1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/netdma.h> 76 #include <net/secure_seq.h> 77 #include <net/tcp_memcontrol.h> 78 79 #include <linux/inet.h> 80 #include <linux/ipv6.h> 81 #include <linux/stddef.h> 82 #include <linux/proc_fs.h> 83 #include <linux/seq_file.h> 84 85 #include <linux/crypto.h> 86 #include <linux/scatterlist.h> 87 88 int sysctl_tcp_tw_reuse __read_mostly; 89 int sysctl_tcp_low_latency __read_mostly; 90 EXPORT_SYMBOL(sysctl_tcp_low_latency); 91 92 93 #ifdef CONFIG_TCP_MD5SIG 94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 95 __be32 daddr, __be32 saddr, const struct tcphdr *th); 96 #endif 97 98 struct inet_hashinfo tcp_hashinfo; 99 EXPORT_SYMBOL(tcp_hashinfo); 100 101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 102 { 103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 104 ip_hdr(skb)->saddr, 105 tcp_hdr(skb)->dest, 106 tcp_hdr(skb)->source); 107 } 108 109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 110 { 111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 112 struct tcp_sock *tp = tcp_sk(sk); 113 114 /* With PAWS, it is safe from the viewpoint 115 of data integrity. Even without PAWS it is safe provided sequence 116 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 117 118 Actually, the idea is close to VJ's one, only timestamp cache is 119 held not per host, but per port pair and TW bucket is used as state 120 holder. 121 122 If TW bucket has been already destroyed we fall back to VJ's scheme 123 and use initial timestamp retrieved from peer table. 124 */ 125 if (tcptw->tw_ts_recent_stamp && 126 (twp == NULL || (sysctl_tcp_tw_reuse && 127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 129 if (tp->write_seq == 0) 130 tp->write_seq = 1; 131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 133 sock_hold(sktw); 134 return 1; 135 } 136 137 return 0; 138 } 139 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 140 141 /* This will initiate an outgoing connection. */ 142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 143 { 144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 145 struct inet_sock *inet = inet_sk(sk); 146 struct tcp_sock *tp = tcp_sk(sk); 147 __be16 orig_sport, orig_dport; 148 __be32 daddr, nexthop; 149 struct flowi4 *fl4; 150 struct rtable *rt; 151 int err; 152 struct ip_options_rcu *inet_opt; 153 154 if (addr_len < sizeof(struct sockaddr_in)) 155 return -EINVAL; 156 157 if (usin->sin_family != AF_INET) 158 return -EAFNOSUPPORT; 159 160 nexthop = daddr = usin->sin_addr.s_addr; 161 inet_opt = rcu_dereference_protected(inet->inet_opt, 162 sock_owned_by_user(sk)); 163 if (inet_opt && inet_opt->opt.srr) { 164 if (!daddr) 165 return -EINVAL; 166 nexthop = inet_opt->opt.faddr; 167 } 168 169 orig_sport = inet->inet_sport; 170 orig_dport = usin->sin_port; 171 fl4 = &inet->cork.fl.u.ip4; 172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 174 IPPROTO_TCP, 175 orig_sport, orig_dport, sk, true); 176 if (IS_ERR(rt)) { 177 err = PTR_ERR(rt); 178 if (err == -ENETUNREACH) 179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 180 return err; 181 } 182 183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 184 ip_rt_put(rt); 185 return -ENETUNREACH; 186 } 187 188 if (!inet_opt || !inet_opt->opt.srr) 189 daddr = fl4->daddr; 190 191 if (!inet->inet_saddr) 192 inet->inet_saddr = fl4->saddr; 193 inet->inet_rcv_saddr = inet->inet_saddr; 194 195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 196 /* Reset inherited state */ 197 tp->rx_opt.ts_recent = 0; 198 tp->rx_opt.ts_recent_stamp = 0; 199 if (likely(!tp->repair)) 200 tp->write_seq = 0; 201 } 202 203 if (tcp_death_row.sysctl_tw_recycle && 204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 205 tcp_fetch_timewait_stamp(sk, &rt->dst); 206 207 inet->inet_dport = usin->sin_port; 208 inet->inet_daddr = daddr; 209 210 inet_csk(sk)->icsk_ext_hdr_len = 0; 211 if (inet_opt) 212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 213 214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 215 216 /* Socket identity is still unknown (sport may be zero). 217 * However we set state to SYN-SENT and not releasing socket 218 * lock select source port, enter ourselves into the hash tables and 219 * complete initialization after this. 220 */ 221 tcp_set_state(sk, TCP_SYN_SENT); 222 err = inet_hash_connect(&tcp_death_row, sk); 223 if (err) 224 goto failure; 225 226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 227 inet->inet_sport, inet->inet_dport, sk); 228 if (IS_ERR(rt)) { 229 err = PTR_ERR(rt); 230 rt = NULL; 231 goto failure; 232 } 233 /* OK, now commit destination to socket. */ 234 sk->sk_gso_type = SKB_GSO_TCPV4; 235 sk_setup_caps(sk, &rt->dst); 236 237 if (!tp->write_seq && likely(!tp->repair)) 238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 239 inet->inet_daddr, 240 inet->inet_sport, 241 usin->sin_port); 242 243 inet->inet_id = tp->write_seq ^ jiffies; 244 245 err = tcp_connect(sk); 246 247 rt = NULL; 248 if (err) 249 goto failure; 250 251 return 0; 252 253 failure: 254 /* 255 * This unhashes the socket and releases the local port, 256 * if necessary. 257 */ 258 tcp_set_state(sk, TCP_CLOSE); 259 ip_rt_put(rt); 260 sk->sk_route_caps = 0; 261 inet->inet_dport = 0; 262 return err; 263 } 264 EXPORT_SYMBOL(tcp_v4_connect); 265 266 /* 267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 268 * It can be called through tcp_release_cb() if socket was owned by user 269 * at the time tcp_v4_err() was called to handle ICMP message. 270 */ 271 static void tcp_v4_mtu_reduced(struct sock *sk) 272 { 273 struct dst_entry *dst; 274 struct inet_sock *inet = inet_sk(sk); 275 u32 mtu = tcp_sk(sk)->mtu_info; 276 277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs 278 * send out by Linux are always <576bytes so they should go through 279 * unfragmented). 280 */ 281 if (sk->sk_state == TCP_LISTEN) 282 return; 283 284 dst = inet_csk_update_pmtu(sk, mtu); 285 if (!dst) 286 return; 287 288 /* Something is about to be wrong... Remember soft error 289 * for the case, if this connection will not able to recover. 290 */ 291 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 292 sk->sk_err_soft = EMSGSIZE; 293 294 mtu = dst_mtu(dst); 295 296 if (inet->pmtudisc != IP_PMTUDISC_DONT && 297 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 298 tcp_sync_mss(sk, mtu); 299 300 /* Resend the TCP packet because it's 301 * clear that the old packet has been 302 * dropped. This is the new "fast" path mtu 303 * discovery. 304 */ 305 tcp_simple_retransmit(sk); 306 } /* else let the usual retransmit timer handle it */ 307 } 308 309 static void do_redirect(struct sk_buff *skb, struct sock *sk) 310 { 311 struct dst_entry *dst = __sk_dst_check(sk, 0); 312 313 if (dst) 314 dst->ops->redirect(dst, sk, skb); 315 } 316 317 /* 318 * This routine is called by the ICMP module when it gets some 319 * sort of error condition. If err < 0 then the socket should 320 * be closed and the error returned to the user. If err > 0 321 * it's just the icmp type << 8 | icmp code. After adjustment 322 * header points to the first 8 bytes of the tcp header. We need 323 * to find the appropriate port. 324 * 325 * The locking strategy used here is very "optimistic". When 326 * someone else accesses the socket the ICMP is just dropped 327 * and for some paths there is no check at all. 328 * A more general error queue to queue errors for later handling 329 * is probably better. 330 * 331 */ 332 333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 334 { 335 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 336 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 337 struct inet_connection_sock *icsk; 338 struct tcp_sock *tp; 339 struct inet_sock *inet; 340 const int type = icmp_hdr(icmp_skb)->type; 341 const int code = icmp_hdr(icmp_skb)->code; 342 struct sock *sk; 343 struct sk_buff *skb; 344 struct request_sock *req; 345 __u32 seq; 346 __u32 remaining; 347 int err; 348 struct net *net = dev_net(icmp_skb->dev); 349 350 if (icmp_skb->len < (iph->ihl << 2) + 8) { 351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 352 return; 353 } 354 355 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest, 356 iph->saddr, th->source, inet_iif(icmp_skb)); 357 if (!sk) { 358 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 359 return; 360 } 361 if (sk->sk_state == TCP_TIME_WAIT) { 362 inet_twsk_put(inet_twsk(sk)); 363 return; 364 } 365 366 bh_lock_sock(sk); 367 /* If too many ICMPs get dropped on busy 368 * servers this needs to be solved differently. 369 * We do take care of PMTU discovery (RFC1191) special case : 370 * we can receive locally generated ICMP messages while socket is held. 371 */ 372 if (sock_owned_by_user(sk)) { 373 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 374 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 375 } 376 if (sk->sk_state == TCP_CLOSE) 377 goto out; 378 379 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 380 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 381 goto out; 382 } 383 384 icsk = inet_csk(sk); 385 tp = tcp_sk(sk); 386 req = tp->fastopen_rsk; 387 seq = ntohl(th->seq); 388 if (sk->sk_state != TCP_LISTEN && 389 !between(seq, tp->snd_una, tp->snd_nxt) && 390 (req == NULL || seq != tcp_rsk(req)->snt_isn)) { 391 /* For a Fast Open socket, allow seq to be snt_isn. */ 392 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 393 goto out; 394 } 395 396 switch (type) { 397 case ICMP_REDIRECT: 398 do_redirect(icmp_skb, sk); 399 goto out; 400 case ICMP_SOURCE_QUENCH: 401 /* Just silently ignore these. */ 402 goto out; 403 case ICMP_PARAMETERPROB: 404 err = EPROTO; 405 break; 406 case ICMP_DEST_UNREACH: 407 if (code > NR_ICMP_UNREACH) 408 goto out; 409 410 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 411 tp->mtu_info = info; 412 if (!sock_owned_by_user(sk)) { 413 tcp_v4_mtu_reduced(sk); 414 } else { 415 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 416 sock_hold(sk); 417 } 418 goto out; 419 } 420 421 err = icmp_err_convert[code].errno; 422 /* check if icmp_skb allows revert of backoff 423 * (see draft-zimmermann-tcp-lcd) */ 424 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 425 break; 426 if (seq != tp->snd_una || !icsk->icsk_retransmits || 427 !icsk->icsk_backoff) 428 break; 429 430 /* XXX (TFO) - revisit the following logic for TFO */ 431 432 if (sock_owned_by_user(sk)) 433 break; 434 435 icsk->icsk_backoff--; 436 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) : 437 TCP_TIMEOUT_INIT) << icsk->icsk_backoff; 438 tcp_bound_rto(sk); 439 440 skb = tcp_write_queue_head(sk); 441 BUG_ON(!skb); 442 443 remaining = icsk->icsk_rto - min(icsk->icsk_rto, 444 tcp_time_stamp - TCP_SKB_CB(skb)->when); 445 446 if (remaining) { 447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 448 remaining, TCP_RTO_MAX); 449 } else { 450 /* RTO revert clocked out retransmission. 451 * Will retransmit now */ 452 tcp_retransmit_timer(sk); 453 } 454 455 break; 456 case ICMP_TIME_EXCEEDED: 457 err = EHOSTUNREACH; 458 break; 459 default: 460 goto out; 461 } 462 463 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather 464 * than following the TCP_SYN_RECV case and closing the socket, 465 * we ignore the ICMP error and keep trying like a fully established 466 * socket. Is this the right thing to do? 467 */ 468 if (req && req->sk == NULL) 469 goto out; 470 471 switch (sk->sk_state) { 472 struct request_sock *req, **prev; 473 case TCP_LISTEN: 474 if (sock_owned_by_user(sk)) 475 goto out; 476 477 req = inet_csk_search_req(sk, &prev, th->dest, 478 iph->daddr, iph->saddr); 479 if (!req) 480 goto out; 481 482 /* ICMPs are not backlogged, hence we cannot get 483 an established socket here. 484 */ 485 WARN_ON(req->sk); 486 487 if (seq != tcp_rsk(req)->snt_isn) { 488 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 489 goto out; 490 } 491 492 /* 493 * Still in SYN_RECV, just remove it silently. 494 * There is no good way to pass the error to the newly 495 * created socket, and POSIX does not want network 496 * errors returned from accept(). 497 */ 498 inet_csk_reqsk_queue_drop(sk, req, prev); 499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 500 goto out; 501 502 case TCP_SYN_SENT: 503 case TCP_SYN_RECV: /* Cannot happen. 504 It can f.e. if SYNs crossed, 505 or Fast Open. 506 */ 507 if (!sock_owned_by_user(sk)) { 508 sk->sk_err = err; 509 510 sk->sk_error_report(sk); 511 512 tcp_done(sk); 513 } else { 514 sk->sk_err_soft = err; 515 } 516 goto out; 517 } 518 519 /* If we've already connected we will keep trying 520 * until we time out, or the user gives up. 521 * 522 * rfc1122 4.2.3.9 allows to consider as hard errors 523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 524 * but it is obsoleted by pmtu discovery). 525 * 526 * Note, that in modern internet, where routing is unreliable 527 * and in each dark corner broken firewalls sit, sending random 528 * errors ordered by their masters even this two messages finally lose 529 * their original sense (even Linux sends invalid PORT_UNREACHs) 530 * 531 * Now we are in compliance with RFCs. 532 * --ANK (980905) 533 */ 534 535 inet = inet_sk(sk); 536 if (!sock_owned_by_user(sk) && inet->recverr) { 537 sk->sk_err = err; 538 sk->sk_error_report(sk); 539 } else { /* Only an error on timeout */ 540 sk->sk_err_soft = err; 541 } 542 543 out: 544 bh_unlock_sock(sk); 545 sock_put(sk); 546 } 547 548 static void __tcp_v4_send_check(struct sk_buff *skb, 549 __be32 saddr, __be32 daddr) 550 { 551 struct tcphdr *th = tcp_hdr(skb); 552 553 if (skb->ip_summed == CHECKSUM_PARTIAL) { 554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 555 skb->csum_start = skb_transport_header(skb) - skb->head; 556 skb->csum_offset = offsetof(struct tcphdr, check); 557 } else { 558 th->check = tcp_v4_check(skb->len, saddr, daddr, 559 csum_partial(th, 560 th->doff << 2, 561 skb->csum)); 562 } 563 } 564 565 /* This routine computes an IPv4 TCP checksum. */ 566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 567 { 568 const struct inet_sock *inet = inet_sk(sk); 569 570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 571 } 572 EXPORT_SYMBOL(tcp_v4_send_check); 573 574 int tcp_v4_gso_send_check(struct sk_buff *skb) 575 { 576 const struct iphdr *iph; 577 struct tcphdr *th; 578 579 if (!pskb_may_pull(skb, sizeof(*th))) 580 return -EINVAL; 581 582 iph = ip_hdr(skb); 583 th = tcp_hdr(skb); 584 585 th->check = 0; 586 skb->ip_summed = CHECKSUM_PARTIAL; 587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr); 588 return 0; 589 } 590 591 /* 592 * This routine will send an RST to the other tcp. 593 * 594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 595 * for reset. 596 * Answer: if a packet caused RST, it is not for a socket 597 * existing in our system, if it is matched to a socket, 598 * it is just duplicate segment or bug in other side's TCP. 599 * So that we build reply only basing on parameters 600 * arrived with segment. 601 * Exception: precedence violation. We do not implement it in any case. 602 */ 603 604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) 605 { 606 const struct tcphdr *th = tcp_hdr(skb); 607 struct { 608 struct tcphdr th; 609 #ifdef CONFIG_TCP_MD5SIG 610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 611 #endif 612 } rep; 613 struct ip_reply_arg arg; 614 #ifdef CONFIG_TCP_MD5SIG 615 struct tcp_md5sig_key *key; 616 const __u8 *hash_location = NULL; 617 unsigned char newhash[16]; 618 int genhash; 619 struct sock *sk1 = NULL; 620 #endif 621 struct net *net; 622 623 /* Never send a reset in response to a reset. */ 624 if (th->rst) 625 return; 626 627 if (skb_rtable(skb)->rt_type != RTN_LOCAL) 628 return; 629 630 /* Swap the send and the receive. */ 631 memset(&rep, 0, sizeof(rep)); 632 rep.th.dest = th->source; 633 rep.th.source = th->dest; 634 rep.th.doff = sizeof(struct tcphdr) / 4; 635 rep.th.rst = 1; 636 637 if (th->ack) { 638 rep.th.seq = th->ack_seq; 639 } else { 640 rep.th.ack = 1; 641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 642 skb->len - (th->doff << 2)); 643 } 644 645 memset(&arg, 0, sizeof(arg)); 646 arg.iov[0].iov_base = (unsigned char *)&rep; 647 arg.iov[0].iov_len = sizeof(rep.th); 648 649 #ifdef CONFIG_TCP_MD5SIG 650 hash_location = tcp_parse_md5sig_option(th); 651 if (!sk && hash_location) { 652 /* 653 * active side is lost. Try to find listening socket through 654 * source port, and then find md5 key through listening socket. 655 * we are not loose security here: 656 * Incoming packet is checked with md5 hash with finding key, 657 * no RST generated if md5 hash doesn't match. 658 */ 659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev), 660 &tcp_hashinfo, ip_hdr(skb)->daddr, 661 ntohs(th->source), inet_iif(skb)); 662 /* don't send rst if it can't find key */ 663 if (!sk1) 664 return; 665 rcu_read_lock(); 666 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 667 &ip_hdr(skb)->saddr, AF_INET); 668 if (!key) 669 goto release_sk1; 670 671 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb); 672 if (genhash || memcmp(hash_location, newhash, 16) != 0) 673 goto release_sk1; 674 } else { 675 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 676 &ip_hdr(skb)->saddr, 677 AF_INET) : NULL; 678 } 679 680 if (key) { 681 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 682 (TCPOPT_NOP << 16) | 683 (TCPOPT_MD5SIG << 8) | 684 TCPOLEN_MD5SIG); 685 /* Update length and the length the header thinks exists */ 686 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 687 rep.th.doff = arg.iov[0].iov_len / 4; 688 689 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 690 key, ip_hdr(skb)->saddr, 691 ip_hdr(skb)->daddr, &rep.th); 692 } 693 #endif 694 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 695 ip_hdr(skb)->saddr, /* XXX */ 696 arg.iov[0].iov_len, IPPROTO_TCP, 0); 697 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 698 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 699 /* When socket is gone, all binding information is lost. 700 * routing might fail in this case. No choice here, if we choose to force 701 * input interface, we will misroute in case of asymmetric route. 702 */ 703 if (sk) 704 arg.bound_dev_if = sk->sk_bound_dev_if; 705 706 net = dev_net(skb_dst(skb)->dev); 707 arg.tos = ip_hdr(skb)->tos; 708 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 709 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 710 711 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 712 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 713 714 #ifdef CONFIG_TCP_MD5SIG 715 release_sk1: 716 if (sk1) { 717 rcu_read_unlock(); 718 sock_put(sk1); 719 } 720 #endif 721 } 722 723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 724 outside socket context is ugly, certainly. What can I do? 725 */ 726 727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 728 u32 win, u32 ts, int oif, 729 struct tcp_md5sig_key *key, 730 int reply_flags, u8 tos) 731 { 732 const struct tcphdr *th = tcp_hdr(skb); 733 struct { 734 struct tcphdr th; 735 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 736 #ifdef CONFIG_TCP_MD5SIG 737 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 738 #endif 739 ]; 740 } rep; 741 struct ip_reply_arg arg; 742 struct net *net = dev_net(skb_dst(skb)->dev); 743 744 memset(&rep.th, 0, sizeof(struct tcphdr)); 745 memset(&arg, 0, sizeof(arg)); 746 747 arg.iov[0].iov_base = (unsigned char *)&rep; 748 arg.iov[0].iov_len = sizeof(rep.th); 749 if (ts) { 750 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 751 (TCPOPT_TIMESTAMP << 8) | 752 TCPOLEN_TIMESTAMP); 753 rep.opt[1] = htonl(tcp_time_stamp); 754 rep.opt[2] = htonl(ts); 755 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 756 } 757 758 /* Swap the send and the receive. */ 759 rep.th.dest = th->source; 760 rep.th.source = th->dest; 761 rep.th.doff = arg.iov[0].iov_len / 4; 762 rep.th.seq = htonl(seq); 763 rep.th.ack_seq = htonl(ack); 764 rep.th.ack = 1; 765 rep.th.window = htons(win); 766 767 #ifdef CONFIG_TCP_MD5SIG 768 if (key) { 769 int offset = (ts) ? 3 : 0; 770 771 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 772 (TCPOPT_NOP << 16) | 773 (TCPOPT_MD5SIG << 8) | 774 TCPOLEN_MD5SIG); 775 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 776 rep.th.doff = arg.iov[0].iov_len/4; 777 778 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 779 key, ip_hdr(skb)->saddr, 780 ip_hdr(skb)->daddr, &rep.th); 781 } 782 #endif 783 arg.flags = reply_flags; 784 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 785 ip_hdr(skb)->saddr, /* XXX */ 786 arg.iov[0].iov_len, IPPROTO_TCP, 0); 787 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 788 if (oif) 789 arg.bound_dev_if = oif; 790 arg.tos = tos; 791 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 792 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 793 794 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 795 } 796 797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 798 { 799 struct inet_timewait_sock *tw = inet_twsk(sk); 800 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 801 802 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 803 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 804 tcptw->tw_ts_recent, 805 tw->tw_bound_dev_if, 806 tcp_twsk_md5_key(tcptw), 807 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 808 tw->tw_tos 809 ); 810 811 inet_twsk_put(tw); 812 } 813 814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb, 815 struct request_sock *req) 816 { 817 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 818 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 819 */ 820 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ? 821 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, 822 tcp_rsk(req)->rcv_nxt, req->rcv_wnd, 823 req->ts_recent, 824 0, 825 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 826 AF_INET), 827 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 828 ip_hdr(skb)->tos); 829 } 830 831 /* 832 * Send a SYN-ACK after having received a SYN. 833 * This still operates on a request_sock only, not on a big 834 * socket. 835 */ 836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst, 837 struct request_sock *req, 838 struct request_values *rvp, 839 u16 queue_mapping, 840 bool nocache) 841 { 842 const struct inet_request_sock *ireq = inet_rsk(req); 843 struct flowi4 fl4; 844 int err = -1; 845 struct sk_buff * skb; 846 847 /* First, grab a route. */ 848 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 849 return -1; 850 851 skb = tcp_make_synack(sk, dst, req, rvp, NULL); 852 853 if (skb) { 854 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr); 855 856 skb_set_queue_mapping(skb, queue_mapping); 857 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, 858 ireq->rmt_addr, 859 ireq->opt); 860 err = net_xmit_eval(err); 861 if (!tcp_rsk(req)->snt_synack && !err) 862 tcp_rsk(req)->snt_synack = tcp_time_stamp; 863 } 864 865 return err; 866 } 867 868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req, 869 struct request_values *rvp) 870 { 871 int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false); 872 873 if (!res) 874 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 875 return res; 876 } 877 878 /* 879 * IPv4 request_sock destructor. 880 */ 881 static void tcp_v4_reqsk_destructor(struct request_sock *req) 882 { 883 kfree(inet_rsk(req)->opt); 884 } 885 886 /* 887 * Return true if a syncookie should be sent 888 */ 889 bool tcp_syn_flood_action(struct sock *sk, 890 const struct sk_buff *skb, 891 const char *proto) 892 { 893 const char *msg = "Dropping request"; 894 bool want_cookie = false; 895 struct listen_sock *lopt; 896 897 898 899 #ifdef CONFIG_SYN_COOKIES 900 if (sysctl_tcp_syncookies) { 901 msg = "Sending cookies"; 902 want_cookie = true; 903 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 904 } else 905 #endif 906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 907 908 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 909 if (!lopt->synflood_warned) { 910 lopt->synflood_warned = 1; 911 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 912 proto, ntohs(tcp_hdr(skb)->dest), msg); 913 } 914 return want_cookie; 915 } 916 EXPORT_SYMBOL(tcp_syn_flood_action); 917 918 /* 919 * Save and compile IPv4 options into the request_sock if needed. 920 */ 921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb) 922 { 923 const struct ip_options *opt = &(IPCB(skb)->opt); 924 struct ip_options_rcu *dopt = NULL; 925 926 if (opt && opt->optlen) { 927 int opt_size = sizeof(*dopt) + opt->optlen; 928 929 dopt = kmalloc(opt_size, GFP_ATOMIC); 930 if (dopt) { 931 if (ip_options_echo(&dopt->opt, skb)) { 932 kfree(dopt); 933 dopt = NULL; 934 } 935 } 936 } 937 return dopt; 938 } 939 940 #ifdef CONFIG_TCP_MD5SIG 941 /* 942 * RFC2385 MD5 checksumming requires a mapping of 943 * IP address->MD5 Key. 944 * We need to maintain these in the sk structure. 945 */ 946 947 /* Find the Key structure for an address. */ 948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk, 949 const union tcp_md5_addr *addr, 950 int family) 951 { 952 struct tcp_sock *tp = tcp_sk(sk); 953 struct tcp_md5sig_key *key; 954 struct hlist_node *pos; 955 unsigned int size = sizeof(struct in_addr); 956 struct tcp_md5sig_info *md5sig; 957 958 /* caller either holds rcu_read_lock() or socket lock */ 959 md5sig = rcu_dereference_check(tp->md5sig_info, 960 sock_owned_by_user(sk) || 961 lockdep_is_held(&sk->sk_lock.slock)); 962 if (!md5sig) 963 return NULL; 964 #if IS_ENABLED(CONFIG_IPV6) 965 if (family == AF_INET6) 966 size = sizeof(struct in6_addr); 967 #endif 968 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) { 969 if (key->family != family) 970 continue; 971 if (!memcmp(&key->addr, addr, size)) 972 return key; 973 } 974 return NULL; 975 } 976 EXPORT_SYMBOL(tcp_md5_do_lookup); 977 978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, 979 struct sock *addr_sk) 980 { 981 union tcp_md5_addr *addr; 982 983 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr; 984 return tcp_md5_do_lookup(sk, addr, AF_INET); 985 } 986 EXPORT_SYMBOL(tcp_v4_md5_lookup); 987 988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk, 989 struct request_sock *req) 990 { 991 union tcp_md5_addr *addr; 992 993 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr; 994 return tcp_md5_do_lookup(sk, addr, AF_INET); 995 } 996 997 /* This can be called on a newly created socket, from other files */ 998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 999 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 1000 { 1001 /* Add Key to the list */ 1002 struct tcp_md5sig_key *key; 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 struct tcp_md5sig_info *md5sig; 1005 1006 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET); 1007 if (key) { 1008 /* Pre-existing entry - just update that one. */ 1009 memcpy(key->key, newkey, newkeylen); 1010 key->keylen = newkeylen; 1011 return 0; 1012 } 1013 1014 md5sig = rcu_dereference_protected(tp->md5sig_info, 1015 sock_owned_by_user(sk)); 1016 if (!md5sig) { 1017 md5sig = kmalloc(sizeof(*md5sig), gfp); 1018 if (!md5sig) 1019 return -ENOMEM; 1020 1021 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1022 INIT_HLIST_HEAD(&md5sig->head); 1023 rcu_assign_pointer(tp->md5sig_info, md5sig); 1024 } 1025 1026 key = sock_kmalloc(sk, sizeof(*key), gfp); 1027 if (!key) 1028 return -ENOMEM; 1029 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) { 1030 sock_kfree_s(sk, key, sizeof(*key)); 1031 return -ENOMEM; 1032 } 1033 1034 memcpy(key->key, newkey, newkeylen); 1035 key->keylen = newkeylen; 1036 key->family = family; 1037 memcpy(&key->addr, addr, 1038 (family == AF_INET6) ? sizeof(struct in6_addr) : 1039 sizeof(struct in_addr)); 1040 hlist_add_head_rcu(&key->node, &md5sig->head); 1041 return 0; 1042 } 1043 EXPORT_SYMBOL(tcp_md5_do_add); 1044 1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 1046 { 1047 struct tcp_sock *tp = tcp_sk(sk); 1048 struct tcp_md5sig_key *key; 1049 struct tcp_md5sig_info *md5sig; 1050 1051 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET); 1052 if (!key) 1053 return -ENOENT; 1054 hlist_del_rcu(&key->node); 1055 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1056 kfree_rcu(key, rcu); 1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1058 sock_owned_by_user(sk)); 1059 if (hlist_empty(&md5sig->head)) 1060 tcp_free_md5sig_pool(); 1061 return 0; 1062 } 1063 EXPORT_SYMBOL(tcp_md5_do_del); 1064 1065 static void tcp_clear_md5_list(struct sock *sk) 1066 { 1067 struct tcp_sock *tp = tcp_sk(sk); 1068 struct tcp_md5sig_key *key; 1069 struct hlist_node *pos, *n; 1070 struct tcp_md5sig_info *md5sig; 1071 1072 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1073 1074 if (!hlist_empty(&md5sig->head)) 1075 tcp_free_md5sig_pool(); 1076 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) { 1077 hlist_del_rcu(&key->node); 1078 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1079 kfree_rcu(key, rcu); 1080 } 1081 } 1082 1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1084 int optlen) 1085 { 1086 struct tcp_md5sig cmd; 1087 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1088 1089 if (optlen < sizeof(cmd)) 1090 return -EINVAL; 1091 1092 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1093 return -EFAULT; 1094 1095 if (sin->sin_family != AF_INET) 1096 return -EINVAL; 1097 1098 if (!cmd.tcpm_key || !cmd.tcpm_keylen) 1099 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1100 AF_INET); 1101 1102 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1103 return -EINVAL; 1104 1105 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1106 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1107 GFP_KERNEL); 1108 } 1109 1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1111 __be32 daddr, __be32 saddr, int nbytes) 1112 { 1113 struct tcp4_pseudohdr *bp; 1114 struct scatterlist sg; 1115 1116 bp = &hp->md5_blk.ip4; 1117 1118 /* 1119 * 1. the TCP pseudo-header (in the order: source IP address, 1120 * destination IP address, zero-padded protocol number, and 1121 * segment length) 1122 */ 1123 bp->saddr = saddr; 1124 bp->daddr = daddr; 1125 bp->pad = 0; 1126 bp->protocol = IPPROTO_TCP; 1127 bp->len = cpu_to_be16(nbytes); 1128 1129 sg_init_one(&sg, bp, sizeof(*bp)); 1130 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1131 } 1132 1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1134 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1135 { 1136 struct tcp_md5sig_pool *hp; 1137 struct hash_desc *desc; 1138 1139 hp = tcp_get_md5sig_pool(); 1140 if (!hp) 1141 goto clear_hash_noput; 1142 desc = &hp->md5_desc; 1143 1144 if (crypto_hash_init(desc)) 1145 goto clear_hash; 1146 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1147 goto clear_hash; 1148 if (tcp_md5_hash_header(hp, th)) 1149 goto clear_hash; 1150 if (tcp_md5_hash_key(hp, key)) 1151 goto clear_hash; 1152 if (crypto_hash_final(desc, md5_hash)) 1153 goto clear_hash; 1154 1155 tcp_put_md5sig_pool(); 1156 return 0; 1157 1158 clear_hash: 1159 tcp_put_md5sig_pool(); 1160 clear_hash_noput: 1161 memset(md5_hash, 0, 16); 1162 return 1; 1163 } 1164 1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key, 1166 const struct sock *sk, const struct request_sock *req, 1167 const struct sk_buff *skb) 1168 { 1169 struct tcp_md5sig_pool *hp; 1170 struct hash_desc *desc; 1171 const struct tcphdr *th = tcp_hdr(skb); 1172 __be32 saddr, daddr; 1173 1174 if (sk) { 1175 saddr = inet_sk(sk)->inet_saddr; 1176 daddr = inet_sk(sk)->inet_daddr; 1177 } else if (req) { 1178 saddr = inet_rsk(req)->loc_addr; 1179 daddr = inet_rsk(req)->rmt_addr; 1180 } else { 1181 const struct iphdr *iph = ip_hdr(skb); 1182 saddr = iph->saddr; 1183 daddr = iph->daddr; 1184 } 1185 1186 hp = tcp_get_md5sig_pool(); 1187 if (!hp) 1188 goto clear_hash_noput; 1189 desc = &hp->md5_desc; 1190 1191 if (crypto_hash_init(desc)) 1192 goto clear_hash; 1193 1194 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1195 goto clear_hash; 1196 if (tcp_md5_hash_header(hp, th)) 1197 goto clear_hash; 1198 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1199 goto clear_hash; 1200 if (tcp_md5_hash_key(hp, key)) 1201 goto clear_hash; 1202 if (crypto_hash_final(desc, md5_hash)) 1203 goto clear_hash; 1204 1205 tcp_put_md5sig_pool(); 1206 return 0; 1207 1208 clear_hash: 1209 tcp_put_md5sig_pool(); 1210 clear_hash_noput: 1211 memset(md5_hash, 0, 16); 1212 return 1; 1213 } 1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1215 1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb) 1217 { 1218 /* 1219 * This gets called for each TCP segment that arrives 1220 * so we want to be efficient. 1221 * We have 3 drop cases: 1222 * o No MD5 hash and one expected. 1223 * o MD5 hash and we're not expecting one. 1224 * o MD5 hash and its wrong. 1225 */ 1226 const __u8 *hash_location = NULL; 1227 struct tcp_md5sig_key *hash_expected; 1228 const struct iphdr *iph = ip_hdr(skb); 1229 const struct tcphdr *th = tcp_hdr(skb); 1230 int genhash; 1231 unsigned char newhash[16]; 1232 1233 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1234 AF_INET); 1235 hash_location = tcp_parse_md5sig_option(th); 1236 1237 /* We've parsed the options - do we have a hash? */ 1238 if (!hash_expected && !hash_location) 1239 return false; 1240 1241 if (hash_expected && !hash_location) { 1242 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1243 return true; 1244 } 1245 1246 if (!hash_expected && hash_location) { 1247 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1248 return true; 1249 } 1250 1251 /* Okay, so this is hash_expected and hash_location - 1252 * so we need to calculate the checksum. 1253 */ 1254 genhash = tcp_v4_md5_hash_skb(newhash, 1255 hash_expected, 1256 NULL, NULL, skb); 1257 1258 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1259 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1260 &iph->saddr, ntohs(th->source), 1261 &iph->daddr, ntohs(th->dest), 1262 genhash ? " tcp_v4_calc_md5_hash failed" 1263 : ""); 1264 return true; 1265 } 1266 return false; 1267 } 1268 1269 #endif 1270 1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1272 .family = PF_INET, 1273 .obj_size = sizeof(struct tcp_request_sock), 1274 .rtx_syn_ack = tcp_v4_rtx_synack, 1275 .send_ack = tcp_v4_reqsk_send_ack, 1276 .destructor = tcp_v4_reqsk_destructor, 1277 .send_reset = tcp_v4_send_reset, 1278 .syn_ack_timeout = tcp_syn_ack_timeout, 1279 }; 1280 1281 #ifdef CONFIG_TCP_MD5SIG 1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1283 .md5_lookup = tcp_v4_reqsk_md5_lookup, 1284 .calc_md5_hash = tcp_v4_md5_hash_skb, 1285 }; 1286 #endif 1287 1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb, 1289 struct request_sock *req, 1290 struct tcp_fastopen_cookie *foc, 1291 struct tcp_fastopen_cookie *valid_foc) 1292 { 1293 bool skip_cookie = false; 1294 struct fastopen_queue *fastopenq; 1295 1296 if (likely(!fastopen_cookie_present(foc))) { 1297 /* See include/net/tcp.h for the meaning of these knobs */ 1298 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) || 1299 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) && 1300 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1))) 1301 skip_cookie = true; /* no cookie to validate */ 1302 else 1303 return false; 1304 } 1305 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq; 1306 /* A FO option is present; bump the counter. */ 1307 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE); 1308 1309 /* Make sure the listener has enabled fastopen, and we don't 1310 * exceed the max # of pending TFO requests allowed before trying 1311 * to validating the cookie in order to avoid burning CPU cycles 1312 * unnecessarily. 1313 * 1314 * XXX (TFO) - The implication of checking the max_qlen before 1315 * processing a cookie request is that clients can't differentiate 1316 * between qlen overflow causing Fast Open to be disabled 1317 * temporarily vs a server not supporting Fast Open at all. 1318 */ 1319 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 || 1320 fastopenq == NULL || fastopenq->max_qlen == 0) 1321 return false; 1322 1323 if (fastopenq->qlen >= fastopenq->max_qlen) { 1324 struct request_sock *req1; 1325 spin_lock(&fastopenq->lock); 1326 req1 = fastopenq->rskq_rst_head; 1327 if ((req1 == NULL) || time_after(req1->expires, jiffies)) { 1328 spin_unlock(&fastopenq->lock); 1329 NET_INC_STATS_BH(sock_net(sk), 1330 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 1331 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/ 1332 foc->len = -1; 1333 return false; 1334 } 1335 fastopenq->rskq_rst_head = req1->dl_next; 1336 fastopenq->qlen--; 1337 spin_unlock(&fastopenq->lock); 1338 reqsk_free(req1); 1339 } 1340 if (skip_cookie) { 1341 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1342 return true; 1343 } 1344 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) { 1345 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) { 1346 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1347 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) || 1348 memcmp(&foc->val[0], &valid_foc->val[0], 1349 TCP_FASTOPEN_COOKIE_SIZE) != 0) 1350 return false; 1351 valid_foc->len = -1; 1352 } 1353 /* Acknowledge the data received from the peer. */ 1354 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1355 return true; 1356 } else if (foc->len == 0) { /* Client requesting a cookie */ 1357 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1358 NET_INC_STATS_BH(sock_net(sk), 1359 LINUX_MIB_TCPFASTOPENCOOKIEREQD); 1360 } else { 1361 /* Client sent a cookie with wrong size. Treat it 1362 * the same as invalid and return a valid one. 1363 */ 1364 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1365 } 1366 return false; 1367 } 1368 1369 static int tcp_v4_conn_req_fastopen(struct sock *sk, 1370 struct sk_buff *skb, 1371 struct sk_buff *skb_synack, 1372 struct request_sock *req, 1373 struct request_values *rvp) 1374 { 1375 struct tcp_sock *tp = tcp_sk(sk); 1376 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1377 const struct inet_request_sock *ireq = inet_rsk(req); 1378 struct sock *child; 1379 int err; 1380 1381 req->num_retrans = 0; 1382 req->num_timeout = 0; 1383 req->sk = NULL; 1384 1385 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); 1386 if (child == NULL) { 1387 NET_INC_STATS_BH(sock_net(sk), 1388 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1389 kfree_skb(skb_synack); 1390 return -1; 1391 } 1392 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr, 1393 ireq->rmt_addr, ireq->opt); 1394 err = net_xmit_eval(err); 1395 if (!err) 1396 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1397 /* XXX (TFO) - is it ok to ignore error and continue? */ 1398 1399 spin_lock(&queue->fastopenq->lock); 1400 queue->fastopenq->qlen++; 1401 spin_unlock(&queue->fastopenq->lock); 1402 1403 /* Initialize the child socket. Have to fix some values to take 1404 * into account the child is a Fast Open socket and is created 1405 * only out of the bits carried in the SYN packet. 1406 */ 1407 tp = tcp_sk(child); 1408 1409 tp->fastopen_rsk = req; 1410 /* Do a hold on the listner sk so that if the listener is being 1411 * closed, the child that has been accepted can live on and still 1412 * access listen_lock. 1413 */ 1414 sock_hold(sk); 1415 tcp_rsk(req)->listener = sk; 1416 1417 /* RFC1323: The window in SYN & SYN/ACK segments is never 1418 * scaled. So correct it appropriately. 1419 */ 1420 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 1421 1422 /* Activate the retrans timer so that SYNACK can be retransmitted. 1423 * The request socket is not added to the SYN table of the parent 1424 * because it's been added to the accept queue directly. 1425 */ 1426 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 1427 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 1428 1429 /* Add the child socket directly into the accept queue */ 1430 inet_csk_reqsk_queue_add(sk, req, child); 1431 1432 /* Now finish processing the fastopen child socket. */ 1433 inet_csk(child)->icsk_af_ops->rebuild_header(child); 1434 tcp_init_congestion_control(child); 1435 tcp_mtup_init(child); 1436 tcp_init_buffer_space(child); 1437 tcp_init_metrics(child); 1438 1439 /* Queue the data carried in the SYN packet. We need to first 1440 * bump skb's refcnt because the caller will attempt to free it. 1441 * 1442 * XXX (TFO) - we honor a zero-payload TFO request for now. 1443 * (Any reason not to?) 1444 */ 1445 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) { 1446 /* Don't queue the skb if there is no payload in SYN. 1447 * XXX (TFO) - How about SYN+FIN? 1448 */ 1449 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1450 } else { 1451 skb = skb_get(skb); 1452 skb_dst_drop(skb); 1453 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 1454 skb_set_owner_r(skb, child); 1455 __skb_queue_tail(&child->sk_receive_queue, skb); 1456 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1457 tp->syn_data_acked = 1; 1458 } 1459 sk->sk_data_ready(sk, 0); 1460 bh_unlock_sock(child); 1461 sock_put(child); 1462 WARN_ON(req->sk == NULL); 1463 return 0; 1464 } 1465 1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1467 { 1468 struct tcp_extend_values tmp_ext; 1469 struct tcp_options_received tmp_opt; 1470 const u8 *hash_location; 1471 struct request_sock *req; 1472 struct inet_request_sock *ireq; 1473 struct tcp_sock *tp = tcp_sk(sk); 1474 struct dst_entry *dst = NULL; 1475 __be32 saddr = ip_hdr(skb)->saddr; 1476 __be32 daddr = ip_hdr(skb)->daddr; 1477 __u32 isn = TCP_SKB_CB(skb)->when; 1478 bool want_cookie = false; 1479 struct flowi4 fl4; 1480 struct tcp_fastopen_cookie foc = { .len = -1 }; 1481 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 1482 struct sk_buff *skb_synack; 1483 int do_fastopen; 1484 1485 /* Never answer to SYNs send to broadcast or multicast */ 1486 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1487 goto drop; 1488 1489 /* TW buckets are converted to open requests without 1490 * limitations, they conserve resources and peer is 1491 * evidently real one. 1492 */ 1493 if (inet_csk_reqsk_queue_is_full(sk) && !isn) { 1494 want_cookie = tcp_syn_flood_action(sk, skb, "TCP"); 1495 if (!want_cookie) 1496 goto drop; 1497 } 1498 1499 /* Accept backlog is full. If we have already queued enough 1500 * of warm entries in syn queue, drop request. It is better than 1501 * clogging syn queue with openreqs with exponentially increasing 1502 * timeout. 1503 */ 1504 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 1505 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1506 goto drop; 1507 } 1508 1509 req = inet_reqsk_alloc(&tcp_request_sock_ops); 1510 if (!req) 1511 goto drop; 1512 1513 #ifdef CONFIG_TCP_MD5SIG 1514 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops; 1515 #endif 1516 1517 tcp_clear_options(&tmp_opt); 1518 tmp_opt.mss_clamp = TCP_MSS_DEFAULT; 1519 tmp_opt.user_mss = tp->rx_opt.user_mss; 1520 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, 1521 want_cookie ? NULL : &foc); 1522 1523 if (tmp_opt.cookie_plus > 0 && 1524 tmp_opt.saw_tstamp && 1525 !tp->rx_opt.cookie_out_never && 1526 (sysctl_tcp_cookie_size > 0 || 1527 (tp->cookie_values != NULL && 1528 tp->cookie_values->cookie_desired > 0))) { 1529 u8 *c; 1530 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS]; 1531 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE; 1532 1533 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0) 1534 goto drop_and_release; 1535 1536 /* Secret recipe starts with IP addresses */ 1537 *mess++ ^= (__force u32)daddr; 1538 *mess++ ^= (__force u32)saddr; 1539 1540 /* plus variable length Initiator Cookie */ 1541 c = (u8 *)mess; 1542 while (l-- > 0) 1543 *c++ ^= *hash_location++; 1544 1545 want_cookie = false; /* not our kind of cookie */ 1546 tmp_ext.cookie_out_never = 0; /* false */ 1547 tmp_ext.cookie_plus = tmp_opt.cookie_plus; 1548 } else if (!tp->rx_opt.cookie_in_always) { 1549 /* redundant indications, but ensure initialization. */ 1550 tmp_ext.cookie_out_never = 1; /* true */ 1551 tmp_ext.cookie_plus = 0; 1552 } else { 1553 goto drop_and_release; 1554 } 1555 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always; 1556 1557 if (want_cookie && !tmp_opt.saw_tstamp) 1558 tcp_clear_options(&tmp_opt); 1559 1560 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 1561 tcp_openreq_init(req, &tmp_opt, skb); 1562 1563 ireq = inet_rsk(req); 1564 ireq->loc_addr = daddr; 1565 ireq->rmt_addr = saddr; 1566 ireq->no_srccheck = inet_sk(sk)->transparent; 1567 ireq->opt = tcp_v4_save_options(skb); 1568 1569 if (security_inet_conn_request(sk, skb, req)) 1570 goto drop_and_free; 1571 1572 if (!want_cookie || tmp_opt.tstamp_ok) 1573 TCP_ECN_create_request(req, skb); 1574 1575 if (want_cookie) { 1576 isn = cookie_v4_init_sequence(sk, skb, &req->mss); 1577 req->cookie_ts = tmp_opt.tstamp_ok; 1578 } else if (!isn) { 1579 /* VJ's idea. We save last timestamp seen 1580 * from the destination in peer table, when entering 1581 * state TIME-WAIT, and check against it before 1582 * accepting new connection request. 1583 * 1584 * If "isn" is not zero, this request hit alive 1585 * timewait bucket, so that all the necessary checks 1586 * are made in the function processing timewait state. 1587 */ 1588 if (tmp_opt.saw_tstamp && 1589 tcp_death_row.sysctl_tw_recycle && 1590 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL && 1591 fl4.daddr == saddr) { 1592 if (!tcp_peer_is_proven(req, dst, true)) { 1593 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 1594 goto drop_and_release; 1595 } 1596 } 1597 /* Kill the following clause, if you dislike this way. */ 1598 else if (!sysctl_tcp_syncookies && 1599 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 1600 (sysctl_max_syn_backlog >> 2)) && 1601 !tcp_peer_is_proven(req, dst, false)) { 1602 /* Without syncookies last quarter of 1603 * backlog is filled with destinations, 1604 * proven to be alive. 1605 * It means that we continue to communicate 1606 * to destinations, already remembered 1607 * to the moment of synflood. 1608 */ 1609 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 1610 &saddr, ntohs(tcp_hdr(skb)->source)); 1611 goto drop_and_release; 1612 } 1613 1614 isn = tcp_v4_init_sequence(skb); 1615 } 1616 tcp_rsk(req)->snt_isn = isn; 1617 1618 if (dst == NULL) { 1619 dst = inet_csk_route_req(sk, &fl4, req); 1620 if (dst == NULL) 1621 goto drop_and_free; 1622 } 1623 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc); 1624 1625 /* We don't call tcp_v4_send_synack() directly because we need 1626 * to make sure a child socket can be created successfully before 1627 * sending back synack! 1628 * 1629 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack() 1630 * (or better yet, call tcp_send_synack() in the child context 1631 * directly, but will have to fix bunch of other code first) 1632 * after syn_recv_sock() except one will need to first fix the 1633 * latter to remove its dependency on the current implementation 1634 * of tcp_v4_send_synack()->tcp_select_initial_window(). 1635 */ 1636 skb_synack = tcp_make_synack(sk, dst, req, 1637 (struct request_values *)&tmp_ext, 1638 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL); 1639 1640 if (skb_synack) { 1641 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr); 1642 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb)); 1643 } else 1644 goto drop_and_free; 1645 1646 if (likely(!do_fastopen)) { 1647 int err; 1648 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr, 1649 ireq->rmt_addr, ireq->opt); 1650 err = net_xmit_eval(err); 1651 if (err || want_cookie) 1652 goto drop_and_free; 1653 1654 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1655 tcp_rsk(req)->listener = NULL; 1656 /* Add the request_sock to the SYN table */ 1657 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 1658 if (fastopen_cookie_present(&foc) && foc.len != 0) 1659 NET_INC_STATS_BH(sock_net(sk), 1660 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1661 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req, 1662 (struct request_values *)&tmp_ext)) 1663 goto drop_and_free; 1664 1665 return 0; 1666 1667 drop_and_release: 1668 dst_release(dst); 1669 drop_and_free: 1670 reqsk_free(req); 1671 drop: 1672 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1673 return 0; 1674 } 1675 EXPORT_SYMBOL(tcp_v4_conn_request); 1676 1677 1678 /* 1679 * The three way handshake has completed - we got a valid synack - 1680 * now create the new socket. 1681 */ 1682 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, 1683 struct request_sock *req, 1684 struct dst_entry *dst) 1685 { 1686 struct inet_request_sock *ireq; 1687 struct inet_sock *newinet; 1688 struct tcp_sock *newtp; 1689 struct sock *newsk; 1690 #ifdef CONFIG_TCP_MD5SIG 1691 struct tcp_md5sig_key *key; 1692 #endif 1693 struct ip_options_rcu *inet_opt; 1694 1695 if (sk_acceptq_is_full(sk)) 1696 goto exit_overflow; 1697 1698 newsk = tcp_create_openreq_child(sk, req, skb); 1699 if (!newsk) 1700 goto exit_nonewsk; 1701 1702 newsk->sk_gso_type = SKB_GSO_TCPV4; 1703 inet_sk_rx_dst_set(newsk, skb); 1704 1705 newtp = tcp_sk(newsk); 1706 newinet = inet_sk(newsk); 1707 ireq = inet_rsk(req); 1708 newinet->inet_daddr = ireq->rmt_addr; 1709 newinet->inet_rcv_saddr = ireq->loc_addr; 1710 newinet->inet_saddr = ireq->loc_addr; 1711 inet_opt = ireq->opt; 1712 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1713 ireq->opt = NULL; 1714 newinet->mc_index = inet_iif(skb); 1715 newinet->mc_ttl = ip_hdr(skb)->ttl; 1716 newinet->rcv_tos = ip_hdr(skb)->tos; 1717 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1718 if (inet_opt) 1719 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1720 newinet->inet_id = newtp->write_seq ^ jiffies; 1721 1722 if (!dst) { 1723 dst = inet_csk_route_child_sock(sk, newsk, req); 1724 if (!dst) 1725 goto put_and_exit; 1726 } else { 1727 /* syncookie case : see end of cookie_v4_check() */ 1728 } 1729 sk_setup_caps(newsk, dst); 1730 1731 tcp_mtup_init(newsk); 1732 tcp_sync_mss(newsk, dst_mtu(dst)); 1733 newtp->advmss = dst_metric_advmss(dst); 1734 if (tcp_sk(sk)->rx_opt.user_mss && 1735 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1736 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1737 1738 tcp_initialize_rcv_mss(newsk); 1739 tcp_synack_rtt_meas(newsk, req); 1740 newtp->total_retrans = req->num_retrans; 1741 1742 #ifdef CONFIG_TCP_MD5SIG 1743 /* Copy over the MD5 key from the original socket */ 1744 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1745 AF_INET); 1746 if (key != NULL) { 1747 /* 1748 * We're using one, so create a matching key 1749 * on the newsk structure. If we fail to get 1750 * memory, then we end up not copying the key 1751 * across. Shucks. 1752 */ 1753 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1754 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1755 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1756 } 1757 #endif 1758 1759 if (__inet_inherit_port(sk, newsk) < 0) 1760 goto put_and_exit; 1761 __inet_hash_nolisten(newsk, NULL); 1762 1763 return newsk; 1764 1765 exit_overflow: 1766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1767 exit_nonewsk: 1768 dst_release(dst); 1769 exit: 1770 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1771 return NULL; 1772 put_and_exit: 1773 inet_csk_prepare_forced_close(newsk); 1774 tcp_done(newsk); 1775 goto exit; 1776 } 1777 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1778 1779 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) 1780 { 1781 struct tcphdr *th = tcp_hdr(skb); 1782 const struct iphdr *iph = ip_hdr(skb); 1783 struct sock *nsk; 1784 struct request_sock **prev; 1785 /* Find possible connection requests. */ 1786 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source, 1787 iph->saddr, iph->daddr); 1788 if (req) 1789 return tcp_check_req(sk, skb, req, prev, false); 1790 1791 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr, 1792 th->source, iph->daddr, th->dest, inet_iif(skb)); 1793 1794 if (nsk) { 1795 if (nsk->sk_state != TCP_TIME_WAIT) { 1796 bh_lock_sock(nsk); 1797 return nsk; 1798 } 1799 inet_twsk_put(inet_twsk(nsk)); 1800 return NULL; 1801 } 1802 1803 #ifdef CONFIG_SYN_COOKIES 1804 if (!th->syn) 1805 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); 1806 #endif 1807 return sk; 1808 } 1809 1810 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb) 1811 { 1812 const struct iphdr *iph = ip_hdr(skb); 1813 1814 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1815 if (!tcp_v4_check(skb->len, iph->saddr, 1816 iph->daddr, skb->csum)) { 1817 skb->ip_summed = CHECKSUM_UNNECESSARY; 1818 return 0; 1819 } 1820 } 1821 1822 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1823 skb->len, IPPROTO_TCP, 0); 1824 1825 if (skb->len <= 76) { 1826 return __skb_checksum_complete(skb); 1827 } 1828 return 0; 1829 } 1830 1831 1832 /* The socket must have it's spinlock held when we get 1833 * here. 1834 * 1835 * We have a potential double-lock case here, so even when 1836 * doing backlog processing we use the BH locking scheme. 1837 * This is because we cannot sleep with the original spinlock 1838 * held. 1839 */ 1840 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1841 { 1842 struct sock *rsk; 1843 #ifdef CONFIG_TCP_MD5SIG 1844 /* 1845 * We really want to reject the packet as early as possible 1846 * if: 1847 * o We're expecting an MD5'd packet and this is no MD5 tcp option 1848 * o There is an MD5 option and we're not expecting one 1849 */ 1850 if (tcp_v4_inbound_md5_hash(sk, skb)) 1851 goto discard; 1852 #endif 1853 1854 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1855 struct dst_entry *dst = sk->sk_rx_dst; 1856 1857 sock_rps_save_rxhash(sk, skb); 1858 if (dst) { 1859 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1860 dst->ops->check(dst, 0) == NULL) { 1861 dst_release(dst); 1862 sk->sk_rx_dst = NULL; 1863 } 1864 } 1865 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) { 1866 rsk = sk; 1867 goto reset; 1868 } 1869 return 0; 1870 } 1871 1872 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) 1873 goto csum_err; 1874 1875 if (sk->sk_state == TCP_LISTEN) { 1876 struct sock *nsk = tcp_v4_hnd_req(sk, skb); 1877 if (!nsk) 1878 goto discard; 1879 1880 if (nsk != sk) { 1881 sock_rps_save_rxhash(nsk, skb); 1882 if (tcp_child_process(sk, nsk, skb)) { 1883 rsk = nsk; 1884 goto reset; 1885 } 1886 return 0; 1887 } 1888 } else 1889 sock_rps_save_rxhash(sk, skb); 1890 1891 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { 1892 rsk = sk; 1893 goto reset; 1894 } 1895 return 0; 1896 1897 reset: 1898 tcp_v4_send_reset(rsk, skb); 1899 discard: 1900 kfree_skb(skb); 1901 /* Be careful here. If this function gets more complicated and 1902 * gcc suffers from register pressure on the x86, sk (in %ebx) 1903 * might be destroyed here. This current version compiles correctly, 1904 * but you have been warned. 1905 */ 1906 return 0; 1907 1908 csum_err: 1909 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1910 goto discard; 1911 } 1912 EXPORT_SYMBOL(tcp_v4_do_rcv); 1913 1914 void tcp_v4_early_demux(struct sk_buff *skb) 1915 { 1916 const struct iphdr *iph; 1917 const struct tcphdr *th; 1918 struct sock *sk; 1919 1920 if (skb->pkt_type != PACKET_HOST) 1921 return; 1922 1923 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1924 return; 1925 1926 iph = ip_hdr(skb); 1927 th = tcp_hdr(skb); 1928 1929 if (th->doff < sizeof(struct tcphdr) / 4) 1930 return; 1931 1932 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1933 iph->saddr, th->source, 1934 iph->daddr, ntohs(th->dest), 1935 skb->skb_iif); 1936 if (sk) { 1937 skb->sk = sk; 1938 skb->destructor = sock_edemux; 1939 if (sk->sk_state != TCP_TIME_WAIT) { 1940 struct dst_entry *dst = sk->sk_rx_dst; 1941 1942 if (dst) 1943 dst = dst_check(dst, 0); 1944 if (dst && 1945 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1946 skb_dst_set_noref(skb, dst); 1947 } 1948 } 1949 } 1950 1951 /* 1952 * From tcp_input.c 1953 */ 1954 1955 int tcp_v4_rcv(struct sk_buff *skb) 1956 { 1957 const struct iphdr *iph; 1958 const struct tcphdr *th; 1959 struct sock *sk; 1960 int ret; 1961 struct net *net = dev_net(skb->dev); 1962 1963 if (skb->pkt_type != PACKET_HOST) 1964 goto discard_it; 1965 1966 /* Count it even if it's bad */ 1967 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1968 1969 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1970 goto discard_it; 1971 1972 th = tcp_hdr(skb); 1973 1974 if (th->doff < sizeof(struct tcphdr) / 4) 1975 goto bad_packet; 1976 if (!pskb_may_pull(skb, th->doff * 4)) 1977 goto discard_it; 1978 1979 /* An explanation is required here, I think. 1980 * Packet length and doff are validated by header prediction, 1981 * provided case of th->doff==0 is eliminated. 1982 * So, we defer the checks. */ 1983 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb)) 1984 goto bad_packet; 1985 1986 th = tcp_hdr(skb); 1987 iph = ip_hdr(skb); 1988 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1989 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1990 skb->len - th->doff * 4); 1991 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1992 TCP_SKB_CB(skb)->when = 0; 1993 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1994 TCP_SKB_CB(skb)->sacked = 0; 1995 1996 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 1997 if (!sk) 1998 goto no_tcp_socket; 1999 2000 process: 2001 if (sk->sk_state == TCP_TIME_WAIT) 2002 goto do_time_wait; 2003 2004 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 2005 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 2006 goto discard_and_relse; 2007 } 2008 2009 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2010 goto discard_and_relse; 2011 nf_reset(skb); 2012 2013 if (sk_filter(sk, skb)) 2014 goto discard_and_relse; 2015 2016 skb->dev = NULL; 2017 2018 bh_lock_sock_nested(sk); 2019 ret = 0; 2020 if (!sock_owned_by_user(sk)) { 2021 #ifdef CONFIG_NET_DMA 2022 struct tcp_sock *tp = tcp_sk(sk); 2023 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 2024 tp->ucopy.dma_chan = net_dma_find_channel(); 2025 if (tp->ucopy.dma_chan) 2026 ret = tcp_v4_do_rcv(sk, skb); 2027 else 2028 #endif 2029 { 2030 if (!tcp_prequeue(sk, skb)) 2031 ret = tcp_v4_do_rcv(sk, skb); 2032 } 2033 } else if (unlikely(sk_add_backlog(sk, skb, 2034 sk->sk_rcvbuf + sk->sk_sndbuf))) { 2035 bh_unlock_sock(sk); 2036 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP); 2037 goto discard_and_relse; 2038 } 2039 bh_unlock_sock(sk); 2040 2041 sock_put(sk); 2042 2043 return ret; 2044 2045 no_tcp_socket: 2046 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2047 goto discard_it; 2048 2049 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 2050 bad_packet: 2051 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 2052 } else { 2053 tcp_v4_send_reset(NULL, skb); 2054 } 2055 2056 discard_it: 2057 /* Discard frame. */ 2058 kfree_skb(skb); 2059 return 0; 2060 2061 discard_and_relse: 2062 sock_put(sk); 2063 goto discard_it; 2064 2065 do_time_wait: 2066 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2067 inet_twsk_put(inet_twsk(sk)); 2068 goto discard_it; 2069 } 2070 2071 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 2072 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 2073 inet_twsk_put(inet_twsk(sk)); 2074 goto discard_it; 2075 } 2076 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2077 case TCP_TW_SYN: { 2078 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 2079 &tcp_hashinfo, 2080 iph->daddr, th->dest, 2081 inet_iif(skb)); 2082 if (sk2) { 2083 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); 2084 inet_twsk_put(inet_twsk(sk)); 2085 sk = sk2; 2086 goto process; 2087 } 2088 /* Fall through to ACK */ 2089 } 2090 case TCP_TW_ACK: 2091 tcp_v4_timewait_ack(sk, skb); 2092 break; 2093 case TCP_TW_RST: 2094 goto no_tcp_socket; 2095 case TCP_TW_SUCCESS:; 2096 } 2097 goto discard_it; 2098 } 2099 2100 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2101 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2102 .twsk_unique = tcp_twsk_unique, 2103 .twsk_destructor= tcp_twsk_destructor, 2104 }; 2105 2106 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2107 { 2108 struct dst_entry *dst = skb_dst(skb); 2109 2110 dst_hold(dst); 2111 sk->sk_rx_dst = dst; 2112 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 2113 } 2114 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2115 2116 const struct inet_connection_sock_af_ops ipv4_specific = { 2117 .queue_xmit = ip_queue_xmit, 2118 .send_check = tcp_v4_send_check, 2119 .rebuild_header = inet_sk_rebuild_header, 2120 .sk_rx_dst_set = inet_sk_rx_dst_set, 2121 .conn_request = tcp_v4_conn_request, 2122 .syn_recv_sock = tcp_v4_syn_recv_sock, 2123 .net_header_len = sizeof(struct iphdr), 2124 .setsockopt = ip_setsockopt, 2125 .getsockopt = ip_getsockopt, 2126 .addr2sockaddr = inet_csk_addr2sockaddr, 2127 .sockaddr_len = sizeof(struct sockaddr_in), 2128 .bind_conflict = inet_csk_bind_conflict, 2129 #ifdef CONFIG_COMPAT 2130 .compat_setsockopt = compat_ip_setsockopt, 2131 .compat_getsockopt = compat_ip_getsockopt, 2132 #endif 2133 }; 2134 EXPORT_SYMBOL(ipv4_specific); 2135 2136 #ifdef CONFIG_TCP_MD5SIG 2137 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2138 .md5_lookup = tcp_v4_md5_lookup, 2139 .calc_md5_hash = tcp_v4_md5_hash_skb, 2140 .md5_parse = tcp_v4_parse_md5_keys, 2141 }; 2142 #endif 2143 2144 /* NOTE: A lot of things set to zero explicitly by call to 2145 * sk_alloc() so need not be done here. 2146 */ 2147 static int tcp_v4_init_sock(struct sock *sk) 2148 { 2149 struct inet_connection_sock *icsk = inet_csk(sk); 2150 2151 tcp_init_sock(sk); 2152 2153 icsk->icsk_af_ops = &ipv4_specific; 2154 2155 #ifdef CONFIG_TCP_MD5SIG 2156 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2157 #endif 2158 2159 return 0; 2160 } 2161 2162 void tcp_v4_destroy_sock(struct sock *sk) 2163 { 2164 struct tcp_sock *tp = tcp_sk(sk); 2165 2166 tcp_clear_xmit_timers(sk); 2167 2168 tcp_cleanup_congestion_control(sk); 2169 2170 /* Cleanup up the write buffer. */ 2171 tcp_write_queue_purge(sk); 2172 2173 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2174 __skb_queue_purge(&tp->out_of_order_queue); 2175 2176 #ifdef CONFIG_TCP_MD5SIG 2177 /* Clean up the MD5 key list, if any */ 2178 if (tp->md5sig_info) { 2179 tcp_clear_md5_list(sk); 2180 kfree_rcu(tp->md5sig_info, rcu); 2181 tp->md5sig_info = NULL; 2182 } 2183 #endif 2184 2185 #ifdef CONFIG_NET_DMA 2186 /* Cleans up our sk_async_wait_queue */ 2187 __skb_queue_purge(&sk->sk_async_wait_queue); 2188 #endif 2189 2190 /* Clean prequeue, it must be empty really */ 2191 __skb_queue_purge(&tp->ucopy.prequeue); 2192 2193 /* Clean up a referenced TCP bind bucket. */ 2194 if (inet_csk(sk)->icsk_bind_hash) 2195 inet_put_port(sk); 2196 2197 /* TCP Cookie Transactions */ 2198 if (tp->cookie_values != NULL) { 2199 kref_put(&tp->cookie_values->kref, 2200 tcp_cookie_values_release); 2201 tp->cookie_values = NULL; 2202 } 2203 BUG_ON(tp->fastopen_rsk != NULL); 2204 2205 /* If socket is aborted during connect operation */ 2206 tcp_free_fastopen_req(tp); 2207 2208 sk_sockets_allocated_dec(sk); 2209 sock_release_memcg(sk); 2210 } 2211 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2212 2213 #ifdef CONFIG_PROC_FS 2214 /* Proc filesystem TCP sock list dumping. */ 2215 2216 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head) 2217 { 2218 return hlist_nulls_empty(head) ? NULL : 2219 list_entry(head->first, struct inet_timewait_sock, tw_node); 2220 } 2221 2222 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw) 2223 { 2224 return !is_a_nulls(tw->tw_node.next) ? 2225 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL; 2226 } 2227 2228 /* 2229 * Get next listener socket follow cur. If cur is NULL, get first socket 2230 * starting from bucket given in st->bucket; when st->bucket is zero the 2231 * very first socket in the hash table is returned. 2232 */ 2233 static void *listening_get_next(struct seq_file *seq, void *cur) 2234 { 2235 struct inet_connection_sock *icsk; 2236 struct hlist_nulls_node *node; 2237 struct sock *sk = cur; 2238 struct inet_listen_hashbucket *ilb; 2239 struct tcp_iter_state *st = seq->private; 2240 struct net *net = seq_file_net(seq); 2241 2242 if (!sk) { 2243 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2244 spin_lock_bh(&ilb->lock); 2245 sk = sk_nulls_head(&ilb->head); 2246 st->offset = 0; 2247 goto get_sk; 2248 } 2249 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2250 ++st->num; 2251 ++st->offset; 2252 2253 if (st->state == TCP_SEQ_STATE_OPENREQ) { 2254 struct request_sock *req = cur; 2255 2256 icsk = inet_csk(st->syn_wait_sk); 2257 req = req->dl_next; 2258 while (1) { 2259 while (req) { 2260 if (req->rsk_ops->family == st->family) { 2261 cur = req; 2262 goto out; 2263 } 2264 req = req->dl_next; 2265 } 2266 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) 2267 break; 2268 get_req: 2269 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; 2270 } 2271 sk = sk_nulls_next(st->syn_wait_sk); 2272 st->state = TCP_SEQ_STATE_LISTENING; 2273 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2274 } else { 2275 icsk = inet_csk(sk); 2276 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2277 if (reqsk_queue_len(&icsk->icsk_accept_queue)) 2278 goto start_req; 2279 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2280 sk = sk_nulls_next(sk); 2281 } 2282 get_sk: 2283 sk_nulls_for_each_from(sk, node) { 2284 if (!net_eq(sock_net(sk), net)) 2285 continue; 2286 if (sk->sk_family == st->family) { 2287 cur = sk; 2288 goto out; 2289 } 2290 icsk = inet_csk(sk); 2291 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2292 if (reqsk_queue_len(&icsk->icsk_accept_queue)) { 2293 start_req: 2294 st->uid = sock_i_uid(sk); 2295 st->syn_wait_sk = sk; 2296 st->state = TCP_SEQ_STATE_OPENREQ; 2297 st->sbucket = 0; 2298 goto get_req; 2299 } 2300 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2301 } 2302 spin_unlock_bh(&ilb->lock); 2303 st->offset = 0; 2304 if (++st->bucket < INET_LHTABLE_SIZE) { 2305 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2306 spin_lock_bh(&ilb->lock); 2307 sk = sk_nulls_head(&ilb->head); 2308 goto get_sk; 2309 } 2310 cur = NULL; 2311 out: 2312 return cur; 2313 } 2314 2315 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2316 { 2317 struct tcp_iter_state *st = seq->private; 2318 void *rc; 2319 2320 st->bucket = 0; 2321 st->offset = 0; 2322 rc = listening_get_next(seq, NULL); 2323 2324 while (rc && *pos) { 2325 rc = listening_get_next(seq, rc); 2326 --*pos; 2327 } 2328 return rc; 2329 } 2330 2331 static inline bool empty_bucket(struct tcp_iter_state *st) 2332 { 2333 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) && 2334 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain); 2335 } 2336 2337 /* 2338 * Get first established socket starting from bucket given in st->bucket. 2339 * If st->bucket is zero, the very first socket in the hash is returned. 2340 */ 2341 static void *established_get_first(struct seq_file *seq) 2342 { 2343 struct tcp_iter_state *st = seq->private; 2344 struct net *net = seq_file_net(seq); 2345 void *rc = NULL; 2346 2347 st->offset = 0; 2348 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2349 struct sock *sk; 2350 struct hlist_nulls_node *node; 2351 struct inet_timewait_sock *tw; 2352 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2353 2354 /* Lockless fast path for the common case of empty buckets */ 2355 if (empty_bucket(st)) 2356 continue; 2357 2358 spin_lock_bh(lock); 2359 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2360 if (sk->sk_family != st->family || 2361 !net_eq(sock_net(sk), net)) { 2362 continue; 2363 } 2364 rc = sk; 2365 goto out; 2366 } 2367 st->state = TCP_SEQ_STATE_TIME_WAIT; 2368 inet_twsk_for_each(tw, node, 2369 &tcp_hashinfo.ehash[st->bucket].twchain) { 2370 if (tw->tw_family != st->family || 2371 !net_eq(twsk_net(tw), net)) { 2372 continue; 2373 } 2374 rc = tw; 2375 goto out; 2376 } 2377 spin_unlock_bh(lock); 2378 st->state = TCP_SEQ_STATE_ESTABLISHED; 2379 } 2380 out: 2381 return rc; 2382 } 2383 2384 static void *established_get_next(struct seq_file *seq, void *cur) 2385 { 2386 struct sock *sk = cur; 2387 struct inet_timewait_sock *tw; 2388 struct hlist_nulls_node *node; 2389 struct tcp_iter_state *st = seq->private; 2390 struct net *net = seq_file_net(seq); 2391 2392 ++st->num; 2393 ++st->offset; 2394 2395 if (st->state == TCP_SEQ_STATE_TIME_WAIT) { 2396 tw = cur; 2397 tw = tw_next(tw); 2398 get_tw: 2399 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) { 2400 tw = tw_next(tw); 2401 } 2402 if (tw) { 2403 cur = tw; 2404 goto out; 2405 } 2406 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2407 st->state = TCP_SEQ_STATE_ESTABLISHED; 2408 2409 /* Look for next non empty bucket */ 2410 st->offset = 0; 2411 while (++st->bucket <= tcp_hashinfo.ehash_mask && 2412 empty_bucket(st)) 2413 ; 2414 if (st->bucket > tcp_hashinfo.ehash_mask) 2415 return NULL; 2416 2417 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2418 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain); 2419 } else 2420 sk = sk_nulls_next(sk); 2421 2422 sk_nulls_for_each_from(sk, node) { 2423 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2424 goto found; 2425 } 2426 2427 st->state = TCP_SEQ_STATE_TIME_WAIT; 2428 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain); 2429 goto get_tw; 2430 found: 2431 cur = sk; 2432 out: 2433 return cur; 2434 } 2435 2436 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2437 { 2438 struct tcp_iter_state *st = seq->private; 2439 void *rc; 2440 2441 st->bucket = 0; 2442 rc = established_get_first(seq); 2443 2444 while (rc && pos) { 2445 rc = established_get_next(seq, rc); 2446 --pos; 2447 } 2448 return rc; 2449 } 2450 2451 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2452 { 2453 void *rc; 2454 struct tcp_iter_state *st = seq->private; 2455 2456 st->state = TCP_SEQ_STATE_LISTENING; 2457 rc = listening_get_idx(seq, &pos); 2458 2459 if (!rc) { 2460 st->state = TCP_SEQ_STATE_ESTABLISHED; 2461 rc = established_get_idx(seq, pos); 2462 } 2463 2464 return rc; 2465 } 2466 2467 static void *tcp_seek_last_pos(struct seq_file *seq) 2468 { 2469 struct tcp_iter_state *st = seq->private; 2470 int offset = st->offset; 2471 int orig_num = st->num; 2472 void *rc = NULL; 2473 2474 switch (st->state) { 2475 case TCP_SEQ_STATE_OPENREQ: 2476 case TCP_SEQ_STATE_LISTENING: 2477 if (st->bucket >= INET_LHTABLE_SIZE) 2478 break; 2479 st->state = TCP_SEQ_STATE_LISTENING; 2480 rc = listening_get_next(seq, NULL); 2481 while (offset-- && rc) 2482 rc = listening_get_next(seq, rc); 2483 if (rc) 2484 break; 2485 st->bucket = 0; 2486 /* Fallthrough */ 2487 case TCP_SEQ_STATE_ESTABLISHED: 2488 case TCP_SEQ_STATE_TIME_WAIT: 2489 st->state = TCP_SEQ_STATE_ESTABLISHED; 2490 if (st->bucket > tcp_hashinfo.ehash_mask) 2491 break; 2492 rc = established_get_first(seq); 2493 while (offset-- && rc) 2494 rc = established_get_next(seq, rc); 2495 } 2496 2497 st->num = orig_num; 2498 2499 return rc; 2500 } 2501 2502 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2503 { 2504 struct tcp_iter_state *st = seq->private; 2505 void *rc; 2506 2507 if (*pos && *pos == st->last_pos) { 2508 rc = tcp_seek_last_pos(seq); 2509 if (rc) 2510 goto out; 2511 } 2512 2513 st->state = TCP_SEQ_STATE_LISTENING; 2514 st->num = 0; 2515 st->bucket = 0; 2516 st->offset = 0; 2517 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2518 2519 out: 2520 st->last_pos = *pos; 2521 return rc; 2522 } 2523 2524 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2525 { 2526 struct tcp_iter_state *st = seq->private; 2527 void *rc = NULL; 2528 2529 if (v == SEQ_START_TOKEN) { 2530 rc = tcp_get_idx(seq, 0); 2531 goto out; 2532 } 2533 2534 switch (st->state) { 2535 case TCP_SEQ_STATE_OPENREQ: 2536 case TCP_SEQ_STATE_LISTENING: 2537 rc = listening_get_next(seq, v); 2538 if (!rc) { 2539 st->state = TCP_SEQ_STATE_ESTABLISHED; 2540 st->bucket = 0; 2541 st->offset = 0; 2542 rc = established_get_first(seq); 2543 } 2544 break; 2545 case TCP_SEQ_STATE_ESTABLISHED: 2546 case TCP_SEQ_STATE_TIME_WAIT: 2547 rc = established_get_next(seq, v); 2548 break; 2549 } 2550 out: 2551 ++*pos; 2552 st->last_pos = *pos; 2553 return rc; 2554 } 2555 2556 static void tcp_seq_stop(struct seq_file *seq, void *v) 2557 { 2558 struct tcp_iter_state *st = seq->private; 2559 2560 switch (st->state) { 2561 case TCP_SEQ_STATE_OPENREQ: 2562 if (v) { 2563 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); 2564 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2565 } 2566 case TCP_SEQ_STATE_LISTENING: 2567 if (v != SEQ_START_TOKEN) 2568 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2569 break; 2570 case TCP_SEQ_STATE_TIME_WAIT: 2571 case TCP_SEQ_STATE_ESTABLISHED: 2572 if (v) 2573 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2574 break; 2575 } 2576 } 2577 2578 int tcp_seq_open(struct inode *inode, struct file *file) 2579 { 2580 struct tcp_seq_afinfo *afinfo = PDE(inode)->data; 2581 struct tcp_iter_state *s; 2582 int err; 2583 2584 err = seq_open_net(inode, file, &afinfo->seq_ops, 2585 sizeof(struct tcp_iter_state)); 2586 if (err < 0) 2587 return err; 2588 2589 s = ((struct seq_file *)file->private_data)->private; 2590 s->family = afinfo->family; 2591 s->last_pos = 0; 2592 return 0; 2593 } 2594 EXPORT_SYMBOL(tcp_seq_open); 2595 2596 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2597 { 2598 int rc = 0; 2599 struct proc_dir_entry *p; 2600 2601 afinfo->seq_ops.start = tcp_seq_start; 2602 afinfo->seq_ops.next = tcp_seq_next; 2603 afinfo->seq_ops.stop = tcp_seq_stop; 2604 2605 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2606 afinfo->seq_fops, afinfo); 2607 if (!p) 2608 rc = -ENOMEM; 2609 return rc; 2610 } 2611 EXPORT_SYMBOL(tcp_proc_register); 2612 2613 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2614 { 2615 proc_net_remove(net, afinfo->name); 2616 } 2617 EXPORT_SYMBOL(tcp_proc_unregister); 2618 2619 static void get_openreq4(const struct sock *sk, const struct request_sock *req, 2620 struct seq_file *f, int i, kuid_t uid, int *len) 2621 { 2622 const struct inet_request_sock *ireq = inet_rsk(req); 2623 long delta = req->expires - jiffies; 2624 2625 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2626 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n", 2627 i, 2628 ireq->loc_addr, 2629 ntohs(inet_sk(sk)->inet_sport), 2630 ireq->rmt_addr, 2631 ntohs(ireq->rmt_port), 2632 TCP_SYN_RECV, 2633 0, 0, /* could print option size, but that is af dependent. */ 2634 1, /* timers active (only the expire timer) */ 2635 jiffies_delta_to_clock_t(delta), 2636 req->num_timeout, 2637 from_kuid_munged(seq_user_ns(f), uid), 2638 0, /* non standard timer */ 2639 0, /* open_requests have no inode */ 2640 atomic_read(&sk->sk_refcnt), 2641 req, 2642 len); 2643 } 2644 2645 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len) 2646 { 2647 int timer_active; 2648 unsigned long timer_expires; 2649 const struct tcp_sock *tp = tcp_sk(sk); 2650 const struct inet_connection_sock *icsk = inet_csk(sk); 2651 const struct inet_sock *inet = inet_sk(sk); 2652 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq; 2653 __be32 dest = inet->inet_daddr; 2654 __be32 src = inet->inet_rcv_saddr; 2655 __u16 destp = ntohs(inet->inet_dport); 2656 __u16 srcp = ntohs(inet->inet_sport); 2657 int rx_queue; 2658 2659 if (icsk->icsk_pending == ICSK_TIME_RETRANS) { 2660 timer_active = 1; 2661 timer_expires = icsk->icsk_timeout; 2662 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2663 timer_active = 4; 2664 timer_expires = icsk->icsk_timeout; 2665 } else if (timer_pending(&sk->sk_timer)) { 2666 timer_active = 2; 2667 timer_expires = sk->sk_timer.expires; 2668 } else { 2669 timer_active = 0; 2670 timer_expires = jiffies; 2671 } 2672 2673 if (sk->sk_state == TCP_LISTEN) 2674 rx_queue = sk->sk_ack_backlog; 2675 else 2676 /* 2677 * because we dont lock socket, we might find a transient negative value 2678 */ 2679 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2680 2681 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2682 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n", 2683 i, src, srcp, dest, destp, sk->sk_state, 2684 tp->write_seq - tp->snd_una, 2685 rx_queue, 2686 timer_active, 2687 jiffies_delta_to_clock_t(timer_expires - jiffies), 2688 icsk->icsk_retransmits, 2689 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2690 icsk->icsk_probes_out, 2691 sock_i_ino(sk), 2692 atomic_read(&sk->sk_refcnt), sk, 2693 jiffies_to_clock_t(icsk->icsk_rto), 2694 jiffies_to_clock_t(icsk->icsk_ack.ato), 2695 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2696 tp->snd_cwnd, 2697 sk->sk_state == TCP_LISTEN ? 2698 (fastopenq ? fastopenq->max_qlen : 0) : 2699 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh), 2700 len); 2701 } 2702 2703 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2704 struct seq_file *f, int i, int *len) 2705 { 2706 __be32 dest, src; 2707 __u16 destp, srcp; 2708 long delta = tw->tw_ttd - jiffies; 2709 2710 dest = tw->tw_daddr; 2711 src = tw->tw_rcv_saddr; 2712 destp = ntohs(tw->tw_dport); 2713 srcp = ntohs(tw->tw_sport); 2714 2715 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2716 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n", 2717 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2718 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2719 atomic_read(&tw->tw_refcnt), tw, len); 2720 } 2721 2722 #define TMPSZ 150 2723 2724 static int tcp4_seq_show(struct seq_file *seq, void *v) 2725 { 2726 struct tcp_iter_state *st; 2727 int len; 2728 2729 if (v == SEQ_START_TOKEN) { 2730 seq_printf(seq, "%-*s\n", TMPSZ - 1, 2731 " sl local_address rem_address st tx_queue " 2732 "rx_queue tr tm->when retrnsmt uid timeout " 2733 "inode"); 2734 goto out; 2735 } 2736 st = seq->private; 2737 2738 switch (st->state) { 2739 case TCP_SEQ_STATE_LISTENING: 2740 case TCP_SEQ_STATE_ESTABLISHED: 2741 get_tcp4_sock(v, seq, st->num, &len); 2742 break; 2743 case TCP_SEQ_STATE_OPENREQ: 2744 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len); 2745 break; 2746 case TCP_SEQ_STATE_TIME_WAIT: 2747 get_timewait4_sock(v, seq, st->num, &len); 2748 break; 2749 } 2750 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, ""); 2751 out: 2752 return 0; 2753 } 2754 2755 static const struct file_operations tcp_afinfo_seq_fops = { 2756 .owner = THIS_MODULE, 2757 .open = tcp_seq_open, 2758 .read = seq_read, 2759 .llseek = seq_lseek, 2760 .release = seq_release_net 2761 }; 2762 2763 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2764 .name = "tcp", 2765 .family = AF_INET, 2766 .seq_fops = &tcp_afinfo_seq_fops, 2767 .seq_ops = { 2768 .show = tcp4_seq_show, 2769 }, 2770 }; 2771 2772 static int __net_init tcp4_proc_init_net(struct net *net) 2773 { 2774 return tcp_proc_register(net, &tcp4_seq_afinfo); 2775 } 2776 2777 static void __net_exit tcp4_proc_exit_net(struct net *net) 2778 { 2779 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2780 } 2781 2782 static struct pernet_operations tcp4_net_ops = { 2783 .init = tcp4_proc_init_net, 2784 .exit = tcp4_proc_exit_net, 2785 }; 2786 2787 int __init tcp4_proc_init(void) 2788 { 2789 return register_pernet_subsys(&tcp4_net_ops); 2790 } 2791 2792 void tcp4_proc_exit(void) 2793 { 2794 unregister_pernet_subsys(&tcp4_net_ops); 2795 } 2796 #endif /* CONFIG_PROC_FS */ 2797 2798 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2799 { 2800 const struct iphdr *iph = skb_gro_network_header(skb); 2801 __wsum wsum; 2802 __sum16 sum; 2803 2804 switch (skb->ip_summed) { 2805 case CHECKSUM_COMPLETE: 2806 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr, 2807 skb->csum)) { 2808 skb->ip_summed = CHECKSUM_UNNECESSARY; 2809 break; 2810 } 2811 flush: 2812 NAPI_GRO_CB(skb)->flush = 1; 2813 return NULL; 2814 2815 case CHECKSUM_NONE: 2816 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 2817 skb_gro_len(skb), IPPROTO_TCP, 0); 2818 sum = csum_fold(skb_checksum(skb, 2819 skb_gro_offset(skb), 2820 skb_gro_len(skb), 2821 wsum)); 2822 if (sum) 2823 goto flush; 2824 2825 skb->ip_summed = CHECKSUM_UNNECESSARY; 2826 break; 2827 } 2828 2829 return tcp_gro_receive(head, skb); 2830 } 2831 2832 int tcp4_gro_complete(struct sk_buff *skb) 2833 { 2834 const struct iphdr *iph = ip_hdr(skb); 2835 struct tcphdr *th = tcp_hdr(skb); 2836 2837 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 2838 iph->saddr, iph->daddr, 0); 2839 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 2840 2841 return tcp_gro_complete(skb); 2842 } 2843 2844 struct proto tcp_prot = { 2845 .name = "TCP", 2846 .owner = THIS_MODULE, 2847 .close = tcp_close, 2848 .connect = tcp_v4_connect, 2849 .disconnect = tcp_disconnect, 2850 .accept = inet_csk_accept, 2851 .ioctl = tcp_ioctl, 2852 .init = tcp_v4_init_sock, 2853 .destroy = tcp_v4_destroy_sock, 2854 .shutdown = tcp_shutdown, 2855 .setsockopt = tcp_setsockopt, 2856 .getsockopt = tcp_getsockopt, 2857 .recvmsg = tcp_recvmsg, 2858 .sendmsg = tcp_sendmsg, 2859 .sendpage = tcp_sendpage, 2860 .backlog_rcv = tcp_v4_do_rcv, 2861 .release_cb = tcp_release_cb, 2862 .mtu_reduced = tcp_v4_mtu_reduced, 2863 .hash = inet_hash, 2864 .unhash = inet_unhash, 2865 .get_port = inet_csk_get_port, 2866 .enter_memory_pressure = tcp_enter_memory_pressure, 2867 .sockets_allocated = &tcp_sockets_allocated, 2868 .orphan_count = &tcp_orphan_count, 2869 .memory_allocated = &tcp_memory_allocated, 2870 .memory_pressure = &tcp_memory_pressure, 2871 .sysctl_wmem = sysctl_tcp_wmem, 2872 .sysctl_rmem = sysctl_tcp_rmem, 2873 .max_header = MAX_TCP_HEADER, 2874 .obj_size = sizeof(struct tcp_sock), 2875 .slab_flags = SLAB_DESTROY_BY_RCU, 2876 .twsk_prot = &tcp_timewait_sock_ops, 2877 .rsk_prot = &tcp_request_sock_ops, 2878 .h.hashinfo = &tcp_hashinfo, 2879 .no_autobind = true, 2880 #ifdef CONFIG_COMPAT 2881 .compat_setsockopt = compat_tcp_setsockopt, 2882 .compat_getsockopt = compat_tcp_getsockopt, 2883 #endif 2884 #ifdef CONFIG_MEMCG_KMEM 2885 .init_cgroup = tcp_init_cgroup, 2886 .destroy_cgroup = tcp_destroy_cgroup, 2887 .proto_cgroup = tcp_proto_cgroup, 2888 #endif 2889 }; 2890 EXPORT_SYMBOL(tcp_prot); 2891 2892 static int __net_init tcp_sk_init(struct net *net) 2893 { 2894 return 0; 2895 } 2896 2897 static void __net_exit tcp_sk_exit(struct net *net) 2898 { 2899 } 2900 2901 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2902 { 2903 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2904 } 2905 2906 static struct pernet_operations __net_initdata tcp_sk_ops = { 2907 .init = tcp_sk_init, 2908 .exit = tcp_sk_exit, 2909 .exit_batch = tcp_sk_exit_batch, 2910 }; 2911 2912 void __init tcp_v4_init(void) 2913 { 2914 inet_hashinfo_init(&tcp_hashinfo); 2915 if (register_pernet_subsys(&tcp_sk_ops)) 2916 panic("Failed to create the TCP control socket.\n"); 2917 } 2918