xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision d0b73b48)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84 
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87 
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91 
92 
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97 
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100 
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 					  ip_hdr(skb)->saddr,
105 					  tcp_hdr(skb)->dest,
106 					  tcp_hdr(skb)->source);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 	struct tcp_sock *tp = tcp_sk(sk);
113 
114 	/* With PAWS, it is safe from the viewpoint
115 	   of data integrity. Even without PAWS it is safe provided sequence
116 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117 
118 	   Actually, the idea is close to VJ's one, only timestamp cache is
119 	   held not per host, but per port pair and TW bucket is used as state
120 	   holder.
121 
122 	   If TW bucket has been already destroyed we fall back to VJ's scheme
123 	   and use initial timestamp retrieved from peer table.
124 	 */
125 	if (tcptw->tw_ts_recent_stamp &&
126 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
127 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 		if (tp->write_seq == 0)
130 			tp->write_seq = 1;
131 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
132 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 		sock_hold(sktw);
134 		return 1;
135 	}
136 
137 	return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140 
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 	struct inet_sock *inet = inet_sk(sk);
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	__be16 orig_sport, orig_dport;
148 	__be32 daddr, nexthop;
149 	struct flowi4 *fl4;
150 	struct rtable *rt;
151 	int err;
152 	struct ip_options_rcu *inet_opt;
153 
154 	if (addr_len < sizeof(struct sockaddr_in))
155 		return -EINVAL;
156 
157 	if (usin->sin_family != AF_INET)
158 		return -EAFNOSUPPORT;
159 
160 	nexthop = daddr = usin->sin_addr.s_addr;
161 	inet_opt = rcu_dereference_protected(inet->inet_opt,
162 					     sock_owned_by_user(sk));
163 	if (inet_opt && inet_opt->opt.srr) {
164 		if (!daddr)
165 			return -EINVAL;
166 		nexthop = inet_opt->opt.faddr;
167 	}
168 
169 	orig_sport = inet->inet_sport;
170 	orig_dport = usin->sin_port;
171 	fl4 = &inet->cork.fl.u.ip4;
172 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 			      IPPROTO_TCP,
175 			      orig_sport, orig_dport, sk, true);
176 	if (IS_ERR(rt)) {
177 		err = PTR_ERR(rt);
178 		if (err == -ENETUNREACH)
179 			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 		return err;
181 	}
182 
183 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 		ip_rt_put(rt);
185 		return -ENETUNREACH;
186 	}
187 
188 	if (!inet_opt || !inet_opt->opt.srr)
189 		daddr = fl4->daddr;
190 
191 	if (!inet->inet_saddr)
192 		inet->inet_saddr = fl4->saddr;
193 	inet->inet_rcv_saddr = inet->inet_saddr;
194 
195 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 		/* Reset inherited state */
197 		tp->rx_opt.ts_recent	   = 0;
198 		tp->rx_opt.ts_recent_stamp = 0;
199 		if (likely(!tp->repair))
200 			tp->write_seq	   = 0;
201 	}
202 
203 	if (tcp_death_row.sysctl_tw_recycle &&
204 	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 		tcp_fetch_timewait_stamp(sk, &rt->dst);
206 
207 	inet->inet_dport = usin->sin_port;
208 	inet->inet_daddr = daddr;
209 
210 	inet_csk(sk)->icsk_ext_hdr_len = 0;
211 	if (inet_opt)
212 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213 
214 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215 
216 	/* Socket identity is still unknown (sport may be zero).
217 	 * However we set state to SYN-SENT and not releasing socket
218 	 * lock select source port, enter ourselves into the hash tables and
219 	 * complete initialization after this.
220 	 */
221 	tcp_set_state(sk, TCP_SYN_SENT);
222 	err = inet_hash_connect(&tcp_death_row, sk);
223 	if (err)
224 		goto failure;
225 
226 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 			       inet->inet_sport, inet->inet_dport, sk);
228 	if (IS_ERR(rt)) {
229 		err = PTR_ERR(rt);
230 		rt = NULL;
231 		goto failure;
232 	}
233 	/* OK, now commit destination to socket.  */
234 	sk->sk_gso_type = SKB_GSO_TCPV4;
235 	sk_setup_caps(sk, &rt->dst);
236 
237 	if (!tp->write_seq && likely(!tp->repair))
238 		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 							   inet->inet_daddr,
240 							   inet->inet_sport,
241 							   usin->sin_port);
242 
243 	inet->inet_id = tp->write_seq ^ jiffies;
244 
245 	err = tcp_connect(sk);
246 
247 	rt = NULL;
248 	if (err)
249 		goto failure;
250 
251 	return 0;
252 
253 failure:
254 	/*
255 	 * This unhashes the socket and releases the local port,
256 	 * if necessary.
257 	 */
258 	tcp_set_state(sk, TCP_CLOSE);
259 	ip_rt_put(rt);
260 	sk->sk_route_caps = 0;
261 	inet->inet_dport = 0;
262 	return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265 
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 	struct dst_entry *dst;
274 	struct inet_sock *inet = inet_sk(sk);
275 	u32 mtu = tcp_sk(sk)->mtu_info;
276 
277 	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 	 * send out by Linux are always <576bytes so they should go through
279 	 * unfragmented).
280 	 */
281 	if (sk->sk_state == TCP_LISTEN)
282 		return;
283 
284 	dst = inet_csk_update_pmtu(sk, mtu);
285 	if (!dst)
286 		return;
287 
288 	/* Something is about to be wrong... Remember soft error
289 	 * for the case, if this connection will not able to recover.
290 	 */
291 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292 		sk->sk_err_soft = EMSGSIZE;
293 
294 	mtu = dst_mtu(dst);
295 
296 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298 		tcp_sync_mss(sk, mtu);
299 
300 		/* Resend the TCP packet because it's
301 		 * clear that the old packet has been
302 		 * dropped. This is the new "fast" path mtu
303 		 * discovery.
304 		 */
305 		tcp_simple_retransmit(sk);
306 	} /* else let the usual retransmit timer handle it */
307 }
308 
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311 	struct dst_entry *dst = __sk_dst_check(sk, 0);
312 
313 	if (dst)
314 		dst->ops->redirect(dst, sk, skb);
315 }
316 
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332 
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337 	struct inet_connection_sock *icsk;
338 	struct tcp_sock *tp;
339 	struct inet_sock *inet;
340 	const int type = icmp_hdr(icmp_skb)->type;
341 	const int code = icmp_hdr(icmp_skb)->code;
342 	struct sock *sk;
343 	struct sk_buff *skb;
344 	struct request_sock *req;
345 	__u32 seq;
346 	__u32 remaining;
347 	int err;
348 	struct net *net = dev_net(icmp_skb->dev);
349 
350 	if (icmp_skb->len < (iph->ihl << 2) + 8) {
351 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 		return;
353 	}
354 
355 	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356 			iph->saddr, th->source, inet_iif(icmp_skb));
357 	if (!sk) {
358 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359 		return;
360 	}
361 	if (sk->sk_state == TCP_TIME_WAIT) {
362 		inet_twsk_put(inet_twsk(sk));
363 		return;
364 	}
365 
366 	bh_lock_sock(sk);
367 	/* If too many ICMPs get dropped on busy
368 	 * servers this needs to be solved differently.
369 	 * We do take care of PMTU discovery (RFC1191) special case :
370 	 * we can receive locally generated ICMP messages while socket is held.
371 	 */
372 	if (sock_owned_by_user(sk)) {
373 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
374 			NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375 	}
376 	if (sk->sk_state == TCP_CLOSE)
377 		goto out;
378 
379 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
380 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
381 		goto out;
382 	}
383 
384 	icsk = inet_csk(sk);
385 	tp = tcp_sk(sk);
386 	req = tp->fastopen_rsk;
387 	seq = ntohl(th->seq);
388 	if (sk->sk_state != TCP_LISTEN &&
389 	    !between(seq, tp->snd_una, tp->snd_nxt) &&
390 	    (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
391 		/* For a Fast Open socket, allow seq to be snt_isn. */
392 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 		goto out;
394 	}
395 
396 	switch (type) {
397 	case ICMP_REDIRECT:
398 		do_redirect(icmp_skb, sk);
399 		goto out;
400 	case ICMP_SOURCE_QUENCH:
401 		/* Just silently ignore these. */
402 		goto out;
403 	case ICMP_PARAMETERPROB:
404 		err = EPROTO;
405 		break;
406 	case ICMP_DEST_UNREACH:
407 		if (code > NR_ICMP_UNREACH)
408 			goto out;
409 
410 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
411 			tp->mtu_info = info;
412 			if (!sock_owned_by_user(sk)) {
413 				tcp_v4_mtu_reduced(sk);
414 			} else {
415 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416 					sock_hold(sk);
417 			}
418 			goto out;
419 		}
420 
421 		err = icmp_err_convert[code].errno;
422 		/* check if icmp_skb allows revert of backoff
423 		 * (see draft-zimmermann-tcp-lcd) */
424 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425 			break;
426 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
427 		    !icsk->icsk_backoff)
428 			break;
429 
430 		/* XXX (TFO) - revisit the following logic for TFO */
431 
432 		if (sock_owned_by_user(sk))
433 			break;
434 
435 		icsk->icsk_backoff--;
436 		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437 			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438 		tcp_bound_rto(sk);
439 
440 		skb = tcp_write_queue_head(sk);
441 		BUG_ON(!skb);
442 
443 		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444 				tcp_time_stamp - TCP_SKB_CB(skb)->when);
445 
446 		if (remaining) {
447 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448 						  remaining, TCP_RTO_MAX);
449 		} else {
450 			/* RTO revert clocked out retransmission.
451 			 * Will retransmit now */
452 			tcp_retransmit_timer(sk);
453 		}
454 
455 		break;
456 	case ICMP_TIME_EXCEEDED:
457 		err = EHOSTUNREACH;
458 		break;
459 	default:
460 		goto out;
461 	}
462 
463 	/* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464 	 * than following the TCP_SYN_RECV case and closing the socket,
465 	 * we ignore the ICMP error and keep trying like a fully established
466 	 * socket. Is this the right thing to do?
467 	 */
468 	if (req && req->sk == NULL)
469 		goto out;
470 
471 	switch (sk->sk_state) {
472 		struct request_sock *req, **prev;
473 	case TCP_LISTEN:
474 		if (sock_owned_by_user(sk))
475 			goto out;
476 
477 		req = inet_csk_search_req(sk, &prev, th->dest,
478 					  iph->daddr, iph->saddr);
479 		if (!req)
480 			goto out;
481 
482 		/* ICMPs are not backlogged, hence we cannot get
483 		   an established socket here.
484 		 */
485 		WARN_ON(req->sk);
486 
487 		if (seq != tcp_rsk(req)->snt_isn) {
488 			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489 			goto out;
490 		}
491 
492 		/*
493 		 * Still in SYN_RECV, just remove it silently.
494 		 * There is no good way to pass the error to the newly
495 		 * created socket, and POSIX does not want network
496 		 * errors returned from accept().
497 		 */
498 		inet_csk_reqsk_queue_drop(sk, req, prev);
499 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500 		goto out;
501 
502 	case TCP_SYN_SENT:
503 	case TCP_SYN_RECV:  /* Cannot happen.
504 			       It can f.e. if SYNs crossed,
505 			       or Fast Open.
506 			     */
507 		if (!sock_owned_by_user(sk)) {
508 			sk->sk_err = err;
509 
510 			sk->sk_error_report(sk);
511 
512 			tcp_done(sk);
513 		} else {
514 			sk->sk_err_soft = err;
515 		}
516 		goto out;
517 	}
518 
519 	/* If we've already connected we will keep trying
520 	 * until we time out, or the user gives up.
521 	 *
522 	 * rfc1122 4.2.3.9 allows to consider as hard errors
523 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 	 * but it is obsoleted by pmtu discovery).
525 	 *
526 	 * Note, that in modern internet, where routing is unreliable
527 	 * and in each dark corner broken firewalls sit, sending random
528 	 * errors ordered by their masters even this two messages finally lose
529 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 	 *
531 	 * Now we are in compliance with RFCs.
532 	 *							--ANK (980905)
533 	 */
534 
535 	inet = inet_sk(sk);
536 	if (!sock_owned_by_user(sk) && inet->recverr) {
537 		sk->sk_err = err;
538 		sk->sk_error_report(sk);
539 	} else	{ /* Only an error on timeout */
540 		sk->sk_err_soft = err;
541 	}
542 
543 out:
544 	bh_unlock_sock(sk);
545 	sock_put(sk);
546 }
547 
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 				__be32 saddr, __be32 daddr)
550 {
551 	struct tcphdr *th = tcp_hdr(skb);
552 
553 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 		skb->csum_start = skb_transport_header(skb) - skb->head;
556 		skb->csum_offset = offsetof(struct tcphdr, check);
557 	} else {
558 		th->check = tcp_v4_check(skb->len, saddr, daddr,
559 					 csum_partial(th,
560 						      th->doff << 2,
561 						      skb->csum));
562 	}
563 }
564 
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 	const struct inet_sock *inet = inet_sk(sk);
569 
570 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573 
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 	const struct iphdr *iph;
577 	struct tcphdr *th;
578 
579 	if (!pskb_may_pull(skb, sizeof(*th)))
580 		return -EINVAL;
581 
582 	iph = ip_hdr(skb);
583 	th = tcp_hdr(skb);
584 
585 	th->check = 0;
586 	skb->ip_summed = CHECKSUM_PARTIAL;
587 	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 	return 0;
589 }
590 
591 /*
592  *	This routine will send an RST to the other tcp.
593  *
594  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *		      for reset.
596  *	Answer: if a packet caused RST, it is not for a socket
597  *		existing in our system, if it is matched to a socket,
598  *		it is just duplicate segment or bug in other side's TCP.
599  *		So that we build reply only basing on parameters
600  *		arrived with segment.
601  *	Exception: precedence violation. We do not implement it in any case.
602  */
603 
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 	const struct tcphdr *th = tcp_hdr(skb);
607 	struct {
608 		struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 	} rep;
613 	struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 	struct tcp_md5sig_key *key;
616 	const __u8 *hash_location = NULL;
617 	unsigned char newhash[16];
618 	int genhash;
619 	struct sock *sk1 = NULL;
620 #endif
621 	struct net *net;
622 
623 	/* Never send a reset in response to a reset. */
624 	if (th->rst)
625 		return;
626 
627 	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 		return;
629 
630 	/* Swap the send and the receive. */
631 	memset(&rep, 0, sizeof(rep));
632 	rep.th.dest   = th->source;
633 	rep.th.source = th->dest;
634 	rep.th.doff   = sizeof(struct tcphdr) / 4;
635 	rep.th.rst    = 1;
636 
637 	if (th->ack) {
638 		rep.th.seq = th->ack_seq;
639 	} else {
640 		rep.th.ack = 1;
641 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 				       skb->len - (th->doff << 2));
643 	}
644 
645 	memset(&arg, 0, sizeof(arg));
646 	arg.iov[0].iov_base = (unsigned char *)&rep;
647 	arg.iov[0].iov_len  = sizeof(rep.th);
648 
649 #ifdef CONFIG_TCP_MD5SIG
650 	hash_location = tcp_parse_md5sig_option(th);
651 	if (!sk && hash_location) {
652 		/*
653 		 * active side is lost. Try to find listening socket through
654 		 * source port, and then find md5 key through listening socket.
655 		 * we are not loose security here:
656 		 * Incoming packet is checked with md5 hash with finding key,
657 		 * no RST generated if md5 hash doesn't match.
658 		 */
659 		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 					     &tcp_hashinfo, ip_hdr(skb)->daddr,
661 					     ntohs(th->source), inet_iif(skb));
662 		/* don't send rst if it can't find key */
663 		if (!sk1)
664 			return;
665 		rcu_read_lock();
666 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667 					&ip_hdr(skb)->saddr, AF_INET);
668 		if (!key)
669 			goto release_sk1;
670 
671 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
673 			goto release_sk1;
674 	} else {
675 		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676 					     &ip_hdr(skb)->saddr,
677 					     AF_INET) : NULL;
678 	}
679 
680 	if (key) {
681 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682 				   (TCPOPT_NOP << 16) |
683 				   (TCPOPT_MD5SIG << 8) |
684 				   TCPOLEN_MD5SIG);
685 		/* Update length and the length the header thinks exists */
686 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687 		rep.th.doff = arg.iov[0].iov_len / 4;
688 
689 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690 				     key, ip_hdr(skb)->saddr,
691 				     ip_hdr(skb)->daddr, &rep.th);
692 	}
693 #endif
694 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695 				      ip_hdr(skb)->saddr, /* XXX */
696 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
697 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699 	/* When socket is gone, all binding information is lost.
700 	 * routing might fail in this case. No choice here, if we choose to force
701 	 * input interface, we will misroute in case of asymmetric route.
702 	 */
703 	if (sk)
704 		arg.bound_dev_if = sk->sk_bound_dev_if;
705 
706 	net = dev_net(skb_dst(skb)->dev);
707 	arg.tos = ip_hdr(skb)->tos;
708 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710 
711 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713 
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716 	if (sk1) {
717 		rcu_read_unlock();
718 		sock_put(sk1);
719 	}
720 #endif
721 }
722 
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724    outside socket context is ugly, certainly. What can I do?
725  */
726 
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728 			    u32 win, u32 ts, int oif,
729 			    struct tcp_md5sig_key *key,
730 			    int reply_flags, u8 tos)
731 {
732 	const struct tcphdr *th = tcp_hdr(skb);
733 	struct {
734 		struct tcphdr th;
735 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739 			];
740 	} rep;
741 	struct ip_reply_arg arg;
742 	struct net *net = dev_net(skb_dst(skb)->dev);
743 
744 	memset(&rep.th, 0, sizeof(struct tcphdr));
745 	memset(&arg, 0, sizeof(arg));
746 
747 	arg.iov[0].iov_base = (unsigned char *)&rep;
748 	arg.iov[0].iov_len  = sizeof(rep.th);
749 	if (ts) {
750 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751 				   (TCPOPT_TIMESTAMP << 8) |
752 				   TCPOLEN_TIMESTAMP);
753 		rep.opt[1] = htonl(tcp_time_stamp);
754 		rep.opt[2] = htonl(ts);
755 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756 	}
757 
758 	/* Swap the send and the receive. */
759 	rep.th.dest    = th->source;
760 	rep.th.source  = th->dest;
761 	rep.th.doff    = arg.iov[0].iov_len / 4;
762 	rep.th.seq     = htonl(seq);
763 	rep.th.ack_seq = htonl(ack);
764 	rep.th.ack     = 1;
765 	rep.th.window  = htons(win);
766 
767 #ifdef CONFIG_TCP_MD5SIG
768 	if (key) {
769 		int offset = (ts) ? 3 : 0;
770 
771 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772 					  (TCPOPT_NOP << 16) |
773 					  (TCPOPT_MD5SIG << 8) |
774 					  TCPOLEN_MD5SIG);
775 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776 		rep.th.doff = arg.iov[0].iov_len/4;
777 
778 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779 				    key, ip_hdr(skb)->saddr,
780 				    ip_hdr(skb)->daddr, &rep.th);
781 	}
782 #endif
783 	arg.flags = reply_flags;
784 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785 				      ip_hdr(skb)->saddr, /* XXX */
786 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
787 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788 	if (oif)
789 		arg.bound_dev_if = oif;
790 	arg.tos = tos;
791 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793 
794 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796 
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799 	struct inet_timewait_sock *tw = inet_twsk(sk);
800 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801 
802 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804 			tcptw->tw_ts_recent,
805 			tw->tw_bound_dev_if,
806 			tcp_twsk_md5_key(tcptw),
807 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808 			tw->tw_tos
809 			);
810 
811 	inet_twsk_put(tw);
812 }
813 
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815 				  struct request_sock *req)
816 {
817 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819 	 */
820 	tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821 			tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822 			tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823 			req->ts_recent,
824 			0,
825 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826 					  AF_INET),
827 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828 			ip_hdr(skb)->tos);
829 }
830 
831 /*
832  *	Send a SYN-ACK after having received a SYN.
833  *	This still operates on a request_sock only, not on a big
834  *	socket.
835  */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837 			      struct request_sock *req,
838 			      struct request_values *rvp,
839 			      u16 queue_mapping,
840 			      bool nocache)
841 {
842 	const struct inet_request_sock *ireq = inet_rsk(req);
843 	struct flowi4 fl4;
844 	int err = -1;
845 	struct sk_buff * skb;
846 
847 	/* First, grab a route. */
848 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849 		return -1;
850 
851 	skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852 
853 	if (skb) {
854 		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855 
856 		skb_set_queue_mapping(skb, queue_mapping);
857 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858 					    ireq->rmt_addr,
859 					    ireq->opt);
860 		err = net_xmit_eval(err);
861 		if (!tcp_rsk(req)->snt_synack && !err)
862 			tcp_rsk(req)->snt_synack = tcp_time_stamp;
863 	}
864 
865 	return err;
866 }
867 
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869 			     struct request_values *rvp)
870 {
871 	int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872 
873 	if (!res)
874 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875 	return res;
876 }
877 
878 /*
879  *	IPv4 request_sock destructor.
880  */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883 	kfree(inet_rsk(req)->opt);
884 }
885 
886 /*
887  * Return true if a syncookie should be sent
888  */
889 bool tcp_syn_flood_action(struct sock *sk,
890 			 const struct sk_buff *skb,
891 			 const char *proto)
892 {
893 	const char *msg = "Dropping request";
894 	bool want_cookie = false;
895 	struct listen_sock *lopt;
896 
897 
898 
899 #ifdef CONFIG_SYN_COOKIES
900 	if (sysctl_tcp_syncookies) {
901 		msg = "Sending cookies";
902 		want_cookie = true;
903 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904 	} else
905 #endif
906 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907 
908 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909 	if (!lopt->synflood_warned) {
910 		lopt->synflood_warned = 1;
911 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
912 			proto, ntohs(tcp_hdr(skb)->dest), msg);
913 	}
914 	return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917 
918 /*
919  * Save and compile IPv4 options into the request_sock if needed.
920  */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923 	const struct ip_options *opt = &(IPCB(skb)->opt);
924 	struct ip_options_rcu *dopt = NULL;
925 
926 	if (opt && opt->optlen) {
927 		int opt_size = sizeof(*dopt) + opt->optlen;
928 
929 		dopt = kmalloc(opt_size, GFP_ATOMIC);
930 		if (dopt) {
931 			if (ip_options_echo(&dopt->opt, skb)) {
932 				kfree(dopt);
933 				dopt = NULL;
934 			}
935 		}
936 	}
937 	return dopt;
938 }
939 
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942  * RFC2385 MD5 checksumming requires a mapping of
943  * IP address->MD5 Key.
944  * We need to maintain these in the sk structure.
945  */
946 
947 /* Find the Key structure for an address.  */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949 					 const union tcp_md5_addr *addr,
950 					 int family)
951 {
952 	struct tcp_sock *tp = tcp_sk(sk);
953 	struct tcp_md5sig_key *key;
954 	struct hlist_node *pos;
955 	unsigned int size = sizeof(struct in_addr);
956 	struct tcp_md5sig_info *md5sig;
957 
958 	/* caller either holds rcu_read_lock() or socket lock */
959 	md5sig = rcu_dereference_check(tp->md5sig_info,
960 				       sock_owned_by_user(sk) ||
961 				       lockdep_is_held(&sk->sk_lock.slock));
962 	if (!md5sig)
963 		return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965 	if (family == AF_INET6)
966 		size = sizeof(struct in6_addr);
967 #endif
968 	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969 		if (key->family != family)
970 			continue;
971 		if (!memcmp(&key->addr, addr, size))
972 			return key;
973 	}
974 	return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977 
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979 					 struct sock *addr_sk)
980 {
981 	union tcp_md5_addr *addr;
982 
983 	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984 	return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987 
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989 						      struct request_sock *req)
990 {
991 	union tcp_md5_addr *addr;
992 
993 	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994 	return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996 
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001 	/* Add Key to the list */
1002 	struct tcp_md5sig_key *key;
1003 	struct tcp_sock *tp = tcp_sk(sk);
1004 	struct tcp_md5sig_info *md5sig;
1005 
1006 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007 	if (key) {
1008 		/* Pre-existing entry - just update that one. */
1009 		memcpy(key->key, newkey, newkeylen);
1010 		key->keylen = newkeylen;
1011 		return 0;
1012 	}
1013 
1014 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1015 					   sock_owned_by_user(sk));
1016 	if (!md5sig) {
1017 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1018 		if (!md5sig)
1019 			return -ENOMEM;
1020 
1021 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022 		INIT_HLIST_HEAD(&md5sig->head);
1023 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1024 	}
1025 
1026 	key = sock_kmalloc(sk, sizeof(*key), gfp);
1027 	if (!key)
1028 		return -ENOMEM;
1029 	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030 		sock_kfree_s(sk, key, sizeof(*key));
1031 		return -ENOMEM;
1032 	}
1033 
1034 	memcpy(key->key, newkey, newkeylen);
1035 	key->keylen = newkeylen;
1036 	key->family = family;
1037 	memcpy(&key->addr, addr,
1038 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1039 				      sizeof(struct in_addr));
1040 	hlist_add_head_rcu(&key->node, &md5sig->head);
1041 	return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044 
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 	struct tcp_md5sig_key *key;
1049 	struct tcp_md5sig_info *md5sig;
1050 
1051 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052 	if (!key)
1053 		return -ENOENT;
1054 	hlist_del_rcu(&key->node);
1055 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056 	kfree_rcu(key, rcu);
1057 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1058 					   sock_owned_by_user(sk));
1059 	if (hlist_empty(&md5sig->head))
1060 		tcp_free_md5sig_pool();
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064 
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067 	struct tcp_sock *tp = tcp_sk(sk);
1068 	struct tcp_md5sig_key *key;
1069 	struct hlist_node *pos, *n;
1070 	struct tcp_md5sig_info *md5sig;
1071 
1072 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073 
1074 	if (!hlist_empty(&md5sig->head))
1075 		tcp_free_md5sig_pool();
1076 	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077 		hlist_del_rcu(&key->node);
1078 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079 		kfree_rcu(key, rcu);
1080 	}
1081 }
1082 
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084 				 int optlen)
1085 {
1086 	struct tcp_md5sig cmd;
1087 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088 
1089 	if (optlen < sizeof(cmd))
1090 		return -EINVAL;
1091 
1092 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093 		return -EFAULT;
1094 
1095 	if (sin->sin_family != AF_INET)
1096 		return -EINVAL;
1097 
1098 	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100 				      AF_INET);
1101 
1102 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103 		return -EINVAL;
1104 
1105 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106 			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107 			      GFP_KERNEL);
1108 }
1109 
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111 					__be32 daddr, __be32 saddr, int nbytes)
1112 {
1113 	struct tcp4_pseudohdr *bp;
1114 	struct scatterlist sg;
1115 
1116 	bp = &hp->md5_blk.ip4;
1117 
1118 	/*
1119 	 * 1. the TCP pseudo-header (in the order: source IP address,
1120 	 * destination IP address, zero-padded protocol number, and
1121 	 * segment length)
1122 	 */
1123 	bp->saddr = saddr;
1124 	bp->daddr = daddr;
1125 	bp->pad = 0;
1126 	bp->protocol = IPPROTO_TCP;
1127 	bp->len = cpu_to_be16(nbytes);
1128 
1129 	sg_init_one(&sg, bp, sizeof(*bp));
1130 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132 
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136 	struct tcp_md5sig_pool *hp;
1137 	struct hash_desc *desc;
1138 
1139 	hp = tcp_get_md5sig_pool();
1140 	if (!hp)
1141 		goto clear_hash_noput;
1142 	desc = &hp->md5_desc;
1143 
1144 	if (crypto_hash_init(desc))
1145 		goto clear_hash;
1146 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147 		goto clear_hash;
1148 	if (tcp_md5_hash_header(hp, th))
1149 		goto clear_hash;
1150 	if (tcp_md5_hash_key(hp, key))
1151 		goto clear_hash;
1152 	if (crypto_hash_final(desc, md5_hash))
1153 		goto clear_hash;
1154 
1155 	tcp_put_md5sig_pool();
1156 	return 0;
1157 
1158 clear_hash:
1159 	tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161 	memset(md5_hash, 0, 16);
1162 	return 1;
1163 }
1164 
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166 			const struct sock *sk, const struct request_sock *req,
1167 			const struct sk_buff *skb)
1168 {
1169 	struct tcp_md5sig_pool *hp;
1170 	struct hash_desc *desc;
1171 	const struct tcphdr *th = tcp_hdr(skb);
1172 	__be32 saddr, daddr;
1173 
1174 	if (sk) {
1175 		saddr = inet_sk(sk)->inet_saddr;
1176 		daddr = inet_sk(sk)->inet_daddr;
1177 	} else if (req) {
1178 		saddr = inet_rsk(req)->loc_addr;
1179 		daddr = inet_rsk(req)->rmt_addr;
1180 	} else {
1181 		const struct iphdr *iph = ip_hdr(skb);
1182 		saddr = iph->saddr;
1183 		daddr = iph->daddr;
1184 	}
1185 
1186 	hp = tcp_get_md5sig_pool();
1187 	if (!hp)
1188 		goto clear_hash_noput;
1189 	desc = &hp->md5_desc;
1190 
1191 	if (crypto_hash_init(desc))
1192 		goto clear_hash;
1193 
1194 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195 		goto clear_hash;
1196 	if (tcp_md5_hash_header(hp, th))
1197 		goto clear_hash;
1198 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199 		goto clear_hash;
1200 	if (tcp_md5_hash_key(hp, key))
1201 		goto clear_hash;
1202 	if (crypto_hash_final(desc, md5_hash))
1203 		goto clear_hash;
1204 
1205 	tcp_put_md5sig_pool();
1206 	return 0;
1207 
1208 clear_hash:
1209 	tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211 	memset(md5_hash, 0, 16);
1212 	return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215 
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218 	/*
1219 	 * This gets called for each TCP segment that arrives
1220 	 * so we want to be efficient.
1221 	 * We have 3 drop cases:
1222 	 * o No MD5 hash and one expected.
1223 	 * o MD5 hash and we're not expecting one.
1224 	 * o MD5 hash and its wrong.
1225 	 */
1226 	const __u8 *hash_location = NULL;
1227 	struct tcp_md5sig_key *hash_expected;
1228 	const struct iphdr *iph = ip_hdr(skb);
1229 	const struct tcphdr *th = tcp_hdr(skb);
1230 	int genhash;
1231 	unsigned char newhash[16];
1232 
1233 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234 					  AF_INET);
1235 	hash_location = tcp_parse_md5sig_option(th);
1236 
1237 	/* We've parsed the options - do we have a hash? */
1238 	if (!hash_expected && !hash_location)
1239 		return false;
1240 
1241 	if (hash_expected && !hash_location) {
1242 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243 		return true;
1244 	}
1245 
1246 	if (!hash_expected && hash_location) {
1247 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248 		return true;
1249 	}
1250 
1251 	/* Okay, so this is hash_expected and hash_location -
1252 	 * so we need to calculate the checksum.
1253 	 */
1254 	genhash = tcp_v4_md5_hash_skb(newhash,
1255 				      hash_expected,
1256 				      NULL, NULL, skb);
1257 
1258 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260 				     &iph->saddr, ntohs(th->source),
1261 				     &iph->daddr, ntohs(th->dest),
1262 				     genhash ? " tcp_v4_calc_md5_hash failed"
1263 				     : "");
1264 		return true;
1265 	}
1266 	return false;
1267 }
1268 
1269 #endif
1270 
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272 	.family		=	PF_INET,
1273 	.obj_size	=	sizeof(struct tcp_request_sock),
1274 	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1275 	.send_ack	=	tcp_v4_reqsk_send_ack,
1276 	.destructor	=	tcp_v4_reqsk_destructor,
1277 	.send_reset	=	tcp_v4_send_reset,
1278 	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1279 };
1280 
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283 	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1284 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287 
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289 			       struct request_sock *req,
1290 			       struct tcp_fastopen_cookie *foc,
1291 			       struct tcp_fastopen_cookie *valid_foc)
1292 {
1293 	bool skip_cookie = false;
1294 	struct fastopen_queue *fastopenq;
1295 
1296 	if (likely(!fastopen_cookie_present(foc))) {
1297 		/* See include/net/tcp.h for the meaning of these knobs */
1298 		if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299 		    ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301 			skip_cookie = true; /* no cookie to validate */
1302 		else
1303 			return false;
1304 	}
1305 	fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306 	/* A FO option is present; bump the counter. */
1307 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308 
1309 	/* Make sure the listener has enabled fastopen, and we don't
1310 	 * exceed the max # of pending TFO requests allowed before trying
1311 	 * to validating the cookie in order to avoid burning CPU cycles
1312 	 * unnecessarily.
1313 	 *
1314 	 * XXX (TFO) - The implication of checking the max_qlen before
1315 	 * processing a cookie request is that clients can't differentiate
1316 	 * between qlen overflow causing Fast Open to be disabled
1317 	 * temporarily vs a server not supporting Fast Open at all.
1318 	 */
1319 	if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320 	    fastopenq == NULL || fastopenq->max_qlen == 0)
1321 		return false;
1322 
1323 	if (fastopenq->qlen >= fastopenq->max_qlen) {
1324 		struct request_sock *req1;
1325 		spin_lock(&fastopenq->lock);
1326 		req1 = fastopenq->rskq_rst_head;
1327 		if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328 			spin_unlock(&fastopenq->lock);
1329 			NET_INC_STATS_BH(sock_net(sk),
1330 			    LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331 			/* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332 			foc->len = -1;
1333 			return false;
1334 		}
1335 		fastopenq->rskq_rst_head = req1->dl_next;
1336 		fastopenq->qlen--;
1337 		spin_unlock(&fastopenq->lock);
1338 		reqsk_free(req1);
1339 	}
1340 	if (skip_cookie) {
1341 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342 		return true;
1343 	}
1344 	if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345 		if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346 			tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347 			if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348 			    memcmp(&foc->val[0], &valid_foc->val[0],
1349 			    TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350 				return false;
1351 			valid_foc->len = -1;
1352 		}
1353 		/* Acknowledge the data received from the peer. */
1354 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355 		return true;
1356 	} else if (foc->len == 0) { /* Client requesting a cookie */
1357 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358 		NET_INC_STATS_BH(sock_net(sk),
1359 		    LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360 	} else {
1361 		/* Client sent a cookie with wrong size. Treat it
1362 		 * the same as invalid and return a valid one.
1363 		 */
1364 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365 	}
1366 	return false;
1367 }
1368 
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370 				    struct sk_buff *skb,
1371 				    struct sk_buff *skb_synack,
1372 				    struct request_sock *req,
1373 				    struct request_values *rvp)
1374 {
1375 	struct tcp_sock *tp = tcp_sk(sk);
1376 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377 	const struct inet_request_sock *ireq = inet_rsk(req);
1378 	struct sock *child;
1379 	int err;
1380 
1381 	req->num_retrans = 0;
1382 	req->num_timeout = 0;
1383 	req->sk = NULL;
1384 
1385 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386 	if (child == NULL) {
1387 		NET_INC_STATS_BH(sock_net(sk),
1388 				 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389 		kfree_skb(skb_synack);
1390 		return -1;
1391 	}
1392 	err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393 				    ireq->rmt_addr, ireq->opt);
1394 	err = net_xmit_eval(err);
1395 	if (!err)
1396 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397 	/* XXX (TFO) - is it ok to ignore error and continue? */
1398 
1399 	spin_lock(&queue->fastopenq->lock);
1400 	queue->fastopenq->qlen++;
1401 	spin_unlock(&queue->fastopenq->lock);
1402 
1403 	/* Initialize the child socket. Have to fix some values to take
1404 	 * into account the child is a Fast Open socket and is created
1405 	 * only out of the bits carried in the SYN packet.
1406 	 */
1407 	tp = tcp_sk(child);
1408 
1409 	tp->fastopen_rsk = req;
1410 	/* Do a hold on the listner sk so that if the listener is being
1411 	 * closed, the child that has been accepted can live on and still
1412 	 * access listen_lock.
1413 	 */
1414 	sock_hold(sk);
1415 	tcp_rsk(req)->listener = sk;
1416 
1417 	/* RFC1323: The window in SYN & SYN/ACK segments is never
1418 	 * scaled. So correct it appropriately.
1419 	 */
1420 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421 
1422 	/* Activate the retrans timer so that SYNACK can be retransmitted.
1423 	 * The request socket is not added to the SYN table of the parent
1424 	 * because it's been added to the accept queue directly.
1425 	 */
1426 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427 	    TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428 
1429 	/* Add the child socket directly into the accept queue */
1430 	inet_csk_reqsk_queue_add(sk, req, child);
1431 
1432 	/* Now finish processing the fastopen child socket. */
1433 	inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434 	tcp_init_congestion_control(child);
1435 	tcp_mtup_init(child);
1436 	tcp_init_buffer_space(child);
1437 	tcp_init_metrics(child);
1438 
1439 	/* Queue the data carried in the SYN packet. We need to first
1440 	 * bump skb's refcnt because the caller will attempt to free it.
1441 	 *
1442 	 * XXX (TFO) - we honor a zero-payload TFO request for now.
1443 	 * (Any reason not to?)
1444 	 */
1445 	if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446 		/* Don't queue the skb if there is no payload in SYN.
1447 		 * XXX (TFO) - How about SYN+FIN?
1448 		 */
1449 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450 	} else {
1451 		skb = skb_get(skb);
1452 		skb_dst_drop(skb);
1453 		__skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454 		skb_set_owner_r(skb, child);
1455 		__skb_queue_tail(&child->sk_receive_queue, skb);
1456 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457 		tp->syn_data_acked = 1;
1458 	}
1459 	sk->sk_data_ready(sk, 0);
1460 	bh_unlock_sock(child);
1461 	sock_put(child);
1462 	WARN_ON(req->sk == NULL);
1463 	return 0;
1464 }
1465 
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468 	struct tcp_extend_values tmp_ext;
1469 	struct tcp_options_received tmp_opt;
1470 	const u8 *hash_location;
1471 	struct request_sock *req;
1472 	struct inet_request_sock *ireq;
1473 	struct tcp_sock *tp = tcp_sk(sk);
1474 	struct dst_entry *dst = NULL;
1475 	__be32 saddr = ip_hdr(skb)->saddr;
1476 	__be32 daddr = ip_hdr(skb)->daddr;
1477 	__u32 isn = TCP_SKB_CB(skb)->when;
1478 	bool want_cookie = false;
1479 	struct flowi4 fl4;
1480 	struct tcp_fastopen_cookie foc = { .len = -1 };
1481 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482 	struct sk_buff *skb_synack;
1483 	int do_fastopen;
1484 
1485 	/* Never answer to SYNs send to broadcast or multicast */
1486 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487 		goto drop;
1488 
1489 	/* TW buckets are converted to open requests without
1490 	 * limitations, they conserve resources and peer is
1491 	 * evidently real one.
1492 	 */
1493 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494 		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495 		if (!want_cookie)
1496 			goto drop;
1497 	}
1498 
1499 	/* Accept backlog is full. If we have already queued enough
1500 	 * of warm entries in syn queue, drop request. It is better than
1501 	 * clogging syn queue with openreqs with exponentially increasing
1502 	 * timeout.
1503 	 */
1504 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1505 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1506 		goto drop;
1507 	}
1508 
1509 	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1510 	if (!req)
1511 		goto drop;
1512 
1513 #ifdef CONFIG_TCP_MD5SIG
1514 	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1515 #endif
1516 
1517 	tcp_clear_options(&tmp_opt);
1518 	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1519 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1520 	tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1521 	    want_cookie ? NULL : &foc);
1522 
1523 	if (tmp_opt.cookie_plus > 0 &&
1524 	    tmp_opt.saw_tstamp &&
1525 	    !tp->rx_opt.cookie_out_never &&
1526 	    (sysctl_tcp_cookie_size > 0 ||
1527 	     (tp->cookie_values != NULL &&
1528 	      tp->cookie_values->cookie_desired > 0))) {
1529 		u8 *c;
1530 		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1531 		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1532 
1533 		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1534 			goto drop_and_release;
1535 
1536 		/* Secret recipe starts with IP addresses */
1537 		*mess++ ^= (__force u32)daddr;
1538 		*mess++ ^= (__force u32)saddr;
1539 
1540 		/* plus variable length Initiator Cookie */
1541 		c = (u8 *)mess;
1542 		while (l-- > 0)
1543 			*c++ ^= *hash_location++;
1544 
1545 		want_cookie = false;	/* not our kind of cookie */
1546 		tmp_ext.cookie_out_never = 0; /* false */
1547 		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1548 	} else if (!tp->rx_opt.cookie_in_always) {
1549 		/* redundant indications, but ensure initialization. */
1550 		tmp_ext.cookie_out_never = 1; /* true */
1551 		tmp_ext.cookie_plus = 0;
1552 	} else {
1553 		goto drop_and_release;
1554 	}
1555 	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1556 
1557 	if (want_cookie && !tmp_opt.saw_tstamp)
1558 		tcp_clear_options(&tmp_opt);
1559 
1560 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1561 	tcp_openreq_init(req, &tmp_opt, skb);
1562 
1563 	ireq = inet_rsk(req);
1564 	ireq->loc_addr = daddr;
1565 	ireq->rmt_addr = saddr;
1566 	ireq->no_srccheck = inet_sk(sk)->transparent;
1567 	ireq->opt = tcp_v4_save_options(skb);
1568 
1569 	if (security_inet_conn_request(sk, skb, req))
1570 		goto drop_and_free;
1571 
1572 	if (!want_cookie || tmp_opt.tstamp_ok)
1573 		TCP_ECN_create_request(req, skb);
1574 
1575 	if (want_cookie) {
1576 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1577 		req->cookie_ts = tmp_opt.tstamp_ok;
1578 	} else if (!isn) {
1579 		/* VJ's idea. We save last timestamp seen
1580 		 * from the destination in peer table, when entering
1581 		 * state TIME-WAIT, and check against it before
1582 		 * accepting new connection request.
1583 		 *
1584 		 * If "isn" is not zero, this request hit alive
1585 		 * timewait bucket, so that all the necessary checks
1586 		 * are made in the function processing timewait state.
1587 		 */
1588 		if (tmp_opt.saw_tstamp &&
1589 		    tcp_death_row.sysctl_tw_recycle &&
1590 		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1591 		    fl4.daddr == saddr) {
1592 			if (!tcp_peer_is_proven(req, dst, true)) {
1593 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1594 				goto drop_and_release;
1595 			}
1596 		}
1597 		/* Kill the following clause, if you dislike this way. */
1598 		else if (!sysctl_tcp_syncookies &&
1599 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1600 			  (sysctl_max_syn_backlog >> 2)) &&
1601 			 !tcp_peer_is_proven(req, dst, false)) {
1602 			/* Without syncookies last quarter of
1603 			 * backlog is filled with destinations,
1604 			 * proven to be alive.
1605 			 * It means that we continue to communicate
1606 			 * to destinations, already remembered
1607 			 * to the moment of synflood.
1608 			 */
1609 			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1610 				       &saddr, ntohs(tcp_hdr(skb)->source));
1611 			goto drop_and_release;
1612 		}
1613 
1614 		isn = tcp_v4_init_sequence(skb);
1615 	}
1616 	tcp_rsk(req)->snt_isn = isn;
1617 
1618 	if (dst == NULL) {
1619 		dst = inet_csk_route_req(sk, &fl4, req);
1620 		if (dst == NULL)
1621 			goto drop_and_free;
1622 	}
1623 	do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1624 
1625 	/* We don't call tcp_v4_send_synack() directly because we need
1626 	 * to make sure a child socket can be created successfully before
1627 	 * sending back synack!
1628 	 *
1629 	 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1630 	 * (or better yet, call tcp_send_synack() in the child context
1631 	 * directly, but will have to fix bunch of other code first)
1632 	 * after syn_recv_sock() except one will need to first fix the
1633 	 * latter to remove its dependency on the current implementation
1634 	 * of tcp_v4_send_synack()->tcp_select_initial_window().
1635 	 */
1636 	skb_synack = tcp_make_synack(sk, dst, req,
1637 	    (struct request_values *)&tmp_ext,
1638 	    fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1639 
1640 	if (skb_synack) {
1641 		__tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1642 		skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1643 	} else
1644 		goto drop_and_free;
1645 
1646 	if (likely(!do_fastopen)) {
1647 		int err;
1648 		err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1649 		     ireq->rmt_addr, ireq->opt);
1650 		err = net_xmit_eval(err);
1651 		if (err || want_cookie)
1652 			goto drop_and_free;
1653 
1654 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1655 		tcp_rsk(req)->listener = NULL;
1656 		/* Add the request_sock to the SYN table */
1657 		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1658 		if (fastopen_cookie_present(&foc) && foc.len != 0)
1659 			NET_INC_STATS_BH(sock_net(sk),
1660 			    LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1661 	} else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1662 	    (struct request_values *)&tmp_ext))
1663 		goto drop_and_free;
1664 
1665 	return 0;
1666 
1667 drop_and_release:
1668 	dst_release(dst);
1669 drop_and_free:
1670 	reqsk_free(req);
1671 drop:
1672 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL(tcp_v4_conn_request);
1676 
1677 
1678 /*
1679  * The three way handshake has completed - we got a valid synack -
1680  * now create the new socket.
1681  */
1682 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1683 				  struct request_sock *req,
1684 				  struct dst_entry *dst)
1685 {
1686 	struct inet_request_sock *ireq;
1687 	struct inet_sock *newinet;
1688 	struct tcp_sock *newtp;
1689 	struct sock *newsk;
1690 #ifdef CONFIG_TCP_MD5SIG
1691 	struct tcp_md5sig_key *key;
1692 #endif
1693 	struct ip_options_rcu *inet_opt;
1694 
1695 	if (sk_acceptq_is_full(sk))
1696 		goto exit_overflow;
1697 
1698 	newsk = tcp_create_openreq_child(sk, req, skb);
1699 	if (!newsk)
1700 		goto exit_nonewsk;
1701 
1702 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1703 	inet_sk_rx_dst_set(newsk, skb);
1704 
1705 	newtp		      = tcp_sk(newsk);
1706 	newinet		      = inet_sk(newsk);
1707 	ireq		      = inet_rsk(req);
1708 	newinet->inet_daddr   = ireq->rmt_addr;
1709 	newinet->inet_rcv_saddr = ireq->loc_addr;
1710 	newinet->inet_saddr	      = ireq->loc_addr;
1711 	inet_opt	      = ireq->opt;
1712 	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1713 	ireq->opt	      = NULL;
1714 	newinet->mc_index     = inet_iif(skb);
1715 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1716 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1717 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1718 	if (inet_opt)
1719 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1720 	newinet->inet_id = newtp->write_seq ^ jiffies;
1721 
1722 	if (!dst) {
1723 		dst = inet_csk_route_child_sock(sk, newsk, req);
1724 		if (!dst)
1725 			goto put_and_exit;
1726 	} else {
1727 		/* syncookie case : see end of cookie_v4_check() */
1728 	}
1729 	sk_setup_caps(newsk, dst);
1730 
1731 	tcp_mtup_init(newsk);
1732 	tcp_sync_mss(newsk, dst_mtu(dst));
1733 	newtp->advmss = dst_metric_advmss(dst);
1734 	if (tcp_sk(sk)->rx_opt.user_mss &&
1735 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1736 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1737 
1738 	tcp_initialize_rcv_mss(newsk);
1739 	tcp_synack_rtt_meas(newsk, req);
1740 	newtp->total_retrans = req->num_retrans;
1741 
1742 #ifdef CONFIG_TCP_MD5SIG
1743 	/* Copy over the MD5 key from the original socket */
1744 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1745 				AF_INET);
1746 	if (key != NULL) {
1747 		/*
1748 		 * We're using one, so create a matching key
1749 		 * on the newsk structure. If we fail to get
1750 		 * memory, then we end up not copying the key
1751 		 * across. Shucks.
1752 		 */
1753 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1754 			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1755 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1756 	}
1757 #endif
1758 
1759 	if (__inet_inherit_port(sk, newsk) < 0)
1760 		goto put_and_exit;
1761 	__inet_hash_nolisten(newsk, NULL);
1762 
1763 	return newsk;
1764 
1765 exit_overflow:
1766 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1767 exit_nonewsk:
1768 	dst_release(dst);
1769 exit:
1770 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1771 	return NULL;
1772 put_and_exit:
1773 	inet_csk_prepare_forced_close(newsk);
1774 	tcp_done(newsk);
1775 	goto exit;
1776 }
1777 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1778 
1779 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1780 {
1781 	struct tcphdr *th = tcp_hdr(skb);
1782 	const struct iphdr *iph = ip_hdr(skb);
1783 	struct sock *nsk;
1784 	struct request_sock **prev;
1785 	/* Find possible connection requests. */
1786 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1787 						       iph->saddr, iph->daddr);
1788 	if (req)
1789 		return tcp_check_req(sk, skb, req, prev, false);
1790 
1791 	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1792 			th->source, iph->daddr, th->dest, inet_iif(skb));
1793 
1794 	if (nsk) {
1795 		if (nsk->sk_state != TCP_TIME_WAIT) {
1796 			bh_lock_sock(nsk);
1797 			return nsk;
1798 		}
1799 		inet_twsk_put(inet_twsk(nsk));
1800 		return NULL;
1801 	}
1802 
1803 #ifdef CONFIG_SYN_COOKIES
1804 	if (!th->syn)
1805 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1806 #endif
1807 	return sk;
1808 }
1809 
1810 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1811 {
1812 	const struct iphdr *iph = ip_hdr(skb);
1813 
1814 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1815 		if (!tcp_v4_check(skb->len, iph->saddr,
1816 				  iph->daddr, skb->csum)) {
1817 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1818 			return 0;
1819 		}
1820 	}
1821 
1822 	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1823 				       skb->len, IPPROTO_TCP, 0);
1824 
1825 	if (skb->len <= 76) {
1826 		return __skb_checksum_complete(skb);
1827 	}
1828 	return 0;
1829 }
1830 
1831 
1832 /* The socket must have it's spinlock held when we get
1833  * here.
1834  *
1835  * We have a potential double-lock case here, so even when
1836  * doing backlog processing we use the BH locking scheme.
1837  * This is because we cannot sleep with the original spinlock
1838  * held.
1839  */
1840 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1841 {
1842 	struct sock *rsk;
1843 #ifdef CONFIG_TCP_MD5SIG
1844 	/*
1845 	 * We really want to reject the packet as early as possible
1846 	 * if:
1847 	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1848 	 *  o There is an MD5 option and we're not expecting one
1849 	 */
1850 	if (tcp_v4_inbound_md5_hash(sk, skb))
1851 		goto discard;
1852 #endif
1853 
1854 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1855 		struct dst_entry *dst = sk->sk_rx_dst;
1856 
1857 		sock_rps_save_rxhash(sk, skb);
1858 		if (dst) {
1859 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1860 			    dst->ops->check(dst, 0) == NULL) {
1861 				dst_release(dst);
1862 				sk->sk_rx_dst = NULL;
1863 			}
1864 		}
1865 		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1866 			rsk = sk;
1867 			goto reset;
1868 		}
1869 		return 0;
1870 	}
1871 
1872 	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1873 		goto csum_err;
1874 
1875 	if (sk->sk_state == TCP_LISTEN) {
1876 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1877 		if (!nsk)
1878 			goto discard;
1879 
1880 		if (nsk != sk) {
1881 			sock_rps_save_rxhash(nsk, skb);
1882 			if (tcp_child_process(sk, nsk, skb)) {
1883 				rsk = nsk;
1884 				goto reset;
1885 			}
1886 			return 0;
1887 		}
1888 	} else
1889 		sock_rps_save_rxhash(sk, skb);
1890 
1891 	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1892 		rsk = sk;
1893 		goto reset;
1894 	}
1895 	return 0;
1896 
1897 reset:
1898 	tcp_v4_send_reset(rsk, skb);
1899 discard:
1900 	kfree_skb(skb);
1901 	/* Be careful here. If this function gets more complicated and
1902 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1903 	 * might be destroyed here. This current version compiles correctly,
1904 	 * but you have been warned.
1905 	 */
1906 	return 0;
1907 
1908 csum_err:
1909 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1910 	goto discard;
1911 }
1912 EXPORT_SYMBOL(tcp_v4_do_rcv);
1913 
1914 void tcp_v4_early_demux(struct sk_buff *skb)
1915 {
1916 	const struct iphdr *iph;
1917 	const struct tcphdr *th;
1918 	struct sock *sk;
1919 
1920 	if (skb->pkt_type != PACKET_HOST)
1921 		return;
1922 
1923 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1924 		return;
1925 
1926 	iph = ip_hdr(skb);
1927 	th = tcp_hdr(skb);
1928 
1929 	if (th->doff < sizeof(struct tcphdr) / 4)
1930 		return;
1931 
1932 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1933 				       iph->saddr, th->source,
1934 				       iph->daddr, ntohs(th->dest),
1935 				       skb->skb_iif);
1936 	if (sk) {
1937 		skb->sk = sk;
1938 		skb->destructor = sock_edemux;
1939 		if (sk->sk_state != TCP_TIME_WAIT) {
1940 			struct dst_entry *dst = sk->sk_rx_dst;
1941 
1942 			if (dst)
1943 				dst = dst_check(dst, 0);
1944 			if (dst &&
1945 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1946 				skb_dst_set_noref(skb, dst);
1947 		}
1948 	}
1949 }
1950 
1951 /*
1952  *	From tcp_input.c
1953  */
1954 
1955 int tcp_v4_rcv(struct sk_buff *skb)
1956 {
1957 	const struct iphdr *iph;
1958 	const struct tcphdr *th;
1959 	struct sock *sk;
1960 	int ret;
1961 	struct net *net = dev_net(skb->dev);
1962 
1963 	if (skb->pkt_type != PACKET_HOST)
1964 		goto discard_it;
1965 
1966 	/* Count it even if it's bad */
1967 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1968 
1969 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1970 		goto discard_it;
1971 
1972 	th = tcp_hdr(skb);
1973 
1974 	if (th->doff < sizeof(struct tcphdr) / 4)
1975 		goto bad_packet;
1976 	if (!pskb_may_pull(skb, th->doff * 4))
1977 		goto discard_it;
1978 
1979 	/* An explanation is required here, I think.
1980 	 * Packet length and doff are validated by header prediction,
1981 	 * provided case of th->doff==0 is eliminated.
1982 	 * So, we defer the checks. */
1983 	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1984 		goto bad_packet;
1985 
1986 	th = tcp_hdr(skb);
1987 	iph = ip_hdr(skb);
1988 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1989 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1990 				    skb->len - th->doff * 4);
1991 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1992 	TCP_SKB_CB(skb)->when	 = 0;
1993 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1994 	TCP_SKB_CB(skb)->sacked	 = 0;
1995 
1996 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1997 	if (!sk)
1998 		goto no_tcp_socket;
1999 
2000 process:
2001 	if (sk->sk_state == TCP_TIME_WAIT)
2002 		goto do_time_wait;
2003 
2004 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2005 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2006 		goto discard_and_relse;
2007 	}
2008 
2009 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2010 		goto discard_and_relse;
2011 	nf_reset(skb);
2012 
2013 	if (sk_filter(sk, skb))
2014 		goto discard_and_relse;
2015 
2016 	skb->dev = NULL;
2017 
2018 	bh_lock_sock_nested(sk);
2019 	ret = 0;
2020 	if (!sock_owned_by_user(sk)) {
2021 #ifdef CONFIG_NET_DMA
2022 		struct tcp_sock *tp = tcp_sk(sk);
2023 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2024 			tp->ucopy.dma_chan = net_dma_find_channel();
2025 		if (tp->ucopy.dma_chan)
2026 			ret = tcp_v4_do_rcv(sk, skb);
2027 		else
2028 #endif
2029 		{
2030 			if (!tcp_prequeue(sk, skb))
2031 				ret = tcp_v4_do_rcv(sk, skb);
2032 		}
2033 	} else if (unlikely(sk_add_backlog(sk, skb,
2034 					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
2035 		bh_unlock_sock(sk);
2036 		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2037 		goto discard_and_relse;
2038 	}
2039 	bh_unlock_sock(sk);
2040 
2041 	sock_put(sk);
2042 
2043 	return ret;
2044 
2045 no_tcp_socket:
2046 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2047 		goto discard_it;
2048 
2049 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2050 bad_packet:
2051 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2052 	} else {
2053 		tcp_v4_send_reset(NULL, skb);
2054 	}
2055 
2056 discard_it:
2057 	/* Discard frame. */
2058 	kfree_skb(skb);
2059 	return 0;
2060 
2061 discard_and_relse:
2062 	sock_put(sk);
2063 	goto discard_it;
2064 
2065 do_time_wait:
2066 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2067 		inet_twsk_put(inet_twsk(sk));
2068 		goto discard_it;
2069 	}
2070 
2071 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2072 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2073 		inet_twsk_put(inet_twsk(sk));
2074 		goto discard_it;
2075 	}
2076 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2077 	case TCP_TW_SYN: {
2078 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2079 							&tcp_hashinfo,
2080 							iph->daddr, th->dest,
2081 							inet_iif(skb));
2082 		if (sk2) {
2083 			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2084 			inet_twsk_put(inet_twsk(sk));
2085 			sk = sk2;
2086 			goto process;
2087 		}
2088 		/* Fall through to ACK */
2089 	}
2090 	case TCP_TW_ACK:
2091 		tcp_v4_timewait_ack(sk, skb);
2092 		break;
2093 	case TCP_TW_RST:
2094 		goto no_tcp_socket;
2095 	case TCP_TW_SUCCESS:;
2096 	}
2097 	goto discard_it;
2098 }
2099 
2100 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2101 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2102 	.twsk_unique	= tcp_twsk_unique,
2103 	.twsk_destructor= tcp_twsk_destructor,
2104 };
2105 
2106 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2107 {
2108 	struct dst_entry *dst = skb_dst(skb);
2109 
2110 	dst_hold(dst);
2111 	sk->sk_rx_dst = dst;
2112 	inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2113 }
2114 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2115 
2116 const struct inet_connection_sock_af_ops ipv4_specific = {
2117 	.queue_xmit	   = ip_queue_xmit,
2118 	.send_check	   = tcp_v4_send_check,
2119 	.rebuild_header	   = inet_sk_rebuild_header,
2120 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2121 	.conn_request	   = tcp_v4_conn_request,
2122 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2123 	.net_header_len	   = sizeof(struct iphdr),
2124 	.setsockopt	   = ip_setsockopt,
2125 	.getsockopt	   = ip_getsockopt,
2126 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2127 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2128 	.bind_conflict	   = inet_csk_bind_conflict,
2129 #ifdef CONFIG_COMPAT
2130 	.compat_setsockopt = compat_ip_setsockopt,
2131 	.compat_getsockopt = compat_ip_getsockopt,
2132 #endif
2133 };
2134 EXPORT_SYMBOL(ipv4_specific);
2135 
2136 #ifdef CONFIG_TCP_MD5SIG
2137 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2138 	.md5_lookup		= tcp_v4_md5_lookup,
2139 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2140 	.md5_parse		= tcp_v4_parse_md5_keys,
2141 };
2142 #endif
2143 
2144 /* NOTE: A lot of things set to zero explicitly by call to
2145  *       sk_alloc() so need not be done here.
2146  */
2147 static int tcp_v4_init_sock(struct sock *sk)
2148 {
2149 	struct inet_connection_sock *icsk = inet_csk(sk);
2150 
2151 	tcp_init_sock(sk);
2152 
2153 	icsk->icsk_af_ops = &ipv4_specific;
2154 
2155 #ifdef CONFIG_TCP_MD5SIG
2156 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2157 #endif
2158 
2159 	return 0;
2160 }
2161 
2162 void tcp_v4_destroy_sock(struct sock *sk)
2163 {
2164 	struct tcp_sock *tp = tcp_sk(sk);
2165 
2166 	tcp_clear_xmit_timers(sk);
2167 
2168 	tcp_cleanup_congestion_control(sk);
2169 
2170 	/* Cleanup up the write buffer. */
2171 	tcp_write_queue_purge(sk);
2172 
2173 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2174 	__skb_queue_purge(&tp->out_of_order_queue);
2175 
2176 #ifdef CONFIG_TCP_MD5SIG
2177 	/* Clean up the MD5 key list, if any */
2178 	if (tp->md5sig_info) {
2179 		tcp_clear_md5_list(sk);
2180 		kfree_rcu(tp->md5sig_info, rcu);
2181 		tp->md5sig_info = NULL;
2182 	}
2183 #endif
2184 
2185 #ifdef CONFIG_NET_DMA
2186 	/* Cleans up our sk_async_wait_queue */
2187 	__skb_queue_purge(&sk->sk_async_wait_queue);
2188 #endif
2189 
2190 	/* Clean prequeue, it must be empty really */
2191 	__skb_queue_purge(&tp->ucopy.prequeue);
2192 
2193 	/* Clean up a referenced TCP bind bucket. */
2194 	if (inet_csk(sk)->icsk_bind_hash)
2195 		inet_put_port(sk);
2196 
2197 	/* TCP Cookie Transactions */
2198 	if (tp->cookie_values != NULL) {
2199 		kref_put(&tp->cookie_values->kref,
2200 			 tcp_cookie_values_release);
2201 		tp->cookie_values = NULL;
2202 	}
2203 	BUG_ON(tp->fastopen_rsk != NULL);
2204 
2205 	/* If socket is aborted during connect operation */
2206 	tcp_free_fastopen_req(tp);
2207 
2208 	sk_sockets_allocated_dec(sk);
2209 	sock_release_memcg(sk);
2210 }
2211 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2212 
2213 #ifdef CONFIG_PROC_FS
2214 /* Proc filesystem TCP sock list dumping. */
2215 
2216 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2217 {
2218 	return hlist_nulls_empty(head) ? NULL :
2219 		list_entry(head->first, struct inet_timewait_sock, tw_node);
2220 }
2221 
2222 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2223 {
2224 	return !is_a_nulls(tw->tw_node.next) ?
2225 		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2226 }
2227 
2228 /*
2229  * Get next listener socket follow cur.  If cur is NULL, get first socket
2230  * starting from bucket given in st->bucket; when st->bucket is zero the
2231  * very first socket in the hash table is returned.
2232  */
2233 static void *listening_get_next(struct seq_file *seq, void *cur)
2234 {
2235 	struct inet_connection_sock *icsk;
2236 	struct hlist_nulls_node *node;
2237 	struct sock *sk = cur;
2238 	struct inet_listen_hashbucket *ilb;
2239 	struct tcp_iter_state *st = seq->private;
2240 	struct net *net = seq_file_net(seq);
2241 
2242 	if (!sk) {
2243 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2244 		spin_lock_bh(&ilb->lock);
2245 		sk = sk_nulls_head(&ilb->head);
2246 		st->offset = 0;
2247 		goto get_sk;
2248 	}
2249 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2250 	++st->num;
2251 	++st->offset;
2252 
2253 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2254 		struct request_sock *req = cur;
2255 
2256 		icsk = inet_csk(st->syn_wait_sk);
2257 		req = req->dl_next;
2258 		while (1) {
2259 			while (req) {
2260 				if (req->rsk_ops->family == st->family) {
2261 					cur = req;
2262 					goto out;
2263 				}
2264 				req = req->dl_next;
2265 			}
2266 			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2267 				break;
2268 get_req:
2269 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2270 		}
2271 		sk	  = sk_nulls_next(st->syn_wait_sk);
2272 		st->state = TCP_SEQ_STATE_LISTENING;
2273 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2274 	} else {
2275 		icsk = inet_csk(sk);
2276 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2277 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2278 			goto start_req;
2279 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2280 		sk = sk_nulls_next(sk);
2281 	}
2282 get_sk:
2283 	sk_nulls_for_each_from(sk, node) {
2284 		if (!net_eq(sock_net(sk), net))
2285 			continue;
2286 		if (sk->sk_family == st->family) {
2287 			cur = sk;
2288 			goto out;
2289 		}
2290 		icsk = inet_csk(sk);
2291 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2292 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2293 start_req:
2294 			st->uid		= sock_i_uid(sk);
2295 			st->syn_wait_sk = sk;
2296 			st->state	= TCP_SEQ_STATE_OPENREQ;
2297 			st->sbucket	= 0;
2298 			goto get_req;
2299 		}
2300 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2301 	}
2302 	spin_unlock_bh(&ilb->lock);
2303 	st->offset = 0;
2304 	if (++st->bucket < INET_LHTABLE_SIZE) {
2305 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2306 		spin_lock_bh(&ilb->lock);
2307 		sk = sk_nulls_head(&ilb->head);
2308 		goto get_sk;
2309 	}
2310 	cur = NULL;
2311 out:
2312 	return cur;
2313 }
2314 
2315 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2316 {
2317 	struct tcp_iter_state *st = seq->private;
2318 	void *rc;
2319 
2320 	st->bucket = 0;
2321 	st->offset = 0;
2322 	rc = listening_get_next(seq, NULL);
2323 
2324 	while (rc && *pos) {
2325 		rc = listening_get_next(seq, rc);
2326 		--*pos;
2327 	}
2328 	return rc;
2329 }
2330 
2331 static inline bool empty_bucket(struct tcp_iter_state *st)
2332 {
2333 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2334 		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2335 }
2336 
2337 /*
2338  * Get first established socket starting from bucket given in st->bucket.
2339  * If st->bucket is zero, the very first socket in the hash is returned.
2340  */
2341 static void *established_get_first(struct seq_file *seq)
2342 {
2343 	struct tcp_iter_state *st = seq->private;
2344 	struct net *net = seq_file_net(seq);
2345 	void *rc = NULL;
2346 
2347 	st->offset = 0;
2348 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2349 		struct sock *sk;
2350 		struct hlist_nulls_node *node;
2351 		struct inet_timewait_sock *tw;
2352 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2353 
2354 		/* Lockless fast path for the common case of empty buckets */
2355 		if (empty_bucket(st))
2356 			continue;
2357 
2358 		spin_lock_bh(lock);
2359 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2360 			if (sk->sk_family != st->family ||
2361 			    !net_eq(sock_net(sk), net)) {
2362 				continue;
2363 			}
2364 			rc = sk;
2365 			goto out;
2366 		}
2367 		st->state = TCP_SEQ_STATE_TIME_WAIT;
2368 		inet_twsk_for_each(tw, node,
2369 				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2370 			if (tw->tw_family != st->family ||
2371 			    !net_eq(twsk_net(tw), net)) {
2372 				continue;
2373 			}
2374 			rc = tw;
2375 			goto out;
2376 		}
2377 		spin_unlock_bh(lock);
2378 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2379 	}
2380 out:
2381 	return rc;
2382 }
2383 
2384 static void *established_get_next(struct seq_file *seq, void *cur)
2385 {
2386 	struct sock *sk = cur;
2387 	struct inet_timewait_sock *tw;
2388 	struct hlist_nulls_node *node;
2389 	struct tcp_iter_state *st = seq->private;
2390 	struct net *net = seq_file_net(seq);
2391 
2392 	++st->num;
2393 	++st->offset;
2394 
2395 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2396 		tw = cur;
2397 		tw = tw_next(tw);
2398 get_tw:
2399 		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2400 			tw = tw_next(tw);
2401 		}
2402 		if (tw) {
2403 			cur = tw;
2404 			goto out;
2405 		}
2406 		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2407 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2408 
2409 		/* Look for next non empty bucket */
2410 		st->offset = 0;
2411 		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2412 				empty_bucket(st))
2413 			;
2414 		if (st->bucket > tcp_hashinfo.ehash_mask)
2415 			return NULL;
2416 
2417 		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2418 		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2419 	} else
2420 		sk = sk_nulls_next(sk);
2421 
2422 	sk_nulls_for_each_from(sk, node) {
2423 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2424 			goto found;
2425 	}
2426 
2427 	st->state = TCP_SEQ_STATE_TIME_WAIT;
2428 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2429 	goto get_tw;
2430 found:
2431 	cur = sk;
2432 out:
2433 	return cur;
2434 }
2435 
2436 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2437 {
2438 	struct tcp_iter_state *st = seq->private;
2439 	void *rc;
2440 
2441 	st->bucket = 0;
2442 	rc = established_get_first(seq);
2443 
2444 	while (rc && pos) {
2445 		rc = established_get_next(seq, rc);
2446 		--pos;
2447 	}
2448 	return rc;
2449 }
2450 
2451 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2452 {
2453 	void *rc;
2454 	struct tcp_iter_state *st = seq->private;
2455 
2456 	st->state = TCP_SEQ_STATE_LISTENING;
2457 	rc	  = listening_get_idx(seq, &pos);
2458 
2459 	if (!rc) {
2460 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2461 		rc	  = established_get_idx(seq, pos);
2462 	}
2463 
2464 	return rc;
2465 }
2466 
2467 static void *tcp_seek_last_pos(struct seq_file *seq)
2468 {
2469 	struct tcp_iter_state *st = seq->private;
2470 	int offset = st->offset;
2471 	int orig_num = st->num;
2472 	void *rc = NULL;
2473 
2474 	switch (st->state) {
2475 	case TCP_SEQ_STATE_OPENREQ:
2476 	case TCP_SEQ_STATE_LISTENING:
2477 		if (st->bucket >= INET_LHTABLE_SIZE)
2478 			break;
2479 		st->state = TCP_SEQ_STATE_LISTENING;
2480 		rc = listening_get_next(seq, NULL);
2481 		while (offset-- && rc)
2482 			rc = listening_get_next(seq, rc);
2483 		if (rc)
2484 			break;
2485 		st->bucket = 0;
2486 		/* Fallthrough */
2487 	case TCP_SEQ_STATE_ESTABLISHED:
2488 	case TCP_SEQ_STATE_TIME_WAIT:
2489 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2490 		if (st->bucket > tcp_hashinfo.ehash_mask)
2491 			break;
2492 		rc = established_get_first(seq);
2493 		while (offset-- && rc)
2494 			rc = established_get_next(seq, rc);
2495 	}
2496 
2497 	st->num = orig_num;
2498 
2499 	return rc;
2500 }
2501 
2502 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2503 {
2504 	struct tcp_iter_state *st = seq->private;
2505 	void *rc;
2506 
2507 	if (*pos && *pos == st->last_pos) {
2508 		rc = tcp_seek_last_pos(seq);
2509 		if (rc)
2510 			goto out;
2511 	}
2512 
2513 	st->state = TCP_SEQ_STATE_LISTENING;
2514 	st->num = 0;
2515 	st->bucket = 0;
2516 	st->offset = 0;
2517 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2518 
2519 out:
2520 	st->last_pos = *pos;
2521 	return rc;
2522 }
2523 
2524 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2525 {
2526 	struct tcp_iter_state *st = seq->private;
2527 	void *rc = NULL;
2528 
2529 	if (v == SEQ_START_TOKEN) {
2530 		rc = tcp_get_idx(seq, 0);
2531 		goto out;
2532 	}
2533 
2534 	switch (st->state) {
2535 	case TCP_SEQ_STATE_OPENREQ:
2536 	case TCP_SEQ_STATE_LISTENING:
2537 		rc = listening_get_next(seq, v);
2538 		if (!rc) {
2539 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2540 			st->bucket = 0;
2541 			st->offset = 0;
2542 			rc	  = established_get_first(seq);
2543 		}
2544 		break;
2545 	case TCP_SEQ_STATE_ESTABLISHED:
2546 	case TCP_SEQ_STATE_TIME_WAIT:
2547 		rc = established_get_next(seq, v);
2548 		break;
2549 	}
2550 out:
2551 	++*pos;
2552 	st->last_pos = *pos;
2553 	return rc;
2554 }
2555 
2556 static void tcp_seq_stop(struct seq_file *seq, void *v)
2557 {
2558 	struct tcp_iter_state *st = seq->private;
2559 
2560 	switch (st->state) {
2561 	case TCP_SEQ_STATE_OPENREQ:
2562 		if (v) {
2563 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2564 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2565 		}
2566 	case TCP_SEQ_STATE_LISTENING:
2567 		if (v != SEQ_START_TOKEN)
2568 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2569 		break;
2570 	case TCP_SEQ_STATE_TIME_WAIT:
2571 	case TCP_SEQ_STATE_ESTABLISHED:
2572 		if (v)
2573 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2574 		break;
2575 	}
2576 }
2577 
2578 int tcp_seq_open(struct inode *inode, struct file *file)
2579 {
2580 	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2581 	struct tcp_iter_state *s;
2582 	int err;
2583 
2584 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2585 			  sizeof(struct tcp_iter_state));
2586 	if (err < 0)
2587 		return err;
2588 
2589 	s = ((struct seq_file *)file->private_data)->private;
2590 	s->family		= afinfo->family;
2591 	s->last_pos 		= 0;
2592 	return 0;
2593 }
2594 EXPORT_SYMBOL(tcp_seq_open);
2595 
2596 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2597 {
2598 	int rc = 0;
2599 	struct proc_dir_entry *p;
2600 
2601 	afinfo->seq_ops.start		= tcp_seq_start;
2602 	afinfo->seq_ops.next		= tcp_seq_next;
2603 	afinfo->seq_ops.stop		= tcp_seq_stop;
2604 
2605 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2606 			     afinfo->seq_fops, afinfo);
2607 	if (!p)
2608 		rc = -ENOMEM;
2609 	return rc;
2610 }
2611 EXPORT_SYMBOL(tcp_proc_register);
2612 
2613 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2614 {
2615 	proc_net_remove(net, afinfo->name);
2616 }
2617 EXPORT_SYMBOL(tcp_proc_unregister);
2618 
2619 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2620 			 struct seq_file *f, int i, kuid_t uid, int *len)
2621 {
2622 	const struct inet_request_sock *ireq = inet_rsk(req);
2623 	long delta = req->expires - jiffies;
2624 
2625 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2626 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2627 		i,
2628 		ireq->loc_addr,
2629 		ntohs(inet_sk(sk)->inet_sport),
2630 		ireq->rmt_addr,
2631 		ntohs(ireq->rmt_port),
2632 		TCP_SYN_RECV,
2633 		0, 0, /* could print option size, but that is af dependent. */
2634 		1,    /* timers active (only the expire timer) */
2635 		jiffies_delta_to_clock_t(delta),
2636 		req->num_timeout,
2637 		from_kuid_munged(seq_user_ns(f), uid),
2638 		0,  /* non standard timer */
2639 		0, /* open_requests have no inode */
2640 		atomic_read(&sk->sk_refcnt),
2641 		req,
2642 		len);
2643 }
2644 
2645 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2646 {
2647 	int timer_active;
2648 	unsigned long timer_expires;
2649 	const struct tcp_sock *tp = tcp_sk(sk);
2650 	const struct inet_connection_sock *icsk = inet_csk(sk);
2651 	const struct inet_sock *inet = inet_sk(sk);
2652 	struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2653 	__be32 dest = inet->inet_daddr;
2654 	__be32 src = inet->inet_rcv_saddr;
2655 	__u16 destp = ntohs(inet->inet_dport);
2656 	__u16 srcp = ntohs(inet->inet_sport);
2657 	int rx_queue;
2658 
2659 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2660 		timer_active	= 1;
2661 		timer_expires	= icsk->icsk_timeout;
2662 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2663 		timer_active	= 4;
2664 		timer_expires	= icsk->icsk_timeout;
2665 	} else if (timer_pending(&sk->sk_timer)) {
2666 		timer_active	= 2;
2667 		timer_expires	= sk->sk_timer.expires;
2668 	} else {
2669 		timer_active	= 0;
2670 		timer_expires = jiffies;
2671 	}
2672 
2673 	if (sk->sk_state == TCP_LISTEN)
2674 		rx_queue = sk->sk_ack_backlog;
2675 	else
2676 		/*
2677 		 * because we dont lock socket, we might find a transient negative value
2678 		 */
2679 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2680 
2681 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2682 			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2683 		i, src, srcp, dest, destp, sk->sk_state,
2684 		tp->write_seq - tp->snd_una,
2685 		rx_queue,
2686 		timer_active,
2687 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2688 		icsk->icsk_retransmits,
2689 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2690 		icsk->icsk_probes_out,
2691 		sock_i_ino(sk),
2692 		atomic_read(&sk->sk_refcnt), sk,
2693 		jiffies_to_clock_t(icsk->icsk_rto),
2694 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2695 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2696 		tp->snd_cwnd,
2697 		sk->sk_state == TCP_LISTEN ?
2698 		    (fastopenq ? fastopenq->max_qlen : 0) :
2699 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2700 		len);
2701 }
2702 
2703 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2704 			       struct seq_file *f, int i, int *len)
2705 {
2706 	__be32 dest, src;
2707 	__u16 destp, srcp;
2708 	long delta = tw->tw_ttd - jiffies;
2709 
2710 	dest  = tw->tw_daddr;
2711 	src   = tw->tw_rcv_saddr;
2712 	destp = ntohs(tw->tw_dport);
2713 	srcp  = ntohs(tw->tw_sport);
2714 
2715 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2716 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2717 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2718 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2719 		atomic_read(&tw->tw_refcnt), tw, len);
2720 }
2721 
2722 #define TMPSZ 150
2723 
2724 static int tcp4_seq_show(struct seq_file *seq, void *v)
2725 {
2726 	struct tcp_iter_state *st;
2727 	int len;
2728 
2729 	if (v == SEQ_START_TOKEN) {
2730 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2731 			   "  sl  local_address rem_address   st tx_queue "
2732 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2733 			   "inode");
2734 		goto out;
2735 	}
2736 	st = seq->private;
2737 
2738 	switch (st->state) {
2739 	case TCP_SEQ_STATE_LISTENING:
2740 	case TCP_SEQ_STATE_ESTABLISHED:
2741 		get_tcp4_sock(v, seq, st->num, &len);
2742 		break;
2743 	case TCP_SEQ_STATE_OPENREQ:
2744 		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2745 		break;
2746 	case TCP_SEQ_STATE_TIME_WAIT:
2747 		get_timewait4_sock(v, seq, st->num, &len);
2748 		break;
2749 	}
2750 	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2751 out:
2752 	return 0;
2753 }
2754 
2755 static const struct file_operations tcp_afinfo_seq_fops = {
2756 	.owner   = THIS_MODULE,
2757 	.open    = tcp_seq_open,
2758 	.read    = seq_read,
2759 	.llseek  = seq_lseek,
2760 	.release = seq_release_net
2761 };
2762 
2763 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2764 	.name		= "tcp",
2765 	.family		= AF_INET,
2766 	.seq_fops	= &tcp_afinfo_seq_fops,
2767 	.seq_ops	= {
2768 		.show		= tcp4_seq_show,
2769 	},
2770 };
2771 
2772 static int __net_init tcp4_proc_init_net(struct net *net)
2773 {
2774 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2775 }
2776 
2777 static void __net_exit tcp4_proc_exit_net(struct net *net)
2778 {
2779 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2780 }
2781 
2782 static struct pernet_operations tcp4_net_ops = {
2783 	.init = tcp4_proc_init_net,
2784 	.exit = tcp4_proc_exit_net,
2785 };
2786 
2787 int __init tcp4_proc_init(void)
2788 {
2789 	return register_pernet_subsys(&tcp4_net_ops);
2790 }
2791 
2792 void tcp4_proc_exit(void)
2793 {
2794 	unregister_pernet_subsys(&tcp4_net_ops);
2795 }
2796 #endif /* CONFIG_PROC_FS */
2797 
2798 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2799 {
2800 	const struct iphdr *iph = skb_gro_network_header(skb);
2801 	__wsum wsum;
2802 	__sum16 sum;
2803 
2804 	switch (skb->ip_summed) {
2805 	case CHECKSUM_COMPLETE:
2806 		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2807 				  skb->csum)) {
2808 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2809 			break;
2810 		}
2811 flush:
2812 		NAPI_GRO_CB(skb)->flush = 1;
2813 		return NULL;
2814 
2815 	case CHECKSUM_NONE:
2816 		wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2817 					  skb_gro_len(skb), IPPROTO_TCP, 0);
2818 		sum = csum_fold(skb_checksum(skb,
2819 					     skb_gro_offset(skb),
2820 					     skb_gro_len(skb),
2821 					     wsum));
2822 		if (sum)
2823 			goto flush;
2824 
2825 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2826 		break;
2827 	}
2828 
2829 	return tcp_gro_receive(head, skb);
2830 }
2831 
2832 int tcp4_gro_complete(struct sk_buff *skb)
2833 {
2834 	const struct iphdr *iph = ip_hdr(skb);
2835 	struct tcphdr *th = tcp_hdr(skb);
2836 
2837 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2838 				  iph->saddr, iph->daddr, 0);
2839 	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2840 
2841 	return tcp_gro_complete(skb);
2842 }
2843 
2844 struct proto tcp_prot = {
2845 	.name			= "TCP",
2846 	.owner			= THIS_MODULE,
2847 	.close			= tcp_close,
2848 	.connect		= tcp_v4_connect,
2849 	.disconnect		= tcp_disconnect,
2850 	.accept			= inet_csk_accept,
2851 	.ioctl			= tcp_ioctl,
2852 	.init			= tcp_v4_init_sock,
2853 	.destroy		= tcp_v4_destroy_sock,
2854 	.shutdown		= tcp_shutdown,
2855 	.setsockopt		= tcp_setsockopt,
2856 	.getsockopt		= tcp_getsockopt,
2857 	.recvmsg		= tcp_recvmsg,
2858 	.sendmsg		= tcp_sendmsg,
2859 	.sendpage		= tcp_sendpage,
2860 	.backlog_rcv		= tcp_v4_do_rcv,
2861 	.release_cb		= tcp_release_cb,
2862 	.mtu_reduced		= tcp_v4_mtu_reduced,
2863 	.hash			= inet_hash,
2864 	.unhash			= inet_unhash,
2865 	.get_port		= inet_csk_get_port,
2866 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2867 	.sockets_allocated	= &tcp_sockets_allocated,
2868 	.orphan_count		= &tcp_orphan_count,
2869 	.memory_allocated	= &tcp_memory_allocated,
2870 	.memory_pressure	= &tcp_memory_pressure,
2871 	.sysctl_wmem		= sysctl_tcp_wmem,
2872 	.sysctl_rmem		= sysctl_tcp_rmem,
2873 	.max_header		= MAX_TCP_HEADER,
2874 	.obj_size		= sizeof(struct tcp_sock),
2875 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2876 	.twsk_prot		= &tcp_timewait_sock_ops,
2877 	.rsk_prot		= &tcp_request_sock_ops,
2878 	.h.hashinfo		= &tcp_hashinfo,
2879 	.no_autobind		= true,
2880 #ifdef CONFIG_COMPAT
2881 	.compat_setsockopt	= compat_tcp_setsockopt,
2882 	.compat_getsockopt	= compat_tcp_getsockopt,
2883 #endif
2884 #ifdef CONFIG_MEMCG_KMEM
2885 	.init_cgroup		= tcp_init_cgroup,
2886 	.destroy_cgroup		= tcp_destroy_cgroup,
2887 	.proto_cgroup		= tcp_proto_cgroup,
2888 #endif
2889 };
2890 EXPORT_SYMBOL(tcp_prot);
2891 
2892 static int __net_init tcp_sk_init(struct net *net)
2893 {
2894 	return 0;
2895 }
2896 
2897 static void __net_exit tcp_sk_exit(struct net *net)
2898 {
2899 }
2900 
2901 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2902 {
2903 	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2904 }
2905 
2906 static struct pernet_operations __net_initdata tcp_sk_ops = {
2907        .init	   = tcp_sk_init,
2908        .exit	   = tcp_sk_exit,
2909        .exit_batch = tcp_sk_exit_batch,
2910 };
2911 
2912 void __init tcp_v4_init(void)
2913 {
2914 	inet_hashinfo_init(&tcp_hashinfo);
2915 	if (register_pernet_subsys(&tcp_sk_ops))
2916 		panic("Failed to create the TCP control socket.\n");
2917 }
2918