1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 54 #include <linux/bottom_half.h> 55 #include <linux/types.h> 56 #include <linux/fcntl.h> 57 #include <linux/module.h> 58 #include <linux/random.h> 59 #include <linux/cache.h> 60 #include <linux/jhash.h> 61 #include <linux/init.h> 62 #include <linux/times.h> 63 64 #include <net/net_namespace.h> 65 #include <net/icmp.h> 66 #include <net/inet_hashtables.h> 67 #include <net/tcp.h> 68 #include <net/transp_v6.h> 69 #include <net/ipv6.h> 70 #include <net/inet_common.h> 71 #include <net/timewait_sock.h> 72 #include <net/xfrm.h> 73 #include <net/netdma.h> 74 75 #include <linux/inet.h> 76 #include <linux/ipv6.h> 77 #include <linux/stddef.h> 78 #include <linux/proc_fs.h> 79 #include <linux/seq_file.h> 80 81 #include <linux/crypto.h> 82 #include <linux/scatterlist.h> 83 84 int sysctl_tcp_tw_reuse __read_mostly; 85 int sysctl_tcp_low_latency __read_mostly; 86 87 88 #ifdef CONFIG_TCP_MD5SIG 89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, 90 __be32 addr); 91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key, 92 __be32 daddr, __be32 saddr, struct tcphdr *th); 93 #else 94 static inline 95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr) 96 { 97 return NULL; 98 } 99 #endif 100 101 struct inet_hashinfo tcp_hashinfo; 102 103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb) 104 { 105 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 106 ip_hdr(skb)->saddr, 107 tcp_hdr(skb)->dest, 108 tcp_hdr(skb)->source); 109 } 110 111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 112 { 113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 114 struct tcp_sock *tp = tcp_sk(sk); 115 116 /* With PAWS, it is safe from the viewpoint 117 of data integrity. Even without PAWS it is safe provided sequence 118 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 119 120 Actually, the idea is close to VJ's one, only timestamp cache is 121 held not per host, but per port pair and TW bucket is used as state 122 holder. 123 124 If TW bucket has been already destroyed we fall back to VJ's scheme 125 and use initial timestamp retrieved from peer table. 126 */ 127 if (tcptw->tw_ts_recent_stamp && 128 (twp == NULL || (sysctl_tcp_tw_reuse && 129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 131 if (tp->write_seq == 0) 132 tp->write_seq = 1; 133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 135 sock_hold(sktw); 136 return 1; 137 } 138 139 return 0; 140 } 141 142 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 143 144 /* This will initiate an outgoing connection. */ 145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 146 { 147 struct inet_sock *inet = inet_sk(sk); 148 struct tcp_sock *tp = tcp_sk(sk); 149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 150 struct rtable *rt; 151 __be32 daddr, nexthop; 152 int tmp; 153 int err; 154 155 if (addr_len < sizeof(struct sockaddr_in)) 156 return -EINVAL; 157 158 if (usin->sin_family != AF_INET) 159 return -EAFNOSUPPORT; 160 161 nexthop = daddr = usin->sin_addr.s_addr; 162 if (inet->opt && inet->opt->srr) { 163 if (!daddr) 164 return -EINVAL; 165 nexthop = inet->opt->faddr; 166 } 167 168 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr, 169 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 170 IPPROTO_TCP, 171 inet->inet_sport, usin->sin_port, sk, 1); 172 if (tmp < 0) { 173 if (tmp == -ENETUNREACH) 174 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 175 return tmp; 176 } 177 178 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 179 ip_rt_put(rt); 180 return -ENETUNREACH; 181 } 182 183 if (!inet->opt || !inet->opt->srr) 184 daddr = rt->rt_dst; 185 186 if (!inet->inet_saddr) 187 inet->inet_saddr = rt->rt_src; 188 inet->inet_rcv_saddr = inet->inet_saddr; 189 190 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 191 /* Reset inherited state */ 192 tp->rx_opt.ts_recent = 0; 193 tp->rx_opt.ts_recent_stamp = 0; 194 tp->write_seq = 0; 195 } 196 197 if (tcp_death_row.sysctl_tw_recycle && 198 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) { 199 struct inet_peer *peer = rt_get_peer(rt); 200 /* 201 * VJ's idea. We save last timestamp seen from 202 * the destination in peer table, when entering state 203 * TIME-WAIT * and initialize rx_opt.ts_recent from it, 204 * when trying new connection. 205 */ 206 if (peer != NULL && 207 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) { 208 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp; 209 tp->rx_opt.ts_recent = peer->tcp_ts; 210 } 211 } 212 213 inet->inet_dport = usin->sin_port; 214 inet->inet_daddr = daddr; 215 216 inet_csk(sk)->icsk_ext_hdr_len = 0; 217 if (inet->opt) 218 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen; 219 220 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 221 222 /* Socket identity is still unknown (sport may be zero). 223 * However we set state to SYN-SENT and not releasing socket 224 * lock select source port, enter ourselves into the hash tables and 225 * complete initialization after this. 226 */ 227 tcp_set_state(sk, TCP_SYN_SENT); 228 err = inet_hash_connect(&tcp_death_row, sk); 229 if (err) 230 goto failure; 231 232 err = ip_route_newports(&rt, IPPROTO_TCP, 233 inet->inet_sport, inet->inet_dport, sk); 234 if (err) 235 goto failure; 236 237 /* OK, now commit destination to socket. */ 238 sk->sk_gso_type = SKB_GSO_TCPV4; 239 sk_setup_caps(sk, &rt->u.dst); 240 241 if (!tp->write_seq) 242 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 243 inet->inet_daddr, 244 inet->inet_sport, 245 usin->sin_port); 246 247 inet->inet_id = tp->write_seq ^ jiffies; 248 249 err = tcp_connect(sk); 250 rt = NULL; 251 if (err) 252 goto failure; 253 254 return 0; 255 256 failure: 257 /* 258 * This unhashes the socket and releases the local port, 259 * if necessary. 260 */ 261 tcp_set_state(sk, TCP_CLOSE); 262 ip_rt_put(rt); 263 sk->sk_route_caps = 0; 264 inet->inet_dport = 0; 265 return err; 266 } 267 268 /* 269 * This routine does path mtu discovery as defined in RFC1191. 270 */ 271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu) 272 { 273 struct dst_entry *dst; 274 struct inet_sock *inet = inet_sk(sk); 275 276 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs 277 * send out by Linux are always <576bytes so they should go through 278 * unfragmented). 279 */ 280 if (sk->sk_state == TCP_LISTEN) 281 return; 282 283 /* We don't check in the destentry if pmtu discovery is forbidden 284 * on this route. We just assume that no packet_to_big packets 285 * are send back when pmtu discovery is not active. 286 * There is a small race when the user changes this flag in the 287 * route, but I think that's acceptable. 288 */ 289 if ((dst = __sk_dst_check(sk, 0)) == NULL) 290 return; 291 292 dst->ops->update_pmtu(dst, mtu); 293 294 /* Something is about to be wrong... Remember soft error 295 * for the case, if this connection will not able to recover. 296 */ 297 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 298 sk->sk_err_soft = EMSGSIZE; 299 300 mtu = dst_mtu(dst); 301 302 if (inet->pmtudisc != IP_PMTUDISC_DONT && 303 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 304 tcp_sync_mss(sk, mtu); 305 306 /* Resend the TCP packet because it's 307 * clear that the old packet has been 308 * dropped. This is the new "fast" path mtu 309 * discovery. 310 */ 311 tcp_simple_retransmit(sk); 312 } /* else let the usual retransmit timer handle it */ 313 } 314 315 /* 316 * This routine is called by the ICMP module when it gets some 317 * sort of error condition. If err < 0 then the socket should 318 * be closed and the error returned to the user. If err > 0 319 * it's just the icmp type << 8 | icmp code. After adjustment 320 * header points to the first 8 bytes of the tcp header. We need 321 * to find the appropriate port. 322 * 323 * The locking strategy used here is very "optimistic". When 324 * someone else accesses the socket the ICMP is just dropped 325 * and for some paths there is no check at all. 326 * A more general error queue to queue errors for later handling 327 * is probably better. 328 * 329 */ 330 331 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 332 { 333 struct iphdr *iph = (struct iphdr *)icmp_skb->data; 334 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 335 struct inet_connection_sock *icsk; 336 struct tcp_sock *tp; 337 struct inet_sock *inet; 338 const int type = icmp_hdr(icmp_skb)->type; 339 const int code = icmp_hdr(icmp_skb)->code; 340 struct sock *sk; 341 struct sk_buff *skb; 342 __u32 seq; 343 __u32 remaining; 344 int err; 345 struct net *net = dev_net(icmp_skb->dev); 346 347 if (icmp_skb->len < (iph->ihl << 2) + 8) { 348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 349 return; 350 } 351 352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest, 353 iph->saddr, th->source, inet_iif(icmp_skb)); 354 if (!sk) { 355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 356 return; 357 } 358 if (sk->sk_state == TCP_TIME_WAIT) { 359 inet_twsk_put(inet_twsk(sk)); 360 return; 361 } 362 363 bh_lock_sock(sk); 364 /* If too many ICMPs get dropped on busy 365 * servers this needs to be solved differently. 366 */ 367 if (sock_owned_by_user(sk)) 368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 369 370 if (sk->sk_state == TCP_CLOSE) 371 goto out; 372 373 icsk = inet_csk(sk); 374 tp = tcp_sk(sk); 375 seq = ntohl(th->seq); 376 if (sk->sk_state != TCP_LISTEN && 377 !between(seq, tp->snd_una, tp->snd_nxt)) { 378 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 379 goto out; 380 } 381 382 switch (type) { 383 case ICMP_SOURCE_QUENCH: 384 /* Just silently ignore these. */ 385 goto out; 386 case ICMP_PARAMETERPROB: 387 err = EPROTO; 388 break; 389 case ICMP_DEST_UNREACH: 390 if (code > NR_ICMP_UNREACH) 391 goto out; 392 393 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 394 if (!sock_owned_by_user(sk)) 395 do_pmtu_discovery(sk, iph, info); 396 goto out; 397 } 398 399 err = icmp_err_convert[code].errno; 400 /* check if icmp_skb allows revert of backoff 401 * (see draft-zimmermann-tcp-lcd) */ 402 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 403 break; 404 if (seq != tp->snd_una || !icsk->icsk_retransmits || 405 !icsk->icsk_backoff) 406 break; 407 408 icsk->icsk_backoff--; 409 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) << 410 icsk->icsk_backoff; 411 tcp_bound_rto(sk); 412 413 skb = tcp_write_queue_head(sk); 414 BUG_ON(!skb); 415 416 remaining = icsk->icsk_rto - min(icsk->icsk_rto, 417 tcp_time_stamp - TCP_SKB_CB(skb)->when); 418 419 if (remaining) { 420 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 421 remaining, TCP_RTO_MAX); 422 } else if (sock_owned_by_user(sk)) { 423 /* RTO revert clocked out retransmission, 424 * but socket is locked. Will defer. */ 425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 426 HZ/20, TCP_RTO_MAX); 427 } else { 428 /* RTO revert clocked out retransmission. 429 * Will retransmit now */ 430 tcp_retransmit_timer(sk); 431 } 432 433 break; 434 case ICMP_TIME_EXCEEDED: 435 err = EHOSTUNREACH; 436 break; 437 default: 438 goto out; 439 } 440 441 switch (sk->sk_state) { 442 struct request_sock *req, **prev; 443 case TCP_LISTEN: 444 if (sock_owned_by_user(sk)) 445 goto out; 446 447 req = inet_csk_search_req(sk, &prev, th->dest, 448 iph->daddr, iph->saddr); 449 if (!req) 450 goto out; 451 452 /* ICMPs are not backlogged, hence we cannot get 453 an established socket here. 454 */ 455 WARN_ON(req->sk); 456 457 if (seq != tcp_rsk(req)->snt_isn) { 458 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 459 goto out; 460 } 461 462 /* 463 * Still in SYN_RECV, just remove it silently. 464 * There is no good way to pass the error to the newly 465 * created socket, and POSIX does not want network 466 * errors returned from accept(). 467 */ 468 inet_csk_reqsk_queue_drop(sk, req, prev); 469 goto out; 470 471 case TCP_SYN_SENT: 472 case TCP_SYN_RECV: /* Cannot happen. 473 It can f.e. if SYNs crossed. 474 */ 475 if (!sock_owned_by_user(sk)) { 476 sk->sk_err = err; 477 478 sk->sk_error_report(sk); 479 480 tcp_done(sk); 481 } else { 482 sk->sk_err_soft = err; 483 } 484 goto out; 485 } 486 487 /* If we've already connected we will keep trying 488 * until we time out, or the user gives up. 489 * 490 * rfc1122 4.2.3.9 allows to consider as hard errors 491 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 492 * but it is obsoleted by pmtu discovery). 493 * 494 * Note, that in modern internet, where routing is unreliable 495 * and in each dark corner broken firewalls sit, sending random 496 * errors ordered by their masters even this two messages finally lose 497 * their original sense (even Linux sends invalid PORT_UNREACHs) 498 * 499 * Now we are in compliance with RFCs. 500 * --ANK (980905) 501 */ 502 503 inet = inet_sk(sk); 504 if (!sock_owned_by_user(sk) && inet->recverr) { 505 sk->sk_err = err; 506 sk->sk_error_report(sk); 507 } else { /* Only an error on timeout */ 508 sk->sk_err_soft = err; 509 } 510 511 out: 512 bh_unlock_sock(sk); 513 sock_put(sk); 514 } 515 516 /* This routine computes an IPv4 TCP checksum. */ 517 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb) 518 { 519 struct inet_sock *inet = inet_sk(sk); 520 struct tcphdr *th = tcp_hdr(skb); 521 522 if (skb->ip_summed == CHECKSUM_PARTIAL) { 523 th->check = ~tcp_v4_check(len, inet->inet_saddr, 524 inet->inet_daddr, 0); 525 skb->csum_start = skb_transport_header(skb) - skb->head; 526 skb->csum_offset = offsetof(struct tcphdr, check); 527 } else { 528 th->check = tcp_v4_check(len, inet->inet_saddr, 529 inet->inet_daddr, 530 csum_partial(th, 531 th->doff << 2, 532 skb->csum)); 533 } 534 } 535 536 int tcp_v4_gso_send_check(struct sk_buff *skb) 537 { 538 const struct iphdr *iph; 539 struct tcphdr *th; 540 541 if (!pskb_may_pull(skb, sizeof(*th))) 542 return -EINVAL; 543 544 iph = ip_hdr(skb); 545 th = tcp_hdr(skb); 546 547 th->check = 0; 548 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0); 549 skb->csum_start = skb_transport_header(skb) - skb->head; 550 skb->csum_offset = offsetof(struct tcphdr, check); 551 skb->ip_summed = CHECKSUM_PARTIAL; 552 return 0; 553 } 554 555 /* 556 * This routine will send an RST to the other tcp. 557 * 558 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 559 * for reset. 560 * Answer: if a packet caused RST, it is not for a socket 561 * existing in our system, if it is matched to a socket, 562 * it is just duplicate segment or bug in other side's TCP. 563 * So that we build reply only basing on parameters 564 * arrived with segment. 565 * Exception: precedence violation. We do not implement it in any case. 566 */ 567 568 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) 569 { 570 struct tcphdr *th = tcp_hdr(skb); 571 struct { 572 struct tcphdr th; 573 #ifdef CONFIG_TCP_MD5SIG 574 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 575 #endif 576 } rep; 577 struct ip_reply_arg arg; 578 #ifdef CONFIG_TCP_MD5SIG 579 struct tcp_md5sig_key *key; 580 #endif 581 struct net *net; 582 583 /* Never send a reset in response to a reset. */ 584 if (th->rst) 585 return; 586 587 if (skb_rtable(skb)->rt_type != RTN_LOCAL) 588 return; 589 590 /* Swap the send and the receive. */ 591 memset(&rep, 0, sizeof(rep)); 592 rep.th.dest = th->source; 593 rep.th.source = th->dest; 594 rep.th.doff = sizeof(struct tcphdr) / 4; 595 rep.th.rst = 1; 596 597 if (th->ack) { 598 rep.th.seq = th->ack_seq; 599 } else { 600 rep.th.ack = 1; 601 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 602 skb->len - (th->doff << 2)); 603 } 604 605 memset(&arg, 0, sizeof(arg)); 606 arg.iov[0].iov_base = (unsigned char *)&rep; 607 arg.iov[0].iov_len = sizeof(rep.th); 608 609 #ifdef CONFIG_TCP_MD5SIG 610 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL; 611 if (key) { 612 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 613 (TCPOPT_NOP << 16) | 614 (TCPOPT_MD5SIG << 8) | 615 TCPOLEN_MD5SIG); 616 /* Update length and the length the header thinks exists */ 617 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 618 rep.th.doff = arg.iov[0].iov_len / 4; 619 620 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 621 key, ip_hdr(skb)->saddr, 622 ip_hdr(skb)->daddr, &rep.th); 623 } 624 #endif 625 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 626 ip_hdr(skb)->saddr, /* XXX */ 627 arg.iov[0].iov_len, IPPROTO_TCP, 0); 628 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 629 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 630 631 net = dev_net(skb_dst(skb)->dev); 632 ip_send_reply(net->ipv4.tcp_sock, skb, 633 &arg, arg.iov[0].iov_len); 634 635 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 636 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 637 } 638 639 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 640 outside socket context is ugly, certainly. What can I do? 641 */ 642 643 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 644 u32 win, u32 ts, int oif, 645 struct tcp_md5sig_key *key, 646 int reply_flags) 647 { 648 struct tcphdr *th = tcp_hdr(skb); 649 struct { 650 struct tcphdr th; 651 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 652 #ifdef CONFIG_TCP_MD5SIG 653 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 654 #endif 655 ]; 656 } rep; 657 struct ip_reply_arg arg; 658 struct net *net = dev_net(skb_dst(skb)->dev); 659 660 memset(&rep.th, 0, sizeof(struct tcphdr)); 661 memset(&arg, 0, sizeof(arg)); 662 663 arg.iov[0].iov_base = (unsigned char *)&rep; 664 arg.iov[0].iov_len = sizeof(rep.th); 665 if (ts) { 666 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 667 (TCPOPT_TIMESTAMP << 8) | 668 TCPOLEN_TIMESTAMP); 669 rep.opt[1] = htonl(tcp_time_stamp); 670 rep.opt[2] = htonl(ts); 671 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 672 } 673 674 /* Swap the send and the receive. */ 675 rep.th.dest = th->source; 676 rep.th.source = th->dest; 677 rep.th.doff = arg.iov[0].iov_len / 4; 678 rep.th.seq = htonl(seq); 679 rep.th.ack_seq = htonl(ack); 680 rep.th.ack = 1; 681 rep.th.window = htons(win); 682 683 #ifdef CONFIG_TCP_MD5SIG 684 if (key) { 685 int offset = (ts) ? 3 : 0; 686 687 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 688 (TCPOPT_NOP << 16) | 689 (TCPOPT_MD5SIG << 8) | 690 TCPOLEN_MD5SIG); 691 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 692 rep.th.doff = arg.iov[0].iov_len/4; 693 694 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 695 key, ip_hdr(skb)->saddr, 696 ip_hdr(skb)->daddr, &rep.th); 697 } 698 #endif 699 arg.flags = reply_flags; 700 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 701 ip_hdr(skb)->saddr, /* XXX */ 702 arg.iov[0].iov_len, IPPROTO_TCP, 0); 703 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 704 if (oif) 705 arg.bound_dev_if = oif; 706 707 ip_send_reply(net->ipv4.tcp_sock, skb, 708 &arg, arg.iov[0].iov_len); 709 710 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 711 } 712 713 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 714 { 715 struct inet_timewait_sock *tw = inet_twsk(sk); 716 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 717 718 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 719 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 720 tcptw->tw_ts_recent, 721 tw->tw_bound_dev_if, 722 tcp_twsk_md5_key(tcptw), 723 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0 724 ); 725 726 inet_twsk_put(tw); 727 } 728 729 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb, 730 struct request_sock *req) 731 { 732 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, 733 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd, 734 req->ts_recent, 735 0, 736 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr), 737 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0); 738 } 739 740 /* 741 * Send a SYN-ACK after having received a SYN. 742 * This still operates on a request_sock only, not on a big 743 * socket. 744 */ 745 static int __tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst, 746 struct request_sock *req, 747 struct request_values *rvp) 748 { 749 const struct inet_request_sock *ireq = inet_rsk(req); 750 int err = -1; 751 struct sk_buff * skb; 752 753 /* First, grab a route. */ 754 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL) 755 return -1; 756 757 skb = tcp_make_synack(sk, dst, req, rvp); 758 759 if (skb) { 760 struct tcphdr *th = tcp_hdr(skb); 761 762 th->check = tcp_v4_check(skb->len, 763 ireq->loc_addr, 764 ireq->rmt_addr, 765 csum_partial(th, skb->len, 766 skb->csum)); 767 768 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, 769 ireq->rmt_addr, 770 ireq->opt); 771 err = net_xmit_eval(err); 772 } 773 774 dst_release(dst); 775 return err; 776 } 777 778 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req, 779 struct request_values *rvp) 780 { 781 return __tcp_v4_send_synack(sk, NULL, req, rvp); 782 } 783 784 /* 785 * IPv4 request_sock destructor. 786 */ 787 static void tcp_v4_reqsk_destructor(struct request_sock *req) 788 { 789 kfree(inet_rsk(req)->opt); 790 } 791 792 #ifdef CONFIG_SYN_COOKIES 793 static void syn_flood_warning(struct sk_buff *skb) 794 { 795 static unsigned long warntime; 796 797 if (time_after(jiffies, (warntime + HZ * 60))) { 798 warntime = jiffies; 799 printk(KERN_INFO 800 "possible SYN flooding on port %d. Sending cookies.\n", 801 ntohs(tcp_hdr(skb)->dest)); 802 } 803 } 804 #endif 805 806 /* 807 * Save and compile IPv4 options into the request_sock if needed. 808 */ 809 static struct ip_options *tcp_v4_save_options(struct sock *sk, 810 struct sk_buff *skb) 811 { 812 struct ip_options *opt = &(IPCB(skb)->opt); 813 struct ip_options *dopt = NULL; 814 815 if (opt && opt->optlen) { 816 int opt_size = optlength(opt); 817 dopt = kmalloc(opt_size, GFP_ATOMIC); 818 if (dopt) { 819 if (ip_options_echo(dopt, skb)) { 820 kfree(dopt); 821 dopt = NULL; 822 } 823 } 824 } 825 return dopt; 826 } 827 828 #ifdef CONFIG_TCP_MD5SIG 829 /* 830 * RFC2385 MD5 checksumming requires a mapping of 831 * IP address->MD5 Key. 832 * We need to maintain these in the sk structure. 833 */ 834 835 /* Find the Key structure for an address. */ 836 static struct tcp_md5sig_key * 837 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr) 838 { 839 struct tcp_sock *tp = tcp_sk(sk); 840 int i; 841 842 if (!tp->md5sig_info || !tp->md5sig_info->entries4) 843 return NULL; 844 for (i = 0; i < tp->md5sig_info->entries4; i++) { 845 if (tp->md5sig_info->keys4[i].addr == addr) 846 return &tp->md5sig_info->keys4[i].base; 847 } 848 return NULL; 849 } 850 851 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, 852 struct sock *addr_sk) 853 { 854 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr); 855 } 856 857 EXPORT_SYMBOL(tcp_v4_md5_lookup); 858 859 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk, 860 struct request_sock *req) 861 { 862 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr); 863 } 864 865 /* This can be called on a newly created socket, from other files */ 866 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, 867 u8 *newkey, u8 newkeylen) 868 { 869 /* Add Key to the list */ 870 struct tcp_md5sig_key *key; 871 struct tcp_sock *tp = tcp_sk(sk); 872 struct tcp4_md5sig_key *keys; 873 874 key = tcp_v4_md5_do_lookup(sk, addr); 875 if (key) { 876 /* Pre-existing entry - just update that one. */ 877 kfree(key->key); 878 key->key = newkey; 879 key->keylen = newkeylen; 880 } else { 881 struct tcp_md5sig_info *md5sig; 882 883 if (!tp->md5sig_info) { 884 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info), 885 GFP_ATOMIC); 886 if (!tp->md5sig_info) { 887 kfree(newkey); 888 return -ENOMEM; 889 } 890 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 891 } 892 if (tcp_alloc_md5sig_pool(sk) == NULL) { 893 kfree(newkey); 894 return -ENOMEM; 895 } 896 md5sig = tp->md5sig_info; 897 898 if (md5sig->alloced4 == md5sig->entries4) { 899 keys = kmalloc((sizeof(*keys) * 900 (md5sig->entries4 + 1)), GFP_ATOMIC); 901 if (!keys) { 902 kfree(newkey); 903 tcp_free_md5sig_pool(); 904 return -ENOMEM; 905 } 906 907 if (md5sig->entries4) 908 memcpy(keys, md5sig->keys4, 909 sizeof(*keys) * md5sig->entries4); 910 911 /* Free old key list, and reference new one */ 912 kfree(md5sig->keys4); 913 md5sig->keys4 = keys; 914 md5sig->alloced4++; 915 } 916 md5sig->entries4++; 917 md5sig->keys4[md5sig->entries4 - 1].addr = addr; 918 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey; 919 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen; 920 } 921 return 0; 922 } 923 924 EXPORT_SYMBOL(tcp_v4_md5_do_add); 925 926 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk, 927 u8 *newkey, u8 newkeylen) 928 { 929 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr, 930 newkey, newkeylen); 931 } 932 933 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr) 934 { 935 struct tcp_sock *tp = tcp_sk(sk); 936 int i; 937 938 for (i = 0; i < tp->md5sig_info->entries4; i++) { 939 if (tp->md5sig_info->keys4[i].addr == addr) { 940 /* Free the key */ 941 kfree(tp->md5sig_info->keys4[i].base.key); 942 tp->md5sig_info->entries4--; 943 944 if (tp->md5sig_info->entries4 == 0) { 945 kfree(tp->md5sig_info->keys4); 946 tp->md5sig_info->keys4 = NULL; 947 tp->md5sig_info->alloced4 = 0; 948 } else if (tp->md5sig_info->entries4 != i) { 949 /* Need to do some manipulation */ 950 memmove(&tp->md5sig_info->keys4[i], 951 &tp->md5sig_info->keys4[i+1], 952 (tp->md5sig_info->entries4 - i) * 953 sizeof(struct tcp4_md5sig_key)); 954 } 955 tcp_free_md5sig_pool(); 956 return 0; 957 } 958 } 959 return -ENOENT; 960 } 961 962 EXPORT_SYMBOL(tcp_v4_md5_do_del); 963 964 static void tcp_v4_clear_md5_list(struct sock *sk) 965 { 966 struct tcp_sock *tp = tcp_sk(sk); 967 968 /* Free each key, then the set of key keys, 969 * the crypto element, and then decrement our 970 * hold on the last resort crypto. 971 */ 972 if (tp->md5sig_info->entries4) { 973 int i; 974 for (i = 0; i < tp->md5sig_info->entries4; i++) 975 kfree(tp->md5sig_info->keys4[i].base.key); 976 tp->md5sig_info->entries4 = 0; 977 tcp_free_md5sig_pool(); 978 } 979 if (tp->md5sig_info->keys4) { 980 kfree(tp->md5sig_info->keys4); 981 tp->md5sig_info->keys4 = NULL; 982 tp->md5sig_info->alloced4 = 0; 983 } 984 } 985 986 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 987 int optlen) 988 { 989 struct tcp_md5sig cmd; 990 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 991 u8 *newkey; 992 993 if (optlen < sizeof(cmd)) 994 return -EINVAL; 995 996 if (copy_from_user(&cmd, optval, sizeof(cmd))) 997 return -EFAULT; 998 999 if (sin->sin_family != AF_INET) 1000 return -EINVAL; 1001 1002 if (!cmd.tcpm_key || !cmd.tcpm_keylen) { 1003 if (!tcp_sk(sk)->md5sig_info) 1004 return -ENOENT; 1005 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr); 1006 } 1007 1008 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1009 return -EINVAL; 1010 1011 if (!tcp_sk(sk)->md5sig_info) { 1012 struct tcp_sock *tp = tcp_sk(sk); 1013 struct tcp_md5sig_info *p; 1014 1015 p = kzalloc(sizeof(*p), sk->sk_allocation); 1016 if (!p) 1017 return -EINVAL; 1018 1019 tp->md5sig_info = p; 1020 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1021 } 1022 1023 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation); 1024 if (!newkey) 1025 return -ENOMEM; 1026 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr, 1027 newkey, cmd.tcpm_keylen); 1028 } 1029 1030 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1031 __be32 daddr, __be32 saddr, int nbytes) 1032 { 1033 struct tcp4_pseudohdr *bp; 1034 struct scatterlist sg; 1035 1036 bp = &hp->md5_blk.ip4; 1037 1038 /* 1039 * 1. the TCP pseudo-header (in the order: source IP address, 1040 * destination IP address, zero-padded protocol number, and 1041 * segment length) 1042 */ 1043 bp->saddr = saddr; 1044 bp->daddr = daddr; 1045 bp->pad = 0; 1046 bp->protocol = IPPROTO_TCP; 1047 bp->len = cpu_to_be16(nbytes); 1048 1049 sg_init_one(&sg, bp, sizeof(*bp)); 1050 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1051 } 1052 1053 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key, 1054 __be32 daddr, __be32 saddr, struct tcphdr *th) 1055 { 1056 struct tcp_md5sig_pool *hp; 1057 struct hash_desc *desc; 1058 1059 hp = tcp_get_md5sig_pool(); 1060 if (!hp) 1061 goto clear_hash_noput; 1062 desc = &hp->md5_desc; 1063 1064 if (crypto_hash_init(desc)) 1065 goto clear_hash; 1066 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1067 goto clear_hash; 1068 if (tcp_md5_hash_header(hp, th)) 1069 goto clear_hash; 1070 if (tcp_md5_hash_key(hp, key)) 1071 goto clear_hash; 1072 if (crypto_hash_final(desc, md5_hash)) 1073 goto clear_hash; 1074 1075 tcp_put_md5sig_pool(); 1076 return 0; 1077 1078 clear_hash: 1079 tcp_put_md5sig_pool(); 1080 clear_hash_noput: 1081 memset(md5_hash, 0, 16); 1082 return 1; 1083 } 1084 1085 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key, 1086 struct sock *sk, struct request_sock *req, 1087 struct sk_buff *skb) 1088 { 1089 struct tcp_md5sig_pool *hp; 1090 struct hash_desc *desc; 1091 struct tcphdr *th = tcp_hdr(skb); 1092 __be32 saddr, daddr; 1093 1094 if (sk) { 1095 saddr = inet_sk(sk)->inet_saddr; 1096 daddr = inet_sk(sk)->inet_daddr; 1097 } else if (req) { 1098 saddr = inet_rsk(req)->loc_addr; 1099 daddr = inet_rsk(req)->rmt_addr; 1100 } else { 1101 const struct iphdr *iph = ip_hdr(skb); 1102 saddr = iph->saddr; 1103 daddr = iph->daddr; 1104 } 1105 1106 hp = tcp_get_md5sig_pool(); 1107 if (!hp) 1108 goto clear_hash_noput; 1109 desc = &hp->md5_desc; 1110 1111 if (crypto_hash_init(desc)) 1112 goto clear_hash; 1113 1114 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1115 goto clear_hash; 1116 if (tcp_md5_hash_header(hp, th)) 1117 goto clear_hash; 1118 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1119 goto clear_hash; 1120 if (tcp_md5_hash_key(hp, key)) 1121 goto clear_hash; 1122 if (crypto_hash_final(desc, md5_hash)) 1123 goto clear_hash; 1124 1125 tcp_put_md5sig_pool(); 1126 return 0; 1127 1128 clear_hash: 1129 tcp_put_md5sig_pool(); 1130 clear_hash_noput: 1131 memset(md5_hash, 0, 16); 1132 return 1; 1133 } 1134 1135 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1136 1137 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb) 1138 { 1139 /* 1140 * This gets called for each TCP segment that arrives 1141 * so we want to be efficient. 1142 * We have 3 drop cases: 1143 * o No MD5 hash and one expected. 1144 * o MD5 hash and we're not expecting one. 1145 * o MD5 hash and its wrong. 1146 */ 1147 __u8 *hash_location = NULL; 1148 struct tcp_md5sig_key *hash_expected; 1149 const struct iphdr *iph = ip_hdr(skb); 1150 struct tcphdr *th = tcp_hdr(skb); 1151 int genhash; 1152 unsigned char newhash[16]; 1153 1154 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr); 1155 hash_location = tcp_parse_md5sig_option(th); 1156 1157 /* We've parsed the options - do we have a hash? */ 1158 if (!hash_expected && !hash_location) 1159 return 0; 1160 1161 if (hash_expected && !hash_location) { 1162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1163 return 1; 1164 } 1165 1166 if (!hash_expected && hash_location) { 1167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1168 return 1; 1169 } 1170 1171 /* Okay, so this is hash_expected and hash_location - 1172 * so we need to calculate the checksum. 1173 */ 1174 genhash = tcp_v4_md5_hash_skb(newhash, 1175 hash_expected, 1176 NULL, NULL, skb); 1177 1178 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1179 if (net_ratelimit()) { 1180 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1181 &iph->saddr, ntohs(th->source), 1182 &iph->daddr, ntohs(th->dest), 1183 genhash ? " tcp_v4_calc_md5_hash failed" : ""); 1184 } 1185 return 1; 1186 } 1187 return 0; 1188 } 1189 1190 #endif 1191 1192 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1193 .family = PF_INET, 1194 .obj_size = sizeof(struct tcp_request_sock), 1195 .rtx_syn_ack = tcp_v4_send_synack, 1196 .send_ack = tcp_v4_reqsk_send_ack, 1197 .destructor = tcp_v4_reqsk_destructor, 1198 .send_reset = tcp_v4_send_reset, 1199 }; 1200 1201 #ifdef CONFIG_TCP_MD5SIG 1202 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1203 .md5_lookup = tcp_v4_reqsk_md5_lookup, 1204 .calc_md5_hash = tcp_v4_md5_hash_skb, 1205 }; 1206 #endif 1207 1208 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1209 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1210 .twsk_unique = tcp_twsk_unique, 1211 .twsk_destructor= tcp_twsk_destructor, 1212 }; 1213 1214 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1215 { 1216 struct tcp_extend_values tmp_ext; 1217 struct tcp_options_received tmp_opt; 1218 u8 *hash_location; 1219 struct request_sock *req; 1220 struct inet_request_sock *ireq; 1221 struct tcp_sock *tp = tcp_sk(sk); 1222 struct dst_entry *dst = NULL; 1223 __be32 saddr = ip_hdr(skb)->saddr; 1224 __be32 daddr = ip_hdr(skb)->daddr; 1225 __u32 isn = TCP_SKB_CB(skb)->when; 1226 #ifdef CONFIG_SYN_COOKIES 1227 int want_cookie = 0; 1228 #else 1229 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */ 1230 #endif 1231 1232 /* Never answer to SYNs send to broadcast or multicast */ 1233 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1234 goto drop; 1235 1236 /* TW buckets are converted to open requests without 1237 * limitations, they conserve resources and peer is 1238 * evidently real one. 1239 */ 1240 if (inet_csk_reqsk_queue_is_full(sk) && !isn) { 1241 #ifdef CONFIG_SYN_COOKIES 1242 if (sysctl_tcp_syncookies) { 1243 want_cookie = 1; 1244 } else 1245 #endif 1246 goto drop; 1247 } 1248 1249 /* Accept backlog is full. If we have already queued enough 1250 * of warm entries in syn queue, drop request. It is better than 1251 * clogging syn queue with openreqs with exponentially increasing 1252 * timeout. 1253 */ 1254 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) 1255 goto drop; 1256 1257 req = inet_reqsk_alloc(&tcp_request_sock_ops); 1258 if (!req) 1259 goto drop; 1260 1261 #ifdef CONFIG_TCP_MD5SIG 1262 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops; 1263 #endif 1264 1265 tcp_clear_options(&tmp_opt); 1266 tmp_opt.mss_clamp = TCP_MSS_DEFAULT; 1267 tmp_opt.user_mss = tp->rx_opt.user_mss; 1268 tcp_parse_options(skb, &tmp_opt, &hash_location, 0); 1269 1270 if (tmp_opt.cookie_plus > 0 && 1271 tmp_opt.saw_tstamp && 1272 !tp->rx_opt.cookie_out_never && 1273 (sysctl_tcp_cookie_size > 0 || 1274 (tp->cookie_values != NULL && 1275 tp->cookie_values->cookie_desired > 0))) { 1276 u8 *c; 1277 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS]; 1278 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE; 1279 1280 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0) 1281 goto drop_and_release; 1282 1283 /* Secret recipe starts with IP addresses */ 1284 *mess++ ^= daddr; 1285 *mess++ ^= saddr; 1286 1287 /* plus variable length Initiator Cookie */ 1288 c = (u8 *)mess; 1289 while (l-- > 0) 1290 *c++ ^= *hash_location++; 1291 1292 #ifdef CONFIG_SYN_COOKIES 1293 want_cookie = 0; /* not our kind of cookie */ 1294 #endif 1295 tmp_ext.cookie_out_never = 0; /* false */ 1296 tmp_ext.cookie_plus = tmp_opt.cookie_plus; 1297 } else if (!tp->rx_opt.cookie_in_always) { 1298 /* redundant indications, but ensure initialization. */ 1299 tmp_ext.cookie_out_never = 1; /* true */ 1300 tmp_ext.cookie_plus = 0; 1301 } else { 1302 goto drop_and_release; 1303 } 1304 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always; 1305 1306 if (want_cookie && !tmp_opt.saw_tstamp) 1307 tcp_clear_options(&tmp_opt); 1308 1309 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 1310 tcp_openreq_init(req, &tmp_opt, skb); 1311 1312 ireq = inet_rsk(req); 1313 ireq->loc_addr = daddr; 1314 ireq->rmt_addr = saddr; 1315 ireq->no_srccheck = inet_sk(sk)->transparent; 1316 ireq->opt = tcp_v4_save_options(sk, skb); 1317 1318 if (security_inet_conn_request(sk, skb, req)) 1319 goto drop_and_free; 1320 1321 if (!want_cookie) 1322 TCP_ECN_create_request(req, tcp_hdr(skb)); 1323 1324 if (want_cookie) { 1325 #ifdef CONFIG_SYN_COOKIES 1326 syn_flood_warning(skb); 1327 req->cookie_ts = tmp_opt.tstamp_ok; 1328 #endif 1329 isn = cookie_v4_init_sequence(sk, skb, &req->mss); 1330 } else if (!isn) { 1331 struct inet_peer *peer = NULL; 1332 1333 /* VJ's idea. We save last timestamp seen 1334 * from the destination in peer table, when entering 1335 * state TIME-WAIT, and check against it before 1336 * accepting new connection request. 1337 * 1338 * If "isn" is not zero, this request hit alive 1339 * timewait bucket, so that all the necessary checks 1340 * are made in the function processing timewait state. 1341 */ 1342 if (tmp_opt.saw_tstamp && 1343 tcp_death_row.sysctl_tw_recycle && 1344 (dst = inet_csk_route_req(sk, req)) != NULL && 1345 (peer = rt_get_peer((struct rtable *)dst)) != NULL && 1346 peer->v4daddr == saddr) { 1347 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL && 1348 (s32)(peer->tcp_ts - req->ts_recent) > 1349 TCP_PAWS_WINDOW) { 1350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 1351 goto drop_and_release; 1352 } 1353 } 1354 /* Kill the following clause, if you dislike this way. */ 1355 else if (!sysctl_tcp_syncookies && 1356 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 1357 (sysctl_max_syn_backlog >> 2)) && 1358 (!peer || !peer->tcp_ts_stamp) && 1359 (!dst || !dst_metric(dst, RTAX_RTT))) { 1360 /* Without syncookies last quarter of 1361 * backlog is filled with destinations, 1362 * proven to be alive. 1363 * It means that we continue to communicate 1364 * to destinations, already remembered 1365 * to the moment of synflood. 1366 */ 1367 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n", 1368 &saddr, ntohs(tcp_hdr(skb)->source)); 1369 goto drop_and_release; 1370 } 1371 1372 isn = tcp_v4_init_sequence(skb); 1373 } 1374 tcp_rsk(req)->snt_isn = isn; 1375 1376 if (__tcp_v4_send_synack(sk, dst, req, 1377 (struct request_values *)&tmp_ext) || 1378 want_cookie) 1379 goto drop_and_free; 1380 1381 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 1382 return 0; 1383 1384 drop_and_release: 1385 dst_release(dst); 1386 drop_and_free: 1387 reqsk_free(req); 1388 drop: 1389 return 0; 1390 } 1391 1392 1393 /* 1394 * The three way handshake has completed - we got a valid synack - 1395 * now create the new socket. 1396 */ 1397 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, 1398 struct request_sock *req, 1399 struct dst_entry *dst) 1400 { 1401 struct inet_request_sock *ireq; 1402 struct inet_sock *newinet; 1403 struct tcp_sock *newtp; 1404 struct sock *newsk; 1405 #ifdef CONFIG_TCP_MD5SIG 1406 struct tcp_md5sig_key *key; 1407 #endif 1408 1409 if (sk_acceptq_is_full(sk)) 1410 goto exit_overflow; 1411 1412 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL) 1413 goto exit; 1414 1415 newsk = tcp_create_openreq_child(sk, req, skb); 1416 if (!newsk) 1417 goto exit; 1418 1419 newsk->sk_gso_type = SKB_GSO_TCPV4; 1420 sk_setup_caps(newsk, dst); 1421 1422 newtp = tcp_sk(newsk); 1423 newinet = inet_sk(newsk); 1424 ireq = inet_rsk(req); 1425 newinet->inet_daddr = ireq->rmt_addr; 1426 newinet->inet_rcv_saddr = ireq->loc_addr; 1427 newinet->inet_saddr = ireq->loc_addr; 1428 newinet->opt = ireq->opt; 1429 ireq->opt = NULL; 1430 newinet->mc_index = inet_iif(skb); 1431 newinet->mc_ttl = ip_hdr(skb)->ttl; 1432 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1433 if (newinet->opt) 1434 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen; 1435 newinet->inet_id = newtp->write_seq ^ jiffies; 1436 1437 tcp_mtup_init(newsk); 1438 tcp_sync_mss(newsk, dst_mtu(dst)); 1439 newtp->advmss = dst_metric(dst, RTAX_ADVMSS); 1440 if (tcp_sk(sk)->rx_opt.user_mss && 1441 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1442 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1443 1444 tcp_initialize_rcv_mss(newsk); 1445 1446 #ifdef CONFIG_TCP_MD5SIG 1447 /* Copy over the MD5 key from the original socket */ 1448 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr); 1449 if (key != NULL) { 1450 /* 1451 * We're using one, so create a matching key 1452 * on the newsk structure. If we fail to get 1453 * memory, then we end up not copying the key 1454 * across. Shucks. 1455 */ 1456 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC); 1457 if (newkey != NULL) 1458 tcp_v4_md5_do_add(newsk, newinet->inet_daddr, 1459 newkey, key->keylen); 1460 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1461 } 1462 #endif 1463 1464 __inet_hash_nolisten(newsk, NULL); 1465 __inet_inherit_port(sk, newsk); 1466 1467 return newsk; 1468 1469 exit_overflow: 1470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1471 exit: 1472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1473 dst_release(dst); 1474 return NULL; 1475 } 1476 1477 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) 1478 { 1479 struct tcphdr *th = tcp_hdr(skb); 1480 const struct iphdr *iph = ip_hdr(skb); 1481 struct sock *nsk; 1482 struct request_sock **prev; 1483 /* Find possible connection requests. */ 1484 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source, 1485 iph->saddr, iph->daddr); 1486 if (req) 1487 return tcp_check_req(sk, skb, req, prev); 1488 1489 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr, 1490 th->source, iph->daddr, th->dest, inet_iif(skb)); 1491 1492 if (nsk) { 1493 if (nsk->sk_state != TCP_TIME_WAIT) { 1494 bh_lock_sock(nsk); 1495 return nsk; 1496 } 1497 inet_twsk_put(inet_twsk(nsk)); 1498 return NULL; 1499 } 1500 1501 #ifdef CONFIG_SYN_COOKIES 1502 if (!th->rst && !th->syn && th->ack) 1503 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); 1504 #endif 1505 return sk; 1506 } 1507 1508 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb) 1509 { 1510 const struct iphdr *iph = ip_hdr(skb); 1511 1512 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1513 if (!tcp_v4_check(skb->len, iph->saddr, 1514 iph->daddr, skb->csum)) { 1515 skb->ip_summed = CHECKSUM_UNNECESSARY; 1516 return 0; 1517 } 1518 } 1519 1520 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1521 skb->len, IPPROTO_TCP, 0); 1522 1523 if (skb->len <= 76) { 1524 return __skb_checksum_complete(skb); 1525 } 1526 return 0; 1527 } 1528 1529 1530 /* The socket must have it's spinlock held when we get 1531 * here. 1532 * 1533 * We have a potential double-lock case here, so even when 1534 * doing backlog processing we use the BH locking scheme. 1535 * This is because we cannot sleep with the original spinlock 1536 * held. 1537 */ 1538 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1539 { 1540 struct sock *rsk; 1541 #ifdef CONFIG_TCP_MD5SIG 1542 /* 1543 * We really want to reject the packet as early as possible 1544 * if: 1545 * o We're expecting an MD5'd packet and this is no MD5 tcp option 1546 * o There is an MD5 option and we're not expecting one 1547 */ 1548 if (tcp_v4_inbound_md5_hash(sk, skb)) 1549 goto discard; 1550 #endif 1551 1552 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1553 TCP_CHECK_TIMER(sk); 1554 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) { 1555 rsk = sk; 1556 goto reset; 1557 } 1558 TCP_CHECK_TIMER(sk); 1559 return 0; 1560 } 1561 1562 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) 1563 goto csum_err; 1564 1565 if (sk->sk_state == TCP_LISTEN) { 1566 struct sock *nsk = tcp_v4_hnd_req(sk, skb); 1567 if (!nsk) 1568 goto discard; 1569 1570 if (nsk != sk) { 1571 if (tcp_child_process(sk, nsk, skb)) { 1572 rsk = nsk; 1573 goto reset; 1574 } 1575 return 0; 1576 } 1577 } 1578 1579 TCP_CHECK_TIMER(sk); 1580 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { 1581 rsk = sk; 1582 goto reset; 1583 } 1584 TCP_CHECK_TIMER(sk); 1585 return 0; 1586 1587 reset: 1588 tcp_v4_send_reset(rsk, skb); 1589 discard: 1590 kfree_skb(skb); 1591 /* Be careful here. If this function gets more complicated and 1592 * gcc suffers from register pressure on the x86, sk (in %ebx) 1593 * might be destroyed here. This current version compiles correctly, 1594 * but you have been warned. 1595 */ 1596 return 0; 1597 1598 csum_err: 1599 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1600 goto discard; 1601 } 1602 1603 /* 1604 * From tcp_input.c 1605 */ 1606 1607 int tcp_v4_rcv(struct sk_buff *skb) 1608 { 1609 const struct iphdr *iph; 1610 struct tcphdr *th; 1611 struct sock *sk; 1612 int ret; 1613 struct net *net = dev_net(skb->dev); 1614 1615 if (skb->pkt_type != PACKET_HOST) 1616 goto discard_it; 1617 1618 /* Count it even if it's bad */ 1619 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1620 1621 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1622 goto discard_it; 1623 1624 th = tcp_hdr(skb); 1625 1626 if (th->doff < sizeof(struct tcphdr) / 4) 1627 goto bad_packet; 1628 if (!pskb_may_pull(skb, th->doff * 4)) 1629 goto discard_it; 1630 1631 /* An explanation is required here, I think. 1632 * Packet length and doff are validated by header prediction, 1633 * provided case of th->doff==0 is eliminated. 1634 * So, we defer the checks. */ 1635 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb)) 1636 goto bad_packet; 1637 1638 th = tcp_hdr(skb); 1639 iph = ip_hdr(skb); 1640 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1641 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1642 skb->len - th->doff * 4); 1643 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1644 TCP_SKB_CB(skb)->when = 0; 1645 TCP_SKB_CB(skb)->flags = iph->tos; 1646 TCP_SKB_CB(skb)->sacked = 0; 1647 1648 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 1649 if (!sk) 1650 goto no_tcp_socket; 1651 1652 process: 1653 if (sk->sk_state == TCP_TIME_WAIT) 1654 goto do_time_wait; 1655 1656 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1657 goto discard_and_relse; 1658 nf_reset(skb); 1659 1660 if (sk_filter(sk, skb)) 1661 goto discard_and_relse; 1662 1663 skb->dev = NULL; 1664 1665 bh_lock_sock_nested(sk); 1666 ret = 0; 1667 if (!sock_owned_by_user(sk)) { 1668 #ifdef CONFIG_NET_DMA 1669 struct tcp_sock *tp = tcp_sk(sk); 1670 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1671 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1672 if (tp->ucopy.dma_chan) 1673 ret = tcp_v4_do_rcv(sk, skb); 1674 else 1675 #endif 1676 { 1677 if (!tcp_prequeue(sk, skb)) 1678 ret = tcp_v4_do_rcv(sk, skb); 1679 } 1680 } else 1681 sk_add_backlog(sk, skb); 1682 bh_unlock_sock(sk); 1683 1684 sock_put(sk); 1685 1686 return ret; 1687 1688 no_tcp_socket: 1689 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1690 goto discard_it; 1691 1692 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 1693 bad_packet: 1694 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 1695 } else { 1696 tcp_v4_send_reset(NULL, skb); 1697 } 1698 1699 discard_it: 1700 /* Discard frame. */ 1701 kfree_skb(skb); 1702 return 0; 1703 1704 discard_and_relse: 1705 sock_put(sk); 1706 goto discard_it; 1707 1708 do_time_wait: 1709 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1710 inet_twsk_put(inet_twsk(sk)); 1711 goto discard_it; 1712 } 1713 1714 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 1715 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 1716 inet_twsk_put(inet_twsk(sk)); 1717 goto discard_it; 1718 } 1719 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1720 case TCP_TW_SYN: { 1721 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1722 &tcp_hashinfo, 1723 iph->daddr, th->dest, 1724 inet_iif(skb)); 1725 if (sk2) { 1726 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); 1727 inet_twsk_put(inet_twsk(sk)); 1728 sk = sk2; 1729 goto process; 1730 } 1731 /* Fall through to ACK */ 1732 } 1733 case TCP_TW_ACK: 1734 tcp_v4_timewait_ack(sk, skb); 1735 break; 1736 case TCP_TW_RST: 1737 goto no_tcp_socket; 1738 case TCP_TW_SUCCESS:; 1739 } 1740 goto discard_it; 1741 } 1742 1743 /* VJ's idea. Save last timestamp seen from this destination 1744 * and hold it at least for normal timewait interval to use for duplicate 1745 * segment detection in subsequent connections, before they enter synchronized 1746 * state. 1747 */ 1748 1749 int tcp_v4_remember_stamp(struct sock *sk) 1750 { 1751 struct inet_sock *inet = inet_sk(sk); 1752 struct tcp_sock *tp = tcp_sk(sk); 1753 struct rtable *rt = (struct rtable *)__sk_dst_get(sk); 1754 struct inet_peer *peer = NULL; 1755 int release_it = 0; 1756 1757 if (!rt || rt->rt_dst != inet->inet_daddr) { 1758 peer = inet_getpeer(inet->inet_daddr, 1); 1759 release_it = 1; 1760 } else { 1761 if (!rt->peer) 1762 rt_bind_peer(rt, 1); 1763 peer = rt->peer; 1764 } 1765 1766 if (peer) { 1767 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 || 1768 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL && 1769 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) { 1770 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp; 1771 peer->tcp_ts = tp->rx_opt.ts_recent; 1772 } 1773 if (release_it) 1774 inet_putpeer(peer); 1775 return 1; 1776 } 1777 1778 return 0; 1779 } 1780 1781 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw) 1782 { 1783 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1); 1784 1785 if (peer) { 1786 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); 1787 1788 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 || 1789 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL && 1790 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) { 1791 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp; 1792 peer->tcp_ts = tcptw->tw_ts_recent; 1793 } 1794 inet_putpeer(peer); 1795 return 1; 1796 } 1797 1798 return 0; 1799 } 1800 1801 const struct inet_connection_sock_af_ops ipv4_specific = { 1802 .queue_xmit = ip_queue_xmit, 1803 .send_check = tcp_v4_send_check, 1804 .rebuild_header = inet_sk_rebuild_header, 1805 .conn_request = tcp_v4_conn_request, 1806 .syn_recv_sock = tcp_v4_syn_recv_sock, 1807 .remember_stamp = tcp_v4_remember_stamp, 1808 .net_header_len = sizeof(struct iphdr), 1809 .setsockopt = ip_setsockopt, 1810 .getsockopt = ip_getsockopt, 1811 .addr2sockaddr = inet_csk_addr2sockaddr, 1812 .sockaddr_len = sizeof(struct sockaddr_in), 1813 .bind_conflict = inet_csk_bind_conflict, 1814 #ifdef CONFIG_COMPAT 1815 .compat_setsockopt = compat_ip_setsockopt, 1816 .compat_getsockopt = compat_ip_getsockopt, 1817 #endif 1818 }; 1819 1820 #ifdef CONFIG_TCP_MD5SIG 1821 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1822 .md5_lookup = tcp_v4_md5_lookup, 1823 .calc_md5_hash = tcp_v4_md5_hash_skb, 1824 .md5_add = tcp_v4_md5_add_func, 1825 .md5_parse = tcp_v4_parse_md5_keys, 1826 }; 1827 #endif 1828 1829 /* NOTE: A lot of things set to zero explicitly by call to 1830 * sk_alloc() so need not be done here. 1831 */ 1832 static int tcp_v4_init_sock(struct sock *sk) 1833 { 1834 struct inet_connection_sock *icsk = inet_csk(sk); 1835 struct tcp_sock *tp = tcp_sk(sk); 1836 1837 skb_queue_head_init(&tp->out_of_order_queue); 1838 tcp_init_xmit_timers(sk); 1839 tcp_prequeue_init(tp); 1840 1841 icsk->icsk_rto = TCP_TIMEOUT_INIT; 1842 tp->mdev = TCP_TIMEOUT_INIT; 1843 1844 /* So many TCP implementations out there (incorrectly) count the 1845 * initial SYN frame in their delayed-ACK and congestion control 1846 * algorithms that we must have the following bandaid to talk 1847 * efficiently to them. -DaveM 1848 */ 1849 tp->snd_cwnd = 2; 1850 1851 /* See draft-stevens-tcpca-spec-01 for discussion of the 1852 * initialization of these values. 1853 */ 1854 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 1855 tp->snd_cwnd_clamp = ~0; 1856 tp->mss_cache = TCP_MSS_DEFAULT; 1857 1858 tp->reordering = sysctl_tcp_reordering; 1859 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 1860 1861 sk->sk_state = TCP_CLOSE; 1862 1863 sk->sk_write_space = sk_stream_write_space; 1864 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 1865 1866 icsk->icsk_af_ops = &ipv4_specific; 1867 icsk->icsk_sync_mss = tcp_sync_mss; 1868 #ifdef CONFIG_TCP_MD5SIG 1869 tp->af_specific = &tcp_sock_ipv4_specific; 1870 #endif 1871 1872 /* TCP Cookie Transactions */ 1873 if (sysctl_tcp_cookie_size > 0) { 1874 /* Default, cookies without s_data_payload. */ 1875 tp->cookie_values = 1876 kzalloc(sizeof(*tp->cookie_values), 1877 sk->sk_allocation); 1878 if (tp->cookie_values != NULL) 1879 kref_init(&tp->cookie_values->kref); 1880 } 1881 /* Presumed zeroed, in order of appearance: 1882 * cookie_in_always, cookie_out_never, 1883 * s_data_constant, s_data_in, s_data_out 1884 */ 1885 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 1886 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 1887 1888 local_bh_disable(); 1889 percpu_counter_inc(&tcp_sockets_allocated); 1890 local_bh_enable(); 1891 1892 return 0; 1893 } 1894 1895 void tcp_v4_destroy_sock(struct sock *sk) 1896 { 1897 struct tcp_sock *tp = tcp_sk(sk); 1898 1899 tcp_clear_xmit_timers(sk); 1900 1901 tcp_cleanup_congestion_control(sk); 1902 1903 /* Cleanup up the write buffer. */ 1904 tcp_write_queue_purge(sk); 1905 1906 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1907 __skb_queue_purge(&tp->out_of_order_queue); 1908 1909 #ifdef CONFIG_TCP_MD5SIG 1910 /* Clean up the MD5 key list, if any */ 1911 if (tp->md5sig_info) { 1912 tcp_v4_clear_md5_list(sk); 1913 kfree(tp->md5sig_info); 1914 tp->md5sig_info = NULL; 1915 } 1916 #endif 1917 1918 #ifdef CONFIG_NET_DMA 1919 /* Cleans up our sk_async_wait_queue */ 1920 __skb_queue_purge(&sk->sk_async_wait_queue); 1921 #endif 1922 1923 /* Clean prequeue, it must be empty really */ 1924 __skb_queue_purge(&tp->ucopy.prequeue); 1925 1926 /* Clean up a referenced TCP bind bucket. */ 1927 if (inet_csk(sk)->icsk_bind_hash) 1928 inet_put_port(sk); 1929 1930 /* 1931 * If sendmsg cached page exists, toss it. 1932 */ 1933 if (sk->sk_sndmsg_page) { 1934 __free_page(sk->sk_sndmsg_page); 1935 sk->sk_sndmsg_page = NULL; 1936 } 1937 1938 /* TCP Cookie Transactions */ 1939 if (tp->cookie_values != NULL) { 1940 kref_put(&tp->cookie_values->kref, 1941 tcp_cookie_values_release); 1942 tp->cookie_values = NULL; 1943 } 1944 1945 percpu_counter_dec(&tcp_sockets_allocated); 1946 } 1947 1948 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1949 1950 #ifdef CONFIG_PROC_FS 1951 /* Proc filesystem TCP sock list dumping. */ 1952 1953 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head) 1954 { 1955 return hlist_nulls_empty(head) ? NULL : 1956 list_entry(head->first, struct inet_timewait_sock, tw_node); 1957 } 1958 1959 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw) 1960 { 1961 return !is_a_nulls(tw->tw_node.next) ? 1962 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL; 1963 } 1964 1965 static void *listening_get_next(struct seq_file *seq, void *cur) 1966 { 1967 struct inet_connection_sock *icsk; 1968 struct hlist_nulls_node *node; 1969 struct sock *sk = cur; 1970 struct inet_listen_hashbucket *ilb; 1971 struct tcp_iter_state *st = seq->private; 1972 struct net *net = seq_file_net(seq); 1973 1974 if (!sk) { 1975 st->bucket = 0; 1976 ilb = &tcp_hashinfo.listening_hash[0]; 1977 spin_lock_bh(&ilb->lock); 1978 sk = sk_nulls_head(&ilb->head); 1979 goto get_sk; 1980 } 1981 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1982 ++st->num; 1983 1984 if (st->state == TCP_SEQ_STATE_OPENREQ) { 1985 struct request_sock *req = cur; 1986 1987 icsk = inet_csk(st->syn_wait_sk); 1988 req = req->dl_next; 1989 while (1) { 1990 while (req) { 1991 if (req->rsk_ops->family == st->family) { 1992 cur = req; 1993 goto out; 1994 } 1995 req = req->dl_next; 1996 } 1997 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) 1998 break; 1999 get_req: 2000 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; 2001 } 2002 sk = sk_next(st->syn_wait_sk); 2003 st->state = TCP_SEQ_STATE_LISTENING; 2004 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2005 } else { 2006 icsk = inet_csk(sk); 2007 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2008 if (reqsk_queue_len(&icsk->icsk_accept_queue)) 2009 goto start_req; 2010 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2011 sk = sk_next(sk); 2012 } 2013 get_sk: 2014 sk_nulls_for_each_from(sk, node) { 2015 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) { 2016 cur = sk; 2017 goto out; 2018 } 2019 icsk = inet_csk(sk); 2020 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2021 if (reqsk_queue_len(&icsk->icsk_accept_queue)) { 2022 start_req: 2023 st->uid = sock_i_uid(sk); 2024 st->syn_wait_sk = sk; 2025 st->state = TCP_SEQ_STATE_OPENREQ; 2026 st->sbucket = 0; 2027 goto get_req; 2028 } 2029 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2030 } 2031 spin_unlock_bh(&ilb->lock); 2032 if (++st->bucket < INET_LHTABLE_SIZE) { 2033 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2034 spin_lock_bh(&ilb->lock); 2035 sk = sk_nulls_head(&ilb->head); 2036 goto get_sk; 2037 } 2038 cur = NULL; 2039 out: 2040 return cur; 2041 } 2042 2043 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2044 { 2045 void *rc = listening_get_next(seq, NULL); 2046 2047 while (rc && *pos) { 2048 rc = listening_get_next(seq, rc); 2049 --*pos; 2050 } 2051 return rc; 2052 } 2053 2054 static inline int empty_bucket(struct tcp_iter_state *st) 2055 { 2056 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) && 2057 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain); 2058 } 2059 2060 static void *established_get_first(struct seq_file *seq) 2061 { 2062 struct tcp_iter_state *st = seq->private; 2063 struct net *net = seq_file_net(seq); 2064 void *rc = NULL; 2065 2066 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2067 struct sock *sk; 2068 struct hlist_nulls_node *node; 2069 struct inet_timewait_sock *tw; 2070 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2071 2072 /* Lockless fast path for the common case of empty buckets */ 2073 if (empty_bucket(st)) 2074 continue; 2075 2076 spin_lock_bh(lock); 2077 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2078 if (sk->sk_family != st->family || 2079 !net_eq(sock_net(sk), net)) { 2080 continue; 2081 } 2082 rc = sk; 2083 goto out; 2084 } 2085 st->state = TCP_SEQ_STATE_TIME_WAIT; 2086 inet_twsk_for_each(tw, node, 2087 &tcp_hashinfo.ehash[st->bucket].twchain) { 2088 if (tw->tw_family != st->family || 2089 !net_eq(twsk_net(tw), net)) { 2090 continue; 2091 } 2092 rc = tw; 2093 goto out; 2094 } 2095 spin_unlock_bh(lock); 2096 st->state = TCP_SEQ_STATE_ESTABLISHED; 2097 } 2098 out: 2099 return rc; 2100 } 2101 2102 static void *established_get_next(struct seq_file *seq, void *cur) 2103 { 2104 struct sock *sk = cur; 2105 struct inet_timewait_sock *tw; 2106 struct hlist_nulls_node *node; 2107 struct tcp_iter_state *st = seq->private; 2108 struct net *net = seq_file_net(seq); 2109 2110 ++st->num; 2111 2112 if (st->state == TCP_SEQ_STATE_TIME_WAIT) { 2113 tw = cur; 2114 tw = tw_next(tw); 2115 get_tw: 2116 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) { 2117 tw = tw_next(tw); 2118 } 2119 if (tw) { 2120 cur = tw; 2121 goto out; 2122 } 2123 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2124 st->state = TCP_SEQ_STATE_ESTABLISHED; 2125 2126 /* Look for next non empty bucket */ 2127 while (++st->bucket <= tcp_hashinfo.ehash_mask && 2128 empty_bucket(st)) 2129 ; 2130 if (st->bucket > tcp_hashinfo.ehash_mask) 2131 return NULL; 2132 2133 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2134 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain); 2135 } else 2136 sk = sk_nulls_next(sk); 2137 2138 sk_nulls_for_each_from(sk, node) { 2139 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2140 goto found; 2141 } 2142 2143 st->state = TCP_SEQ_STATE_TIME_WAIT; 2144 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain); 2145 goto get_tw; 2146 found: 2147 cur = sk; 2148 out: 2149 return cur; 2150 } 2151 2152 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2153 { 2154 void *rc = established_get_first(seq); 2155 2156 while (rc && pos) { 2157 rc = established_get_next(seq, rc); 2158 --pos; 2159 } 2160 return rc; 2161 } 2162 2163 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2164 { 2165 void *rc; 2166 struct tcp_iter_state *st = seq->private; 2167 2168 st->state = TCP_SEQ_STATE_LISTENING; 2169 rc = listening_get_idx(seq, &pos); 2170 2171 if (!rc) { 2172 st->state = TCP_SEQ_STATE_ESTABLISHED; 2173 rc = established_get_idx(seq, pos); 2174 } 2175 2176 return rc; 2177 } 2178 2179 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2180 { 2181 struct tcp_iter_state *st = seq->private; 2182 st->state = TCP_SEQ_STATE_LISTENING; 2183 st->num = 0; 2184 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2185 } 2186 2187 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2188 { 2189 void *rc = NULL; 2190 struct tcp_iter_state *st; 2191 2192 if (v == SEQ_START_TOKEN) { 2193 rc = tcp_get_idx(seq, 0); 2194 goto out; 2195 } 2196 st = seq->private; 2197 2198 switch (st->state) { 2199 case TCP_SEQ_STATE_OPENREQ: 2200 case TCP_SEQ_STATE_LISTENING: 2201 rc = listening_get_next(seq, v); 2202 if (!rc) { 2203 st->state = TCP_SEQ_STATE_ESTABLISHED; 2204 rc = established_get_first(seq); 2205 } 2206 break; 2207 case TCP_SEQ_STATE_ESTABLISHED: 2208 case TCP_SEQ_STATE_TIME_WAIT: 2209 rc = established_get_next(seq, v); 2210 break; 2211 } 2212 out: 2213 ++*pos; 2214 return rc; 2215 } 2216 2217 static void tcp_seq_stop(struct seq_file *seq, void *v) 2218 { 2219 struct tcp_iter_state *st = seq->private; 2220 2221 switch (st->state) { 2222 case TCP_SEQ_STATE_OPENREQ: 2223 if (v) { 2224 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); 2225 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2226 } 2227 case TCP_SEQ_STATE_LISTENING: 2228 if (v != SEQ_START_TOKEN) 2229 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2230 break; 2231 case TCP_SEQ_STATE_TIME_WAIT: 2232 case TCP_SEQ_STATE_ESTABLISHED: 2233 if (v) 2234 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2235 break; 2236 } 2237 } 2238 2239 static int tcp_seq_open(struct inode *inode, struct file *file) 2240 { 2241 struct tcp_seq_afinfo *afinfo = PDE(inode)->data; 2242 struct tcp_iter_state *s; 2243 int err; 2244 2245 err = seq_open_net(inode, file, &afinfo->seq_ops, 2246 sizeof(struct tcp_iter_state)); 2247 if (err < 0) 2248 return err; 2249 2250 s = ((struct seq_file *)file->private_data)->private; 2251 s->family = afinfo->family; 2252 return 0; 2253 } 2254 2255 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2256 { 2257 int rc = 0; 2258 struct proc_dir_entry *p; 2259 2260 afinfo->seq_fops.open = tcp_seq_open; 2261 afinfo->seq_fops.read = seq_read; 2262 afinfo->seq_fops.llseek = seq_lseek; 2263 afinfo->seq_fops.release = seq_release_net; 2264 2265 afinfo->seq_ops.start = tcp_seq_start; 2266 afinfo->seq_ops.next = tcp_seq_next; 2267 afinfo->seq_ops.stop = tcp_seq_stop; 2268 2269 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2270 &afinfo->seq_fops, afinfo); 2271 if (!p) 2272 rc = -ENOMEM; 2273 return rc; 2274 } 2275 2276 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2277 { 2278 proc_net_remove(net, afinfo->name); 2279 } 2280 2281 static void get_openreq4(struct sock *sk, struct request_sock *req, 2282 struct seq_file *f, int i, int uid, int *len) 2283 { 2284 const struct inet_request_sock *ireq = inet_rsk(req); 2285 int ttd = req->expires - jiffies; 2286 2287 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2288 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n", 2289 i, 2290 ireq->loc_addr, 2291 ntohs(inet_sk(sk)->inet_sport), 2292 ireq->rmt_addr, 2293 ntohs(ireq->rmt_port), 2294 TCP_SYN_RECV, 2295 0, 0, /* could print option size, but that is af dependent. */ 2296 1, /* timers active (only the expire timer) */ 2297 jiffies_to_clock_t(ttd), 2298 req->retrans, 2299 uid, 2300 0, /* non standard timer */ 2301 0, /* open_requests have no inode */ 2302 atomic_read(&sk->sk_refcnt), 2303 req, 2304 len); 2305 } 2306 2307 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len) 2308 { 2309 int timer_active; 2310 unsigned long timer_expires; 2311 struct tcp_sock *tp = tcp_sk(sk); 2312 const struct inet_connection_sock *icsk = inet_csk(sk); 2313 struct inet_sock *inet = inet_sk(sk); 2314 __be32 dest = inet->inet_daddr; 2315 __be32 src = inet->inet_rcv_saddr; 2316 __u16 destp = ntohs(inet->inet_dport); 2317 __u16 srcp = ntohs(inet->inet_sport); 2318 int rx_queue; 2319 2320 if (icsk->icsk_pending == ICSK_TIME_RETRANS) { 2321 timer_active = 1; 2322 timer_expires = icsk->icsk_timeout; 2323 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2324 timer_active = 4; 2325 timer_expires = icsk->icsk_timeout; 2326 } else if (timer_pending(&sk->sk_timer)) { 2327 timer_active = 2; 2328 timer_expires = sk->sk_timer.expires; 2329 } else { 2330 timer_active = 0; 2331 timer_expires = jiffies; 2332 } 2333 2334 if (sk->sk_state == TCP_LISTEN) 2335 rx_queue = sk->sk_ack_backlog; 2336 else 2337 /* 2338 * because we dont lock socket, we might find a transient negative value 2339 */ 2340 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2341 2342 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2343 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n", 2344 i, src, srcp, dest, destp, sk->sk_state, 2345 tp->write_seq - tp->snd_una, 2346 rx_queue, 2347 timer_active, 2348 jiffies_to_clock_t(timer_expires - jiffies), 2349 icsk->icsk_retransmits, 2350 sock_i_uid(sk), 2351 icsk->icsk_probes_out, 2352 sock_i_ino(sk), 2353 atomic_read(&sk->sk_refcnt), sk, 2354 jiffies_to_clock_t(icsk->icsk_rto), 2355 jiffies_to_clock_t(icsk->icsk_ack.ato), 2356 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2357 tp->snd_cwnd, 2358 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh, 2359 len); 2360 } 2361 2362 static void get_timewait4_sock(struct inet_timewait_sock *tw, 2363 struct seq_file *f, int i, int *len) 2364 { 2365 __be32 dest, src; 2366 __u16 destp, srcp; 2367 int ttd = tw->tw_ttd - jiffies; 2368 2369 if (ttd < 0) 2370 ttd = 0; 2371 2372 dest = tw->tw_daddr; 2373 src = tw->tw_rcv_saddr; 2374 destp = ntohs(tw->tw_dport); 2375 srcp = ntohs(tw->tw_sport); 2376 2377 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2378 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n", 2379 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2380 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0, 2381 atomic_read(&tw->tw_refcnt), tw, len); 2382 } 2383 2384 #define TMPSZ 150 2385 2386 static int tcp4_seq_show(struct seq_file *seq, void *v) 2387 { 2388 struct tcp_iter_state *st; 2389 int len; 2390 2391 if (v == SEQ_START_TOKEN) { 2392 seq_printf(seq, "%-*s\n", TMPSZ - 1, 2393 " sl local_address rem_address st tx_queue " 2394 "rx_queue tr tm->when retrnsmt uid timeout " 2395 "inode"); 2396 goto out; 2397 } 2398 st = seq->private; 2399 2400 switch (st->state) { 2401 case TCP_SEQ_STATE_LISTENING: 2402 case TCP_SEQ_STATE_ESTABLISHED: 2403 get_tcp4_sock(v, seq, st->num, &len); 2404 break; 2405 case TCP_SEQ_STATE_OPENREQ: 2406 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len); 2407 break; 2408 case TCP_SEQ_STATE_TIME_WAIT: 2409 get_timewait4_sock(v, seq, st->num, &len); 2410 break; 2411 } 2412 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, ""); 2413 out: 2414 return 0; 2415 } 2416 2417 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2418 .name = "tcp", 2419 .family = AF_INET, 2420 .seq_fops = { 2421 .owner = THIS_MODULE, 2422 }, 2423 .seq_ops = { 2424 .show = tcp4_seq_show, 2425 }, 2426 }; 2427 2428 static int tcp4_proc_init_net(struct net *net) 2429 { 2430 return tcp_proc_register(net, &tcp4_seq_afinfo); 2431 } 2432 2433 static void tcp4_proc_exit_net(struct net *net) 2434 { 2435 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2436 } 2437 2438 static struct pernet_operations tcp4_net_ops = { 2439 .init = tcp4_proc_init_net, 2440 .exit = tcp4_proc_exit_net, 2441 }; 2442 2443 int __init tcp4_proc_init(void) 2444 { 2445 return register_pernet_subsys(&tcp4_net_ops); 2446 } 2447 2448 void tcp4_proc_exit(void) 2449 { 2450 unregister_pernet_subsys(&tcp4_net_ops); 2451 } 2452 #endif /* CONFIG_PROC_FS */ 2453 2454 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2455 { 2456 struct iphdr *iph = skb_gro_network_header(skb); 2457 2458 switch (skb->ip_summed) { 2459 case CHECKSUM_COMPLETE: 2460 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr, 2461 skb->csum)) { 2462 skb->ip_summed = CHECKSUM_UNNECESSARY; 2463 break; 2464 } 2465 2466 /* fall through */ 2467 case CHECKSUM_NONE: 2468 NAPI_GRO_CB(skb)->flush = 1; 2469 return NULL; 2470 } 2471 2472 return tcp_gro_receive(head, skb); 2473 } 2474 EXPORT_SYMBOL(tcp4_gro_receive); 2475 2476 int tcp4_gro_complete(struct sk_buff *skb) 2477 { 2478 struct iphdr *iph = ip_hdr(skb); 2479 struct tcphdr *th = tcp_hdr(skb); 2480 2481 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 2482 iph->saddr, iph->daddr, 0); 2483 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 2484 2485 return tcp_gro_complete(skb); 2486 } 2487 EXPORT_SYMBOL(tcp4_gro_complete); 2488 2489 struct proto tcp_prot = { 2490 .name = "TCP", 2491 .owner = THIS_MODULE, 2492 .close = tcp_close, 2493 .connect = tcp_v4_connect, 2494 .disconnect = tcp_disconnect, 2495 .accept = inet_csk_accept, 2496 .ioctl = tcp_ioctl, 2497 .init = tcp_v4_init_sock, 2498 .destroy = tcp_v4_destroy_sock, 2499 .shutdown = tcp_shutdown, 2500 .setsockopt = tcp_setsockopt, 2501 .getsockopt = tcp_getsockopt, 2502 .recvmsg = tcp_recvmsg, 2503 .backlog_rcv = tcp_v4_do_rcv, 2504 .hash = inet_hash, 2505 .unhash = inet_unhash, 2506 .get_port = inet_csk_get_port, 2507 .enter_memory_pressure = tcp_enter_memory_pressure, 2508 .sockets_allocated = &tcp_sockets_allocated, 2509 .orphan_count = &tcp_orphan_count, 2510 .memory_allocated = &tcp_memory_allocated, 2511 .memory_pressure = &tcp_memory_pressure, 2512 .sysctl_mem = sysctl_tcp_mem, 2513 .sysctl_wmem = sysctl_tcp_wmem, 2514 .sysctl_rmem = sysctl_tcp_rmem, 2515 .max_header = MAX_TCP_HEADER, 2516 .obj_size = sizeof(struct tcp_sock), 2517 .slab_flags = SLAB_DESTROY_BY_RCU, 2518 .twsk_prot = &tcp_timewait_sock_ops, 2519 .rsk_prot = &tcp_request_sock_ops, 2520 .h.hashinfo = &tcp_hashinfo, 2521 #ifdef CONFIG_COMPAT 2522 .compat_setsockopt = compat_tcp_setsockopt, 2523 .compat_getsockopt = compat_tcp_getsockopt, 2524 #endif 2525 }; 2526 2527 2528 static int __net_init tcp_sk_init(struct net *net) 2529 { 2530 return inet_ctl_sock_create(&net->ipv4.tcp_sock, 2531 PF_INET, SOCK_RAW, IPPROTO_TCP, net); 2532 } 2533 2534 static void __net_exit tcp_sk_exit(struct net *net) 2535 { 2536 inet_ctl_sock_destroy(net->ipv4.tcp_sock); 2537 } 2538 2539 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2540 { 2541 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2542 } 2543 2544 static struct pernet_operations __net_initdata tcp_sk_ops = { 2545 .init = tcp_sk_init, 2546 .exit = tcp_sk_exit, 2547 .exit_batch = tcp_sk_exit_batch, 2548 }; 2549 2550 void __init tcp_v4_init(void) 2551 { 2552 inet_hashinfo_init(&tcp_hashinfo); 2553 if (register_pernet_subsys(&tcp_sk_ops)) 2554 panic("Failed to create the TCP control socket.\n"); 2555 } 2556 2557 EXPORT_SYMBOL(ipv4_specific); 2558 EXPORT_SYMBOL(tcp_hashinfo); 2559 EXPORT_SYMBOL(tcp_prot); 2560 EXPORT_SYMBOL(tcp_v4_conn_request); 2561 EXPORT_SYMBOL(tcp_v4_connect); 2562 EXPORT_SYMBOL(tcp_v4_do_rcv); 2563 EXPORT_SYMBOL(tcp_v4_remember_stamp); 2564 EXPORT_SYMBOL(tcp_v4_send_check); 2565 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 2566 2567 #ifdef CONFIG_PROC_FS 2568 EXPORT_SYMBOL(tcp_proc_register); 2569 EXPORT_SYMBOL(tcp_proc_unregister); 2570 #endif 2571 EXPORT_SYMBOL(sysctl_tcp_low_latency); 2572 2573