 		    key->prefixlen == prefixlen)
1042 			return key;
1043 	}
1044 	return NULL;
1045 }
1046 
1047 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1048 					 const struct sock *addr_sk)
1049 {
1050 	const union tcp_md5_addr *addr;
1051 
1052 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1053 	return tcp_md5_do_lookup(sk, addr, AF_INET);
1054 }
1055 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1056 
1057 /* This can be called on a newly created socket, from other files */
1058 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1059 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1060 		   gfp_t gfp)
1061 {
1062 	/* Add Key to the list */
1063 	struct tcp_md5sig_key *key;
1064 	struct tcp_sock *tp = tcp_sk(sk);
1065 	struct tcp_md5sig_info *md5sig;
1066 
1067 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1068 	if (key) {
1069 		/* Pre-existing entry - just update that one. */
1070 		memcpy(key->key, newkey, newkeylen);
1071 		key->keylen = newkeylen;
1072 		return 0;
1073 	}
1074 
1075 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1076 					   lockdep_sock_is_held(sk));
1077 	if (!md5sig) {
1078 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1079 		if (!md5sig)
1080 			return -ENOMEM;
1081 
1082 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1083 		INIT_HLIST_HEAD(&md5sig->head);
1084 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1085 	}
1086 
1087 	key = sock_kmalloc(sk, sizeof(*key), gfp);
1088 	if (!key)
1089 		return -ENOMEM;
1090 	if (!tcp_alloc_md5sig_pool()) {
1091 		sock_kfree_s(sk, key, sizeof(*key));
1092 		return -ENOMEM;
1093 	}
1094 
1095 	memcpy(key->key, newkey, newkeylen);
1096 	key->keylen = newkeylen;
1097 	key->family = family;
1098 	key->prefixlen = prefixlen;
1099 	memcpy(&key->addr, addr,
1100 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1101 				      sizeof(struct in_addr));
1102 	hlist_add_head_rcu(&key->node, &md5sig->head);
1103 	return 0;
1104 }
1105 EXPORT_SYMBOL(tcp_md5_do_add);
1106 
1107 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1108 		   u8 prefixlen)
1109 {
1110 	struct tcp_md5sig_key *key;
1111 
1112 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1113 	if (!key)
1114 		return -ENOENT;
1115 	hlist_del_rcu(&key->node);
1116 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1117 	kfree_rcu(key, rcu);
1118 	return 0;
1119 }
1120 EXPORT_SYMBOL(tcp_md5_do_del);
1121 
1122 static void tcp_clear_md5_list(struct sock *sk)
1123 {
1124 	struct tcp_sock *tp = tcp_sk(sk);
1125 	struct tcp_md5sig_key *key;
1126 	struct hlist_node *n;
1127 	struct tcp_md5sig_info *md5sig;
1128 
1129 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1130 
1131 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1132 		hlist_del_rcu(&key->node);
1133 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1134 		kfree_rcu(key, rcu);
1135 	}
1136 }
1137 
1138 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1139 				 char __user *optval, int optlen)
1140 {
1141 	struct tcp_md5sig cmd;
1142 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1143 	u8 prefixlen = 32;
1144 
1145 	if (optlen < sizeof(cmd))
1146 		return -EINVAL;
1147 
1148 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1149 		return -EFAULT;
1150 
1151 	if (sin->sin_family != AF_INET)
1152 		return -EINVAL;
1153 
1154 	if (optname == TCP_MD5SIG_EXT &&
1155 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1156 		prefixlen = cmd.tcpm_prefixlen;
1157 		if (prefixlen > 32)
1158 			return -EINVAL;
1159 	}
1160 
1161 	if (!cmd.tcpm_keylen)
1162 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1163 				      AF_INET, prefixlen);
1164 
1165 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1166 		return -EINVAL;
1167 
1168 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1169 			      AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen,
1170 			      GFP_KERNEL);
1171 }
1172 
1173 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1174 				   __be32 daddr, __be32 saddr,
1175 				   const struct tcphdr *th, int nbytes)
1176 {
1177 	struct tcp4_pseudohdr *bp;
1178 	struct scatterlist sg;
1179 	struct tcphdr *_th;
1180 
1181 	bp = hp->scratch;
1182 	bp->saddr = saddr;
1183 	bp->daddr = daddr;
1184 	bp->pad = 0;
1185 	bp->protocol = IPPROTO_TCP;
1186 	bp->len = cpu_to_be16(nbytes);
1187 
1188 	_th = (struct tcphdr *)(bp + 1);
1189 	memcpy(_th, th, sizeof(*th));
1190 	_th->check = 0;
1191 
1192 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1193 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1194 				sizeof(*bp) + sizeof(*th));
1195 	return crypto_ahash_update(hp->md5_req);
1196 }
1197 
1198 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1199 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1200 {
1201 	struct tcp_md5sig_pool *hp;
1202 	struct ahash_request *req;
1203 
1204 	hp = tcp_get_md5sig_pool();
1205 	if (!hp)
1206 		goto clear_hash_noput;
1207 	req = hp->md5_req;
1208 
1209 	if (crypto_ahash_init(req))
1210 		goto clear_hash;
1211 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1212 		goto clear_hash;
1213 	if (tcp_md5_hash_key(hp, key))
1214 		goto clear_hash;
1215 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1216 	if (crypto_ahash_final(req))
1217 		goto clear_hash;
1218 
1219 	tcp_put_md5sig_pool();
1220 	return 0;
1221 
1222 clear_hash:
1223 	tcp_put_md5sig_pool();
1224 clear_hash_noput:
1225 	memset(md5_hash, 0, 16);
1226 	return 1;
1227 }
1228 
1229 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1230 			const struct sock *sk,
1231 			const struct sk_buff *skb)
1232 {
1233 	struct tcp_md5sig_pool *hp;
1234 	struct ahash_request *req;
1235 	const struct tcphdr *th = tcp_hdr(skb);
1236 	__be32 saddr, daddr;
1237 
1238 	if (sk) { /* valid for establish/request sockets */
1239 		saddr = sk->sk_rcv_saddr;
1240 		daddr = sk->sk_daddr;
1241 	} else {
1242 		const struct iphdr *iph = ip_hdr(skb);
1243 		saddr = iph->saddr;
1244 		daddr = iph->daddr;
1245 	}
1246 
1247 	hp = tcp_get_md5sig_pool();
1248 	if (!hp)
1249 		goto clear_hash_noput;
1250 	req = hp->md5_req;
1251 
1252 	if (crypto_ahash_init(req))
1253 		goto clear_hash;
1254 
1255 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1256 		goto clear_hash;
1257 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1258 		goto clear_hash;
1259 	if (tcp_md5_hash_key(hp, key))
1260 		goto clear_hash;
1261 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1262 	if (crypto_ahash_final(req))
1263 		goto clear_hash;
1264 
1265 	tcp_put_md5sig_pool();
1266 	return 0;
1267 
1268 clear_hash:
1269 	tcp_put_md5sig_pool();
1270 clear_hash_noput:
1271 	memset(md5_hash, 0, 16);
1272 	return 1;
1273 }
1274 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1275 
1276 #endif
1277 
1278 /* Called with rcu_read_lock() */
1279 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1280 				    const struct sk_buff *skb)
1281 {
1282 #ifdef CONFIG_TCP_MD5SIG
1283 	/*
1284 	 * This gets called for each TCP segment that arrives
1285 	 * so we want to be efficient.
1286 	 * We have 3 drop cases:
1287 	 * o No MD5 hash and one expected.
1288 	 * o MD5 hash and we're not expecting one.
1289 	 * o MD5 hash and its wrong.
1290 	 */
1291 	const __u8 *hash_location = NULL;
1292 	struct tcp_md5sig_key *hash_expected;
1293 	const struct iphdr *iph = ip_hdr(skb);
1294 	const struct tcphdr *th = tcp_hdr(skb);
1295 	int genhash;
1296 	unsigned char newhash[16];
1297 
1298 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1299 					  AF_INET);
1300 	hash_location = tcp_parse_md5sig_option(th);
1301 
1302 	/* We've parsed the options - do we have a hash? */
1303 	if (!hash_expected && !hash_location)
1304 		return false;
1305 
1306 	if (hash_expected && !hash_location) {
1307 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1308 		return true;
1309 	}
1310 
1311 	if (!hash_expected && hash_location) {
1312 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1313 		return true;
1314 	}
1315 
1316 	/* Okay, so this is hash_expected and hash_location -
1317 	 * so we need to calculate the checksum.
1318 	 */
1319 	genhash = tcp_v4_md5_hash_skb(newhash,
1320 				      hash_expected,
1321 				      NULL, skb);
1322 
1323 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1325 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1326 				     &iph->saddr, ntohs(th->source),
1327 				     &iph->daddr, ntohs(th->dest),
1328 				     genhash ? " tcp_v4_calc_md5_hash failed"
1329 				     : "");
1330 		return true;
1331 	}
1332 	return false;
1333 #endif
1334 	return false;
1335 }
1336 
1337 static void tcp_v4_init_req(struct request_sock *req,
1338 			    const struct sock *sk_listener,
1339 			    struct sk_buff *skb)
1340 {
1341 	struct inet_request_sock *ireq = inet_rsk(req);
1342 	struct net *net = sock_net(sk_listener);
1343 
1344 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1345 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1346 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1347 }
1348 
1349 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1350 					  struct flowi *fl,
1351 					  const struct request_sock *req)
1352 {
1353 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1354 }
1355 
1356 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1357 	.family		=	PF_INET,
1358 	.obj_size	=	sizeof(struct tcp_request_sock),
1359 	.rtx_syn_ack	=	tcp_rtx_synack,
1360 	.send_ack	=	tcp_v4_reqsk_send_ack,
1361 	.destructor	=	tcp_v4_reqsk_destructor,
1362 	.send_reset	=	tcp_v4_send_reset,
1363 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1364 };
1365 
1366 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1367 	.mss_clamp	=	TCP_MSS_DEFAULT,
1368 #ifdef CONFIG_TCP_MD5SIG
1369 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1370 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1371 #endif
1372 	.init_req	=	tcp_v4_init_req,
1373 #ifdef CONFIG_SYN_COOKIES
1374 	.cookie_init_seq =	cookie_v4_init_sequence,
1375 #endif
1376 	.route_req	=	tcp_v4_route_req,
1377 	.init_seq	=	tcp_v4_init_seq,
1378 	.init_ts_off	=	tcp_v4_init_ts_off,
1379 	.send_synack	=	tcp_v4_send_synack,
1380 };
1381 
1382 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1383 {
1384 	/* Never answer to SYNs send to broadcast or multicast */
1385 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1386 		goto drop;
1387 
1388 	return tcp_conn_request(&tcp_request_sock_ops,
1389 				&tcp_request_sock_ipv4_ops, sk, skb);
1390 
1391 drop:
1392 	tcp_listendrop(sk);
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL(tcp_v4_conn_request);
1396 
1397 
1398 /*
1399  * The three way handshake has completed - we got a valid synack -
1400  * now create the new socket.
1401  */
1402 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1403 				  struct request_sock *req,
1404 				  struct dst_entry *dst,
1405 				  struct request_sock *req_unhash,
1406 				  bool *own_req)
1407 {
1408 	struct inet_request_sock *ireq;
1409 	struct inet_sock *newinet;
1410 	struct tcp_sock *newtp;
1411 	struct sock *newsk;
1412 #ifdef CONFIG_TCP_MD5SIG
1413 	struct tcp_md5sig_key *key;
1414 #endif
1415 	struct ip_options_rcu *inet_opt;
1416 
1417 	if (sk_acceptq_is_full(sk))
1418 		goto exit_overflow;
1419 
1420 	newsk = tcp_create_openreq_child(sk, req, skb);
1421 	if (!newsk)
1422 		goto exit_nonewsk;
1423 
1424 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1425 	inet_sk_rx_dst_set(newsk, skb);
1426 
1427 	newtp		      = tcp_sk(newsk);
1428 	newinet		      = inet_sk(newsk);
1429 	ireq		      = inet_rsk(req);
1430 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1431 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1432 	newsk->sk_bound_dev_if = ireq->ir_iif;
1433 	newinet->inet_saddr   = ireq->ir_loc_addr;
1434 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1435 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1436 	newinet->mc_index     = inet_iif(skb);
1437 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1438 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1439 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1440 	if (inet_opt)
1441 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1442 	newinet->inet_id = newtp->write_seq ^ jiffies;
1443 
1444 	if (!dst) {
1445 		dst = inet_csk_route_child_sock(sk, newsk, req);
1446 		if (!dst)
1447 			goto put_and_exit;
1448 	} else {
1449 		/* syncookie case : see end of cookie_v4_check() */
1450 	}
1451 	sk_setup_caps(newsk, dst);
1452 
1453 	tcp_ca_openreq_child(newsk, dst);
1454 
1455 	tcp_sync_mss(newsk, dst_mtu(dst));
1456 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1457 
1458 	tcp_initialize_rcv_mss(newsk);
1459 
1460 #ifdef CONFIG_TCP_MD5SIG
1461 	/* Copy over the MD5 key from the original socket */
1462 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1463 				AF_INET);
1464 	if (key) {
1465 		/*
1466 		 * We're using one, so create a matching key
1467 		 * on the newsk structure. If we fail to get
1468 		 * memory, then we end up not copying the key
1469 		 * across. Shucks.
1470 		 */
1471 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1472 			       AF_INET, 32, key->key, key->keylen, GFP_ATOMIC);
1473 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1474 	}
1475 #endif
1476 
1477 	if (__inet_inherit_port(sk, newsk) < 0)
1478 		goto put_and_exit;
1479 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1480 	if (likely(*own_req)) {
1481 		tcp_move_syn(newtp, req);
1482 		ireq->ireq_opt = NULL;
1483 	} else {
1484 		newinet->inet_opt = NULL;
1485 	}
1486 	return newsk;
1487 
1488 exit_overflow:
1489 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1490 exit_nonewsk:
1491 	dst_release(dst);
1492 exit:
1493 	tcp_listendrop(sk);
1494 	return NULL;
1495 put_and_exit:
1496 	newinet->inet_opt = NULL;
1497 	inet_csk_prepare_forced_close(newsk);
1498 	tcp_done(newsk);
1499 	goto exit;
1500 }
1501 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1502 
1503 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1504 {
1505 #ifdef CONFIG_SYN_COOKIES
1506 	const struct tcphdr *th = tcp_hdr(skb);
1507 
1508 	if (!th->syn)
1509 		sk = cookie_v4_check(sk, skb);
1510 #endif
1511 	return sk;
1512 }
1513 
1514 /* The socket must have it's spinlock held when we get
1515  * here, unless it is a TCP_LISTEN socket.
1516  *
1517  * We have a potential double-lock case here, so even when
1518  * doing backlog processing we use the BH locking scheme.
1519  * This is because we cannot sleep with the original spinlock
1520  * held.
1521  */
1522 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1523 {
1524 	struct sock *rsk;
1525 
1526 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1527 		struct dst_entry *dst = sk->sk_rx_dst;
1528 
1529 		sock_rps_save_rxhash(sk, skb);
1530 		sk_mark_napi_id(sk, skb);
1531 		if (dst) {
1532 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1533 			    !dst->ops->check(dst, 0)) {
1534 				dst_release(dst);
1535 				sk->sk_rx_dst = NULL;
1536 			}
1537 		}
1538 		tcp_rcv_established(sk, skb);
1539 		return 0;
1540 	}
1541 
1542 	if (tcp_checksum_complete(skb))
1543 		goto csum_err;
1544 
1545 	if (sk->sk_state == TCP_LISTEN) {
1546 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1547 
1548 		if (!nsk)
1549 			goto discard;
1550 		if (nsk != sk) {
1551 			if (tcp_child_process(sk, nsk, skb)) {
1552 				rsk = nsk;
1553 				goto reset;
1554 			}
1555 			return 0;
1556 		}
1557 	} else
1558 		sock_rps_save_rxhash(sk, skb);
1559 
1560 	if (tcp_rcv_state_process(sk, skb)) {
1561 		rsk = sk;
1562 		goto reset;
1563 	}
1564 	return 0;
1565 
1566 reset:
1567 	tcp_v4_send_reset(rsk, skb);
1568 discard:
1569 	kfree_skb(skb);
1570 	/* Be careful here. If this function gets more complicated and
1571 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1572 	 * might be destroyed here. This current version compiles correctly,
1573 	 * but you have been warned.
1574 	 */
1575 	return 0;
1576 
1577 csum_err:
1578 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1579 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1580 	goto discard;
1581 }
1582 EXPORT_SYMBOL(tcp_v4_do_rcv);
1583 
1584 int tcp_v4_early_demux(struct sk_buff *skb)
1585 {
1586 	const struct iphdr *iph;
1587 	const struct tcphdr *th;
1588 	struct sock *sk;
1589 
1590 	if (skb->pkt_type != PACKET_HOST)
1591 		return 0;
1592 
1593 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1594 		return 0;
1595 
1596 	iph = ip_hdr(skb);
1597 	th = tcp_hdr(skb);
1598 
1599 	if (th->doff < sizeof(struct tcphdr) / 4)
1600 		return 0;
1601 
1602 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1603 				       iph->saddr, th->source,
1604 				       iph->daddr, ntohs(th->dest),
1605 				       skb->skb_iif, inet_sdif(skb));
1606 	if (sk) {
1607 		skb->sk = sk;
1608 		skb->destructor = sock_edemux;
1609 		if (sk_fullsock(sk)) {
1610 			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1611 
1612 			if (dst)
1613 				dst = dst_check(dst, 0);
1614 			if (dst &&
1615 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1616 				skb_dst_set_noref(skb, dst);
1617 		}
1618 	}
1619 	return 0;
1620 }
1621 
1622 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1623 {
1624 	u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1625 	struct skb_shared_info *shinfo;
1626 	const struct tcphdr *th;
1627 	struct tcphdr *thtail;
1628 	struct sk_buff *tail;
1629 	unsigned int hdrlen;
1630 	bool fragstolen;
1631 	u32 gso_segs;
1632 	int delta;
1633 
1634 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1635 	 * we can fix skb->truesize to its real value to avoid future drops.
1636 	 * This is valid because skb is not yet charged to the socket.
1637 	 * It has been noticed pure SACK packets were sometimes dropped
1638 	 * (if cooked by drivers without copybreak feature).
1639 	 */
1640 	skb_condense(skb);
1641 
1642 	skb_dst_drop(skb);
1643 
1644 	if (unlikely(tcp_checksum_complete(skb))) {
1645 		bh_unlock_sock(sk);
1646 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1647 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1648 		return true;
1649 	}
1650 
1651 	/* Attempt coalescing to last skb in backlog, even if we are
1652 	 * above the limits.
1653 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1654 	 */
1655 	th = (const struct tcphdr *)skb->data;
1656 	hdrlen = th->doff * 4;
1657 	shinfo = skb_shinfo(skb);
1658 
1659 	if (!shinfo->gso_size)
1660 		shinfo->gso_size = skb->len - hdrlen;
1661 
1662 	if (!shinfo->gso_segs)
1663 		shinfo->gso_segs = 1;
1664 
1665 	tail = sk->sk_backlog.tail;
1666 	if (!tail)
1667 		goto no_coalesce;
1668 	thtail = (struct tcphdr *)tail->data;
1669 
1670 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1671 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1672 	    ((TCP_SKB_CB(tail)->tcp_flags |
1673 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_URG) ||
1674 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1675 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1676 #ifdef CONFIG_TLS_DEVICE
1677 	    tail->decrypted != skb->decrypted ||
1678 #endif
1679 	    thtail->doff != th->doff ||
1680 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1681 		goto no_coalesce;
1682 
1683 	__skb_pull(skb, hdrlen);
1684 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1685 		thtail->window = th->window;
1686 
1687 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1688 
1689 		if (after(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))
1690 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1691 
1692 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1693 
1694 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1695 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1696 			tail->tstamp = skb->tstamp;
1697 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1698 		}
1699 
1700 		/* Not as strict as GRO. We only need to carry mss max value */
1701 		skb_shinfo(tail)->gso_size = max(shinfo->gso_size,
1702 						 skb_shinfo(tail)->gso_size);
1703 
1704 		gso_segs = skb_shinfo(tail)->gso_segs + shinfo->gso_segs;
1705 		skb_shinfo(tail)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
1706 
1707 		sk->sk_backlog.len += delta;
1708 		__NET_INC_STATS(sock_net(sk),
1709 				LINUX_MIB_TCPBACKLOGCOALESCE);
1710 		kfree_skb_partial(skb, fragstolen);
1711 		return false;
1712 	}
1713 	__skb_push(skb, hdrlen);
1714 
1715 no_coalesce:
1716 	/* Only socket owner can try to collapse/prune rx queues
1717 	 * to reduce memory overhead, so add a little headroom here.
1718 	 * Few sockets backlog are possibly concurrently non empty.
1719 	 */
1720 	limit += 64*1024;
1721 
1722 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1723 		bh_unlock_sock(sk);
1724 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1725 		return true;
1726 	}
1727 	return false;
1728 }
1729 EXPORT_SYMBOL(tcp_add_backlog);
1730 
1731 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1732 {
1733 	struct tcphdr *th = (struct tcphdr *)skb->data;
1734 	unsigned int eaten = skb->len;
1735 	int err;
1736 
1737 	err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1738 	if (!err) {
1739 		eaten -= skb->len;
1740 		TCP_SKB_CB(skb)->end_seq -= eaten;
1741 	}
1742 	return err;
1743 }
1744 EXPORT_SYMBOL(tcp_filter);
1745 
1746 static void tcp_v4_restore_cb(struct sk_buff *skb)
1747 {
1748 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1749 		sizeof(struct inet_skb_parm));
1750 }
1751 
1752 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1753 			   const struct tcphdr *th)
1754 {
1755 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1756 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1757 	 */
1758 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1759 		sizeof(struct inet_skb_parm));
1760 	barrier();
1761 
1762 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1763 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1764 				    skb->len - th->doff * 4);
1765 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1766 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1767 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1768 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1769 	TCP_SKB_CB(skb)->sacked	 = 0;
1770 	TCP_SKB_CB(skb)->has_rxtstamp =
1771 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1772 }
1773 
1774 /*
1775  *	From tcp_input.c
1776  */
1777 
1778 int tcp_v4_rcv(struct sk_buff *skb)
1779 {
1780 	struct net *net = dev_net(skb->dev);
1781 	int sdif = inet_sdif(skb);
1782 	const struct iphdr *iph;
1783 	const struct tcphdr *th;
1784 	bool refcounted;
1785 	struct sock *sk;
1786 	int ret;
1787 
1788 	if (skb->pkt_type != PACKET_HOST)
1789 		goto discard_it;
1790 
1791 	/* Count it even if it's bad */
1792 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1793 
1794 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1795 		goto discard_it;
1796 
1797 	th = (const struct tcphdr *)skb->data;
1798 
1799 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1800 		goto bad_packet;
1801 	if (!pskb_may_pull(skb, th->doff * 4))
1802 		goto discard_it;
1803 
1804 	/* An explanation is required here, I think.
1805 	 * Packet length and doff are validated by header prediction,
1806 	 * provided case of th->doff==0 is eliminated.
1807 	 * So, we defer the checks. */
1808 
1809 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1810 		goto csum_error;
1811 
1812 	th = (const struct tcphdr *)skb->data;
1813 	iph = ip_hdr(skb);
1814 lookup:
1815 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1816 			       th->dest, sdif, &refcounted);
1817 	if (!sk)
1818 		goto no_tcp_socket;
1819 
1820 process:
1821 	if (sk->sk_state == TCP_TIME_WAIT)
1822 		goto do_time_wait;
1823 
1824 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1825 		struct request_sock *req = inet_reqsk(sk);
1826 		bool req_stolen = false;
1827 		struct sock *nsk;
1828 
1829 		sk = req->rsk_listener;
1830 		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1831 			sk_drops_add(sk, skb);
1832 			reqsk_put(req);
1833 			goto discard_it;
1834 		}
1835 		if (tcp_checksum_complete(skb)) {
1836 			reqsk_put(req);
1837 			goto csum_error;
1838 		}
1839 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1840 			inet_csk_reqsk_queue_drop_and_put(sk, req);
1841 			goto lookup;
1842 		}
1843 		/* We own a reference on the listener, increase it again
1844 		 * as we might lose it too soon.
1845 		 */
1846 		sock_hold(sk);
1847 		refcounted = true;
1848 		nsk = NULL;
1849 		if (!tcp_filter(sk, skb)) {
1850 			th = (const struct tcphdr *)skb->data;
1851 			iph = ip_hdr(skb);
1852 			tcp_v4_fill_cb(skb, iph, th);
1853 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
1854 		}
1855 		if (!nsk) {
1856 			reqsk_put(req);
1857 			if (req_stolen) {
1858 				/* Another cpu got exclusive access to req
1859 				 * and created a full blown socket.
1860 				 * Try to feed this packet to this socket
1861 				 * instead of discarding it.
1862 				 */
1863 				tcp_v4_restore_cb(skb);
1864 				sock_put(sk);
1865 				goto lookup;
1866 			}
1867 			goto discard_and_relse;
1868 		}
1869 		if (nsk == sk) {
1870 			reqsk_put(req);
1871 			tcp_v4_restore_cb(skb);
1872 		} else if (tcp_child_process(sk, nsk, skb)) {
1873 			tcp_v4_send_reset(nsk, skb);
1874 			goto discard_and_relse;
1875 		} else {
1876 			sock_put(sk);
1877 			return 0;
1878 		}
1879 	}
1880 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1881 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1882 		goto discard_and_relse;
1883 	}
1884 
1885 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1886 		goto discard_and_relse;
1887 
1888 	if (tcp_v4_inbound_md5_hash(sk, skb))
1889 		goto discard_and_relse;
1890 
1891 	nf_reset(skb);
1892 
1893 	if (tcp_filter(sk, skb))
1894 		goto discard_and_relse;
1895 	th = (const struct tcphdr *)skb->data;
1896 	iph = ip_hdr(skb);
1897 	tcp_v4_fill_cb(skb, iph, th);
1898 
1899 	skb->dev = NULL;
1900 
1901 	if (sk->sk_state == TCP_LISTEN) {
1902 		ret = tcp_v4_do_rcv(sk, skb);
1903 		goto put_and_return;
1904 	}
1905 
1906 	sk_incoming_cpu_update(sk);
1907 
1908 	bh_lock_sock_nested(sk);
1909 	tcp_segs_in(tcp_sk(sk), skb);
1910 	ret = 0;
1911 	if (!sock_owned_by_user(sk)) {
1912 		ret = tcp_v4_do_rcv(sk, skb);
1913 	} else if (tcp_add_backlog(sk, skb)) {
1914 		goto discard_and_relse;
1915 	}
1916 	bh_unlock_sock(sk);
1917 
1918 put_and_return:
1919 	if (refcounted)
1920 		sock_put(sk);
1921 
1922 	return ret;
1923 
1924 no_tcp_socket:
1925 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1926 		goto discard_it;
1927 
1928 	tcp_v4_fill_cb(skb, iph, th);
1929 
1930 	if (tcp_checksum_complete(skb)) {
1931 csum_error:
1932 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1933 bad_packet:
1934 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
1935 	} else {
1936 		tcp_v4_send_reset(NULL, skb);
1937 	}
1938 
1939 discard_it:
1940 	/* Discard frame. */
1941 	kfree_skb(skb);
1942 	return 0;
1943 
1944 discard_and_relse:
1945 	sk_drops_add(sk, skb);
1946 	if (refcounted)
1947 		sock_put(sk);
1948 	goto discard_it;
1949 
1950 do_time_wait:
1951 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1952 		inet_twsk_put(inet_twsk(sk));
1953 		goto discard_it;
1954 	}
1955 
1956 	tcp_v4_fill_cb(skb, iph, th);
1957 
1958 	if (tcp_checksum_complete(skb)) {
1959 		inet_twsk_put(inet_twsk(sk));
1960 		goto csum_error;
1961 	}
1962 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1963 	case TCP_TW_SYN: {
1964 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1965 							&tcp_hashinfo, skb,
1966 							__tcp_hdrlen(th),
1967 							iph->saddr, th->source,
1968 							iph->daddr, th->dest,
1969 							inet_iif(skb),
1970 							sdif);
1971 		if (sk2) {
1972 			inet_twsk_deschedule_put(inet_twsk(sk));
1973 			sk = sk2;
1974 			tcp_v4_restore_cb(skb);
1975 			refcounted = false;
1976 			goto process;
1977 		}
1978 	}
1979 		/* to ACK */
1980 		/* fall through */
1981 	case TCP_TW_ACK:
1982 		tcp_v4_timewait_ack(sk, skb);
1983 		break;
1984 	case TCP_TW_RST:
1985 		tcp_v4_send_reset(sk, skb);
1986 		inet_twsk_deschedule_put(inet_twsk(sk));
1987 		goto discard_it;
1988 	case TCP_TW_SUCCESS:;
1989 	}
1990 	goto discard_it;
1991 }
1992 
1993 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1994 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1995 	.twsk_unique	= tcp_twsk_unique,
1996 	.twsk_destructor= tcp_twsk_destructor,
1997 };
1998 
1999 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2000 {
2001 	struct dst_entry *dst = skb_dst(skb);
2002 
2003 	if (dst && dst_hold_safe(dst)) {
2004 		sk->sk_rx_dst = dst;
2005 		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2006 	}
2007 }
2008 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2009 
2010 const struct inet_connection_sock_af_ops ipv4_specific = {
2011 	.queue_xmit	   = ip_queue_xmit,
2012 	.send_check	   = tcp_v4_send_check,
2013 	.rebuild_header	   = inet_sk_rebuild_header,
2014 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2015 	.conn_request	   = tcp_v4_conn_request,
2016 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2017 	.net_header_len	   = sizeof(struct iphdr),
2018 	.setsockopt	   = ip_setsockopt,
2019 	.getsockopt	   = ip_getsockopt,
2020 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2021 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2022 #ifdef CONFIG_COMPAT
2023 	.compat_setsockopt = compat_ip_setsockopt,
2024 	.compat_getsockopt = compat_ip_getsockopt,
2025 #endif
2026 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2027 };
2028 EXPORT_SYMBOL(ipv4_specific);
2029 
2030 #ifdef CONFIG_TCP_MD5SIG
2031 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2032 	.md5_lookup		= tcp_v4_md5_lookup,
2033 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2034 	.md5_parse		= tcp_v4_parse_md5_keys,
2035 };
2036 #endif
2037 
2038 /* NOTE: A lot of things set to zero explicitly by call to
2039  *       sk_alloc() so need not be done here.
2040  */
2041 static int tcp_v4_init_sock(struct sock *sk)
2042 {
2043 	struct inet_connection_sock *icsk = inet_csk(sk);
2044 
2045 	tcp_init_sock(sk);
2046 
2047 	icsk->icsk_af_ops = &ipv4_specific;
2048 
2049 #ifdef CONFIG_TCP_MD5SIG
2050 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2051 #endif
2052 
2053 	return 0;
2054 }
2055 
2056 void tcp_v4_destroy_sock(struct sock *sk)
2057 {
2058 	struct tcp_sock *tp = tcp_sk(sk);
2059 
2060 	trace_tcp_destroy_sock(sk);
2061 
2062 	tcp_clear_xmit_timers(sk);
2063 
2064 	tcp_cleanup_congestion_control(sk);
2065 
2066 	tcp_cleanup_ulp(sk);
2067 
2068 	/* Cleanup up the write buffer. */
2069 	tcp_write_queue_purge(sk);
2070 
2071 	/* Check if we want to disable active TFO */
2072 	tcp_fastopen_active_disable_ofo_check(sk);
2073 
2074 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2075 	skb_rbtree_purge(&tp->out_of_order_queue);
2076 
2077 #ifdef CONFIG_TCP_MD5SIG
2078 	/* Clean up the MD5 key list, if any */
2079 	if (tp->md5sig_info) {
2080 		tcp_clear_md5_list(sk);
2081 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2082 		tp->md5sig_info = NULL;
2083 	}
2084 #endif
2085 
2086 	/* Clean up a referenced TCP bind bucket. */
2087 	if (inet_csk(sk)->icsk_bind_hash)
2088 		inet_put_port(sk);
2089 
2090 	BUG_ON(tp->fastopen_rsk);
2091 
2092 	/* If socket is aborted during connect operation */
2093 	tcp_free_fastopen_req(tp);
2094 	tcp_fastopen_destroy_cipher(sk);
2095 	tcp_saved_syn_free(tp);
2096 
2097 	sk_sockets_allocated_dec(sk);
2098 }
2099 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2100 
2101 #ifdef CONFIG_PROC_FS
2102 /* Proc filesystem TCP sock list dumping. */
2103 
2104 /*
2105  * Get next listener socket follow cur.  If cur is NULL, get first socket
2106  * starting from bucket given in st->bucket; when st->bucket is zero the
2107  * very first socket in the hash table is returned.
2108  */
2109 static void *listening_get_next(struct seq_file *seq, void *cur)
2110 {
2111 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2112 	struct tcp_iter_state *st = seq->private;
2113 	struct net *net = seq_file_net(seq);
2114 	struct inet_listen_hashbucket *ilb;
2115 	struct sock *sk = cur;
2116 
2117 	if (!sk) {
2118 get_head:
2119 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2120 		spin_lock(&ilb->lock);
2121 		sk = sk_head(&ilb->head);
2122 		st->offset = 0;
2123 		goto get_sk;
2124 	}
2125 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2126 	++st->num;
2127 	++st->offset;
2128 
2129 	sk = sk_next(sk);
2130 get_sk:
2131 	sk_for_each_from(sk) {
2132 		if (!net_eq(sock_net(sk), net))
2133 			continue;
2134 		if (sk->sk_family == afinfo->family)
2135 			return sk;
2136 	}
2137 	spin_unlock(&ilb->lock);
2138 	st->offset = 0;
2139 	if (++st->bucket < INET_LHTABLE_SIZE)
2140 		goto get_head;
2141 	return NULL;
2142 }
2143 
2144 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2145 {
2146 	struct tcp_iter_state *st = seq->private;
2147 	void *rc;
2148 
2149 	st->bucket = 0;
2150 	st->offset = 0;
2151 	rc = listening_get_next(seq, NULL);
2152 
2153 	while (rc && *pos) {
2154 		rc = listening_get_next(seq, rc);
2155 		--*pos;
2156 	}
2157 	return rc;
2158 }
2159 
2160 static inline bool empty_bucket(const struct tcp_iter_state *st)
2161 {
2162 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2163 }
2164 
2165 /*
2166  * Get first established socket starting from bucket given in st->bucket.
2167  * If st->bucket is zero, the very first socket in the hash is returned.
2168  */
2169 static void *established_get_first(struct seq_file *seq)
2170 {
2171 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2172 	struct tcp_iter_state *st = seq->private;
2173 	struct net *net = seq_file_net(seq);
2174 	void *rc = NULL;
2175 
2176 	st->offset = 0;
2177 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2178 		struct sock *sk;
2179 		struct hlist_nulls_node *node;
2180 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2181 
2182 		/* Lockless fast path for the common case of empty buckets */
2183 		if (empty_bucket(st))
2184 			continue;
2185 
2186 		spin_lock_bh(lock);
2187 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2188 			if (sk->sk_family != afinfo->family ||
2189 			    !net_eq(sock_net(sk), net)) {
2190 				continue;
2191 			}
2192 			rc = sk;
2193 			goto out;
2194 		}
2195 		spin_unlock_bh(lock);
2196 	}
2197 out:
2198 	return rc;
2199 }
2200 
2201 static void *established_get_next(struct seq_file *seq, void *cur)
2202 {
2203 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2204 	struct sock *sk = cur;
2205 	struct hlist_nulls_node *node;
2206 	struct tcp_iter_state *st = seq->private;
2207 	struct net *net = seq_file_net(seq);
2208 
2209 	++st->num;
2210 	++st->offset;
2211 
2212 	sk = sk_nulls_next(sk);
2213 
2214 	sk_nulls_for_each_from(sk, node) {
2215 		if (sk->sk_family == afinfo->family &&
2216 		    net_eq(sock_net(sk), net))
2217 			return sk;
2218 	}
2219 
2220 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2221 	++st->bucket;
2222 	return established_get_first(seq);
2223 }
2224 
2225 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2226 {
2227 	struct tcp_iter_state *st = seq->private;
2228 	void *rc;
2229 
2230 	st->bucket = 0;
2231 	rc = established_get_first(seq);
2232 
2233 	while (rc && pos) {
2234 		rc = established_get_next(seq, rc);
2235 		--pos;
2236 	}
2237 	return rc;
2238 }
2239 
2240 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2241 {
2242 	void *rc;
2243 	struct tcp_iter_state *st = seq->private;
2244 
2245 	st->state = TCP_SEQ_STATE_LISTENING;
2246 	rc	  = listening_get_idx(seq, &pos);
2247 
2248 	if (!rc) {
2249 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2250 		rc	  = established_get_idx(seq, pos);
2251 	}
2252 
2253 	return rc;
2254 }
2255 
2256 static void *tcp_seek_last_pos(struct seq_file *seq)
2257 {
2258 	struct tcp_iter_state *st = seq->private;
2259 	int offset = st->offset;
2260 	int orig_num = st->num;
2261 	void *rc = NULL;
2262 
2263 	switch (st->state) {
2264 	case TCP_SEQ_STATE_LISTENING:
2265 		if (st->bucket >= INET_LHTABLE_SIZE)
2266 			break;
2267 		st->state = TCP_SEQ_STATE_LISTENING;
2268 		rc = listening_get_next(seq, NULL);
2269 		while (offset-- && rc)
2270 			rc = listening_get_next(seq, rc);
2271 		if (rc)
2272 			break;
2273 		st->bucket = 0;
2274 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2275 		/* Fallthrough */
2276 	case TCP_SEQ_STATE_ESTABLISHED:
2277 		if (st->bucket > tcp_hashinfo.ehash_mask)
2278 			break;
2279 		rc = established_get_first(seq);
2280 		while (offset-- && rc)
2281 			rc = established_get_next(seq, rc);
2282 	}
2283 
2284 	st->num = orig_num;
2285 
2286 	return rc;
2287 }
2288 
2289 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2290 {
2291 	struct tcp_iter_state *st = seq->private;
2292 	void *rc;
2293 
2294 	if (*pos && *pos == st->last_pos) {
2295 		rc = tcp_seek_last_pos(seq);
2296 		if (rc)
2297 			goto out;
2298 	}
2299 
2300 	st->state = TCP_SEQ_STATE_LISTENING;
2301 	st->num = 0;
2302 	st->bucket = 0;
2303 	st->offset = 0;
2304 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2305 
2306 out:
2307 	st->last_pos = *pos;
2308 	return rc;
2309 }
2310 EXPORT_SYMBOL(tcp_seq_start);
2311 
2312 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2313 {
2314 	struct tcp_iter_state *st = seq->private;
2315 	void *rc = NULL;
2316 
2317 	if (v == SEQ_START_TOKEN) {
2318 		rc = tcp_get_idx(seq, 0);
2319 		goto out;
2320 	}
2321 
2322 	switch (st->state) {
2323 	case TCP_SEQ_STATE_LISTENING:
2324 		rc = listening_get_next(seq, v);
2325 		if (!rc) {
2326 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2327 			st->bucket = 0;
2328 			st->offset = 0;
2329 			rc	  = established_get_first(seq);
2330 		}
2331 		break;
2332 	case TCP_SEQ_STATE_ESTABLISHED:
2333 		rc = established_get_next(seq, v);
2334 		break;
2335 	}
2336 out:
2337 	++*pos;
2338 	st->last_pos = *pos;
2339 	return rc;
2340 }
2341 EXPORT_SYMBOL(tcp_seq_next);
2342 
2343 void tcp_seq_stop(struct seq_file *seq, void *v)
2344 {
2345 	struct tcp_iter_state *st = seq->private;
2346 
2347 	switch (st->state) {
2348 	case TCP_SEQ_STATE_LISTENING:
2349 		if (v != SEQ_START_TOKEN)
2350 			spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2351 		break;
2352 	case TCP_SEQ_STATE_ESTABLISHED:
2353 		if (v)
2354 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2355 		break;
2356 	}
2357 }
2358 EXPORT_SYMBOL(tcp_seq_stop);
2359 
2360 static void get_openreq4(const struct request_sock *req,
2361 			 struct seq_file *f, int i)
2362 {
2363 	const struct inet_request_sock *ireq = inet_rsk(req);
2364 	long delta = req->rsk_timer.expires - jiffies;
2365 
2366 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2367 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2368 		i,
2369 		ireq->ir_loc_addr,
2370 		ireq->ir_num,
2371 		ireq->ir_rmt_addr,
2372 		ntohs(ireq->ir_rmt_port),
2373 		TCP_SYN_RECV,
2374 		0, 0, /* could print option size, but that is af dependent. */
2375 		1,    /* timers active (only the expire timer) */
2376 		jiffies_delta_to_clock_t(delta),
2377 		req->num_timeout,
2378 		from_kuid_munged(seq_user_ns(f),
2379 				 sock_i_uid(req->rsk_listener)),
2380 		0,  /* non standard timer */
2381 		0, /* open_requests have no inode */
2382 		0,
2383 		req);
2384 }
2385 
2386 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2387 {
2388 	int timer_active;
2389 	unsigned long timer_expires;
2390 	const struct tcp_sock *tp = tcp_sk(sk);
2391 	const struct inet_connection_sock *icsk = inet_csk(sk);
2392 	const struct inet_sock *inet = inet_sk(sk);
2393 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2394 	__be32 dest = inet->inet_daddr;
2395 	__be32 src = inet->inet_rcv_saddr;
2396 	__u16 destp = ntohs(inet->inet_dport);
2397 	__u16 srcp = ntohs(inet->inet_sport);
2398 	int rx_queue;
2399 	int state;
2400 
2401 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2402 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2403 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2404 		timer_active	= 1;
2405 		timer_expires	= icsk->icsk_timeout;
2406 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2407 		timer_active	= 4;
2408 		timer_expires	= icsk->icsk_timeout;
2409 	} else if (timer_pending(&sk->sk_timer)) {
2410 		timer_active	= 2;
2411 		timer_expires	= sk->sk_timer.expires;
2412 	} else {
2413 		timer_active	= 0;
2414 		timer_expires = jiffies;
2415 	}
2416 
2417 	state = inet_sk_state_load(sk);
2418 	if (state == TCP_LISTEN)
2419 		rx_queue = sk->sk_ack_backlog;
2420 	else
2421 		/* Because we don't lock the socket,
2422 		 * we might find a transient negative value.
2423 		 */
2424 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2425 
2426 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2427 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2428 		i, src, srcp, dest, destp, state,
2429 		tp->write_seq - tp->snd_una,
2430 		rx_queue,
2431 		timer_active,
2432 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2433 		icsk->icsk_retransmits,
2434 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2435 		icsk->icsk_probes_out,
2436 		sock_i_ino(sk),
2437 		refcount_read(&sk->sk_refcnt), sk,
2438 		jiffies_to_clock_t(icsk->icsk_rto),
2439 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2440 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2441 		tp->snd_cwnd,
2442 		state == TCP_LISTEN ?
2443 		    fastopenq->max_qlen :
2444 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2445 }
2446 
2447 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2448 			       struct seq_file *f, int i)
2449 {
2450 	long delta = tw->tw_timer.expires - jiffies;
2451 	__be32 dest, src;
2452 	__u16 destp, srcp;
2453 
2454 	dest  = tw->tw_daddr;
2455 	src   = tw->tw_rcv_saddr;
2456 	destp = ntohs(tw->tw_dport);
2457 	srcp  = ntohs(tw->tw_sport);
2458 
2459 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2460 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2461 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2462 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2463 		refcount_read(&tw->tw_refcnt), tw);
2464 }
2465 
2466 #define TMPSZ 150
2467 
2468 static int tcp4_seq_show(struct seq_file *seq, void *v)
2469 {
2470 	struct tcp_iter_state *st;
2471 	struct sock *sk = v;
2472 
2473 	seq_setwidth(seq, TMPSZ - 1);
2474 	if (v == SEQ_START_TOKEN) {
2475 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2476 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2477 			   "inode");
2478 		goto out;
2479 	}
2480 	st = seq->private;
2481 
2482 	if (sk->sk_state == TCP_TIME_WAIT)
2483 		get_timewait4_sock(v, seq, st->num);
2484 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2485 		get_openreq4(v, seq, st->num);
2486 	else
2487 		get_tcp4_sock(v, seq, st->num);
2488 out:
2489 	seq_pad(seq, '\n');
2490 	return 0;
2491 }
2492 
2493 static const struct seq_operations tcp4_seq_ops = {
2494 	.show		= tcp4_seq_show,
2495 	.start		= tcp_seq_start,
2496 	.next		= tcp_seq_next,
2497 	.stop		= tcp_seq_stop,
2498 };
2499 
2500 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2501 	.family		= AF_INET,
2502 };
2503 
2504 static int __net_init tcp4_proc_init_net(struct net *net)
2505 {
2506 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2507 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2508 		return -ENOMEM;
2509 	return 0;
2510 }
2511 
2512 static void __net_exit tcp4_proc_exit_net(struct net *net)
2513 {
2514 	remove_proc_entry("tcp", net->proc_net);
2515 }
2516 
2517 static struct pernet_operations tcp4_net_ops = {
2518 	.init = tcp4_proc_init_net,
2519 	.exit = tcp4_proc_exit_net,
2520 };
2521 
2522 int __init tcp4_proc_init(void)
2523 {
2524 	return register_pernet_subsys(&tcp4_net_ops);
2525 }
2526 
2527 void tcp4_proc_exit(void)
2528 {
2529 	unregister_pernet_subsys(&tcp4_net_ops);
2530 }
2531 #endif /* CONFIG_PROC_FS */
2532 
2533 struct proto tcp_prot = {
2534 	.name			= "TCP",
2535 	.owner			= THIS_MODULE,
2536 	.close			= tcp_close,
2537 	.pre_connect		= tcp_v4_pre_connect,
2538 	.connect		= tcp_v4_connect,
2539 	.disconnect		= tcp_disconnect,
2540 	.accept			= inet_csk_accept,
2541 	.ioctl			= tcp_ioctl,
2542 	.init			= tcp_v4_init_sock,
2543 	.destroy		= tcp_v4_destroy_sock,
2544 	.shutdown		= tcp_shutdown,
2545 	.setsockopt		= tcp_setsockopt,
2546 	.getsockopt		= tcp_getsockopt,
2547 	.keepalive		= tcp_set_keepalive,
2548 	.recvmsg		= tcp_recvmsg,
2549 	.sendmsg		= tcp_sendmsg,
2550 	.sendpage		= tcp_sendpage,
2551 	.backlog_rcv		= tcp_v4_do_rcv,
2552 	.release_cb		= tcp_release_cb,
2553 	.hash			= inet_hash,
2554 	.unhash			= inet_unhash,
2555 	.get_port		= inet_csk_get_port,
2556 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2557 	.leave_memory_pressure	= tcp_leave_memory_pressure,
2558 	.stream_memory_free	= tcp_stream_memory_free,
2559 	.sockets_allocated	= &tcp_sockets_allocated,
2560 	.orphan_count		= &tcp_orphan_count,
2561 	.memory_allocated	= &tcp_memory_allocated,
2562 	.memory_pressure	= &tcp_memory_pressure,
2563 	.sysctl_mem		= sysctl_tcp_mem,
2564 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
2565 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
2566 	.max_header		= MAX_TCP_HEADER,
2567 	.obj_size		= sizeof(struct tcp_sock),
2568 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
2569 	.twsk_prot		= &tcp_timewait_sock_ops,
2570 	.rsk_prot		= &tcp_request_sock_ops,
2571 	.h.hashinfo		= &tcp_hashinfo,
2572 	.no_autobind		= true,
2573 #ifdef CONFIG_COMPAT
2574 	.compat_setsockopt	= compat_tcp_setsockopt,
2575 	.compat_getsockopt	= compat_tcp_getsockopt,
2576 #endif
2577 	.diag_destroy		= tcp_abort,
2578 };
2579 EXPORT_SYMBOL(tcp_prot);
2580 
2581 static void __net_exit tcp_sk_exit(struct net *net)
2582 {
2583 	int cpu;
2584 
2585 	module_put(net->ipv4.tcp_congestion_control->owner);
2586 
2587 	for_each_possible_cpu(cpu)
2588 		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2589 	free_percpu(net->ipv4.tcp_sk);
2590 }
2591 
2592 static int __net_init tcp_sk_init(struct net *net)
2593 {
2594 	int res, cpu, cnt;
2595 
2596 	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2597 	if (!net->ipv4.tcp_sk)
2598 		return -ENOMEM;
2599 
2600 	for_each_possible_cpu(cpu) {
2601 		struct sock *sk;
2602 
2603 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2604 					   IPPROTO_TCP, net);
2605 		if (res)
2606 			goto fail;
2607 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2608 
2609 		/* Please enforce IP_DF and IPID==0 for RST and
2610 		 * ACK sent in SYN-RECV and TIME-WAIT state.
2611 		 */
2612 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2613 
2614 		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2615 	}
2616 
2617 	net->ipv4.sysctl_tcp_ecn = 2;
2618 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2619 
2620 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2621 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2622 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2623 
2624 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2625 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2626 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2627 
2628 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2629 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2630 	net->ipv4.sysctl_tcp_syncookies = 1;
2631 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2632 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2633 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2634 	net->ipv4.sysctl_tcp_orphan_retries = 0;
2635 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2636 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2637 	net->ipv4.sysctl_tcp_tw_reuse = 2;
2638 
2639 	cnt = tcp_hashinfo.ehash_mask + 1;
2640 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2641 	net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2642 
2643 	net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2644 	net->ipv4.sysctl_tcp_sack = 1;
2645 	net->ipv4.sysctl_tcp_window_scaling = 1;
2646 	net->ipv4.sysctl_tcp_timestamps = 1;
2647 	net->ipv4.sysctl_tcp_early_retrans = 3;
2648 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2649 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
2650 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
2651 	net->ipv4.sysctl_tcp_max_reordering = 300;
2652 	net->ipv4.sysctl_tcp_dsack = 1;
2653 	net->ipv4.sysctl_tcp_app_win = 31;
2654 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
2655 	net->ipv4.sysctl_tcp_frto = 2;
2656 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2657 	/* This limits the percentage of the congestion window which we
2658 	 * will allow a single TSO frame to consume.  Building TSO frames
2659 	 * which are too large can cause TCP streams to be bursty.
2660 	 */
2661 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2662 	/* Default TSQ limit of 16 TSO segments */
2663 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2664 	/* rfc5961 challenge ack rate limiting */
2665 	net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2666 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
2667 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2668 	net->ipv4.sysctl_tcp_autocorking = 1;
2669 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2670 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2671 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2672 	if (net != &init_net) {
2673 		memcpy(net->ipv4.sysctl_tcp_rmem,
2674 		       init_net.ipv4.sysctl_tcp_rmem,
2675 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
2676 		memcpy(net->ipv4.sysctl_tcp_wmem,
2677 		       init_net.ipv4.sysctl_tcp_wmem,
2678 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
2679 	}
2680 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2681 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2682 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2683 	spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2684 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2685 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2686 
2687 	/* Reno is always built in */
2688 	if (!net_eq(net, &init_net) &&
2689 	    try_module_get(init_net.ipv4.tcp_congestion_control->owner))
2690 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2691 	else
2692 		net->ipv4.tcp_congestion_control = &tcp_reno;
2693 
2694 	return 0;
2695 fail:
2696 	tcp_sk_exit(net);
2697 
2698 	return res;
2699 }
2700 
2701 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2702 {
2703 	struct net *net;
2704 
2705 	inet_twsk_purge(&tcp_hashinfo, AF_INET);
2706 
2707 	list_for_each_entry(net, net_exit_list, exit_list)
2708 		tcp_fastopen_ctx_destroy(net);
2709 }
2710 
2711 static struct pernet_operations __net_initdata tcp_sk_ops = {
2712        .init	   = tcp_sk_init,
2713        .exit	   = tcp_sk_exit,
2714        .exit_batch = tcp_sk_exit_batch,
2715 };
2716 
2717 void __init tcp_v4_init(void)
2718 {
2719 	if (register_pernet_subsys(&tcp_sk_ops))
2720 		panic("Failed to create the TCP control socket.\n");
2721 }
2722