xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision c1d45424)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79 
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85 
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88 
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92 
93 
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98 
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101 
102 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 					  ip_hdr(skb)->saddr,
106 					  tcp_hdr(skb)->dest,
107 					  tcp_hdr(skb)->source);
108 }
109 
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 	struct tcp_sock *tp = tcp_sk(sk);
114 
115 	/* With PAWS, it is safe from the viewpoint
116 	   of data integrity. Even without PAWS it is safe provided sequence
117 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118 
119 	   Actually, the idea is close to VJ's one, only timestamp cache is
120 	   held not per host, but per port pair and TW bucket is used as state
121 	   holder.
122 
123 	   If TW bucket has been already destroyed we fall back to VJ's scheme
124 	   and use initial timestamp retrieved from peer table.
125 	 */
126 	if (tcptw->tw_ts_recent_stamp &&
127 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
128 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 		if (tp->write_seq == 0)
131 			tp->write_seq = 1;
132 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
133 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 		sock_hold(sktw);
135 		return 1;
136 	}
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141 
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 	struct inet_sock *inet = inet_sk(sk);
147 	struct tcp_sock *tp = tcp_sk(sk);
148 	__be16 orig_sport, orig_dport;
149 	__be32 daddr, nexthop;
150 	struct flowi4 *fl4;
151 	struct rtable *rt;
152 	int err;
153 	struct ip_options_rcu *inet_opt;
154 
155 	if (addr_len < sizeof(struct sockaddr_in))
156 		return -EINVAL;
157 
158 	if (usin->sin_family != AF_INET)
159 		return -EAFNOSUPPORT;
160 
161 	nexthop = daddr = usin->sin_addr.s_addr;
162 	inet_opt = rcu_dereference_protected(inet->inet_opt,
163 					     sock_owned_by_user(sk));
164 	if (inet_opt && inet_opt->opt.srr) {
165 		if (!daddr)
166 			return -EINVAL;
167 		nexthop = inet_opt->opt.faddr;
168 	}
169 
170 	orig_sport = inet->inet_sport;
171 	orig_dport = usin->sin_port;
172 	fl4 = &inet->cork.fl.u.ip4;
173 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 			      IPPROTO_TCP,
176 			      orig_sport, orig_dport, sk, true);
177 	if (IS_ERR(rt)) {
178 		err = PTR_ERR(rt);
179 		if (err == -ENETUNREACH)
180 			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 		return err;
182 	}
183 
184 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 		ip_rt_put(rt);
186 		return -ENETUNREACH;
187 	}
188 
189 	if (!inet_opt || !inet_opt->opt.srr)
190 		daddr = fl4->daddr;
191 
192 	if (!inet->inet_saddr)
193 		inet->inet_saddr = fl4->saddr;
194 	inet->inet_rcv_saddr = inet->inet_saddr;
195 
196 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 		/* Reset inherited state */
198 		tp->rx_opt.ts_recent	   = 0;
199 		tp->rx_opt.ts_recent_stamp = 0;
200 		if (likely(!tp->repair))
201 			tp->write_seq	   = 0;
202 	}
203 
204 	if (tcp_death_row.sysctl_tw_recycle &&
205 	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 		tcp_fetch_timewait_stamp(sk, &rt->dst);
207 
208 	inet->inet_dport = usin->sin_port;
209 	inet->inet_daddr = daddr;
210 
211 	inet_csk(sk)->icsk_ext_hdr_len = 0;
212 	if (inet_opt)
213 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214 
215 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216 
217 	/* Socket identity is still unknown (sport may be zero).
218 	 * However we set state to SYN-SENT and not releasing socket
219 	 * lock select source port, enter ourselves into the hash tables and
220 	 * complete initialization after this.
221 	 */
222 	tcp_set_state(sk, TCP_SYN_SENT);
223 	err = inet_hash_connect(&tcp_death_row, sk);
224 	if (err)
225 		goto failure;
226 
227 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 			       inet->inet_sport, inet->inet_dport, sk);
229 	if (IS_ERR(rt)) {
230 		err = PTR_ERR(rt);
231 		rt = NULL;
232 		goto failure;
233 	}
234 	/* OK, now commit destination to socket.  */
235 	sk->sk_gso_type = SKB_GSO_TCPV4;
236 	sk_setup_caps(sk, &rt->dst);
237 
238 	if (!tp->write_seq && likely(!tp->repair))
239 		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 							   inet->inet_daddr,
241 							   inet->inet_sport,
242 							   usin->sin_port);
243 
244 	inet->inet_id = tp->write_seq ^ jiffies;
245 
246 	err = tcp_connect(sk);
247 
248 	rt = NULL;
249 	if (err)
250 		goto failure;
251 
252 	return 0;
253 
254 failure:
255 	/*
256 	 * This unhashes the socket and releases the local port,
257 	 * if necessary.
258 	 */
259 	tcp_set_state(sk, TCP_CLOSE);
260 	ip_rt_put(rt);
261 	sk->sk_route_caps = 0;
262 	inet->inet_dport = 0;
263 	return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266 
267 /*
268  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269  * It can be called through tcp_release_cb() if socket was owned by user
270  * at the time tcp_v4_err() was called to handle ICMP message.
271  */
272 static void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 	struct dst_entry *dst;
275 	struct inet_sock *inet = inet_sk(sk);
276 	u32 mtu = tcp_sk(sk)->mtu_info;
277 
278 	dst = inet_csk_update_pmtu(sk, mtu);
279 	if (!dst)
280 		return;
281 
282 	/* Something is about to be wrong... Remember soft error
283 	 * for the case, if this connection will not able to recover.
284 	 */
285 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 		sk->sk_err_soft = EMSGSIZE;
287 
288 	mtu = dst_mtu(dst);
289 
290 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 		tcp_sync_mss(sk, mtu);
293 
294 		/* Resend the TCP packet because it's
295 		 * clear that the old packet has been
296 		 * dropped. This is the new "fast" path mtu
297 		 * discovery.
298 		 */
299 		tcp_simple_retransmit(sk);
300 	} /* else let the usual retransmit timer handle it */
301 }
302 
303 static void do_redirect(struct sk_buff *skb, struct sock *sk)
304 {
305 	struct dst_entry *dst = __sk_dst_check(sk, 0);
306 
307 	if (dst)
308 		dst->ops->redirect(dst, sk, skb);
309 }
310 
311 /*
312  * This routine is called by the ICMP module when it gets some
313  * sort of error condition.  If err < 0 then the socket should
314  * be closed and the error returned to the user.  If err > 0
315  * it's just the icmp type << 8 | icmp code.  After adjustment
316  * header points to the first 8 bytes of the tcp header.  We need
317  * to find the appropriate port.
318  *
319  * The locking strategy used here is very "optimistic". When
320  * someone else accesses the socket the ICMP is just dropped
321  * and for some paths there is no check at all.
322  * A more general error queue to queue errors for later handling
323  * is probably better.
324  *
325  */
326 
327 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
328 {
329 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
330 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
331 	struct inet_connection_sock *icsk;
332 	struct tcp_sock *tp;
333 	struct inet_sock *inet;
334 	const int type = icmp_hdr(icmp_skb)->type;
335 	const int code = icmp_hdr(icmp_skb)->code;
336 	struct sock *sk;
337 	struct sk_buff *skb;
338 	struct request_sock *req;
339 	__u32 seq;
340 	__u32 remaining;
341 	int err;
342 	struct net *net = dev_net(icmp_skb->dev);
343 
344 	if (icmp_skb->len < (iph->ihl << 2) + 8) {
345 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
346 		return;
347 	}
348 
349 	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
350 			iph->saddr, th->source, inet_iif(icmp_skb));
351 	if (!sk) {
352 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353 		return;
354 	}
355 	if (sk->sk_state == TCP_TIME_WAIT) {
356 		inet_twsk_put(inet_twsk(sk));
357 		return;
358 	}
359 
360 	bh_lock_sock(sk);
361 	/* If too many ICMPs get dropped on busy
362 	 * servers this needs to be solved differently.
363 	 * We do take care of PMTU discovery (RFC1191) special case :
364 	 * we can receive locally generated ICMP messages while socket is held.
365 	 */
366 	if (sock_owned_by_user(sk)) {
367 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
368 			NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369 	}
370 	if (sk->sk_state == TCP_CLOSE)
371 		goto out;
372 
373 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
374 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
375 		goto out;
376 	}
377 
378 	icsk = inet_csk(sk);
379 	tp = tcp_sk(sk);
380 	req = tp->fastopen_rsk;
381 	seq = ntohl(th->seq);
382 	if (sk->sk_state != TCP_LISTEN &&
383 	    !between(seq, tp->snd_una, tp->snd_nxt) &&
384 	    (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
385 		/* For a Fast Open socket, allow seq to be snt_isn. */
386 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
387 		goto out;
388 	}
389 
390 	switch (type) {
391 	case ICMP_REDIRECT:
392 		do_redirect(icmp_skb, sk);
393 		goto out;
394 	case ICMP_SOURCE_QUENCH:
395 		/* Just silently ignore these. */
396 		goto out;
397 	case ICMP_PARAMETERPROB:
398 		err = EPROTO;
399 		break;
400 	case ICMP_DEST_UNREACH:
401 		if (code > NR_ICMP_UNREACH)
402 			goto out;
403 
404 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
405 			/* We are not interested in TCP_LISTEN and open_requests
406 			 * (SYN-ACKs send out by Linux are always <576bytes so
407 			 * they should go through unfragmented).
408 			 */
409 			if (sk->sk_state == TCP_LISTEN)
410 				goto out;
411 
412 			tp->mtu_info = info;
413 			if (!sock_owned_by_user(sk)) {
414 				tcp_v4_mtu_reduced(sk);
415 			} else {
416 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417 					sock_hold(sk);
418 			}
419 			goto out;
420 		}
421 
422 		err = icmp_err_convert[code].errno;
423 		/* check if icmp_skb allows revert of backoff
424 		 * (see draft-zimmermann-tcp-lcd) */
425 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426 			break;
427 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
428 		    !icsk->icsk_backoff)
429 			break;
430 
431 		/* XXX (TFO) - revisit the following logic for TFO */
432 
433 		if (sock_owned_by_user(sk))
434 			break;
435 
436 		icsk->icsk_backoff--;
437 		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438 			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439 		tcp_bound_rto(sk);
440 
441 		skb = tcp_write_queue_head(sk);
442 		BUG_ON(!skb);
443 
444 		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445 				tcp_time_stamp - TCP_SKB_CB(skb)->when);
446 
447 		if (remaining) {
448 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 						  remaining, TCP_RTO_MAX);
450 		} else {
451 			/* RTO revert clocked out retransmission.
452 			 * Will retransmit now */
453 			tcp_retransmit_timer(sk);
454 		}
455 
456 		break;
457 	case ICMP_TIME_EXCEEDED:
458 		err = EHOSTUNREACH;
459 		break;
460 	default:
461 		goto out;
462 	}
463 
464 	/* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465 	 * than following the TCP_SYN_RECV case and closing the socket,
466 	 * we ignore the ICMP error and keep trying like a fully established
467 	 * socket. Is this the right thing to do?
468 	 */
469 	if (req && req->sk == NULL)
470 		goto out;
471 
472 	switch (sk->sk_state) {
473 		struct request_sock *req, **prev;
474 	case TCP_LISTEN:
475 		if (sock_owned_by_user(sk))
476 			goto out;
477 
478 		req = inet_csk_search_req(sk, &prev, th->dest,
479 					  iph->daddr, iph->saddr);
480 		if (!req)
481 			goto out;
482 
483 		/* ICMPs are not backlogged, hence we cannot get
484 		   an established socket here.
485 		 */
486 		WARN_ON(req->sk);
487 
488 		if (seq != tcp_rsk(req)->snt_isn) {
489 			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 			goto out;
491 		}
492 
493 		/*
494 		 * Still in SYN_RECV, just remove it silently.
495 		 * There is no good way to pass the error to the newly
496 		 * created socket, and POSIX does not want network
497 		 * errors returned from accept().
498 		 */
499 		inet_csk_reqsk_queue_drop(sk, req, prev);
500 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
501 		goto out;
502 
503 	case TCP_SYN_SENT:
504 	case TCP_SYN_RECV:  /* Cannot happen.
505 			       It can f.e. if SYNs crossed,
506 			       or Fast Open.
507 			     */
508 		if (!sock_owned_by_user(sk)) {
509 			sk->sk_err = err;
510 
511 			sk->sk_error_report(sk);
512 
513 			tcp_done(sk);
514 		} else {
515 			sk->sk_err_soft = err;
516 		}
517 		goto out;
518 	}
519 
520 	/* If we've already connected we will keep trying
521 	 * until we time out, or the user gives up.
522 	 *
523 	 * rfc1122 4.2.3.9 allows to consider as hard errors
524 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
525 	 * but it is obsoleted by pmtu discovery).
526 	 *
527 	 * Note, that in modern internet, where routing is unreliable
528 	 * and in each dark corner broken firewalls sit, sending random
529 	 * errors ordered by their masters even this two messages finally lose
530 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
531 	 *
532 	 * Now we are in compliance with RFCs.
533 	 *							--ANK (980905)
534 	 */
535 
536 	inet = inet_sk(sk);
537 	if (!sock_owned_by_user(sk) && inet->recverr) {
538 		sk->sk_err = err;
539 		sk->sk_error_report(sk);
540 	} else	{ /* Only an error on timeout */
541 		sk->sk_err_soft = err;
542 	}
543 
544 out:
545 	bh_unlock_sock(sk);
546 	sock_put(sk);
547 }
548 
549 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
550 {
551 	struct tcphdr *th = tcp_hdr(skb);
552 
553 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 		skb->csum_start = skb_transport_header(skb) - skb->head;
556 		skb->csum_offset = offsetof(struct tcphdr, check);
557 	} else {
558 		th->check = tcp_v4_check(skb->len, saddr, daddr,
559 					 csum_partial(th,
560 						      th->doff << 2,
561 						      skb->csum));
562 	}
563 }
564 
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 	const struct inet_sock *inet = inet_sk(sk);
569 
570 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573 
574 /*
575  *	This routine will send an RST to the other tcp.
576  *
577  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
578  *		      for reset.
579  *	Answer: if a packet caused RST, it is not for a socket
580  *		existing in our system, if it is matched to a socket,
581  *		it is just duplicate segment or bug in other side's TCP.
582  *		So that we build reply only basing on parameters
583  *		arrived with segment.
584  *	Exception: precedence violation. We do not implement it in any case.
585  */
586 
587 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
588 {
589 	const struct tcphdr *th = tcp_hdr(skb);
590 	struct {
591 		struct tcphdr th;
592 #ifdef CONFIG_TCP_MD5SIG
593 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
594 #endif
595 	} rep;
596 	struct ip_reply_arg arg;
597 #ifdef CONFIG_TCP_MD5SIG
598 	struct tcp_md5sig_key *key;
599 	const __u8 *hash_location = NULL;
600 	unsigned char newhash[16];
601 	int genhash;
602 	struct sock *sk1 = NULL;
603 #endif
604 	struct net *net;
605 
606 	/* Never send a reset in response to a reset. */
607 	if (th->rst)
608 		return;
609 
610 	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611 		return;
612 
613 	/* Swap the send and the receive. */
614 	memset(&rep, 0, sizeof(rep));
615 	rep.th.dest   = th->source;
616 	rep.th.source = th->dest;
617 	rep.th.doff   = sizeof(struct tcphdr) / 4;
618 	rep.th.rst    = 1;
619 
620 	if (th->ack) {
621 		rep.th.seq = th->ack_seq;
622 	} else {
623 		rep.th.ack = 1;
624 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625 				       skb->len - (th->doff << 2));
626 	}
627 
628 	memset(&arg, 0, sizeof(arg));
629 	arg.iov[0].iov_base = (unsigned char *)&rep;
630 	arg.iov[0].iov_len  = sizeof(rep.th);
631 
632 #ifdef CONFIG_TCP_MD5SIG
633 	hash_location = tcp_parse_md5sig_option(th);
634 	if (!sk && hash_location) {
635 		/*
636 		 * active side is lost. Try to find listening socket through
637 		 * source port, and then find md5 key through listening socket.
638 		 * we are not loose security here:
639 		 * Incoming packet is checked with md5 hash with finding key,
640 		 * no RST generated if md5 hash doesn't match.
641 		 */
642 		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
643 					     &tcp_hashinfo, ip_hdr(skb)->saddr,
644 					     th->source, ip_hdr(skb)->daddr,
645 					     ntohs(th->source), inet_iif(skb));
646 		/* don't send rst if it can't find key */
647 		if (!sk1)
648 			return;
649 		rcu_read_lock();
650 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
651 					&ip_hdr(skb)->saddr, AF_INET);
652 		if (!key)
653 			goto release_sk1;
654 
655 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
656 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
657 			goto release_sk1;
658 	} else {
659 		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
660 					     &ip_hdr(skb)->saddr,
661 					     AF_INET) : NULL;
662 	}
663 
664 	if (key) {
665 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
666 				   (TCPOPT_NOP << 16) |
667 				   (TCPOPT_MD5SIG << 8) |
668 				   TCPOLEN_MD5SIG);
669 		/* Update length and the length the header thinks exists */
670 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
671 		rep.th.doff = arg.iov[0].iov_len / 4;
672 
673 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
674 				     key, ip_hdr(skb)->saddr,
675 				     ip_hdr(skb)->daddr, &rep.th);
676 	}
677 #endif
678 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
679 				      ip_hdr(skb)->saddr, /* XXX */
680 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
681 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
682 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
683 	/* When socket is gone, all binding information is lost.
684 	 * routing might fail in this case. No choice here, if we choose to force
685 	 * input interface, we will misroute in case of asymmetric route.
686 	 */
687 	if (sk)
688 		arg.bound_dev_if = sk->sk_bound_dev_if;
689 
690 	net = dev_net(skb_dst(skb)->dev);
691 	arg.tos = ip_hdr(skb)->tos;
692 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
693 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
694 
695 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
696 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
697 
698 #ifdef CONFIG_TCP_MD5SIG
699 release_sk1:
700 	if (sk1) {
701 		rcu_read_unlock();
702 		sock_put(sk1);
703 	}
704 #endif
705 }
706 
707 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
708    outside socket context is ugly, certainly. What can I do?
709  */
710 
711 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
712 			    u32 win, u32 tsval, u32 tsecr, int oif,
713 			    struct tcp_md5sig_key *key,
714 			    int reply_flags, u8 tos)
715 {
716 	const struct tcphdr *th = tcp_hdr(skb);
717 	struct {
718 		struct tcphdr th;
719 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
720 #ifdef CONFIG_TCP_MD5SIG
721 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
722 #endif
723 			];
724 	} rep;
725 	struct ip_reply_arg arg;
726 	struct net *net = dev_net(skb_dst(skb)->dev);
727 
728 	memset(&rep.th, 0, sizeof(struct tcphdr));
729 	memset(&arg, 0, sizeof(arg));
730 
731 	arg.iov[0].iov_base = (unsigned char *)&rep;
732 	arg.iov[0].iov_len  = sizeof(rep.th);
733 	if (tsecr) {
734 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
735 				   (TCPOPT_TIMESTAMP << 8) |
736 				   TCPOLEN_TIMESTAMP);
737 		rep.opt[1] = htonl(tsval);
738 		rep.opt[2] = htonl(tsecr);
739 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
740 	}
741 
742 	/* Swap the send and the receive. */
743 	rep.th.dest    = th->source;
744 	rep.th.source  = th->dest;
745 	rep.th.doff    = arg.iov[0].iov_len / 4;
746 	rep.th.seq     = htonl(seq);
747 	rep.th.ack_seq = htonl(ack);
748 	rep.th.ack     = 1;
749 	rep.th.window  = htons(win);
750 
751 #ifdef CONFIG_TCP_MD5SIG
752 	if (key) {
753 		int offset = (tsecr) ? 3 : 0;
754 
755 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
756 					  (TCPOPT_NOP << 16) |
757 					  (TCPOPT_MD5SIG << 8) |
758 					  TCPOLEN_MD5SIG);
759 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
760 		rep.th.doff = arg.iov[0].iov_len/4;
761 
762 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
763 				    key, ip_hdr(skb)->saddr,
764 				    ip_hdr(skb)->daddr, &rep.th);
765 	}
766 #endif
767 	arg.flags = reply_flags;
768 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
769 				      ip_hdr(skb)->saddr, /* XXX */
770 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
771 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
772 	if (oif)
773 		arg.bound_dev_if = oif;
774 	arg.tos = tos;
775 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
776 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
777 
778 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
779 }
780 
781 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
782 {
783 	struct inet_timewait_sock *tw = inet_twsk(sk);
784 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
785 
786 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
787 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
788 			tcp_time_stamp + tcptw->tw_ts_offset,
789 			tcptw->tw_ts_recent,
790 			tw->tw_bound_dev_if,
791 			tcp_twsk_md5_key(tcptw),
792 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
793 			tw->tw_tos
794 			);
795 
796 	inet_twsk_put(tw);
797 }
798 
799 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
800 				  struct request_sock *req)
801 {
802 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
803 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
804 	 */
805 	tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
806 			tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
807 			tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
808 			tcp_time_stamp,
809 			req->ts_recent,
810 			0,
811 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
812 					  AF_INET),
813 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
814 			ip_hdr(skb)->tos);
815 }
816 
817 /*
818  *	Send a SYN-ACK after having received a SYN.
819  *	This still operates on a request_sock only, not on a big
820  *	socket.
821  */
822 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
823 			      struct request_sock *req,
824 			      u16 queue_mapping,
825 			      bool nocache)
826 {
827 	const struct inet_request_sock *ireq = inet_rsk(req);
828 	struct flowi4 fl4;
829 	int err = -1;
830 	struct sk_buff * skb;
831 
832 	/* First, grab a route. */
833 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834 		return -1;
835 
836 	skb = tcp_make_synack(sk, dst, req, NULL);
837 
838 	if (skb) {
839 		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
840 
841 		skb_set_queue_mapping(skb, queue_mapping);
842 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
843 					    ireq->rmt_addr,
844 					    ireq->opt);
845 		err = net_xmit_eval(err);
846 		if (!tcp_rsk(req)->snt_synack && !err)
847 			tcp_rsk(req)->snt_synack = tcp_time_stamp;
848 	}
849 
850 	return err;
851 }
852 
853 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
854 {
855 	int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
856 
857 	if (!res)
858 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 	return res;
860 }
861 
862 /*
863  *	IPv4 request_sock destructor.
864  */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867 	kfree(inet_rsk(req)->opt);
868 }
869 
870 /*
871  * Return true if a syncookie should be sent
872  */
873 bool tcp_syn_flood_action(struct sock *sk,
874 			 const struct sk_buff *skb,
875 			 const char *proto)
876 {
877 	const char *msg = "Dropping request";
878 	bool want_cookie = false;
879 	struct listen_sock *lopt;
880 
881 
882 
883 #ifdef CONFIG_SYN_COOKIES
884 	if (sysctl_tcp_syncookies) {
885 		msg = "Sending cookies";
886 		want_cookie = true;
887 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 	} else
889 #endif
890 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891 
892 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 	if (!lopt->synflood_warned) {
894 		lopt->synflood_warned = 1;
895 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
896 			proto, ntohs(tcp_hdr(skb)->dest), msg);
897 	}
898 	return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901 
902 /*
903  * Save and compile IPv4 options into the request_sock if needed.
904  */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
906 {
907 	const struct ip_options *opt = &(IPCB(skb)->opt);
908 	struct ip_options_rcu *dopt = NULL;
909 
910 	if (opt && opt->optlen) {
911 		int opt_size = sizeof(*dopt) + opt->optlen;
912 
913 		dopt = kmalloc(opt_size, GFP_ATOMIC);
914 		if (dopt) {
915 			if (ip_options_echo(&dopt->opt, skb)) {
916 				kfree(dopt);
917 				dopt = NULL;
918 			}
919 		}
920 	}
921 	return dopt;
922 }
923 
924 #ifdef CONFIG_TCP_MD5SIG
925 /*
926  * RFC2385 MD5 checksumming requires a mapping of
927  * IP address->MD5 Key.
928  * We need to maintain these in the sk structure.
929  */
930 
931 /* Find the Key structure for an address.  */
932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933 					 const union tcp_md5_addr *addr,
934 					 int family)
935 {
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	struct tcp_md5sig_key *key;
938 	unsigned int size = sizeof(struct in_addr);
939 	struct tcp_md5sig_info *md5sig;
940 
941 	/* caller either holds rcu_read_lock() or socket lock */
942 	md5sig = rcu_dereference_check(tp->md5sig_info,
943 				       sock_owned_by_user(sk) ||
944 				       lockdep_is_held(&sk->sk_lock.slock));
945 	if (!md5sig)
946 		return NULL;
947 #if IS_ENABLED(CONFIG_IPV6)
948 	if (family == AF_INET6)
949 		size = sizeof(struct in6_addr);
950 #endif
951 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
952 		if (key->family != family)
953 			continue;
954 		if (!memcmp(&key->addr, addr, size))
955 			return key;
956 	}
957 	return NULL;
958 }
959 EXPORT_SYMBOL(tcp_md5_do_lookup);
960 
961 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962 					 struct sock *addr_sk)
963 {
964 	union tcp_md5_addr *addr;
965 
966 	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967 	return tcp_md5_do_lookup(sk, addr, AF_INET);
968 }
969 EXPORT_SYMBOL(tcp_v4_md5_lookup);
970 
971 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972 						      struct request_sock *req)
973 {
974 	union tcp_md5_addr *addr;
975 
976 	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
977 	return tcp_md5_do_lookup(sk, addr, AF_INET);
978 }
979 
980 /* This can be called on a newly created socket, from other files */
981 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983 {
984 	/* Add Key to the list */
985 	struct tcp_md5sig_key *key;
986 	struct tcp_sock *tp = tcp_sk(sk);
987 	struct tcp_md5sig_info *md5sig;
988 
989 	key = tcp_md5_do_lookup(sk, addr, family);
990 	if (key) {
991 		/* Pre-existing entry - just update that one. */
992 		memcpy(key->key, newkey, newkeylen);
993 		key->keylen = newkeylen;
994 		return 0;
995 	}
996 
997 	md5sig = rcu_dereference_protected(tp->md5sig_info,
998 					   sock_owned_by_user(sk));
999 	if (!md5sig) {
1000 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1001 		if (!md5sig)
1002 			return -ENOMEM;
1003 
1004 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 		INIT_HLIST_HEAD(&md5sig->head);
1006 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1007 	}
1008 
1009 	key = sock_kmalloc(sk, sizeof(*key), gfp);
1010 	if (!key)
1011 		return -ENOMEM;
1012 	if (!tcp_alloc_md5sig_pool()) {
1013 		sock_kfree_s(sk, key, sizeof(*key));
1014 		return -ENOMEM;
1015 	}
1016 
1017 	memcpy(key->key, newkey, newkeylen);
1018 	key->keylen = newkeylen;
1019 	key->family = family;
1020 	memcpy(&key->addr, addr,
1021 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1022 				      sizeof(struct in_addr));
1023 	hlist_add_head_rcu(&key->node, &md5sig->head);
1024 	return 0;
1025 }
1026 EXPORT_SYMBOL(tcp_md5_do_add);
1027 
1028 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029 {
1030 	struct tcp_md5sig_key *key;
1031 
1032 	key = tcp_md5_do_lookup(sk, addr, family);
1033 	if (!key)
1034 		return -ENOENT;
1035 	hlist_del_rcu(&key->node);
1036 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037 	kfree_rcu(key, rcu);
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL(tcp_md5_do_del);
1041 
1042 static void tcp_clear_md5_list(struct sock *sk)
1043 {
1044 	struct tcp_sock *tp = tcp_sk(sk);
1045 	struct tcp_md5sig_key *key;
1046 	struct hlist_node *n;
1047 	struct tcp_md5sig_info *md5sig;
1048 
1049 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050 
1051 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052 		hlist_del_rcu(&key->node);
1053 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054 		kfree_rcu(key, rcu);
1055 	}
1056 }
1057 
1058 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059 				 int optlen)
1060 {
1061 	struct tcp_md5sig cmd;
1062 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063 
1064 	if (optlen < sizeof(cmd))
1065 		return -EINVAL;
1066 
1067 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068 		return -EFAULT;
1069 
1070 	if (sin->sin_family != AF_INET)
1071 		return -EINVAL;
1072 
1073 	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075 				      AF_INET);
1076 
1077 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078 		return -EINVAL;
1079 
1080 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081 			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082 			      GFP_KERNEL);
1083 }
1084 
1085 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086 					__be32 daddr, __be32 saddr, int nbytes)
1087 {
1088 	struct tcp4_pseudohdr *bp;
1089 	struct scatterlist sg;
1090 
1091 	bp = &hp->md5_blk.ip4;
1092 
1093 	/*
1094 	 * 1. the TCP pseudo-header (in the order: source IP address,
1095 	 * destination IP address, zero-padded protocol number, and
1096 	 * segment length)
1097 	 */
1098 	bp->saddr = saddr;
1099 	bp->daddr = daddr;
1100 	bp->pad = 0;
1101 	bp->protocol = IPPROTO_TCP;
1102 	bp->len = cpu_to_be16(nbytes);
1103 
1104 	sg_init_one(&sg, bp, sizeof(*bp));
1105 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106 }
1107 
1108 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110 {
1111 	struct tcp_md5sig_pool *hp;
1112 	struct hash_desc *desc;
1113 
1114 	hp = tcp_get_md5sig_pool();
1115 	if (!hp)
1116 		goto clear_hash_noput;
1117 	desc = &hp->md5_desc;
1118 
1119 	if (crypto_hash_init(desc))
1120 		goto clear_hash;
1121 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122 		goto clear_hash;
1123 	if (tcp_md5_hash_header(hp, th))
1124 		goto clear_hash;
1125 	if (tcp_md5_hash_key(hp, key))
1126 		goto clear_hash;
1127 	if (crypto_hash_final(desc, md5_hash))
1128 		goto clear_hash;
1129 
1130 	tcp_put_md5sig_pool();
1131 	return 0;
1132 
1133 clear_hash:
1134 	tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136 	memset(md5_hash, 0, 16);
1137 	return 1;
1138 }
1139 
1140 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141 			const struct sock *sk, const struct request_sock *req,
1142 			const struct sk_buff *skb)
1143 {
1144 	struct tcp_md5sig_pool *hp;
1145 	struct hash_desc *desc;
1146 	const struct tcphdr *th = tcp_hdr(skb);
1147 	__be32 saddr, daddr;
1148 
1149 	if (sk) {
1150 		saddr = inet_sk(sk)->inet_saddr;
1151 		daddr = inet_sk(sk)->inet_daddr;
1152 	} else if (req) {
1153 		saddr = inet_rsk(req)->loc_addr;
1154 		daddr = inet_rsk(req)->rmt_addr;
1155 	} else {
1156 		const struct iphdr *iph = ip_hdr(skb);
1157 		saddr = iph->saddr;
1158 		daddr = iph->daddr;
1159 	}
1160 
1161 	hp = tcp_get_md5sig_pool();
1162 	if (!hp)
1163 		goto clear_hash_noput;
1164 	desc = &hp->md5_desc;
1165 
1166 	if (crypto_hash_init(desc))
1167 		goto clear_hash;
1168 
1169 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170 		goto clear_hash;
1171 	if (tcp_md5_hash_header(hp, th))
1172 		goto clear_hash;
1173 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174 		goto clear_hash;
1175 	if (tcp_md5_hash_key(hp, key))
1176 		goto clear_hash;
1177 	if (crypto_hash_final(desc, md5_hash))
1178 		goto clear_hash;
1179 
1180 	tcp_put_md5sig_pool();
1181 	return 0;
1182 
1183 clear_hash:
1184 	tcp_put_md5sig_pool();
1185 clear_hash_noput:
1186 	memset(md5_hash, 0, 16);
1187 	return 1;
1188 }
1189 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190 
1191 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192 {
1193 	/*
1194 	 * This gets called for each TCP segment that arrives
1195 	 * so we want to be efficient.
1196 	 * We have 3 drop cases:
1197 	 * o No MD5 hash and one expected.
1198 	 * o MD5 hash and we're not expecting one.
1199 	 * o MD5 hash and its wrong.
1200 	 */
1201 	const __u8 *hash_location = NULL;
1202 	struct tcp_md5sig_key *hash_expected;
1203 	const struct iphdr *iph = ip_hdr(skb);
1204 	const struct tcphdr *th = tcp_hdr(skb);
1205 	int genhash;
1206 	unsigned char newhash[16];
1207 
1208 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209 					  AF_INET);
1210 	hash_location = tcp_parse_md5sig_option(th);
1211 
1212 	/* We've parsed the options - do we have a hash? */
1213 	if (!hash_expected && !hash_location)
1214 		return false;
1215 
1216 	if (hash_expected && !hash_location) {
1217 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218 		return true;
1219 	}
1220 
1221 	if (!hash_expected && hash_location) {
1222 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223 		return true;
1224 	}
1225 
1226 	/* Okay, so this is hash_expected and hash_location -
1227 	 * so we need to calculate the checksum.
1228 	 */
1229 	genhash = tcp_v4_md5_hash_skb(newhash,
1230 				      hash_expected,
1231 				      NULL, NULL, skb);
1232 
1233 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235 				     &iph->saddr, ntohs(th->source),
1236 				     &iph->daddr, ntohs(th->dest),
1237 				     genhash ? " tcp_v4_calc_md5_hash failed"
1238 				     : "");
1239 		return true;
1240 	}
1241 	return false;
1242 }
1243 
1244 #endif
1245 
1246 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247 	.family		=	PF_INET,
1248 	.obj_size	=	sizeof(struct tcp_request_sock),
1249 	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1250 	.send_ack	=	tcp_v4_reqsk_send_ack,
1251 	.destructor	=	tcp_v4_reqsk_destructor,
1252 	.send_reset	=	tcp_v4_send_reset,
1253 	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1254 };
1255 
1256 #ifdef CONFIG_TCP_MD5SIG
1257 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258 	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1259 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1260 };
1261 #endif
1262 
1263 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264 			       struct request_sock *req,
1265 			       struct tcp_fastopen_cookie *foc,
1266 			       struct tcp_fastopen_cookie *valid_foc)
1267 {
1268 	bool skip_cookie = false;
1269 	struct fastopen_queue *fastopenq;
1270 
1271 	if (likely(!fastopen_cookie_present(foc))) {
1272 		/* See include/net/tcp.h for the meaning of these knobs */
1273 		if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274 		    ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276 			skip_cookie = true; /* no cookie to validate */
1277 		else
1278 			return false;
1279 	}
1280 	fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281 	/* A FO option is present; bump the counter. */
1282 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283 
1284 	/* Make sure the listener has enabled fastopen, and we don't
1285 	 * exceed the max # of pending TFO requests allowed before trying
1286 	 * to validating the cookie in order to avoid burning CPU cycles
1287 	 * unnecessarily.
1288 	 *
1289 	 * XXX (TFO) - The implication of checking the max_qlen before
1290 	 * processing a cookie request is that clients can't differentiate
1291 	 * between qlen overflow causing Fast Open to be disabled
1292 	 * temporarily vs a server not supporting Fast Open at all.
1293 	 */
1294 	if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295 	    fastopenq == NULL || fastopenq->max_qlen == 0)
1296 		return false;
1297 
1298 	if (fastopenq->qlen >= fastopenq->max_qlen) {
1299 		struct request_sock *req1;
1300 		spin_lock(&fastopenq->lock);
1301 		req1 = fastopenq->rskq_rst_head;
1302 		if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303 			spin_unlock(&fastopenq->lock);
1304 			NET_INC_STATS_BH(sock_net(sk),
1305 			    LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306 			/* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307 			foc->len = -1;
1308 			return false;
1309 		}
1310 		fastopenq->rskq_rst_head = req1->dl_next;
1311 		fastopenq->qlen--;
1312 		spin_unlock(&fastopenq->lock);
1313 		reqsk_free(req1);
1314 	}
1315 	if (skip_cookie) {
1316 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317 		return true;
1318 	}
1319 	if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1320 		if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1321 			tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1322 			if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1323 			    memcmp(&foc->val[0], &valid_foc->val[0],
1324 			    TCP_FASTOPEN_COOKIE_SIZE) != 0)
1325 				return false;
1326 			valid_foc->len = -1;
1327 		}
1328 		/* Acknowledge the data received from the peer. */
1329 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1330 		return true;
1331 	} else if (foc->len == 0) { /* Client requesting a cookie */
1332 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1333 		NET_INC_STATS_BH(sock_net(sk),
1334 		    LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1335 	} else {
1336 		/* Client sent a cookie with wrong size. Treat it
1337 		 * the same as invalid and return a valid one.
1338 		 */
1339 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1340 	}
1341 	return false;
1342 }
1343 
1344 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1345 				    struct sk_buff *skb,
1346 				    struct sk_buff *skb_synack,
1347 				    struct request_sock *req)
1348 {
1349 	struct tcp_sock *tp = tcp_sk(sk);
1350 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1351 	const struct inet_request_sock *ireq = inet_rsk(req);
1352 	struct sock *child;
1353 	int err;
1354 
1355 	req->num_retrans = 0;
1356 	req->num_timeout = 0;
1357 	req->sk = NULL;
1358 
1359 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1360 	if (child == NULL) {
1361 		NET_INC_STATS_BH(sock_net(sk),
1362 				 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1363 		kfree_skb(skb_synack);
1364 		return -1;
1365 	}
1366 	err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1367 				    ireq->rmt_addr, ireq->opt);
1368 	err = net_xmit_eval(err);
1369 	if (!err)
1370 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1371 	/* XXX (TFO) - is it ok to ignore error and continue? */
1372 
1373 	spin_lock(&queue->fastopenq->lock);
1374 	queue->fastopenq->qlen++;
1375 	spin_unlock(&queue->fastopenq->lock);
1376 
1377 	/* Initialize the child socket. Have to fix some values to take
1378 	 * into account the child is a Fast Open socket and is created
1379 	 * only out of the bits carried in the SYN packet.
1380 	 */
1381 	tp = tcp_sk(child);
1382 
1383 	tp->fastopen_rsk = req;
1384 	/* Do a hold on the listner sk so that if the listener is being
1385 	 * closed, the child that has been accepted can live on and still
1386 	 * access listen_lock.
1387 	 */
1388 	sock_hold(sk);
1389 	tcp_rsk(req)->listener = sk;
1390 
1391 	/* RFC1323: The window in SYN & SYN/ACK segments is never
1392 	 * scaled. So correct it appropriately.
1393 	 */
1394 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1395 
1396 	/* Activate the retrans timer so that SYNACK can be retransmitted.
1397 	 * The request socket is not added to the SYN table of the parent
1398 	 * because it's been added to the accept queue directly.
1399 	 */
1400 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1401 	    TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1402 
1403 	/* Add the child socket directly into the accept queue */
1404 	inet_csk_reqsk_queue_add(sk, req, child);
1405 
1406 	/* Now finish processing the fastopen child socket. */
1407 	inet_csk(child)->icsk_af_ops->rebuild_header(child);
1408 	tcp_init_congestion_control(child);
1409 	tcp_mtup_init(child);
1410 	tcp_init_buffer_space(child);
1411 	tcp_init_metrics(child);
1412 
1413 	/* Queue the data carried in the SYN packet. We need to first
1414 	 * bump skb's refcnt because the caller will attempt to free it.
1415 	 *
1416 	 * XXX (TFO) - we honor a zero-payload TFO request for now.
1417 	 * (Any reason not to?)
1418 	 */
1419 	if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1420 		/* Don't queue the skb if there is no payload in SYN.
1421 		 * XXX (TFO) - How about SYN+FIN?
1422 		 */
1423 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1424 	} else {
1425 		skb = skb_get(skb);
1426 		skb_dst_drop(skb);
1427 		__skb_pull(skb, tcp_hdr(skb)->doff * 4);
1428 		skb_set_owner_r(skb, child);
1429 		__skb_queue_tail(&child->sk_receive_queue, skb);
1430 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1431 		tp->syn_data_acked = 1;
1432 	}
1433 	sk->sk_data_ready(sk, 0);
1434 	bh_unlock_sock(child);
1435 	sock_put(child);
1436 	WARN_ON(req->sk == NULL);
1437 	return 0;
1438 }
1439 
1440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1441 {
1442 	struct tcp_options_received tmp_opt;
1443 	struct request_sock *req;
1444 	struct inet_request_sock *ireq;
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 	struct dst_entry *dst = NULL;
1447 	__be32 saddr = ip_hdr(skb)->saddr;
1448 	__be32 daddr = ip_hdr(skb)->daddr;
1449 	__u32 isn = TCP_SKB_CB(skb)->when;
1450 	bool want_cookie = false;
1451 	struct flowi4 fl4;
1452 	struct tcp_fastopen_cookie foc = { .len = -1 };
1453 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1454 	struct sk_buff *skb_synack;
1455 	int do_fastopen;
1456 
1457 	/* Never answer to SYNs send to broadcast or multicast */
1458 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1459 		goto drop;
1460 
1461 	/* TW buckets are converted to open requests without
1462 	 * limitations, they conserve resources and peer is
1463 	 * evidently real one.
1464 	 */
1465 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1466 		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1467 		if (!want_cookie)
1468 			goto drop;
1469 	}
1470 
1471 	/* Accept backlog is full. If we have already queued enough
1472 	 * of warm entries in syn queue, drop request. It is better than
1473 	 * clogging syn queue with openreqs with exponentially increasing
1474 	 * timeout.
1475 	 */
1476 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1477 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1478 		goto drop;
1479 	}
1480 
1481 	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1482 	if (!req)
1483 		goto drop;
1484 
1485 #ifdef CONFIG_TCP_MD5SIG
1486 	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1487 #endif
1488 
1489 	tcp_clear_options(&tmp_opt);
1490 	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1491 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1492 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1493 
1494 	if (want_cookie && !tmp_opt.saw_tstamp)
1495 		tcp_clear_options(&tmp_opt);
1496 
1497 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1498 	tcp_openreq_init(req, &tmp_opt, skb);
1499 
1500 	ireq = inet_rsk(req);
1501 	ireq->loc_addr = daddr;
1502 	ireq->rmt_addr = saddr;
1503 	ireq->no_srccheck = inet_sk(sk)->transparent;
1504 	ireq->opt = tcp_v4_save_options(skb);
1505 
1506 	if (security_inet_conn_request(sk, skb, req))
1507 		goto drop_and_free;
1508 
1509 	if (!want_cookie || tmp_opt.tstamp_ok)
1510 		TCP_ECN_create_request(req, skb, sock_net(sk));
1511 
1512 	if (want_cookie) {
1513 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1514 		req->cookie_ts = tmp_opt.tstamp_ok;
1515 	} else if (!isn) {
1516 		/* VJ's idea. We save last timestamp seen
1517 		 * from the destination in peer table, when entering
1518 		 * state TIME-WAIT, and check against it before
1519 		 * accepting new connection request.
1520 		 *
1521 		 * If "isn" is not zero, this request hit alive
1522 		 * timewait bucket, so that all the necessary checks
1523 		 * are made in the function processing timewait state.
1524 		 */
1525 		if (tmp_opt.saw_tstamp &&
1526 		    tcp_death_row.sysctl_tw_recycle &&
1527 		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1528 		    fl4.daddr == saddr) {
1529 			if (!tcp_peer_is_proven(req, dst, true)) {
1530 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1531 				goto drop_and_release;
1532 			}
1533 		}
1534 		/* Kill the following clause, if you dislike this way. */
1535 		else if (!sysctl_tcp_syncookies &&
1536 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1537 			  (sysctl_max_syn_backlog >> 2)) &&
1538 			 !tcp_peer_is_proven(req, dst, false)) {
1539 			/* Without syncookies last quarter of
1540 			 * backlog is filled with destinations,
1541 			 * proven to be alive.
1542 			 * It means that we continue to communicate
1543 			 * to destinations, already remembered
1544 			 * to the moment of synflood.
1545 			 */
1546 			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1547 				       &saddr, ntohs(tcp_hdr(skb)->source));
1548 			goto drop_and_release;
1549 		}
1550 
1551 		isn = tcp_v4_init_sequence(skb);
1552 	}
1553 	tcp_rsk(req)->snt_isn = isn;
1554 
1555 	if (dst == NULL) {
1556 		dst = inet_csk_route_req(sk, &fl4, req);
1557 		if (dst == NULL)
1558 			goto drop_and_free;
1559 	}
1560 	do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1561 
1562 	/* We don't call tcp_v4_send_synack() directly because we need
1563 	 * to make sure a child socket can be created successfully before
1564 	 * sending back synack!
1565 	 *
1566 	 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1567 	 * (or better yet, call tcp_send_synack() in the child context
1568 	 * directly, but will have to fix bunch of other code first)
1569 	 * after syn_recv_sock() except one will need to first fix the
1570 	 * latter to remove its dependency on the current implementation
1571 	 * of tcp_v4_send_synack()->tcp_select_initial_window().
1572 	 */
1573 	skb_synack = tcp_make_synack(sk, dst, req,
1574 	    fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1575 
1576 	if (skb_synack) {
1577 		__tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1578 		skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1579 	} else
1580 		goto drop_and_free;
1581 
1582 	if (likely(!do_fastopen)) {
1583 		int err;
1584 		err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1585 		     ireq->rmt_addr, ireq->opt);
1586 		err = net_xmit_eval(err);
1587 		if (err || want_cookie)
1588 			goto drop_and_free;
1589 
1590 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1591 		tcp_rsk(req)->listener = NULL;
1592 		/* Add the request_sock to the SYN table */
1593 		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1594 		if (fastopen_cookie_present(&foc) && foc.len != 0)
1595 			NET_INC_STATS_BH(sock_net(sk),
1596 			    LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1597 	} else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1598 		goto drop_and_free;
1599 
1600 	return 0;
1601 
1602 drop_and_release:
1603 	dst_release(dst);
1604 drop_and_free:
1605 	reqsk_free(req);
1606 drop:
1607 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1608 	return 0;
1609 }
1610 EXPORT_SYMBOL(tcp_v4_conn_request);
1611 
1612 
1613 /*
1614  * The three way handshake has completed - we got a valid synack -
1615  * now create the new socket.
1616  */
1617 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1618 				  struct request_sock *req,
1619 				  struct dst_entry *dst)
1620 {
1621 	struct inet_request_sock *ireq;
1622 	struct inet_sock *newinet;
1623 	struct tcp_sock *newtp;
1624 	struct sock *newsk;
1625 #ifdef CONFIG_TCP_MD5SIG
1626 	struct tcp_md5sig_key *key;
1627 #endif
1628 	struct ip_options_rcu *inet_opt;
1629 
1630 	if (sk_acceptq_is_full(sk))
1631 		goto exit_overflow;
1632 
1633 	newsk = tcp_create_openreq_child(sk, req, skb);
1634 	if (!newsk)
1635 		goto exit_nonewsk;
1636 
1637 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1638 	inet_sk_rx_dst_set(newsk, skb);
1639 
1640 	newtp		      = tcp_sk(newsk);
1641 	newinet		      = inet_sk(newsk);
1642 	ireq		      = inet_rsk(req);
1643 	newinet->inet_daddr   = ireq->rmt_addr;
1644 	newinet->inet_rcv_saddr = ireq->loc_addr;
1645 	newinet->inet_saddr	      = ireq->loc_addr;
1646 	inet_opt	      = ireq->opt;
1647 	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1648 	ireq->opt	      = NULL;
1649 	newinet->mc_index     = inet_iif(skb);
1650 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1651 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1652 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1653 	if (inet_opt)
1654 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1655 	newinet->inet_id = newtp->write_seq ^ jiffies;
1656 
1657 	if (!dst) {
1658 		dst = inet_csk_route_child_sock(sk, newsk, req);
1659 		if (!dst)
1660 			goto put_and_exit;
1661 	} else {
1662 		/* syncookie case : see end of cookie_v4_check() */
1663 	}
1664 	sk_setup_caps(newsk, dst);
1665 
1666 	tcp_mtup_init(newsk);
1667 	tcp_sync_mss(newsk, dst_mtu(dst));
1668 	newtp->advmss = dst_metric_advmss(dst);
1669 	if (tcp_sk(sk)->rx_opt.user_mss &&
1670 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1671 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1672 
1673 	tcp_initialize_rcv_mss(newsk);
1674 	tcp_synack_rtt_meas(newsk, req);
1675 	newtp->total_retrans = req->num_retrans;
1676 
1677 #ifdef CONFIG_TCP_MD5SIG
1678 	/* Copy over the MD5 key from the original socket */
1679 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1680 				AF_INET);
1681 	if (key != NULL) {
1682 		/*
1683 		 * We're using one, so create a matching key
1684 		 * on the newsk structure. If we fail to get
1685 		 * memory, then we end up not copying the key
1686 		 * across. Shucks.
1687 		 */
1688 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1689 			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1690 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1691 	}
1692 #endif
1693 
1694 	if (__inet_inherit_port(sk, newsk) < 0)
1695 		goto put_and_exit;
1696 	__inet_hash_nolisten(newsk, NULL);
1697 
1698 	return newsk;
1699 
1700 exit_overflow:
1701 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1702 exit_nonewsk:
1703 	dst_release(dst);
1704 exit:
1705 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1706 	return NULL;
1707 put_and_exit:
1708 	inet_csk_prepare_forced_close(newsk);
1709 	tcp_done(newsk);
1710 	goto exit;
1711 }
1712 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1713 
1714 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1715 {
1716 	struct tcphdr *th = tcp_hdr(skb);
1717 	const struct iphdr *iph = ip_hdr(skb);
1718 	struct sock *nsk;
1719 	struct request_sock **prev;
1720 	/* Find possible connection requests. */
1721 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1722 						       iph->saddr, iph->daddr);
1723 	if (req)
1724 		return tcp_check_req(sk, skb, req, prev, false);
1725 
1726 	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1727 			th->source, iph->daddr, th->dest, inet_iif(skb));
1728 
1729 	if (nsk) {
1730 		if (nsk->sk_state != TCP_TIME_WAIT) {
1731 			bh_lock_sock(nsk);
1732 			return nsk;
1733 		}
1734 		inet_twsk_put(inet_twsk(nsk));
1735 		return NULL;
1736 	}
1737 
1738 #ifdef CONFIG_SYN_COOKIES
1739 	if (!th->syn)
1740 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1741 #endif
1742 	return sk;
1743 }
1744 
1745 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1746 {
1747 	const struct iphdr *iph = ip_hdr(skb);
1748 
1749 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1750 		if (!tcp_v4_check(skb->len, iph->saddr,
1751 				  iph->daddr, skb->csum)) {
1752 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1753 			return 0;
1754 		}
1755 	}
1756 
1757 	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1758 				       skb->len, IPPROTO_TCP, 0);
1759 
1760 	if (skb->len <= 76) {
1761 		return __skb_checksum_complete(skb);
1762 	}
1763 	return 0;
1764 }
1765 
1766 
1767 /* The socket must have it's spinlock held when we get
1768  * here.
1769  *
1770  * We have a potential double-lock case here, so even when
1771  * doing backlog processing we use the BH locking scheme.
1772  * This is because we cannot sleep with the original spinlock
1773  * held.
1774  */
1775 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1776 {
1777 	struct sock *rsk;
1778 #ifdef CONFIG_TCP_MD5SIG
1779 	/*
1780 	 * We really want to reject the packet as early as possible
1781 	 * if:
1782 	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1783 	 *  o There is an MD5 option and we're not expecting one
1784 	 */
1785 	if (tcp_v4_inbound_md5_hash(sk, skb))
1786 		goto discard;
1787 #endif
1788 
1789 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1790 		struct dst_entry *dst = sk->sk_rx_dst;
1791 
1792 		sock_rps_save_rxhash(sk, skb);
1793 		if (dst) {
1794 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1795 			    dst->ops->check(dst, 0) == NULL) {
1796 				dst_release(dst);
1797 				sk->sk_rx_dst = NULL;
1798 			}
1799 		}
1800 		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1801 			rsk = sk;
1802 			goto reset;
1803 		}
1804 		return 0;
1805 	}
1806 
1807 	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1808 		goto csum_err;
1809 
1810 	if (sk->sk_state == TCP_LISTEN) {
1811 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1812 		if (!nsk)
1813 			goto discard;
1814 
1815 		if (nsk != sk) {
1816 			sock_rps_save_rxhash(nsk, skb);
1817 			if (tcp_child_process(sk, nsk, skb)) {
1818 				rsk = nsk;
1819 				goto reset;
1820 			}
1821 			return 0;
1822 		}
1823 	} else
1824 		sock_rps_save_rxhash(sk, skb);
1825 
1826 	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1827 		rsk = sk;
1828 		goto reset;
1829 	}
1830 	return 0;
1831 
1832 reset:
1833 	tcp_v4_send_reset(rsk, skb);
1834 discard:
1835 	kfree_skb(skb);
1836 	/* Be careful here. If this function gets more complicated and
1837 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1838 	 * might be destroyed here. This current version compiles correctly,
1839 	 * but you have been warned.
1840 	 */
1841 	return 0;
1842 
1843 csum_err:
1844 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1845 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1846 	goto discard;
1847 }
1848 EXPORT_SYMBOL(tcp_v4_do_rcv);
1849 
1850 void tcp_v4_early_demux(struct sk_buff *skb)
1851 {
1852 	const struct iphdr *iph;
1853 	const struct tcphdr *th;
1854 	struct sock *sk;
1855 
1856 	if (skb->pkt_type != PACKET_HOST)
1857 		return;
1858 
1859 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1860 		return;
1861 
1862 	iph = ip_hdr(skb);
1863 	th = tcp_hdr(skb);
1864 
1865 	if (th->doff < sizeof(struct tcphdr) / 4)
1866 		return;
1867 
1868 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1869 				       iph->saddr, th->source,
1870 				       iph->daddr, ntohs(th->dest),
1871 				       skb->skb_iif);
1872 	if (sk) {
1873 		skb->sk = sk;
1874 		skb->destructor = sock_edemux;
1875 		if (sk->sk_state != TCP_TIME_WAIT) {
1876 			struct dst_entry *dst = sk->sk_rx_dst;
1877 
1878 			if (dst)
1879 				dst = dst_check(dst, 0);
1880 			if (dst &&
1881 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1882 				skb_dst_set_noref(skb, dst);
1883 		}
1884 	}
1885 }
1886 
1887 /* Packet is added to VJ-style prequeue for processing in process
1888  * context, if a reader task is waiting. Apparently, this exciting
1889  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1890  * failed somewhere. Latency? Burstiness? Well, at least now we will
1891  * see, why it failed. 8)8)				  --ANK
1892  *
1893  */
1894 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1895 {
1896 	struct tcp_sock *tp = tcp_sk(sk);
1897 
1898 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
1899 		return false;
1900 
1901 	if (skb->len <= tcp_hdrlen(skb) &&
1902 	    skb_queue_len(&tp->ucopy.prequeue) == 0)
1903 		return false;
1904 
1905 	skb_dst_force(skb);
1906 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1907 	tp->ucopy.memory += skb->truesize;
1908 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1909 		struct sk_buff *skb1;
1910 
1911 		BUG_ON(sock_owned_by_user(sk));
1912 
1913 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1914 			sk_backlog_rcv(sk, skb1);
1915 			NET_INC_STATS_BH(sock_net(sk),
1916 					 LINUX_MIB_TCPPREQUEUEDROPPED);
1917 		}
1918 
1919 		tp->ucopy.memory = 0;
1920 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1921 		wake_up_interruptible_sync_poll(sk_sleep(sk),
1922 					   POLLIN | POLLRDNORM | POLLRDBAND);
1923 		if (!inet_csk_ack_scheduled(sk))
1924 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1925 						  (3 * tcp_rto_min(sk)) / 4,
1926 						  TCP_RTO_MAX);
1927 	}
1928 	return true;
1929 }
1930 EXPORT_SYMBOL(tcp_prequeue);
1931 
1932 /*
1933  *	From tcp_input.c
1934  */
1935 
1936 int tcp_v4_rcv(struct sk_buff *skb)
1937 {
1938 	const struct iphdr *iph;
1939 	const struct tcphdr *th;
1940 	struct sock *sk;
1941 	int ret;
1942 	struct net *net = dev_net(skb->dev);
1943 
1944 	if (skb->pkt_type != PACKET_HOST)
1945 		goto discard_it;
1946 
1947 	/* Count it even if it's bad */
1948 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1949 
1950 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1951 		goto discard_it;
1952 
1953 	th = tcp_hdr(skb);
1954 
1955 	if (th->doff < sizeof(struct tcphdr) / 4)
1956 		goto bad_packet;
1957 	if (!pskb_may_pull(skb, th->doff * 4))
1958 		goto discard_it;
1959 
1960 	/* An explanation is required here, I think.
1961 	 * Packet length and doff are validated by header prediction,
1962 	 * provided case of th->doff==0 is eliminated.
1963 	 * So, we defer the checks. */
1964 	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1965 		goto csum_error;
1966 
1967 	th = tcp_hdr(skb);
1968 	iph = ip_hdr(skb);
1969 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1970 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1971 				    skb->len - th->doff * 4);
1972 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1973 	TCP_SKB_CB(skb)->when	 = 0;
1974 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1975 	TCP_SKB_CB(skb)->sacked	 = 0;
1976 
1977 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1978 	if (!sk)
1979 		goto no_tcp_socket;
1980 
1981 process:
1982 	if (sk->sk_state == TCP_TIME_WAIT)
1983 		goto do_time_wait;
1984 
1985 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1986 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1987 		goto discard_and_relse;
1988 	}
1989 
1990 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1991 		goto discard_and_relse;
1992 	nf_reset(skb);
1993 
1994 	if (sk_filter(sk, skb))
1995 		goto discard_and_relse;
1996 
1997 	sk_mark_napi_id(sk, skb);
1998 	skb->dev = NULL;
1999 
2000 	bh_lock_sock_nested(sk);
2001 	ret = 0;
2002 	if (!sock_owned_by_user(sk)) {
2003 #ifdef CONFIG_NET_DMA
2004 		struct tcp_sock *tp = tcp_sk(sk);
2005 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2006 			tp->ucopy.dma_chan = net_dma_find_channel();
2007 		if (tp->ucopy.dma_chan)
2008 			ret = tcp_v4_do_rcv(sk, skb);
2009 		else
2010 #endif
2011 		{
2012 			if (!tcp_prequeue(sk, skb))
2013 				ret = tcp_v4_do_rcv(sk, skb);
2014 		}
2015 	} else if (unlikely(sk_add_backlog(sk, skb,
2016 					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
2017 		bh_unlock_sock(sk);
2018 		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2019 		goto discard_and_relse;
2020 	}
2021 	bh_unlock_sock(sk);
2022 
2023 	sock_put(sk);
2024 
2025 	return ret;
2026 
2027 no_tcp_socket:
2028 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2029 		goto discard_it;
2030 
2031 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2032 csum_error:
2033 		TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2034 bad_packet:
2035 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2036 	} else {
2037 		tcp_v4_send_reset(NULL, skb);
2038 	}
2039 
2040 discard_it:
2041 	/* Discard frame. */
2042 	kfree_skb(skb);
2043 	return 0;
2044 
2045 discard_and_relse:
2046 	sock_put(sk);
2047 	goto discard_it;
2048 
2049 do_time_wait:
2050 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2051 		inet_twsk_put(inet_twsk(sk));
2052 		goto discard_it;
2053 	}
2054 
2055 	if (skb->len < (th->doff << 2)) {
2056 		inet_twsk_put(inet_twsk(sk));
2057 		goto bad_packet;
2058 	}
2059 	if (tcp_checksum_complete(skb)) {
2060 		inet_twsk_put(inet_twsk(sk));
2061 		goto csum_error;
2062 	}
2063 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2064 	case TCP_TW_SYN: {
2065 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2066 							&tcp_hashinfo,
2067 							iph->saddr, th->source,
2068 							iph->daddr, th->dest,
2069 							inet_iif(skb));
2070 		if (sk2) {
2071 			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2072 			inet_twsk_put(inet_twsk(sk));
2073 			sk = sk2;
2074 			goto process;
2075 		}
2076 		/* Fall through to ACK */
2077 	}
2078 	case TCP_TW_ACK:
2079 		tcp_v4_timewait_ack(sk, skb);
2080 		break;
2081 	case TCP_TW_RST:
2082 		goto no_tcp_socket;
2083 	case TCP_TW_SUCCESS:;
2084 	}
2085 	goto discard_it;
2086 }
2087 
2088 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2089 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2090 	.twsk_unique	= tcp_twsk_unique,
2091 	.twsk_destructor= tcp_twsk_destructor,
2092 };
2093 
2094 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2095 {
2096 	struct dst_entry *dst = skb_dst(skb);
2097 
2098 	dst_hold(dst);
2099 	sk->sk_rx_dst = dst;
2100 	inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2101 }
2102 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2103 
2104 const struct inet_connection_sock_af_ops ipv4_specific = {
2105 	.queue_xmit	   = ip_queue_xmit,
2106 	.send_check	   = tcp_v4_send_check,
2107 	.rebuild_header	   = inet_sk_rebuild_header,
2108 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2109 	.conn_request	   = tcp_v4_conn_request,
2110 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2111 	.net_header_len	   = sizeof(struct iphdr),
2112 	.setsockopt	   = ip_setsockopt,
2113 	.getsockopt	   = ip_getsockopt,
2114 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2115 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2116 	.bind_conflict	   = inet_csk_bind_conflict,
2117 #ifdef CONFIG_COMPAT
2118 	.compat_setsockopt = compat_ip_setsockopt,
2119 	.compat_getsockopt = compat_ip_getsockopt,
2120 #endif
2121 };
2122 EXPORT_SYMBOL(ipv4_specific);
2123 
2124 #ifdef CONFIG_TCP_MD5SIG
2125 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2126 	.md5_lookup		= tcp_v4_md5_lookup,
2127 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2128 	.md5_parse		= tcp_v4_parse_md5_keys,
2129 };
2130 #endif
2131 
2132 /* NOTE: A lot of things set to zero explicitly by call to
2133  *       sk_alloc() so need not be done here.
2134  */
2135 static int tcp_v4_init_sock(struct sock *sk)
2136 {
2137 	struct inet_connection_sock *icsk = inet_csk(sk);
2138 
2139 	tcp_init_sock(sk);
2140 
2141 	icsk->icsk_af_ops = &ipv4_specific;
2142 
2143 #ifdef CONFIG_TCP_MD5SIG
2144 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2145 #endif
2146 
2147 	return 0;
2148 }
2149 
2150 void tcp_v4_destroy_sock(struct sock *sk)
2151 {
2152 	struct tcp_sock *tp = tcp_sk(sk);
2153 
2154 	tcp_clear_xmit_timers(sk);
2155 
2156 	tcp_cleanup_congestion_control(sk);
2157 
2158 	/* Cleanup up the write buffer. */
2159 	tcp_write_queue_purge(sk);
2160 
2161 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2162 	__skb_queue_purge(&tp->out_of_order_queue);
2163 
2164 #ifdef CONFIG_TCP_MD5SIG
2165 	/* Clean up the MD5 key list, if any */
2166 	if (tp->md5sig_info) {
2167 		tcp_clear_md5_list(sk);
2168 		kfree_rcu(tp->md5sig_info, rcu);
2169 		tp->md5sig_info = NULL;
2170 	}
2171 #endif
2172 
2173 #ifdef CONFIG_NET_DMA
2174 	/* Cleans up our sk_async_wait_queue */
2175 	__skb_queue_purge(&sk->sk_async_wait_queue);
2176 #endif
2177 
2178 	/* Clean prequeue, it must be empty really */
2179 	__skb_queue_purge(&tp->ucopy.prequeue);
2180 
2181 	/* Clean up a referenced TCP bind bucket. */
2182 	if (inet_csk(sk)->icsk_bind_hash)
2183 		inet_put_port(sk);
2184 
2185 	BUG_ON(tp->fastopen_rsk != NULL);
2186 
2187 	/* If socket is aborted during connect operation */
2188 	tcp_free_fastopen_req(tp);
2189 
2190 	sk_sockets_allocated_dec(sk);
2191 	sock_release_memcg(sk);
2192 }
2193 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2194 
2195 #ifdef CONFIG_PROC_FS
2196 /* Proc filesystem TCP sock list dumping. */
2197 
2198 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2199 {
2200 	return hlist_nulls_empty(head) ? NULL :
2201 		list_entry(head->first, struct inet_timewait_sock, tw_node);
2202 }
2203 
2204 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2205 {
2206 	return !is_a_nulls(tw->tw_node.next) ?
2207 		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2208 }
2209 
2210 /*
2211  * Get next listener socket follow cur.  If cur is NULL, get first socket
2212  * starting from bucket given in st->bucket; when st->bucket is zero the
2213  * very first socket in the hash table is returned.
2214  */
2215 static void *listening_get_next(struct seq_file *seq, void *cur)
2216 {
2217 	struct inet_connection_sock *icsk;
2218 	struct hlist_nulls_node *node;
2219 	struct sock *sk = cur;
2220 	struct inet_listen_hashbucket *ilb;
2221 	struct tcp_iter_state *st = seq->private;
2222 	struct net *net = seq_file_net(seq);
2223 
2224 	if (!sk) {
2225 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2226 		spin_lock_bh(&ilb->lock);
2227 		sk = sk_nulls_head(&ilb->head);
2228 		st->offset = 0;
2229 		goto get_sk;
2230 	}
2231 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2232 	++st->num;
2233 	++st->offset;
2234 
2235 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2236 		struct request_sock *req = cur;
2237 
2238 		icsk = inet_csk(st->syn_wait_sk);
2239 		req = req->dl_next;
2240 		while (1) {
2241 			while (req) {
2242 				if (req->rsk_ops->family == st->family) {
2243 					cur = req;
2244 					goto out;
2245 				}
2246 				req = req->dl_next;
2247 			}
2248 			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2249 				break;
2250 get_req:
2251 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2252 		}
2253 		sk	  = sk_nulls_next(st->syn_wait_sk);
2254 		st->state = TCP_SEQ_STATE_LISTENING;
2255 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2256 	} else {
2257 		icsk = inet_csk(sk);
2258 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2259 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2260 			goto start_req;
2261 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2262 		sk = sk_nulls_next(sk);
2263 	}
2264 get_sk:
2265 	sk_nulls_for_each_from(sk, node) {
2266 		if (!net_eq(sock_net(sk), net))
2267 			continue;
2268 		if (sk->sk_family == st->family) {
2269 			cur = sk;
2270 			goto out;
2271 		}
2272 		icsk = inet_csk(sk);
2273 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2274 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2275 start_req:
2276 			st->uid		= sock_i_uid(sk);
2277 			st->syn_wait_sk = sk;
2278 			st->state	= TCP_SEQ_STATE_OPENREQ;
2279 			st->sbucket	= 0;
2280 			goto get_req;
2281 		}
2282 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2283 	}
2284 	spin_unlock_bh(&ilb->lock);
2285 	st->offset = 0;
2286 	if (++st->bucket < INET_LHTABLE_SIZE) {
2287 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2288 		spin_lock_bh(&ilb->lock);
2289 		sk = sk_nulls_head(&ilb->head);
2290 		goto get_sk;
2291 	}
2292 	cur = NULL;
2293 out:
2294 	return cur;
2295 }
2296 
2297 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2298 {
2299 	struct tcp_iter_state *st = seq->private;
2300 	void *rc;
2301 
2302 	st->bucket = 0;
2303 	st->offset = 0;
2304 	rc = listening_get_next(seq, NULL);
2305 
2306 	while (rc && *pos) {
2307 		rc = listening_get_next(seq, rc);
2308 		--*pos;
2309 	}
2310 	return rc;
2311 }
2312 
2313 static inline bool empty_bucket(struct tcp_iter_state *st)
2314 {
2315 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2316 		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2317 }
2318 
2319 /*
2320  * Get first established socket starting from bucket given in st->bucket.
2321  * If st->bucket is zero, the very first socket in the hash is returned.
2322  */
2323 static void *established_get_first(struct seq_file *seq)
2324 {
2325 	struct tcp_iter_state *st = seq->private;
2326 	struct net *net = seq_file_net(seq);
2327 	void *rc = NULL;
2328 
2329 	st->offset = 0;
2330 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2331 		struct sock *sk;
2332 		struct hlist_nulls_node *node;
2333 		struct inet_timewait_sock *tw;
2334 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2335 
2336 		/* Lockless fast path for the common case of empty buckets */
2337 		if (empty_bucket(st))
2338 			continue;
2339 
2340 		spin_lock_bh(lock);
2341 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2342 			if (sk->sk_family != st->family ||
2343 			    !net_eq(sock_net(sk), net)) {
2344 				continue;
2345 			}
2346 			rc = sk;
2347 			goto out;
2348 		}
2349 		st->state = TCP_SEQ_STATE_TIME_WAIT;
2350 		inet_twsk_for_each(tw, node,
2351 				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2352 			if (tw->tw_family != st->family ||
2353 			    !net_eq(twsk_net(tw), net)) {
2354 				continue;
2355 			}
2356 			rc = tw;
2357 			goto out;
2358 		}
2359 		spin_unlock_bh(lock);
2360 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2361 	}
2362 out:
2363 	return rc;
2364 }
2365 
2366 static void *established_get_next(struct seq_file *seq, void *cur)
2367 {
2368 	struct sock *sk = cur;
2369 	struct inet_timewait_sock *tw;
2370 	struct hlist_nulls_node *node;
2371 	struct tcp_iter_state *st = seq->private;
2372 	struct net *net = seq_file_net(seq);
2373 
2374 	++st->num;
2375 	++st->offset;
2376 
2377 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2378 		tw = cur;
2379 		tw = tw_next(tw);
2380 get_tw:
2381 		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2382 			tw = tw_next(tw);
2383 		}
2384 		if (tw) {
2385 			cur = tw;
2386 			goto out;
2387 		}
2388 		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2389 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2390 
2391 		/* Look for next non empty bucket */
2392 		st->offset = 0;
2393 		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2394 				empty_bucket(st))
2395 			;
2396 		if (st->bucket > tcp_hashinfo.ehash_mask)
2397 			return NULL;
2398 
2399 		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2400 		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2401 	} else
2402 		sk = sk_nulls_next(sk);
2403 
2404 	sk_nulls_for_each_from(sk, node) {
2405 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2406 			goto found;
2407 	}
2408 
2409 	st->state = TCP_SEQ_STATE_TIME_WAIT;
2410 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2411 	goto get_tw;
2412 found:
2413 	cur = sk;
2414 out:
2415 	return cur;
2416 }
2417 
2418 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2419 {
2420 	struct tcp_iter_state *st = seq->private;
2421 	void *rc;
2422 
2423 	st->bucket = 0;
2424 	rc = established_get_first(seq);
2425 
2426 	while (rc && pos) {
2427 		rc = established_get_next(seq, rc);
2428 		--pos;
2429 	}
2430 	return rc;
2431 }
2432 
2433 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2434 {
2435 	void *rc;
2436 	struct tcp_iter_state *st = seq->private;
2437 
2438 	st->state = TCP_SEQ_STATE_LISTENING;
2439 	rc	  = listening_get_idx(seq, &pos);
2440 
2441 	if (!rc) {
2442 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2443 		rc	  = established_get_idx(seq, pos);
2444 	}
2445 
2446 	return rc;
2447 }
2448 
2449 static void *tcp_seek_last_pos(struct seq_file *seq)
2450 {
2451 	struct tcp_iter_state *st = seq->private;
2452 	int offset = st->offset;
2453 	int orig_num = st->num;
2454 	void *rc = NULL;
2455 
2456 	switch (st->state) {
2457 	case TCP_SEQ_STATE_OPENREQ:
2458 	case TCP_SEQ_STATE_LISTENING:
2459 		if (st->bucket >= INET_LHTABLE_SIZE)
2460 			break;
2461 		st->state = TCP_SEQ_STATE_LISTENING;
2462 		rc = listening_get_next(seq, NULL);
2463 		while (offset-- && rc)
2464 			rc = listening_get_next(seq, rc);
2465 		if (rc)
2466 			break;
2467 		st->bucket = 0;
2468 		/* Fallthrough */
2469 	case TCP_SEQ_STATE_ESTABLISHED:
2470 	case TCP_SEQ_STATE_TIME_WAIT:
2471 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2472 		if (st->bucket > tcp_hashinfo.ehash_mask)
2473 			break;
2474 		rc = established_get_first(seq);
2475 		while (offset-- && rc)
2476 			rc = established_get_next(seq, rc);
2477 	}
2478 
2479 	st->num = orig_num;
2480 
2481 	return rc;
2482 }
2483 
2484 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2485 {
2486 	struct tcp_iter_state *st = seq->private;
2487 	void *rc;
2488 
2489 	if (*pos && *pos == st->last_pos) {
2490 		rc = tcp_seek_last_pos(seq);
2491 		if (rc)
2492 			goto out;
2493 	}
2494 
2495 	st->state = TCP_SEQ_STATE_LISTENING;
2496 	st->num = 0;
2497 	st->bucket = 0;
2498 	st->offset = 0;
2499 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2500 
2501 out:
2502 	st->last_pos = *pos;
2503 	return rc;
2504 }
2505 
2506 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2507 {
2508 	struct tcp_iter_state *st = seq->private;
2509 	void *rc = NULL;
2510 
2511 	if (v == SEQ_START_TOKEN) {
2512 		rc = tcp_get_idx(seq, 0);
2513 		goto out;
2514 	}
2515 
2516 	switch (st->state) {
2517 	case TCP_SEQ_STATE_OPENREQ:
2518 	case TCP_SEQ_STATE_LISTENING:
2519 		rc = listening_get_next(seq, v);
2520 		if (!rc) {
2521 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2522 			st->bucket = 0;
2523 			st->offset = 0;
2524 			rc	  = established_get_first(seq);
2525 		}
2526 		break;
2527 	case TCP_SEQ_STATE_ESTABLISHED:
2528 	case TCP_SEQ_STATE_TIME_WAIT:
2529 		rc = established_get_next(seq, v);
2530 		break;
2531 	}
2532 out:
2533 	++*pos;
2534 	st->last_pos = *pos;
2535 	return rc;
2536 }
2537 
2538 static void tcp_seq_stop(struct seq_file *seq, void *v)
2539 {
2540 	struct tcp_iter_state *st = seq->private;
2541 
2542 	switch (st->state) {
2543 	case TCP_SEQ_STATE_OPENREQ:
2544 		if (v) {
2545 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2546 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2547 		}
2548 	case TCP_SEQ_STATE_LISTENING:
2549 		if (v != SEQ_START_TOKEN)
2550 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2551 		break;
2552 	case TCP_SEQ_STATE_TIME_WAIT:
2553 	case TCP_SEQ_STATE_ESTABLISHED:
2554 		if (v)
2555 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2556 		break;
2557 	}
2558 }
2559 
2560 int tcp_seq_open(struct inode *inode, struct file *file)
2561 {
2562 	struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2563 	struct tcp_iter_state *s;
2564 	int err;
2565 
2566 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2567 			  sizeof(struct tcp_iter_state));
2568 	if (err < 0)
2569 		return err;
2570 
2571 	s = ((struct seq_file *)file->private_data)->private;
2572 	s->family		= afinfo->family;
2573 	s->last_pos 		= 0;
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(tcp_seq_open);
2577 
2578 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2579 {
2580 	int rc = 0;
2581 	struct proc_dir_entry *p;
2582 
2583 	afinfo->seq_ops.start		= tcp_seq_start;
2584 	afinfo->seq_ops.next		= tcp_seq_next;
2585 	afinfo->seq_ops.stop		= tcp_seq_stop;
2586 
2587 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2588 			     afinfo->seq_fops, afinfo);
2589 	if (!p)
2590 		rc = -ENOMEM;
2591 	return rc;
2592 }
2593 EXPORT_SYMBOL(tcp_proc_register);
2594 
2595 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2596 {
2597 	remove_proc_entry(afinfo->name, net->proc_net);
2598 }
2599 EXPORT_SYMBOL(tcp_proc_unregister);
2600 
2601 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2602 			 struct seq_file *f, int i, kuid_t uid, int *len)
2603 {
2604 	const struct inet_request_sock *ireq = inet_rsk(req);
2605 	long delta = req->expires - jiffies;
2606 
2607 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2608 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2609 		i,
2610 		ireq->loc_addr,
2611 		ntohs(inet_sk(sk)->inet_sport),
2612 		ireq->rmt_addr,
2613 		ntohs(ireq->rmt_port),
2614 		TCP_SYN_RECV,
2615 		0, 0, /* could print option size, but that is af dependent. */
2616 		1,    /* timers active (only the expire timer) */
2617 		jiffies_delta_to_clock_t(delta),
2618 		req->num_timeout,
2619 		from_kuid_munged(seq_user_ns(f), uid),
2620 		0,  /* non standard timer */
2621 		0, /* open_requests have no inode */
2622 		atomic_read(&sk->sk_refcnt),
2623 		req,
2624 		len);
2625 }
2626 
2627 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2628 {
2629 	int timer_active;
2630 	unsigned long timer_expires;
2631 	const struct tcp_sock *tp = tcp_sk(sk);
2632 	const struct inet_connection_sock *icsk = inet_csk(sk);
2633 	const struct inet_sock *inet = inet_sk(sk);
2634 	struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2635 	__be32 dest = inet->inet_daddr;
2636 	__be32 src = inet->inet_rcv_saddr;
2637 	__u16 destp = ntohs(inet->inet_dport);
2638 	__u16 srcp = ntohs(inet->inet_sport);
2639 	int rx_queue;
2640 
2641 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2642 	    icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2643 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2644 		timer_active	= 1;
2645 		timer_expires	= icsk->icsk_timeout;
2646 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2647 		timer_active	= 4;
2648 		timer_expires	= icsk->icsk_timeout;
2649 	} else if (timer_pending(&sk->sk_timer)) {
2650 		timer_active	= 2;
2651 		timer_expires	= sk->sk_timer.expires;
2652 	} else {
2653 		timer_active	= 0;
2654 		timer_expires = jiffies;
2655 	}
2656 
2657 	if (sk->sk_state == TCP_LISTEN)
2658 		rx_queue = sk->sk_ack_backlog;
2659 	else
2660 		/*
2661 		 * because we dont lock socket, we might find a transient negative value
2662 		 */
2663 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2664 
2665 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2666 			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2667 		i, src, srcp, dest, destp, sk->sk_state,
2668 		tp->write_seq - tp->snd_una,
2669 		rx_queue,
2670 		timer_active,
2671 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2672 		icsk->icsk_retransmits,
2673 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2674 		icsk->icsk_probes_out,
2675 		sock_i_ino(sk),
2676 		atomic_read(&sk->sk_refcnt), sk,
2677 		jiffies_to_clock_t(icsk->icsk_rto),
2678 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2679 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2680 		tp->snd_cwnd,
2681 		sk->sk_state == TCP_LISTEN ?
2682 		    (fastopenq ? fastopenq->max_qlen : 0) :
2683 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2684 		len);
2685 }
2686 
2687 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2688 			       struct seq_file *f, int i, int *len)
2689 {
2690 	__be32 dest, src;
2691 	__u16 destp, srcp;
2692 	long delta = tw->tw_ttd - jiffies;
2693 
2694 	dest  = tw->tw_daddr;
2695 	src   = tw->tw_rcv_saddr;
2696 	destp = ntohs(tw->tw_dport);
2697 	srcp  = ntohs(tw->tw_sport);
2698 
2699 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2700 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2701 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2702 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2703 		atomic_read(&tw->tw_refcnt), tw, len);
2704 }
2705 
2706 #define TMPSZ 150
2707 
2708 static int tcp4_seq_show(struct seq_file *seq, void *v)
2709 {
2710 	struct tcp_iter_state *st;
2711 	int len;
2712 
2713 	if (v == SEQ_START_TOKEN) {
2714 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2715 			   "  sl  local_address rem_address   st tx_queue "
2716 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2717 			   "inode");
2718 		goto out;
2719 	}
2720 	st = seq->private;
2721 
2722 	switch (st->state) {
2723 	case TCP_SEQ_STATE_LISTENING:
2724 	case TCP_SEQ_STATE_ESTABLISHED:
2725 		get_tcp4_sock(v, seq, st->num, &len);
2726 		break;
2727 	case TCP_SEQ_STATE_OPENREQ:
2728 		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2729 		break;
2730 	case TCP_SEQ_STATE_TIME_WAIT:
2731 		get_timewait4_sock(v, seq, st->num, &len);
2732 		break;
2733 	}
2734 	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2735 out:
2736 	return 0;
2737 }
2738 
2739 static const struct file_operations tcp_afinfo_seq_fops = {
2740 	.owner   = THIS_MODULE,
2741 	.open    = tcp_seq_open,
2742 	.read    = seq_read,
2743 	.llseek  = seq_lseek,
2744 	.release = seq_release_net
2745 };
2746 
2747 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2748 	.name		= "tcp",
2749 	.family		= AF_INET,
2750 	.seq_fops	= &tcp_afinfo_seq_fops,
2751 	.seq_ops	= {
2752 		.show		= tcp4_seq_show,
2753 	},
2754 };
2755 
2756 static int __net_init tcp4_proc_init_net(struct net *net)
2757 {
2758 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2759 }
2760 
2761 static void __net_exit tcp4_proc_exit_net(struct net *net)
2762 {
2763 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2764 }
2765 
2766 static struct pernet_operations tcp4_net_ops = {
2767 	.init = tcp4_proc_init_net,
2768 	.exit = tcp4_proc_exit_net,
2769 };
2770 
2771 int __init tcp4_proc_init(void)
2772 {
2773 	return register_pernet_subsys(&tcp4_net_ops);
2774 }
2775 
2776 void tcp4_proc_exit(void)
2777 {
2778 	unregister_pernet_subsys(&tcp4_net_ops);
2779 }
2780 #endif /* CONFIG_PROC_FS */
2781 
2782 struct proto tcp_prot = {
2783 	.name			= "TCP",
2784 	.owner			= THIS_MODULE,
2785 	.close			= tcp_close,
2786 	.connect		= tcp_v4_connect,
2787 	.disconnect		= tcp_disconnect,
2788 	.accept			= inet_csk_accept,
2789 	.ioctl			= tcp_ioctl,
2790 	.init			= tcp_v4_init_sock,
2791 	.destroy		= tcp_v4_destroy_sock,
2792 	.shutdown		= tcp_shutdown,
2793 	.setsockopt		= tcp_setsockopt,
2794 	.getsockopt		= tcp_getsockopt,
2795 	.recvmsg		= tcp_recvmsg,
2796 	.sendmsg		= tcp_sendmsg,
2797 	.sendpage		= tcp_sendpage,
2798 	.backlog_rcv		= tcp_v4_do_rcv,
2799 	.release_cb		= tcp_release_cb,
2800 	.mtu_reduced		= tcp_v4_mtu_reduced,
2801 	.hash			= inet_hash,
2802 	.unhash			= inet_unhash,
2803 	.get_port		= inet_csk_get_port,
2804 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2805 	.sockets_allocated	= &tcp_sockets_allocated,
2806 	.orphan_count		= &tcp_orphan_count,
2807 	.memory_allocated	= &tcp_memory_allocated,
2808 	.memory_pressure	= &tcp_memory_pressure,
2809 	.sysctl_wmem		= sysctl_tcp_wmem,
2810 	.sysctl_rmem		= sysctl_tcp_rmem,
2811 	.max_header		= MAX_TCP_HEADER,
2812 	.obj_size		= sizeof(struct tcp_sock),
2813 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2814 	.twsk_prot		= &tcp_timewait_sock_ops,
2815 	.rsk_prot		= &tcp_request_sock_ops,
2816 	.h.hashinfo		= &tcp_hashinfo,
2817 	.no_autobind		= true,
2818 #ifdef CONFIG_COMPAT
2819 	.compat_setsockopt	= compat_tcp_setsockopt,
2820 	.compat_getsockopt	= compat_tcp_getsockopt,
2821 #endif
2822 #ifdef CONFIG_MEMCG_KMEM
2823 	.init_cgroup		= tcp_init_cgroup,
2824 	.destroy_cgroup		= tcp_destroy_cgroup,
2825 	.proto_cgroup		= tcp_proto_cgroup,
2826 #endif
2827 };
2828 EXPORT_SYMBOL(tcp_prot);
2829 
2830 static int __net_init tcp_sk_init(struct net *net)
2831 {
2832 	net->ipv4.sysctl_tcp_ecn = 2;
2833 	return 0;
2834 }
2835 
2836 static void __net_exit tcp_sk_exit(struct net *net)
2837 {
2838 }
2839 
2840 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2841 {
2842 	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2843 }
2844 
2845 static struct pernet_operations __net_initdata tcp_sk_ops = {
2846        .init	   = tcp_sk_init,
2847        .exit	   = tcp_sk_exit,
2848        .exit_batch = tcp_sk_exit_batch,
2849 };
2850 
2851 void __init tcp_v4_init(void)
2852 {
2853 	inet_hashinfo_init(&tcp_hashinfo);
2854 	if (register_pernet_subsys(&tcp_sk_ops))
2855 		panic("Failed to create the TCP control socket.\n");
2856 }
2857