1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/tcp_memcontrol.h> 77 #include <net/busy_poll.h> 78 79 #include <linux/inet.h> 80 #include <linux/ipv6.h> 81 #include <linux/stddef.h> 82 #include <linux/proc_fs.h> 83 #include <linux/seq_file.h> 84 85 #include <linux/crypto.h> 86 #include <linux/scatterlist.h> 87 88 int sysctl_tcp_tw_reuse __read_mostly; 89 int sysctl_tcp_low_latency __read_mostly; 90 EXPORT_SYMBOL(sysctl_tcp_low_latency); 91 92 #ifdef CONFIG_TCP_MD5SIG 93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 94 __be32 daddr, __be32 saddr, const struct tcphdr *th); 95 #endif 96 97 struct inet_hashinfo tcp_hashinfo; 98 EXPORT_SYMBOL(tcp_hashinfo); 99 100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 101 { 102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 103 ip_hdr(skb)->saddr, 104 tcp_hdr(skb)->dest, 105 tcp_hdr(skb)->source); 106 } 107 108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 109 { 110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 111 struct tcp_sock *tp = tcp_sk(sk); 112 113 /* With PAWS, it is safe from the viewpoint 114 of data integrity. Even without PAWS it is safe provided sequence 115 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 116 117 Actually, the idea is close to VJ's one, only timestamp cache is 118 held not per host, but per port pair and TW bucket is used as state 119 holder. 120 121 If TW bucket has been already destroyed we fall back to VJ's scheme 122 and use initial timestamp retrieved from peer table. 123 */ 124 if (tcptw->tw_ts_recent_stamp && 125 (!twp || (sysctl_tcp_tw_reuse && 126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 128 if (tp->write_seq == 0) 129 tp->write_seq = 1; 130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 132 sock_hold(sktw); 133 return 1; 134 } 135 136 return 0; 137 } 138 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 139 140 /* This will initiate an outgoing connection. */ 141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 142 { 143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 144 struct inet_sock *inet = inet_sk(sk); 145 struct tcp_sock *tp = tcp_sk(sk); 146 __be16 orig_sport, orig_dport; 147 __be32 daddr, nexthop; 148 struct flowi4 *fl4; 149 struct rtable *rt; 150 int err; 151 struct ip_options_rcu *inet_opt; 152 153 if (addr_len < sizeof(struct sockaddr_in)) 154 return -EINVAL; 155 156 if (usin->sin_family != AF_INET) 157 return -EAFNOSUPPORT; 158 159 nexthop = daddr = usin->sin_addr.s_addr; 160 inet_opt = rcu_dereference_protected(inet->inet_opt, 161 sock_owned_by_user(sk)); 162 if (inet_opt && inet_opt->opt.srr) { 163 if (!daddr) 164 return -EINVAL; 165 nexthop = inet_opt->opt.faddr; 166 } 167 168 orig_sport = inet->inet_sport; 169 orig_dport = usin->sin_port; 170 fl4 = &inet->cork.fl.u.ip4; 171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 173 IPPROTO_TCP, 174 orig_sport, orig_dport, sk); 175 if (IS_ERR(rt)) { 176 err = PTR_ERR(rt); 177 if (err == -ENETUNREACH) 178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 179 return err; 180 } 181 182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 183 ip_rt_put(rt); 184 return -ENETUNREACH; 185 } 186 187 if (!inet_opt || !inet_opt->opt.srr) 188 daddr = fl4->daddr; 189 190 if (!inet->inet_saddr) 191 inet->inet_saddr = fl4->saddr; 192 sk_rcv_saddr_set(sk, inet->inet_saddr); 193 194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 195 /* Reset inherited state */ 196 tp->rx_opt.ts_recent = 0; 197 tp->rx_opt.ts_recent_stamp = 0; 198 if (likely(!tp->repair)) 199 tp->write_seq = 0; 200 } 201 202 if (tcp_death_row.sysctl_tw_recycle && 203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 204 tcp_fetch_timewait_stamp(sk, &rt->dst); 205 206 inet->inet_dport = usin->sin_port; 207 sk_daddr_set(sk, daddr); 208 209 inet_csk(sk)->icsk_ext_hdr_len = 0; 210 if (inet_opt) 211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 212 213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 214 215 /* Socket identity is still unknown (sport may be zero). 216 * However we set state to SYN-SENT and not releasing socket 217 * lock select source port, enter ourselves into the hash tables and 218 * complete initialization after this. 219 */ 220 tcp_set_state(sk, TCP_SYN_SENT); 221 err = inet_hash_connect(&tcp_death_row, sk); 222 if (err) 223 goto failure; 224 225 sk_set_txhash(sk); 226 227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 228 inet->inet_sport, inet->inet_dport, sk); 229 if (IS_ERR(rt)) { 230 err = PTR_ERR(rt); 231 rt = NULL; 232 goto failure; 233 } 234 /* OK, now commit destination to socket. */ 235 sk->sk_gso_type = SKB_GSO_TCPV4; 236 sk_setup_caps(sk, &rt->dst); 237 238 if (!tp->write_seq && likely(!tp->repair)) 239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 240 inet->inet_daddr, 241 inet->inet_sport, 242 usin->sin_port); 243 244 inet->inet_id = tp->write_seq ^ jiffies; 245 246 err = tcp_connect(sk); 247 248 rt = NULL; 249 if (err) 250 goto failure; 251 252 return 0; 253 254 failure: 255 /* 256 * This unhashes the socket and releases the local port, 257 * if necessary. 258 */ 259 tcp_set_state(sk, TCP_CLOSE); 260 ip_rt_put(rt); 261 sk->sk_route_caps = 0; 262 inet->inet_dport = 0; 263 return err; 264 } 265 EXPORT_SYMBOL(tcp_v4_connect); 266 267 /* 268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 269 * It can be called through tcp_release_cb() if socket was owned by user 270 * at the time tcp_v4_err() was called to handle ICMP message. 271 */ 272 void tcp_v4_mtu_reduced(struct sock *sk) 273 { 274 struct dst_entry *dst; 275 struct inet_sock *inet = inet_sk(sk); 276 u32 mtu = tcp_sk(sk)->mtu_info; 277 278 dst = inet_csk_update_pmtu(sk, mtu); 279 if (!dst) 280 return; 281 282 /* Something is about to be wrong... Remember soft error 283 * for the case, if this connection will not able to recover. 284 */ 285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 286 sk->sk_err_soft = EMSGSIZE; 287 288 mtu = dst_mtu(dst); 289 290 if (inet->pmtudisc != IP_PMTUDISC_DONT && 291 ip_sk_accept_pmtu(sk) && 292 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 293 tcp_sync_mss(sk, mtu); 294 295 /* Resend the TCP packet because it's 296 * clear that the old packet has been 297 * dropped. This is the new "fast" path mtu 298 * discovery. 299 */ 300 tcp_simple_retransmit(sk); 301 } /* else let the usual retransmit timer handle it */ 302 } 303 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 304 305 static void do_redirect(struct sk_buff *skb, struct sock *sk) 306 { 307 struct dst_entry *dst = __sk_dst_check(sk, 0); 308 309 if (dst) 310 dst->ops->redirect(dst, sk, skb); 311 } 312 313 314 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 315 void tcp_req_err(struct sock *sk, u32 seq) 316 { 317 struct request_sock *req = inet_reqsk(sk); 318 struct net *net = sock_net(sk); 319 320 /* ICMPs are not backlogged, hence we cannot get 321 * an established socket here. 322 */ 323 WARN_ON(req->sk); 324 325 if (seq != tcp_rsk(req)->snt_isn) { 326 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 327 } else { 328 /* 329 * Still in SYN_RECV, just remove it silently. 330 * There is no good way to pass the error to the newly 331 * created socket, and POSIX does not want network 332 * errors returned from accept(). 333 */ 334 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 335 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS); 336 } 337 reqsk_put(req); 338 } 339 EXPORT_SYMBOL(tcp_req_err); 340 341 /* 342 * This routine is called by the ICMP module when it gets some 343 * sort of error condition. If err < 0 then the socket should 344 * be closed and the error returned to the user. If err > 0 345 * it's just the icmp type << 8 | icmp code. After adjustment 346 * header points to the first 8 bytes of the tcp header. We need 347 * to find the appropriate port. 348 * 349 * The locking strategy used here is very "optimistic". When 350 * someone else accesses the socket the ICMP is just dropped 351 * and for some paths there is no check at all. 352 * A more general error queue to queue errors for later handling 353 * is probably better. 354 * 355 */ 356 357 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 358 { 359 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 360 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 361 struct inet_connection_sock *icsk; 362 struct tcp_sock *tp; 363 struct inet_sock *inet; 364 const int type = icmp_hdr(icmp_skb)->type; 365 const int code = icmp_hdr(icmp_skb)->code; 366 struct sock *sk; 367 struct sk_buff *skb; 368 struct request_sock *fastopen; 369 __u32 seq, snd_una; 370 __u32 remaining; 371 int err; 372 struct net *net = dev_net(icmp_skb->dev); 373 374 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 375 th->dest, iph->saddr, ntohs(th->source), 376 inet_iif(icmp_skb)); 377 if (!sk) { 378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 379 return; 380 } 381 if (sk->sk_state == TCP_TIME_WAIT) { 382 inet_twsk_put(inet_twsk(sk)); 383 return; 384 } 385 seq = ntohl(th->seq); 386 if (sk->sk_state == TCP_NEW_SYN_RECV) 387 return tcp_req_err(sk, seq); 388 389 bh_lock_sock(sk); 390 /* If too many ICMPs get dropped on busy 391 * servers this needs to be solved differently. 392 * We do take care of PMTU discovery (RFC1191) special case : 393 * we can receive locally generated ICMP messages while socket is held. 394 */ 395 if (sock_owned_by_user(sk)) { 396 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 397 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 398 } 399 if (sk->sk_state == TCP_CLOSE) 400 goto out; 401 402 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 403 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 404 goto out; 405 } 406 407 icsk = inet_csk(sk); 408 tp = tcp_sk(sk); 409 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 410 fastopen = tp->fastopen_rsk; 411 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 412 if (sk->sk_state != TCP_LISTEN && 413 !between(seq, snd_una, tp->snd_nxt)) { 414 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 415 goto out; 416 } 417 418 switch (type) { 419 case ICMP_REDIRECT: 420 do_redirect(icmp_skb, sk); 421 goto out; 422 case ICMP_SOURCE_QUENCH: 423 /* Just silently ignore these. */ 424 goto out; 425 case ICMP_PARAMETERPROB: 426 err = EPROTO; 427 break; 428 case ICMP_DEST_UNREACH: 429 if (code > NR_ICMP_UNREACH) 430 goto out; 431 432 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 433 /* We are not interested in TCP_LISTEN and open_requests 434 * (SYN-ACKs send out by Linux are always <576bytes so 435 * they should go through unfragmented). 436 */ 437 if (sk->sk_state == TCP_LISTEN) 438 goto out; 439 440 tp->mtu_info = info; 441 if (!sock_owned_by_user(sk)) { 442 tcp_v4_mtu_reduced(sk); 443 } else { 444 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 445 sock_hold(sk); 446 } 447 goto out; 448 } 449 450 err = icmp_err_convert[code].errno; 451 /* check if icmp_skb allows revert of backoff 452 * (see draft-zimmermann-tcp-lcd) */ 453 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 454 break; 455 if (seq != tp->snd_una || !icsk->icsk_retransmits || 456 !icsk->icsk_backoff || fastopen) 457 break; 458 459 if (sock_owned_by_user(sk)) 460 break; 461 462 icsk->icsk_backoff--; 463 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 464 TCP_TIMEOUT_INIT; 465 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 466 467 skb = tcp_write_queue_head(sk); 468 BUG_ON(!skb); 469 470 remaining = icsk->icsk_rto - 471 min(icsk->icsk_rto, 472 tcp_time_stamp - tcp_skb_timestamp(skb)); 473 474 if (remaining) { 475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 476 remaining, TCP_RTO_MAX); 477 } else { 478 /* RTO revert clocked out retransmission. 479 * Will retransmit now */ 480 tcp_retransmit_timer(sk); 481 } 482 483 break; 484 case ICMP_TIME_EXCEEDED: 485 err = EHOSTUNREACH; 486 break; 487 default: 488 goto out; 489 } 490 491 switch (sk->sk_state) { 492 case TCP_SYN_SENT: 493 case TCP_SYN_RECV: 494 /* Only in fast or simultaneous open. If a fast open socket is 495 * is already accepted it is treated as a connected one below. 496 */ 497 if (fastopen && !fastopen->sk) 498 break; 499 500 if (!sock_owned_by_user(sk)) { 501 sk->sk_err = err; 502 503 sk->sk_error_report(sk); 504 505 tcp_done(sk); 506 } else { 507 sk->sk_err_soft = err; 508 } 509 goto out; 510 } 511 512 /* If we've already connected we will keep trying 513 * until we time out, or the user gives up. 514 * 515 * rfc1122 4.2.3.9 allows to consider as hard errors 516 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 517 * but it is obsoleted by pmtu discovery). 518 * 519 * Note, that in modern internet, where routing is unreliable 520 * and in each dark corner broken firewalls sit, sending random 521 * errors ordered by their masters even this two messages finally lose 522 * their original sense (even Linux sends invalid PORT_UNREACHs) 523 * 524 * Now we are in compliance with RFCs. 525 * --ANK (980905) 526 */ 527 528 inet = inet_sk(sk); 529 if (!sock_owned_by_user(sk) && inet->recverr) { 530 sk->sk_err = err; 531 sk->sk_error_report(sk); 532 } else { /* Only an error on timeout */ 533 sk->sk_err_soft = err; 534 } 535 536 out: 537 bh_unlock_sock(sk); 538 sock_put(sk); 539 } 540 541 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 542 { 543 struct tcphdr *th = tcp_hdr(skb); 544 545 if (skb->ip_summed == CHECKSUM_PARTIAL) { 546 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 547 skb->csum_start = skb_transport_header(skb) - skb->head; 548 skb->csum_offset = offsetof(struct tcphdr, check); 549 } else { 550 th->check = tcp_v4_check(skb->len, saddr, daddr, 551 csum_partial(th, 552 th->doff << 2, 553 skb->csum)); 554 } 555 } 556 557 /* This routine computes an IPv4 TCP checksum. */ 558 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 559 { 560 const struct inet_sock *inet = inet_sk(sk); 561 562 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 563 } 564 EXPORT_SYMBOL(tcp_v4_send_check); 565 566 /* 567 * This routine will send an RST to the other tcp. 568 * 569 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 570 * for reset. 571 * Answer: if a packet caused RST, it is not for a socket 572 * existing in our system, if it is matched to a socket, 573 * it is just duplicate segment or bug in other side's TCP. 574 * So that we build reply only basing on parameters 575 * arrived with segment. 576 * Exception: precedence violation. We do not implement it in any case. 577 */ 578 579 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 580 { 581 const struct tcphdr *th = tcp_hdr(skb); 582 struct { 583 struct tcphdr th; 584 #ifdef CONFIG_TCP_MD5SIG 585 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 586 #endif 587 } rep; 588 struct ip_reply_arg arg; 589 #ifdef CONFIG_TCP_MD5SIG 590 struct tcp_md5sig_key *key; 591 const __u8 *hash_location = NULL; 592 unsigned char newhash[16]; 593 int genhash; 594 struct sock *sk1 = NULL; 595 #endif 596 struct net *net; 597 598 /* Never send a reset in response to a reset. */ 599 if (th->rst) 600 return; 601 602 /* If sk not NULL, it means we did a successful lookup and incoming 603 * route had to be correct. prequeue might have dropped our dst. 604 */ 605 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 606 return; 607 608 /* Swap the send and the receive. */ 609 memset(&rep, 0, sizeof(rep)); 610 rep.th.dest = th->source; 611 rep.th.source = th->dest; 612 rep.th.doff = sizeof(struct tcphdr) / 4; 613 rep.th.rst = 1; 614 615 if (th->ack) { 616 rep.th.seq = th->ack_seq; 617 } else { 618 rep.th.ack = 1; 619 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 620 skb->len - (th->doff << 2)); 621 } 622 623 memset(&arg, 0, sizeof(arg)); 624 arg.iov[0].iov_base = (unsigned char *)&rep; 625 arg.iov[0].iov_len = sizeof(rep.th); 626 627 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 628 #ifdef CONFIG_TCP_MD5SIG 629 hash_location = tcp_parse_md5sig_option(th); 630 if (!sk && hash_location) { 631 /* 632 * active side is lost. Try to find listening socket through 633 * source port, and then find md5 key through listening socket. 634 * we are not loose security here: 635 * Incoming packet is checked with md5 hash with finding key, 636 * no RST generated if md5 hash doesn't match. 637 */ 638 sk1 = __inet_lookup_listener(net, 639 &tcp_hashinfo, ip_hdr(skb)->saddr, 640 th->source, ip_hdr(skb)->daddr, 641 ntohs(th->source), inet_iif(skb)); 642 /* don't send rst if it can't find key */ 643 if (!sk1) 644 return; 645 rcu_read_lock(); 646 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 647 &ip_hdr(skb)->saddr, AF_INET); 648 if (!key) 649 goto release_sk1; 650 651 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 652 if (genhash || memcmp(hash_location, newhash, 16) != 0) 653 goto release_sk1; 654 } else { 655 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 656 &ip_hdr(skb)->saddr, 657 AF_INET) : NULL; 658 } 659 660 if (key) { 661 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 662 (TCPOPT_NOP << 16) | 663 (TCPOPT_MD5SIG << 8) | 664 TCPOLEN_MD5SIG); 665 /* Update length and the length the header thinks exists */ 666 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 667 rep.th.doff = arg.iov[0].iov_len / 4; 668 669 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 670 key, ip_hdr(skb)->saddr, 671 ip_hdr(skb)->daddr, &rep.th); 672 } 673 #endif 674 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 675 ip_hdr(skb)->saddr, /* XXX */ 676 arg.iov[0].iov_len, IPPROTO_TCP, 0); 677 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 678 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 679 /* When socket is gone, all binding information is lost. 680 * routing might fail in this case. No choice here, if we choose to force 681 * input interface, we will misroute in case of asymmetric route. 682 */ 683 if (sk) 684 arg.bound_dev_if = sk->sk_bound_dev_if; 685 686 arg.tos = ip_hdr(skb)->tos; 687 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 688 skb, &TCP_SKB_CB(skb)->header.h4.opt, 689 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 690 &arg, arg.iov[0].iov_len); 691 692 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 693 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 694 695 #ifdef CONFIG_TCP_MD5SIG 696 release_sk1: 697 if (sk1) { 698 rcu_read_unlock(); 699 sock_put(sk1); 700 } 701 #endif 702 } 703 704 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 705 outside socket context is ugly, certainly. What can I do? 706 */ 707 708 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 709 u32 win, u32 tsval, u32 tsecr, int oif, 710 struct tcp_md5sig_key *key, 711 int reply_flags, u8 tos) 712 { 713 const struct tcphdr *th = tcp_hdr(skb); 714 struct { 715 struct tcphdr th; 716 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 717 #ifdef CONFIG_TCP_MD5SIG 718 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 719 #endif 720 ]; 721 } rep; 722 struct ip_reply_arg arg; 723 struct net *net = dev_net(skb_dst(skb)->dev); 724 725 memset(&rep.th, 0, sizeof(struct tcphdr)); 726 memset(&arg, 0, sizeof(arg)); 727 728 arg.iov[0].iov_base = (unsigned char *)&rep; 729 arg.iov[0].iov_len = sizeof(rep.th); 730 if (tsecr) { 731 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 732 (TCPOPT_TIMESTAMP << 8) | 733 TCPOLEN_TIMESTAMP); 734 rep.opt[1] = htonl(tsval); 735 rep.opt[2] = htonl(tsecr); 736 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 737 } 738 739 /* Swap the send and the receive. */ 740 rep.th.dest = th->source; 741 rep.th.source = th->dest; 742 rep.th.doff = arg.iov[0].iov_len / 4; 743 rep.th.seq = htonl(seq); 744 rep.th.ack_seq = htonl(ack); 745 rep.th.ack = 1; 746 rep.th.window = htons(win); 747 748 #ifdef CONFIG_TCP_MD5SIG 749 if (key) { 750 int offset = (tsecr) ? 3 : 0; 751 752 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 753 (TCPOPT_NOP << 16) | 754 (TCPOPT_MD5SIG << 8) | 755 TCPOLEN_MD5SIG); 756 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 757 rep.th.doff = arg.iov[0].iov_len/4; 758 759 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 760 key, ip_hdr(skb)->saddr, 761 ip_hdr(skb)->daddr, &rep.th); 762 } 763 #endif 764 arg.flags = reply_flags; 765 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 766 ip_hdr(skb)->saddr, /* XXX */ 767 arg.iov[0].iov_len, IPPROTO_TCP, 0); 768 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 769 if (oif) 770 arg.bound_dev_if = oif; 771 arg.tos = tos; 772 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 773 skb, &TCP_SKB_CB(skb)->header.h4.opt, 774 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 775 &arg, arg.iov[0].iov_len); 776 777 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 778 } 779 780 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 781 { 782 struct inet_timewait_sock *tw = inet_twsk(sk); 783 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 784 785 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 786 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 787 tcp_time_stamp + tcptw->tw_ts_offset, 788 tcptw->tw_ts_recent, 789 tw->tw_bound_dev_if, 790 tcp_twsk_md5_key(tcptw), 791 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 792 tw->tw_tos 793 ); 794 795 inet_twsk_put(tw); 796 } 797 798 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 799 struct request_sock *req) 800 { 801 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 802 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 803 */ 804 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ? 805 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, 806 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd, 807 tcp_time_stamp, 808 req->ts_recent, 809 0, 810 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 811 AF_INET), 812 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 813 ip_hdr(skb)->tos); 814 } 815 816 /* 817 * Send a SYN-ACK after having received a SYN. 818 * This still operates on a request_sock only, not on a big 819 * socket. 820 */ 821 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 822 struct flowi *fl, 823 struct request_sock *req, 824 struct tcp_fastopen_cookie *foc, 825 bool attach_req) 826 { 827 const struct inet_request_sock *ireq = inet_rsk(req); 828 struct flowi4 fl4; 829 int err = -1; 830 struct sk_buff *skb; 831 832 /* First, grab a route. */ 833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 834 return -1; 835 836 skb = tcp_make_synack(sk, dst, req, foc, attach_req); 837 838 if (skb) { 839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 840 841 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 842 ireq->ir_rmt_addr, 843 ireq->opt); 844 err = net_xmit_eval(err); 845 } 846 847 return err; 848 } 849 850 /* 851 * IPv4 request_sock destructor. 852 */ 853 static void tcp_v4_reqsk_destructor(struct request_sock *req) 854 { 855 kfree(inet_rsk(req)->opt); 856 } 857 858 859 #ifdef CONFIG_TCP_MD5SIG 860 /* 861 * RFC2385 MD5 checksumming requires a mapping of 862 * IP address->MD5 Key. 863 * We need to maintain these in the sk structure. 864 */ 865 866 /* Find the Key structure for an address. */ 867 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 868 const union tcp_md5_addr *addr, 869 int family) 870 { 871 const struct tcp_sock *tp = tcp_sk(sk); 872 struct tcp_md5sig_key *key; 873 unsigned int size = sizeof(struct in_addr); 874 const struct tcp_md5sig_info *md5sig; 875 876 /* caller either holds rcu_read_lock() or socket lock */ 877 md5sig = rcu_dereference_check(tp->md5sig_info, 878 sock_owned_by_user(sk) || 879 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock)); 880 if (!md5sig) 881 return NULL; 882 #if IS_ENABLED(CONFIG_IPV6) 883 if (family == AF_INET6) 884 size = sizeof(struct in6_addr); 885 #endif 886 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 887 if (key->family != family) 888 continue; 889 if (!memcmp(&key->addr, addr, size)) 890 return key; 891 } 892 return NULL; 893 } 894 EXPORT_SYMBOL(tcp_md5_do_lookup); 895 896 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 897 const struct sock *addr_sk) 898 { 899 const union tcp_md5_addr *addr; 900 901 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 902 return tcp_md5_do_lookup(sk, addr, AF_INET); 903 } 904 EXPORT_SYMBOL(tcp_v4_md5_lookup); 905 906 /* This can be called on a newly created socket, from other files */ 907 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 908 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 909 { 910 /* Add Key to the list */ 911 struct tcp_md5sig_key *key; 912 struct tcp_sock *tp = tcp_sk(sk); 913 struct tcp_md5sig_info *md5sig; 914 915 key = tcp_md5_do_lookup(sk, addr, family); 916 if (key) { 917 /* Pre-existing entry - just update that one. */ 918 memcpy(key->key, newkey, newkeylen); 919 key->keylen = newkeylen; 920 return 0; 921 } 922 923 md5sig = rcu_dereference_protected(tp->md5sig_info, 924 sock_owned_by_user(sk)); 925 if (!md5sig) { 926 md5sig = kmalloc(sizeof(*md5sig), gfp); 927 if (!md5sig) 928 return -ENOMEM; 929 930 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 931 INIT_HLIST_HEAD(&md5sig->head); 932 rcu_assign_pointer(tp->md5sig_info, md5sig); 933 } 934 935 key = sock_kmalloc(sk, sizeof(*key), gfp); 936 if (!key) 937 return -ENOMEM; 938 if (!tcp_alloc_md5sig_pool()) { 939 sock_kfree_s(sk, key, sizeof(*key)); 940 return -ENOMEM; 941 } 942 943 memcpy(key->key, newkey, newkeylen); 944 key->keylen = newkeylen; 945 key->family = family; 946 memcpy(&key->addr, addr, 947 (family == AF_INET6) ? sizeof(struct in6_addr) : 948 sizeof(struct in_addr)); 949 hlist_add_head_rcu(&key->node, &md5sig->head); 950 return 0; 951 } 952 EXPORT_SYMBOL(tcp_md5_do_add); 953 954 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 955 { 956 struct tcp_md5sig_key *key; 957 958 key = tcp_md5_do_lookup(sk, addr, family); 959 if (!key) 960 return -ENOENT; 961 hlist_del_rcu(&key->node); 962 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 963 kfree_rcu(key, rcu); 964 return 0; 965 } 966 EXPORT_SYMBOL(tcp_md5_do_del); 967 968 static void tcp_clear_md5_list(struct sock *sk) 969 { 970 struct tcp_sock *tp = tcp_sk(sk); 971 struct tcp_md5sig_key *key; 972 struct hlist_node *n; 973 struct tcp_md5sig_info *md5sig; 974 975 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 976 977 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 978 hlist_del_rcu(&key->node); 979 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 980 kfree_rcu(key, rcu); 981 } 982 } 983 984 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 985 int optlen) 986 { 987 struct tcp_md5sig cmd; 988 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 989 990 if (optlen < sizeof(cmd)) 991 return -EINVAL; 992 993 if (copy_from_user(&cmd, optval, sizeof(cmd))) 994 return -EFAULT; 995 996 if (sin->sin_family != AF_INET) 997 return -EINVAL; 998 999 if (!cmd.tcpm_keylen) 1000 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1001 AF_INET); 1002 1003 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1004 return -EINVAL; 1005 1006 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1007 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1008 GFP_KERNEL); 1009 } 1010 1011 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1012 __be32 daddr, __be32 saddr, int nbytes) 1013 { 1014 struct tcp4_pseudohdr *bp; 1015 struct scatterlist sg; 1016 1017 bp = &hp->md5_blk.ip4; 1018 1019 /* 1020 * 1. the TCP pseudo-header (in the order: source IP address, 1021 * destination IP address, zero-padded protocol number, and 1022 * segment length) 1023 */ 1024 bp->saddr = saddr; 1025 bp->daddr = daddr; 1026 bp->pad = 0; 1027 bp->protocol = IPPROTO_TCP; 1028 bp->len = cpu_to_be16(nbytes); 1029 1030 sg_init_one(&sg, bp, sizeof(*bp)); 1031 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1032 } 1033 1034 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1035 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1036 { 1037 struct tcp_md5sig_pool *hp; 1038 struct hash_desc *desc; 1039 1040 hp = tcp_get_md5sig_pool(); 1041 if (!hp) 1042 goto clear_hash_noput; 1043 desc = &hp->md5_desc; 1044 1045 if (crypto_hash_init(desc)) 1046 goto clear_hash; 1047 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1048 goto clear_hash; 1049 if (tcp_md5_hash_header(hp, th)) 1050 goto clear_hash; 1051 if (tcp_md5_hash_key(hp, key)) 1052 goto clear_hash; 1053 if (crypto_hash_final(desc, md5_hash)) 1054 goto clear_hash; 1055 1056 tcp_put_md5sig_pool(); 1057 return 0; 1058 1059 clear_hash: 1060 tcp_put_md5sig_pool(); 1061 clear_hash_noput: 1062 memset(md5_hash, 0, 16); 1063 return 1; 1064 } 1065 1066 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1067 const struct sock *sk, 1068 const struct sk_buff *skb) 1069 { 1070 struct tcp_md5sig_pool *hp; 1071 struct hash_desc *desc; 1072 const struct tcphdr *th = tcp_hdr(skb); 1073 __be32 saddr, daddr; 1074 1075 if (sk) { /* valid for establish/request sockets */ 1076 saddr = sk->sk_rcv_saddr; 1077 daddr = sk->sk_daddr; 1078 } else { 1079 const struct iphdr *iph = ip_hdr(skb); 1080 saddr = iph->saddr; 1081 daddr = iph->daddr; 1082 } 1083 1084 hp = tcp_get_md5sig_pool(); 1085 if (!hp) 1086 goto clear_hash_noput; 1087 desc = &hp->md5_desc; 1088 1089 if (crypto_hash_init(desc)) 1090 goto clear_hash; 1091 1092 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1093 goto clear_hash; 1094 if (tcp_md5_hash_header(hp, th)) 1095 goto clear_hash; 1096 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1097 goto clear_hash; 1098 if (tcp_md5_hash_key(hp, key)) 1099 goto clear_hash; 1100 if (crypto_hash_final(desc, md5_hash)) 1101 goto clear_hash; 1102 1103 tcp_put_md5sig_pool(); 1104 return 0; 1105 1106 clear_hash: 1107 tcp_put_md5sig_pool(); 1108 clear_hash_noput: 1109 memset(md5_hash, 0, 16); 1110 return 1; 1111 } 1112 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1113 1114 #endif 1115 1116 /* Called with rcu_read_lock() */ 1117 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1118 const struct sk_buff *skb) 1119 { 1120 #ifdef CONFIG_TCP_MD5SIG 1121 /* 1122 * This gets called for each TCP segment that arrives 1123 * so we want to be efficient. 1124 * We have 3 drop cases: 1125 * o No MD5 hash and one expected. 1126 * o MD5 hash and we're not expecting one. 1127 * o MD5 hash and its wrong. 1128 */ 1129 const __u8 *hash_location = NULL; 1130 struct tcp_md5sig_key *hash_expected; 1131 const struct iphdr *iph = ip_hdr(skb); 1132 const struct tcphdr *th = tcp_hdr(skb); 1133 int genhash; 1134 unsigned char newhash[16]; 1135 1136 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1137 AF_INET); 1138 hash_location = tcp_parse_md5sig_option(th); 1139 1140 /* We've parsed the options - do we have a hash? */ 1141 if (!hash_expected && !hash_location) 1142 return false; 1143 1144 if (hash_expected && !hash_location) { 1145 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1146 return true; 1147 } 1148 1149 if (!hash_expected && hash_location) { 1150 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1151 return true; 1152 } 1153 1154 /* Okay, so this is hash_expected and hash_location - 1155 * so we need to calculate the checksum. 1156 */ 1157 genhash = tcp_v4_md5_hash_skb(newhash, 1158 hash_expected, 1159 NULL, skb); 1160 1161 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1162 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1163 &iph->saddr, ntohs(th->source), 1164 &iph->daddr, ntohs(th->dest), 1165 genhash ? " tcp_v4_calc_md5_hash failed" 1166 : ""); 1167 return true; 1168 } 1169 return false; 1170 #endif 1171 return false; 1172 } 1173 1174 static void tcp_v4_init_req(struct request_sock *req, 1175 const struct sock *sk_listener, 1176 struct sk_buff *skb) 1177 { 1178 struct inet_request_sock *ireq = inet_rsk(req); 1179 1180 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1181 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1182 ireq->no_srccheck = inet_sk(sk_listener)->transparent; 1183 ireq->opt = tcp_v4_save_options(skb); 1184 } 1185 1186 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1187 struct flowi *fl, 1188 const struct request_sock *req, 1189 bool *strict) 1190 { 1191 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req); 1192 1193 if (strict) { 1194 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr) 1195 *strict = true; 1196 else 1197 *strict = false; 1198 } 1199 1200 return dst; 1201 } 1202 1203 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1204 .family = PF_INET, 1205 .obj_size = sizeof(struct tcp_request_sock), 1206 .rtx_syn_ack = tcp_rtx_synack, 1207 .send_ack = tcp_v4_reqsk_send_ack, 1208 .destructor = tcp_v4_reqsk_destructor, 1209 .send_reset = tcp_v4_send_reset, 1210 .syn_ack_timeout = tcp_syn_ack_timeout, 1211 }; 1212 1213 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1214 .mss_clamp = TCP_MSS_DEFAULT, 1215 #ifdef CONFIG_TCP_MD5SIG 1216 .req_md5_lookup = tcp_v4_md5_lookup, 1217 .calc_md5_hash = tcp_v4_md5_hash_skb, 1218 #endif 1219 .init_req = tcp_v4_init_req, 1220 #ifdef CONFIG_SYN_COOKIES 1221 .cookie_init_seq = cookie_v4_init_sequence, 1222 #endif 1223 .route_req = tcp_v4_route_req, 1224 .init_seq = tcp_v4_init_sequence, 1225 .send_synack = tcp_v4_send_synack, 1226 }; 1227 1228 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1229 { 1230 /* Never answer to SYNs send to broadcast or multicast */ 1231 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1232 goto drop; 1233 1234 return tcp_conn_request(&tcp_request_sock_ops, 1235 &tcp_request_sock_ipv4_ops, sk, skb); 1236 1237 drop: 1238 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1239 return 0; 1240 } 1241 EXPORT_SYMBOL(tcp_v4_conn_request); 1242 1243 1244 /* 1245 * The three way handshake has completed - we got a valid synack - 1246 * now create the new socket. 1247 */ 1248 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1249 struct request_sock *req, 1250 struct dst_entry *dst, 1251 struct request_sock *req_unhash, 1252 bool *own_req) 1253 { 1254 struct inet_request_sock *ireq; 1255 struct inet_sock *newinet; 1256 struct tcp_sock *newtp; 1257 struct sock *newsk; 1258 #ifdef CONFIG_TCP_MD5SIG 1259 struct tcp_md5sig_key *key; 1260 #endif 1261 struct ip_options_rcu *inet_opt; 1262 1263 if (sk_acceptq_is_full(sk)) 1264 goto exit_overflow; 1265 1266 newsk = tcp_create_openreq_child(sk, req, skb); 1267 if (!newsk) 1268 goto exit_nonewsk; 1269 1270 newsk->sk_gso_type = SKB_GSO_TCPV4; 1271 inet_sk_rx_dst_set(newsk, skb); 1272 1273 newtp = tcp_sk(newsk); 1274 newinet = inet_sk(newsk); 1275 ireq = inet_rsk(req); 1276 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1277 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1278 newinet->inet_saddr = ireq->ir_loc_addr; 1279 inet_opt = ireq->opt; 1280 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1281 ireq->opt = NULL; 1282 newinet->mc_index = inet_iif(skb); 1283 newinet->mc_ttl = ip_hdr(skb)->ttl; 1284 newinet->rcv_tos = ip_hdr(skb)->tos; 1285 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1286 if (inet_opt) 1287 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1288 newinet->inet_id = newtp->write_seq ^ jiffies; 1289 1290 if (!dst) { 1291 dst = inet_csk_route_child_sock(sk, newsk, req); 1292 if (!dst) 1293 goto put_and_exit; 1294 } else { 1295 /* syncookie case : see end of cookie_v4_check() */ 1296 } 1297 sk_setup_caps(newsk, dst); 1298 1299 tcp_ca_openreq_child(newsk, dst); 1300 1301 tcp_sync_mss(newsk, dst_mtu(dst)); 1302 newtp->advmss = dst_metric_advmss(dst); 1303 if (tcp_sk(sk)->rx_opt.user_mss && 1304 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1305 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1306 1307 tcp_initialize_rcv_mss(newsk); 1308 1309 #ifdef CONFIG_TCP_MD5SIG 1310 /* Copy over the MD5 key from the original socket */ 1311 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1312 AF_INET); 1313 if (key) { 1314 /* 1315 * We're using one, so create a matching key 1316 * on the newsk structure. If we fail to get 1317 * memory, then we end up not copying the key 1318 * across. Shucks. 1319 */ 1320 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1321 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1322 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1323 } 1324 #endif 1325 1326 if (__inet_inherit_port(sk, newsk) < 0) 1327 goto put_and_exit; 1328 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1329 1330 return newsk; 1331 1332 exit_overflow: 1333 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1334 exit_nonewsk: 1335 dst_release(dst); 1336 exit: 1337 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1338 return NULL; 1339 put_and_exit: 1340 inet_csk_prepare_forced_close(newsk); 1341 tcp_done(newsk); 1342 goto exit; 1343 } 1344 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1345 1346 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1347 { 1348 #ifdef CONFIG_SYN_COOKIES 1349 const struct tcphdr *th = tcp_hdr(skb); 1350 1351 if (!th->syn) 1352 sk = cookie_v4_check(sk, skb); 1353 #endif 1354 return sk; 1355 } 1356 1357 /* The socket must have it's spinlock held when we get 1358 * here, unless it is a TCP_LISTEN socket. 1359 * 1360 * We have a potential double-lock case here, so even when 1361 * doing backlog processing we use the BH locking scheme. 1362 * This is because we cannot sleep with the original spinlock 1363 * held. 1364 */ 1365 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1366 { 1367 struct sock *rsk; 1368 1369 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1370 struct dst_entry *dst = sk->sk_rx_dst; 1371 1372 sock_rps_save_rxhash(sk, skb); 1373 sk_mark_napi_id(sk, skb); 1374 if (dst) { 1375 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1376 !dst->ops->check(dst, 0)) { 1377 dst_release(dst); 1378 sk->sk_rx_dst = NULL; 1379 } 1380 } 1381 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len); 1382 return 0; 1383 } 1384 1385 if (tcp_checksum_complete(skb)) 1386 goto csum_err; 1387 1388 if (sk->sk_state == TCP_LISTEN) { 1389 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1390 1391 if (!nsk) 1392 goto discard; 1393 if (nsk != sk) { 1394 sock_rps_save_rxhash(nsk, skb); 1395 sk_mark_napi_id(nsk, skb); 1396 if (tcp_child_process(sk, nsk, skb)) { 1397 rsk = nsk; 1398 goto reset; 1399 } 1400 return 0; 1401 } 1402 } else 1403 sock_rps_save_rxhash(sk, skb); 1404 1405 if (tcp_rcv_state_process(sk, skb)) { 1406 rsk = sk; 1407 goto reset; 1408 } 1409 return 0; 1410 1411 reset: 1412 tcp_v4_send_reset(rsk, skb); 1413 discard: 1414 kfree_skb(skb); 1415 /* Be careful here. If this function gets more complicated and 1416 * gcc suffers from register pressure on the x86, sk (in %ebx) 1417 * might be destroyed here. This current version compiles correctly, 1418 * but you have been warned. 1419 */ 1420 return 0; 1421 1422 csum_err: 1423 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 1424 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1425 goto discard; 1426 } 1427 EXPORT_SYMBOL(tcp_v4_do_rcv); 1428 1429 void tcp_v4_early_demux(struct sk_buff *skb) 1430 { 1431 const struct iphdr *iph; 1432 const struct tcphdr *th; 1433 struct sock *sk; 1434 1435 if (skb->pkt_type != PACKET_HOST) 1436 return; 1437 1438 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1439 return; 1440 1441 iph = ip_hdr(skb); 1442 th = tcp_hdr(skb); 1443 1444 if (th->doff < sizeof(struct tcphdr) / 4) 1445 return; 1446 1447 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1448 iph->saddr, th->source, 1449 iph->daddr, ntohs(th->dest), 1450 skb->skb_iif); 1451 if (sk) { 1452 skb->sk = sk; 1453 skb->destructor = sock_edemux; 1454 if (sk_fullsock(sk)) { 1455 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1456 1457 if (dst) 1458 dst = dst_check(dst, 0); 1459 if (dst && 1460 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1461 skb_dst_set_noref(skb, dst); 1462 } 1463 } 1464 } 1465 1466 /* Packet is added to VJ-style prequeue for processing in process 1467 * context, if a reader task is waiting. Apparently, this exciting 1468 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93) 1469 * failed somewhere. Latency? Burstiness? Well, at least now we will 1470 * see, why it failed. 8)8) --ANK 1471 * 1472 */ 1473 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb) 1474 { 1475 struct tcp_sock *tp = tcp_sk(sk); 1476 1477 if (sysctl_tcp_low_latency || !tp->ucopy.task) 1478 return false; 1479 1480 if (skb->len <= tcp_hdrlen(skb) && 1481 skb_queue_len(&tp->ucopy.prequeue) == 0) 1482 return false; 1483 1484 /* Before escaping RCU protected region, we need to take care of skb 1485 * dst. Prequeue is only enabled for established sockets. 1486 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst 1487 * Instead of doing full sk_rx_dst validity here, let's perform 1488 * an optimistic check. 1489 */ 1490 if (likely(sk->sk_rx_dst)) 1491 skb_dst_drop(skb); 1492 else 1493 skb_dst_force(skb); 1494 1495 __skb_queue_tail(&tp->ucopy.prequeue, skb); 1496 tp->ucopy.memory += skb->truesize; 1497 if (tp->ucopy.memory > sk->sk_rcvbuf) { 1498 struct sk_buff *skb1; 1499 1500 BUG_ON(sock_owned_by_user(sk)); 1501 1502 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) { 1503 sk_backlog_rcv(sk, skb1); 1504 NET_INC_STATS_BH(sock_net(sk), 1505 LINUX_MIB_TCPPREQUEUEDROPPED); 1506 } 1507 1508 tp->ucopy.memory = 0; 1509 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) { 1510 wake_up_interruptible_sync_poll(sk_sleep(sk), 1511 POLLIN | POLLRDNORM | POLLRDBAND); 1512 if (!inet_csk_ack_scheduled(sk)) 1513 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1514 (3 * tcp_rto_min(sk)) / 4, 1515 TCP_RTO_MAX); 1516 } 1517 return true; 1518 } 1519 EXPORT_SYMBOL(tcp_prequeue); 1520 1521 /* 1522 * From tcp_input.c 1523 */ 1524 1525 int tcp_v4_rcv(struct sk_buff *skb) 1526 { 1527 const struct iphdr *iph; 1528 const struct tcphdr *th; 1529 struct sock *sk; 1530 int ret; 1531 struct net *net = dev_net(skb->dev); 1532 1533 if (skb->pkt_type != PACKET_HOST) 1534 goto discard_it; 1535 1536 /* Count it even if it's bad */ 1537 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1538 1539 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1540 goto discard_it; 1541 1542 th = tcp_hdr(skb); 1543 1544 if (th->doff < sizeof(struct tcphdr) / 4) 1545 goto bad_packet; 1546 if (!pskb_may_pull(skb, th->doff * 4)) 1547 goto discard_it; 1548 1549 /* An explanation is required here, I think. 1550 * Packet length and doff are validated by header prediction, 1551 * provided case of th->doff==0 is eliminated. 1552 * So, we defer the checks. */ 1553 1554 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1555 goto csum_error; 1556 1557 th = tcp_hdr(skb); 1558 iph = ip_hdr(skb); 1559 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1560 * barrier() makes sure compiler wont play fool^Waliasing games. 1561 */ 1562 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1563 sizeof(struct inet_skb_parm)); 1564 barrier(); 1565 1566 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1567 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1568 skb->len - th->doff * 4); 1569 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1570 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1571 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1572 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1573 TCP_SKB_CB(skb)->sacked = 0; 1574 1575 lookup: 1576 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 1577 if (!sk) 1578 goto no_tcp_socket; 1579 1580 process: 1581 if (sk->sk_state == TCP_TIME_WAIT) 1582 goto do_time_wait; 1583 1584 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1585 struct request_sock *req = inet_reqsk(sk); 1586 struct sock *nsk = NULL; 1587 1588 sk = req->rsk_listener; 1589 if (tcp_v4_inbound_md5_hash(sk, skb)) 1590 goto discard_and_relse; 1591 if (likely(sk->sk_state == TCP_LISTEN)) { 1592 nsk = tcp_check_req(sk, skb, req, false); 1593 } else { 1594 inet_csk_reqsk_queue_drop_and_put(sk, req); 1595 goto lookup; 1596 } 1597 if (!nsk) { 1598 reqsk_put(req); 1599 goto discard_it; 1600 } 1601 if (nsk == sk) { 1602 sock_hold(sk); 1603 reqsk_put(req); 1604 } else if (tcp_child_process(sk, nsk, skb)) { 1605 tcp_v4_send_reset(nsk, skb); 1606 goto discard_it; 1607 } else { 1608 return 0; 1609 } 1610 } 1611 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1612 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 1613 goto discard_and_relse; 1614 } 1615 1616 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1617 goto discard_and_relse; 1618 1619 if (tcp_v4_inbound_md5_hash(sk, skb)) 1620 goto discard_and_relse; 1621 1622 nf_reset(skb); 1623 1624 if (sk_filter(sk, skb)) 1625 goto discard_and_relse; 1626 1627 skb->dev = NULL; 1628 1629 if (sk->sk_state == TCP_LISTEN) { 1630 ret = tcp_v4_do_rcv(sk, skb); 1631 goto put_and_return; 1632 } 1633 1634 sk_incoming_cpu_update(sk); 1635 1636 bh_lock_sock_nested(sk); 1637 tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 1638 ret = 0; 1639 if (!sock_owned_by_user(sk)) { 1640 if (!tcp_prequeue(sk, skb)) 1641 ret = tcp_v4_do_rcv(sk, skb); 1642 } else if (unlikely(sk_add_backlog(sk, skb, 1643 sk->sk_rcvbuf + sk->sk_sndbuf))) { 1644 bh_unlock_sock(sk); 1645 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP); 1646 goto discard_and_relse; 1647 } 1648 bh_unlock_sock(sk); 1649 1650 put_and_return: 1651 sock_put(sk); 1652 1653 return ret; 1654 1655 no_tcp_socket: 1656 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1657 goto discard_it; 1658 1659 if (tcp_checksum_complete(skb)) { 1660 csum_error: 1661 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS); 1662 bad_packet: 1663 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 1664 } else { 1665 tcp_v4_send_reset(NULL, skb); 1666 } 1667 1668 discard_it: 1669 /* Discard frame. */ 1670 kfree_skb(skb); 1671 return 0; 1672 1673 discard_and_relse: 1674 sock_put(sk); 1675 goto discard_it; 1676 1677 do_time_wait: 1678 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1679 inet_twsk_put(inet_twsk(sk)); 1680 goto discard_it; 1681 } 1682 1683 if (tcp_checksum_complete(skb)) { 1684 inet_twsk_put(inet_twsk(sk)); 1685 goto csum_error; 1686 } 1687 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1688 case TCP_TW_SYN: { 1689 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1690 &tcp_hashinfo, 1691 iph->saddr, th->source, 1692 iph->daddr, th->dest, 1693 inet_iif(skb)); 1694 if (sk2) { 1695 inet_twsk_deschedule_put(inet_twsk(sk)); 1696 sk = sk2; 1697 goto process; 1698 } 1699 /* Fall through to ACK */ 1700 } 1701 case TCP_TW_ACK: 1702 tcp_v4_timewait_ack(sk, skb); 1703 break; 1704 case TCP_TW_RST: 1705 goto no_tcp_socket; 1706 case TCP_TW_SUCCESS:; 1707 } 1708 goto discard_it; 1709 } 1710 1711 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1712 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1713 .twsk_unique = tcp_twsk_unique, 1714 .twsk_destructor= tcp_twsk_destructor, 1715 }; 1716 1717 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1718 { 1719 struct dst_entry *dst = skb_dst(skb); 1720 1721 if (dst) { 1722 dst_hold(dst); 1723 sk->sk_rx_dst = dst; 1724 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1725 } 1726 } 1727 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1728 1729 const struct inet_connection_sock_af_ops ipv4_specific = { 1730 .queue_xmit = ip_queue_xmit, 1731 .send_check = tcp_v4_send_check, 1732 .rebuild_header = inet_sk_rebuild_header, 1733 .sk_rx_dst_set = inet_sk_rx_dst_set, 1734 .conn_request = tcp_v4_conn_request, 1735 .syn_recv_sock = tcp_v4_syn_recv_sock, 1736 .net_header_len = sizeof(struct iphdr), 1737 .setsockopt = ip_setsockopt, 1738 .getsockopt = ip_getsockopt, 1739 .addr2sockaddr = inet_csk_addr2sockaddr, 1740 .sockaddr_len = sizeof(struct sockaddr_in), 1741 .bind_conflict = inet_csk_bind_conflict, 1742 #ifdef CONFIG_COMPAT 1743 .compat_setsockopt = compat_ip_setsockopt, 1744 .compat_getsockopt = compat_ip_getsockopt, 1745 #endif 1746 .mtu_reduced = tcp_v4_mtu_reduced, 1747 }; 1748 EXPORT_SYMBOL(ipv4_specific); 1749 1750 #ifdef CONFIG_TCP_MD5SIG 1751 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1752 .md5_lookup = tcp_v4_md5_lookup, 1753 .calc_md5_hash = tcp_v4_md5_hash_skb, 1754 .md5_parse = tcp_v4_parse_md5_keys, 1755 }; 1756 #endif 1757 1758 /* NOTE: A lot of things set to zero explicitly by call to 1759 * sk_alloc() so need not be done here. 1760 */ 1761 static int tcp_v4_init_sock(struct sock *sk) 1762 { 1763 struct inet_connection_sock *icsk = inet_csk(sk); 1764 1765 tcp_init_sock(sk); 1766 1767 icsk->icsk_af_ops = &ipv4_specific; 1768 1769 #ifdef CONFIG_TCP_MD5SIG 1770 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1771 #endif 1772 1773 return 0; 1774 } 1775 1776 void tcp_v4_destroy_sock(struct sock *sk) 1777 { 1778 struct tcp_sock *tp = tcp_sk(sk); 1779 1780 tcp_clear_xmit_timers(sk); 1781 1782 tcp_cleanup_congestion_control(sk); 1783 1784 /* Cleanup up the write buffer. */ 1785 tcp_write_queue_purge(sk); 1786 1787 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1788 __skb_queue_purge(&tp->out_of_order_queue); 1789 1790 #ifdef CONFIG_TCP_MD5SIG 1791 /* Clean up the MD5 key list, if any */ 1792 if (tp->md5sig_info) { 1793 tcp_clear_md5_list(sk); 1794 kfree_rcu(tp->md5sig_info, rcu); 1795 tp->md5sig_info = NULL; 1796 } 1797 #endif 1798 1799 /* Clean prequeue, it must be empty really */ 1800 __skb_queue_purge(&tp->ucopy.prequeue); 1801 1802 /* Clean up a referenced TCP bind bucket. */ 1803 if (inet_csk(sk)->icsk_bind_hash) 1804 inet_put_port(sk); 1805 1806 BUG_ON(tp->fastopen_rsk); 1807 1808 /* If socket is aborted during connect operation */ 1809 tcp_free_fastopen_req(tp); 1810 tcp_saved_syn_free(tp); 1811 1812 sk_sockets_allocated_dec(sk); 1813 sock_release_memcg(sk); 1814 } 1815 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1816 1817 #ifdef CONFIG_PROC_FS 1818 /* Proc filesystem TCP sock list dumping. */ 1819 1820 /* 1821 * Get next listener socket follow cur. If cur is NULL, get first socket 1822 * starting from bucket given in st->bucket; when st->bucket is zero the 1823 * very first socket in the hash table is returned. 1824 */ 1825 static void *listening_get_next(struct seq_file *seq, void *cur) 1826 { 1827 struct inet_connection_sock *icsk; 1828 struct hlist_nulls_node *node; 1829 struct sock *sk = cur; 1830 struct inet_listen_hashbucket *ilb; 1831 struct tcp_iter_state *st = seq->private; 1832 struct net *net = seq_file_net(seq); 1833 1834 if (!sk) { 1835 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1836 spin_lock_bh(&ilb->lock); 1837 sk = sk_nulls_head(&ilb->head); 1838 st->offset = 0; 1839 goto get_sk; 1840 } 1841 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1842 ++st->num; 1843 ++st->offset; 1844 1845 sk = sk_nulls_next(sk); 1846 get_sk: 1847 sk_nulls_for_each_from(sk, node) { 1848 if (!net_eq(sock_net(sk), net)) 1849 continue; 1850 if (sk->sk_family == st->family) { 1851 cur = sk; 1852 goto out; 1853 } 1854 icsk = inet_csk(sk); 1855 } 1856 spin_unlock_bh(&ilb->lock); 1857 st->offset = 0; 1858 if (++st->bucket < INET_LHTABLE_SIZE) { 1859 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1860 spin_lock_bh(&ilb->lock); 1861 sk = sk_nulls_head(&ilb->head); 1862 goto get_sk; 1863 } 1864 cur = NULL; 1865 out: 1866 return cur; 1867 } 1868 1869 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 1870 { 1871 struct tcp_iter_state *st = seq->private; 1872 void *rc; 1873 1874 st->bucket = 0; 1875 st->offset = 0; 1876 rc = listening_get_next(seq, NULL); 1877 1878 while (rc && *pos) { 1879 rc = listening_get_next(seq, rc); 1880 --*pos; 1881 } 1882 return rc; 1883 } 1884 1885 static inline bool empty_bucket(const struct tcp_iter_state *st) 1886 { 1887 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 1888 } 1889 1890 /* 1891 * Get first established socket starting from bucket given in st->bucket. 1892 * If st->bucket is zero, the very first socket in the hash is returned. 1893 */ 1894 static void *established_get_first(struct seq_file *seq) 1895 { 1896 struct tcp_iter_state *st = seq->private; 1897 struct net *net = seq_file_net(seq); 1898 void *rc = NULL; 1899 1900 st->offset = 0; 1901 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 1902 struct sock *sk; 1903 struct hlist_nulls_node *node; 1904 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 1905 1906 /* Lockless fast path for the common case of empty buckets */ 1907 if (empty_bucket(st)) 1908 continue; 1909 1910 spin_lock_bh(lock); 1911 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 1912 if (sk->sk_family != st->family || 1913 !net_eq(sock_net(sk), net)) { 1914 continue; 1915 } 1916 rc = sk; 1917 goto out; 1918 } 1919 spin_unlock_bh(lock); 1920 } 1921 out: 1922 return rc; 1923 } 1924 1925 static void *established_get_next(struct seq_file *seq, void *cur) 1926 { 1927 struct sock *sk = cur; 1928 struct hlist_nulls_node *node; 1929 struct tcp_iter_state *st = seq->private; 1930 struct net *net = seq_file_net(seq); 1931 1932 ++st->num; 1933 ++st->offset; 1934 1935 sk = sk_nulls_next(sk); 1936 1937 sk_nulls_for_each_from(sk, node) { 1938 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 1939 return sk; 1940 } 1941 1942 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 1943 ++st->bucket; 1944 return established_get_first(seq); 1945 } 1946 1947 static void *established_get_idx(struct seq_file *seq, loff_t pos) 1948 { 1949 struct tcp_iter_state *st = seq->private; 1950 void *rc; 1951 1952 st->bucket = 0; 1953 rc = established_get_first(seq); 1954 1955 while (rc && pos) { 1956 rc = established_get_next(seq, rc); 1957 --pos; 1958 } 1959 return rc; 1960 } 1961 1962 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 1963 { 1964 void *rc; 1965 struct tcp_iter_state *st = seq->private; 1966 1967 st->state = TCP_SEQ_STATE_LISTENING; 1968 rc = listening_get_idx(seq, &pos); 1969 1970 if (!rc) { 1971 st->state = TCP_SEQ_STATE_ESTABLISHED; 1972 rc = established_get_idx(seq, pos); 1973 } 1974 1975 return rc; 1976 } 1977 1978 static void *tcp_seek_last_pos(struct seq_file *seq) 1979 { 1980 struct tcp_iter_state *st = seq->private; 1981 int offset = st->offset; 1982 int orig_num = st->num; 1983 void *rc = NULL; 1984 1985 switch (st->state) { 1986 case TCP_SEQ_STATE_LISTENING: 1987 if (st->bucket >= INET_LHTABLE_SIZE) 1988 break; 1989 st->state = TCP_SEQ_STATE_LISTENING; 1990 rc = listening_get_next(seq, NULL); 1991 while (offset-- && rc) 1992 rc = listening_get_next(seq, rc); 1993 if (rc) 1994 break; 1995 st->bucket = 0; 1996 st->state = TCP_SEQ_STATE_ESTABLISHED; 1997 /* Fallthrough */ 1998 case TCP_SEQ_STATE_ESTABLISHED: 1999 if (st->bucket > tcp_hashinfo.ehash_mask) 2000 break; 2001 rc = established_get_first(seq); 2002 while (offset-- && rc) 2003 rc = established_get_next(seq, rc); 2004 } 2005 2006 st->num = orig_num; 2007 2008 return rc; 2009 } 2010 2011 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2012 { 2013 struct tcp_iter_state *st = seq->private; 2014 void *rc; 2015 2016 if (*pos && *pos == st->last_pos) { 2017 rc = tcp_seek_last_pos(seq); 2018 if (rc) 2019 goto out; 2020 } 2021 2022 st->state = TCP_SEQ_STATE_LISTENING; 2023 st->num = 0; 2024 st->bucket = 0; 2025 st->offset = 0; 2026 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2027 2028 out: 2029 st->last_pos = *pos; 2030 return rc; 2031 } 2032 2033 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2034 { 2035 struct tcp_iter_state *st = seq->private; 2036 void *rc = NULL; 2037 2038 if (v == SEQ_START_TOKEN) { 2039 rc = tcp_get_idx(seq, 0); 2040 goto out; 2041 } 2042 2043 switch (st->state) { 2044 case TCP_SEQ_STATE_LISTENING: 2045 rc = listening_get_next(seq, v); 2046 if (!rc) { 2047 st->state = TCP_SEQ_STATE_ESTABLISHED; 2048 st->bucket = 0; 2049 st->offset = 0; 2050 rc = established_get_first(seq); 2051 } 2052 break; 2053 case TCP_SEQ_STATE_ESTABLISHED: 2054 rc = established_get_next(seq, v); 2055 break; 2056 } 2057 out: 2058 ++*pos; 2059 st->last_pos = *pos; 2060 return rc; 2061 } 2062 2063 static void tcp_seq_stop(struct seq_file *seq, void *v) 2064 { 2065 struct tcp_iter_state *st = seq->private; 2066 2067 switch (st->state) { 2068 case TCP_SEQ_STATE_LISTENING: 2069 if (v != SEQ_START_TOKEN) 2070 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2071 break; 2072 case TCP_SEQ_STATE_ESTABLISHED: 2073 if (v) 2074 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2075 break; 2076 } 2077 } 2078 2079 int tcp_seq_open(struct inode *inode, struct file *file) 2080 { 2081 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2082 struct tcp_iter_state *s; 2083 int err; 2084 2085 err = seq_open_net(inode, file, &afinfo->seq_ops, 2086 sizeof(struct tcp_iter_state)); 2087 if (err < 0) 2088 return err; 2089 2090 s = ((struct seq_file *)file->private_data)->private; 2091 s->family = afinfo->family; 2092 s->last_pos = 0; 2093 return 0; 2094 } 2095 EXPORT_SYMBOL(tcp_seq_open); 2096 2097 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2098 { 2099 int rc = 0; 2100 struct proc_dir_entry *p; 2101 2102 afinfo->seq_ops.start = tcp_seq_start; 2103 afinfo->seq_ops.next = tcp_seq_next; 2104 afinfo->seq_ops.stop = tcp_seq_stop; 2105 2106 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2107 afinfo->seq_fops, afinfo); 2108 if (!p) 2109 rc = -ENOMEM; 2110 return rc; 2111 } 2112 EXPORT_SYMBOL(tcp_proc_register); 2113 2114 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2115 { 2116 remove_proc_entry(afinfo->name, net->proc_net); 2117 } 2118 EXPORT_SYMBOL(tcp_proc_unregister); 2119 2120 static void get_openreq4(const struct request_sock *req, 2121 struct seq_file *f, int i) 2122 { 2123 const struct inet_request_sock *ireq = inet_rsk(req); 2124 long delta = req->rsk_timer.expires - jiffies; 2125 2126 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2127 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2128 i, 2129 ireq->ir_loc_addr, 2130 ireq->ir_num, 2131 ireq->ir_rmt_addr, 2132 ntohs(ireq->ir_rmt_port), 2133 TCP_SYN_RECV, 2134 0, 0, /* could print option size, but that is af dependent. */ 2135 1, /* timers active (only the expire timer) */ 2136 jiffies_delta_to_clock_t(delta), 2137 req->num_timeout, 2138 from_kuid_munged(seq_user_ns(f), 2139 sock_i_uid(req->rsk_listener)), 2140 0, /* non standard timer */ 2141 0, /* open_requests have no inode */ 2142 0, 2143 req); 2144 } 2145 2146 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2147 { 2148 int timer_active; 2149 unsigned long timer_expires; 2150 const struct tcp_sock *tp = tcp_sk(sk); 2151 const struct inet_connection_sock *icsk = inet_csk(sk); 2152 const struct inet_sock *inet = inet_sk(sk); 2153 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2154 __be32 dest = inet->inet_daddr; 2155 __be32 src = inet->inet_rcv_saddr; 2156 __u16 destp = ntohs(inet->inet_dport); 2157 __u16 srcp = ntohs(inet->inet_sport); 2158 int rx_queue; 2159 2160 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2161 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2162 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2163 timer_active = 1; 2164 timer_expires = icsk->icsk_timeout; 2165 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2166 timer_active = 4; 2167 timer_expires = icsk->icsk_timeout; 2168 } else if (timer_pending(&sk->sk_timer)) { 2169 timer_active = 2; 2170 timer_expires = sk->sk_timer.expires; 2171 } else { 2172 timer_active = 0; 2173 timer_expires = jiffies; 2174 } 2175 2176 if (sk->sk_state == TCP_LISTEN) 2177 rx_queue = sk->sk_ack_backlog; 2178 else 2179 /* 2180 * because we dont lock socket, we might find a transient negative value 2181 */ 2182 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2183 2184 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2185 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2186 i, src, srcp, dest, destp, sk->sk_state, 2187 tp->write_seq - tp->snd_una, 2188 rx_queue, 2189 timer_active, 2190 jiffies_delta_to_clock_t(timer_expires - jiffies), 2191 icsk->icsk_retransmits, 2192 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2193 icsk->icsk_probes_out, 2194 sock_i_ino(sk), 2195 atomic_read(&sk->sk_refcnt), sk, 2196 jiffies_to_clock_t(icsk->icsk_rto), 2197 jiffies_to_clock_t(icsk->icsk_ack.ato), 2198 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2199 tp->snd_cwnd, 2200 sk->sk_state == TCP_LISTEN ? 2201 (fastopenq ? fastopenq->max_qlen : 0) : 2202 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2203 } 2204 2205 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2206 struct seq_file *f, int i) 2207 { 2208 long delta = tw->tw_timer.expires - jiffies; 2209 __be32 dest, src; 2210 __u16 destp, srcp; 2211 2212 dest = tw->tw_daddr; 2213 src = tw->tw_rcv_saddr; 2214 destp = ntohs(tw->tw_dport); 2215 srcp = ntohs(tw->tw_sport); 2216 2217 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2218 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2219 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2220 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2221 atomic_read(&tw->tw_refcnt), tw); 2222 } 2223 2224 #define TMPSZ 150 2225 2226 static int tcp4_seq_show(struct seq_file *seq, void *v) 2227 { 2228 struct tcp_iter_state *st; 2229 struct sock *sk = v; 2230 2231 seq_setwidth(seq, TMPSZ - 1); 2232 if (v == SEQ_START_TOKEN) { 2233 seq_puts(seq, " sl local_address rem_address st tx_queue " 2234 "rx_queue tr tm->when retrnsmt uid timeout " 2235 "inode"); 2236 goto out; 2237 } 2238 st = seq->private; 2239 2240 if (sk->sk_state == TCP_TIME_WAIT) 2241 get_timewait4_sock(v, seq, st->num); 2242 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2243 get_openreq4(v, seq, st->num); 2244 else 2245 get_tcp4_sock(v, seq, st->num); 2246 out: 2247 seq_pad(seq, '\n'); 2248 return 0; 2249 } 2250 2251 static const struct file_operations tcp_afinfo_seq_fops = { 2252 .owner = THIS_MODULE, 2253 .open = tcp_seq_open, 2254 .read = seq_read, 2255 .llseek = seq_lseek, 2256 .release = seq_release_net 2257 }; 2258 2259 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2260 .name = "tcp", 2261 .family = AF_INET, 2262 .seq_fops = &tcp_afinfo_seq_fops, 2263 .seq_ops = { 2264 .show = tcp4_seq_show, 2265 }, 2266 }; 2267 2268 static int __net_init tcp4_proc_init_net(struct net *net) 2269 { 2270 return tcp_proc_register(net, &tcp4_seq_afinfo); 2271 } 2272 2273 static void __net_exit tcp4_proc_exit_net(struct net *net) 2274 { 2275 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2276 } 2277 2278 static struct pernet_operations tcp4_net_ops = { 2279 .init = tcp4_proc_init_net, 2280 .exit = tcp4_proc_exit_net, 2281 }; 2282 2283 int __init tcp4_proc_init(void) 2284 { 2285 return register_pernet_subsys(&tcp4_net_ops); 2286 } 2287 2288 void tcp4_proc_exit(void) 2289 { 2290 unregister_pernet_subsys(&tcp4_net_ops); 2291 } 2292 #endif /* CONFIG_PROC_FS */ 2293 2294 struct proto tcp_prot = { 2295 .name = "TCP", 2296 .owner = THIS_MODULE, 2297 .close = tcp_close, 2298 .connect = tcp_v4_connect, 2299 .disconnect = tcp_disconnect, 2300 .accept = inet_csk_accept, 2301 .ioctl = tcp_ioctl, 2302 .init = tcp_v4_init_sock, 2303 .destroy = tcp_v4_destroy_sock, 2304 .shutdown = tcp_shutdown, 2305 .setsockopt = tcp_setsockopt, 2306 .getsockopt = tcp_getsockopt, 2307 .recvmsg = tcp_recvmsg, 2308 .sendmsg = tcp_sendmsg, 2309 .sendpage = tcp_sendpage, 2310 .backlog_rcv = tcp_v4_do_rcv, 2311 .release_cb = tcp_release_cb, 2312 .hash = inet_hash, 2313 .unhash = inet_unhash, 2314 .get_port = inet_csk_get_port, 2315 .enter_memory_pressure = tcp_enter_memory_pressure, 2316 .stream_memory_free = tcp_stream_memory_free, 2317 .sockets_allocated = &tcp_sockets_allocated, 2318 .orphan_count = &tcp_orphan_count, 2319 .memory_allocated = &tcp_memory_allocated, 2320 .memory_pressure = &tcp_memory_pressure, 2321 .sysctl_mem = sysctl_tcp_mem, 2322 .sysctl_wmem = sysctl_tcp_wmem, 2323 .sysctl_rmem = sysctl_tcp_rmem, 2324 .max_header = MAX_TCP_HEADER, 2325 .obj_size = sizeof(struct tcp_sock), 2326 .slab_flags = SLAB_DESTROY_BY_RCU, 2327 .twsk_prot = &tcp_timewait_sock_ops, 2328 .rsk_prot = &tcp_request_sock_ops, 2329 .h.hashinfo = &tcp_hashinfo, 2330 .no_autobind = true, 2331 #ifdef CONFIG_COMPAT 2332 .compat_setsockopt = compat_tcp_setsockopt, 2333 .compat_getsockopt = compat_tcp_getsockopt, 2334 #endif 2335 #ifdef CONFIG_MEMCG_KMEM 2336 .init_cgroup = tcp_init_cgroup, 2337 .destroy_cgroup = tcp_destroy_cgroup, 2338 .proto_cgroup = tcp_proto_cgroup, 2339 #endif 2340 }; 2341 EXPORT_SYMBOL(tcp_prot); 2342 2343 static void __net_exit tcp_sk_exit(struct net *net) 2344 { 2345 int cpu; 2346 2347 for_each_possible_cpu(cpu) 2348 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2349 free_percpu(net->ipv4.tcp_sk); 2350 } 2351 2352 static int __net_init tcp_sk_init(struct net *net) 2353 { 2354 int res, cpu; 2355 2356 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2357 if (!net->ipv4.tcp_sk) 2358 return -ENOMEM; 2359 2360 for_each_possible_cpu(cpu) { 2361 struct sock *sk; 2362 2363 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2364 IPPROTO_TCP, net); 2365 if (res) 2366 goto fail; 2367 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2368 } 2369 2370 net->ipv4.sysctl_tcp_ecn = 2; 2371 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2372 2373 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2374 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2375 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2376 2377 return 0; 2378 fail: 2379 tcp_sk_exit(net); 2380 2381 return res; 2382 } 2383 2384 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2385 { 2386 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2387 } 2388 2389 static struct pernet_operations __net_initdata tcp_sk_ops = { 2390 .init = tcp_sk_init, 2391 .exit = tcp_sk_exit, 2392 .exit_batch = tcp_sk_exit_batch, 2393 }; 2394 2395 void __init tcp_v4_init(void) 2396 { 2397 inet_hashinfo_init(&tcp_hashinfo); 2398 if (register_pernet_subsys(&tcp_sk_ops)) 2399 panic("Failed to create the TCP control socket.\n"); 2400 } 2401