xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 965f22bc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/inetdevice.h>
84 
85 #include <crypto/hash.h>
86 #include <linux/scatterlist.h>
87 
88 #include <trace/events/tcp.h>
89 
90 #ifdef CONFIG_TCP_MD5SIG
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
92 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
93 #endif
94 
95 struct inet_hashinfo tcp_hashinfo;
96 EXPORT_SYMBOL(tcp_hashinfo);
97 
98 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99 {
100 	return secure_tcp_seq(ip_hdr(skb)->daddr,
101 			      ip_hdr(skb)->saddr,
102 			      tcp_hdr(skb)->dest,
103 			      tcp_hdr(skb)->source);
104 }
105 
106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107 {
108 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 	int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
117 
118 	if (reuse == 2) {
119 		/* Still does not detect *everything* that goes through
120 		 * lo, since we require a loopback src or dst address
121 		 * or direct binding to 'lo' interface.
122 		 */
123 		bool loopback = false;
124 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
125 			loopback = true;
126 #if IS_ENABLED(CONFIG_IPV6)
127 		if (tw->tw_family == AF_INET6) {
128 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
129 			    (ipv6_addr_v4mapped(&tw->tw_v6_daddr) &&
130 			     (tw->tw_v6_daddr.s6_addr[12] == 127)) ||
131 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
132 			    (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) &&
133 			     (tw->tw_v6_rcv_saddr.s6_addr[12] == 127)))
134 				loopback = true;
135 		} else
136 #endif
137 		{
138 			if (ipv4_is_loopback(tw->tw_daddr) ||
139 			    ipv4_is_loopback(tw->tw_rcv_saddr))
140 				loopback = true;
141 		}
142 		if (!loopback)
143 			reuse = 0;
144 	}
145 
146 	/* With PAWS, it is safe from the viewpoint
147 	   of data integrity. Even without PAWS it is safe provided sequence
148 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
149 
150 	   Actually, the idea is close to VJ's one, only timestamp cache is
151 	   held not per host, but per port pair and TW bucket is used as state
152 	   holder.
153 
154 	   If TW bucket has been already destroyed we fall back to VJ's scheme
155 	   and use initial timestamp retrieved from peer table.
156 	 */
157 	if (tcptw->tw_ts_recent_stamp &&
158 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
159 					    tcptw->tw_ts_recent_stamp)))) {
160 		/* In case of repair and re-using TIME-WAIT sockets we still
161 		 * want to be sure that it is safe as above but honor the
162 		 * sequence numbers and time stamps set as part of the repair
163 		 * process.
164 		 *
165 		 * Without this check re-using a TIME-WAIT socket with TCP
166 		 * repair would accumulate a -1 on the repair assigned
167 		 * sequence number. The first time it is reused the sequence
168 		 * is -1, the second time -2, etc. This fixes that issue
169 		 * without appearing to create any others.
170 		 */
171 		if (likely(!tp->repair)) {
172 			tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
173 			if (tp->write_seq == 0)
174 				tp->write_seq = 1;
175 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
176 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
177 		}
178 		sock_hold(sktw);
179 		return 1;
180 	}
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
185 
186 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
187 			      int addr_len)
188 {
189 	/* This check is replicated from tcp_v4_connect() and intended to
190 	 * prevent BPF program called below from accessing bytes that are out
191 	 * of the bound specified by user in addr_len.
192 	 */
193 	if (addr_len < sizeof(struct sockaddr_in))
194 		return -EINVAL;
195 
196 	sock_owned_by_me(sk);
197 
198 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
199 }
200 
201 /* This will initiate an outgoing connection. */
202 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
203 {
204 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	__be16 orig_sport, orig_dport;
208 	__be32 daddr, nexthop;
209 	struct flowi4 *fl4;
210 	struct rtable *rt;
211 	int err;
212 	struct ip_options_rcu *inet_opt;
213 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
235 			      IPPROTO_TCP,
236 			      orig_sport, orig_dport, sk);
237 	if (IS_ERR(rt)) {
238 		err = PTR_ERR(rt);
239 		if (err == -ENETUNREACH)
240 			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
241 		return err;
242 	}
243 
244 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
245 		ip_rt_put(rt);
246 		return -ENETUNREACH;
247 	}
248 
249 	if (!inet_opt || !inet_opt->opt.srr)
250 		daddr = fl4->daddr;
251 
252 	if (!inet->inet_saddr)
253 		inet->inet_saddr = fl4->saddr;
254 	sk_rcv_saddr_set(sk, inet->inet_saddr);
255 
256 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
257 		/* Reset inherited state */
258 		tp->rx_opt.ts_recent	   = 0;
259 		tp->rx_opt.ts_recent_stamp = 0;
260 		if (likely(!tp->repair))
261 			tp->write_seq	   = 0;
262 	}
263 
264 	inet->inet_dport = usin->sin_port;
265 	sk_daddr_set(sk, daddr);
266 
267 	inet_csk(sk)->icsk_ext_hdr_len = 0;
268 	if (inet_opt)
269 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
270 
271 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
272 
273 	/* Socket identity is still unknown (sport may be zero).
274 	 * However we set state to SYN-SENT and not releasing socket
275 	 * lock select source port, enter ourselves into the hash tables and
276 	 * complete initialization after this.
277 	 */
278 	tcp_set_state(sk, TCP_SYN_SENT);
279 	err = inet_hash_connect(tcp_death_row, sk);
280 	if (err)
281 		goto failure;
282 
283 	sk_set_txhash(sk);
284 
285 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
286 			       inet->inet_sport, inet->inet_dport, sk);
287 	if (IS_ERR(rt)) {
288 		err = PTR_ERR(rt);
289 		rt = NULL;
290 		goto failure;
291 	}
292 	/* OK, now commit destination to socket.  */
293 	sk->sk_gso_type = SKB_GSO_TCPV4;
294 	sk_setup_caps(sk, &rt->dst);
295 	rt = NULL;
296 
297 	if (likely(!tp->repair)) {
298 		if (!tp->write_seq)
299 			tp->write_seq = secure_tcp_seq(inet->inet_saddr,
300 						       inet->inet_daddr,
301 						       inet->inet_sport,
302 						       usin->sin_port);
303 		tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
304 						 inet->inet_saddr,
305 						 inet->inet_daddr);
306 	}
307 
308 	inet->inet_id = tp->write_seq ^ jiffies;
309 
310 	if (tcp_fastopen_defer_connect(sk, &err))
311 		return err;
312 	if (err)
313 		goto failure;
314 
315 	err = tcp_connect(sk);
316 
317 	if (err)
318 		goto failure;
319 
320 	return 0;
321 
322 failure:
323 	/*
324 	 * This unhashes the socket and releases the local port,
325 	 * if necessary.
326 	 */
327 	tcp_set_state(sk, TCP_CLOSE);
328 	ip_rt_put(rt);
329 	sk->sk_route_caps = 0;
330 	inet->inet_dport = 0;
331 	return err;
332 }
333 EXPORT_SYMBOL(tcp_v4_connect);
334 
335 /*
336  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
337  * It can be called through tcp_release_cb() if socket was owned by user
338  * at the time tcp_v4_err() was called to handle ICMP message.
339  */
340 void tcp_v4_mtu_reduced(struct sock *sk)
341 {
342 	struct inet_sock *inet = inet_sk(sk);
343 	struct dst_entry *dst;
344 	u32 mtu;
345 
346 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
347 		return;
348 	mtu = tcp_sk(sk)->mtu_info;
349 	dst = inet_csk_update_pmtu(sk, mtu);
350 	if (!dst)
351 		return;
352 
353 	/* Something is about to be wrong... Remember soft error
354 	 * for the case, if this connection will not able to recover.
355 	 */
356 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
357 		sk->sk_err_soft = EMSGSIZE;
358 
359 	mtu = dst_mtu(dst);
360 
361 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
362 	    ip_sk_accept_pmtu(sk) &&
363 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
364 		tcp_sync_mss(sk, mtu);
365 
366 		/* Resend the TCP packet because it's
367 		 * clear that the old packet has been
368 		 * dropped. This is the new "fast" path mtu
369 		 * discovery.
370 		 */
371 		tcp_simple_retransmit(sk);
372 	} /* else let the usual retransmit timer handle it */
373 }
374 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
375 
376 static void do_redirect(struct sk_buff *skb, struct sock *sk)
377 {
378 	struct dst_entry *dst = __sk_dst_check(sk, 0);
379 
380 	if (dst)
381 		dst->ops->redirect(dst, sk, skb);
382 }
383 
384 
385 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
386 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
387 {
388 	struct request_sock *req = inet_reqsk(sk);
389 	struct net *net = sock_net(sk);
390 
391 	/* ICMPs are not backlogged, hence we cannot get
392 	 * an established socket here.
393 	 */
394 	if (seq != tcp_rsk(req)->snt_isn) {
395 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
396 	} else if (abort) {
397 		/*
398 		 * Still in SYN_RECV, just remove it silently.
399 		 * There is no good way to pass the error to the newly
400 		 * created socket, and POSIX does not want network
401 		 * errors returned from accept().
402 		 */
403 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
404 		tcp_listendrop(req->rsk_listener);
405 	}
406 	reqsk_put(req);
407 }
408 EXPORT_SYMBOL(tcp_req_err);
409 
410 /*
411  * This routine is called by the ICMP module when it gets some
412  * sort of error condition.  If err < 0 then the socket should
413  * be closed and the error returned to the user.  If err > 0
414  * it's just the icmp type << 8 | icmp code.  After adjustment
415  * header points to the first 8 bytes of the tcp header.  We need
416  * to find the appropriate port.
417  *
418  * The locking strategy used here is very "optimistic". When
419  * someone else accesses the socket the ICMP is just dropped
420  * and for some paths there is no check at all.
421  * A more general error queue to queue errors for later handling
422  * is probably better.
423  *
424  */
425 
426 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
427 {
428 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
429 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
430 	struct inet_connection_sock *icsk;
431 	struct tcp_sock *tp;
432 	struct inet_sock *inet;
433 	const int type = icmp_hdr(icmp_skb)->type;
434 	const int code = icmp_hdr(icmp_skb)->code;
435 	struct sock *sk;
436 	struct sk_buff *skb;
437 	struct request_sock *fastopen;
438 	u32 seq, snd_una;
439 	s32 remaining;
440 	u32 delta_us;
441 	int err;
442 	struct net *net = dev_net(icmp_skb->dev);
443 
444 	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
445 				       th->dest, iph->saddr, ntohs(th->source),
446 				       inet_iif(icmp_skb), 0);
447 	if (!sk) {
448 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
449 		return;
450 	}
451 	if (sk->sk_state == TCP_TIME_WAIT) {
452 		inet_twsk_put(inet_twsk(sk));
453 		return;
454 	}
455 	seq = ntohl(th->seq);
456 	if (sk->sk_state == TCP_NEW_SYN_RECV)
457 		return tcp_req_err(sk, seq,
458 				  type == ICMP_PARAMETERPROB ||
459 				  type == ICMP_TIME_EXCEEDED ||
460 				  (type == ICMP_DEST_UNREACH &&
461 				   (code == ICMP_NET_UNREACH ||
462 				    code == ICMP_HOST_UNREACH)));
463 
464 	bh_lock_sock(sk);
465 	/* If too many ICMPs get dropped on busy
466 	 * servers this needs to be solved differently.
467 	 * We do take care of PMTU discovery (RFC1191) special case :
468 	 * we can receive locally generated ICMP messages while socket is held.
469 	 */
470 	if (sock_owned_by_user(sk)) {
471 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
472 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
473 	}
474 	if (sk->sk_state == TCP_CLOSE)
475 		goto out;
476 
477 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
478 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
479 		goto out;
480 	}
481 
482 	icsk = inet_csk(sk);
483 	tp = tcp_sk(sk);
484 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
485 	fastopen = tp->fastopen_rsk;
486 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
487 	if (sk->sk_state != TCP_LISTEN &&
488 	    !between(seq, snd_una, tp->snd_nxt)) {
489 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 		goto out;
491 	}
492 
493 	switch (type) {
494 	case ICMP_REDIRECT:
495 		if (!sock_owned_by_user(sk))
496 			do_redirect(icmp_skb, sk);
497 		goto out;
498 	case ICMP_SOURCE_QUENCH:
499 		/* Just silently ignore these. */
500 		goto out;
501 	case ICMP_PARAMETERPROB:
502 		err = EPROTO;
503 		break;
504 	case ICMP_DEST_UNREACH:
505 		if (code > NR_ICMP_UNREACH)
506 			goto out;
507 
508 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
509 			/* We are not interested in TCP_LISTEN and open_requests
510 			 * (SYN-ACKs send out by Linux are always <576bytes so
511 			 * they should go through unfragmented).
512 			 */
513 			if (sk->sk_state == TCP_LISTEN)
514 				goto out;
515 
516 			tp->mtu_info = info;
517 			if (!sock_owned_by_user(sk)) {
518 				tcp_v4_mtu_reduced(sk);
519 			} else {
520 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
521 					sock_hold(sk);
522 			}
523 			goto out;
524 		}
525 
526 		err = icmp_err_convert[code].errno;
527 		/* check if icmp_skb allows revert of backoff
528 		 * (see draft-zimmermann-tcp-lcd) */
529 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
530 			break;
531 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
532 		    !icsk->icsk_backoff || fastopen)
533 			break;
534 
535 		if (sock_owned_by_user(sk))
536 			break;
537 
538 		icsk->icsk_backoff--;
539 		icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
540 					       TCP_TIMEOUT_INIT;
541 		icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
542 
543 		skb = tcp_rtx_queue_head(sk);
544 		BUG_ON(!skb);
545 
546 		tcp_mstamp_refresh(tp);
547 		delta_us = (u32)(tp->tcp_mstamp - skb->skb_mstamp);
548 		remaining = icsk->icsk_rto -
549 			    usecs_to_jiffies(delta_us);
550 
551 		if (remaining > 0) {
552 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
553 						  remaining, TCP_RTO_MAX);
554 		} else {
555 			/* RTO revert clocked out retransmission.
556 			 * Will retransmit now */
557 			tcp_retransmit_timer(sk);
558 		}
559 
560 		break;
561 	case ICMP_TIME_EXCEEDED:
562 		err = EHOSTUNREACH;
563 		break;
564 	default:
565 		goto out;
566 	}
567 
568 	switch (sk->sk_state) {
569 	case TCP_SYN_SENT:
570 	case TCP_SYN_RECV:
571 		/* Only in fast or simultaneous open. If a fast open socket is
572 		 * is already accepted it is treated as a connected one below.
573 		 */
574 		if (fastopen && !fastopen->sk)
575 			break;
576 
577 		if (!sock_owned_by_user(sk)) {
578 			sk->sk_err = err;
579 
580 			sk->sk_error_report(sk);
581 
582 			tcp_done(sk);
583 		} else {
584 			sk->sk_err_soft = err;
585 		}
586 		goto out;
587 	}
588 
589 	/* If we've already connected we will keep trying
590 	 * until we time out, or the user gives up.
591 	 *
592 	 * rfc1122 4.2.3.9 allows to consider as hard errors
593 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
594 	 * but it is obsoleted by pmtu discovery).
595 	 *
596 	 * Note, that in modern internet, where routing is unreliable
597 	 * and in each dark corner broken firewalls sit, sending random
598 	 * errors ordered by their masters even this two messages finally lose
599 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
600 	 *
601 	 * Now we are in compliance with RFCs.
602 	 *							--ANK (980905)
603 	 */
604 
605 	inet = inet_sk(sk);
606 	if (!sock_owned_by_user(sk) && inet->recverr) {
607 		sk->sk_err = err;
608 		sk->sk_error_report(sk);
609 	} else	{ /* Only an error on timeout */
610 		sk->sk_err_soft = err;
611 	}
612 
613 out:
614 	bh_unlock_sock(sk);
615 	sock_put(sk);
616 }
617 
618 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
619 {
620 	struct tcphdr *th = tcp_hdr(skb);
621 
622 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
623 	skb->csum_start = skb_transport_header(skb) - skb->head;
624 	skb->csum_offset = offsetof(struct tcphdr, check);
625 }
626 
627 /* This routine computes an IPv4 TCP checksum. */
628 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
629 {
630 	const struct inet_sock *inet = inet_sk(sk);
631 
632 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
633 }
634 EXPORT_SYMBOL(tcp_v4_send_check);
635 
636 /*
637  *	This routine will send an RST to the other tcp.
638  *
639  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
640  *		      for reset.
641  *	Answer: if a packet caused RST, it is not for a socket
642  *		existing in our system, if it is matched to a socket,
643  *		it is just duplicate segment or bug in other side's TCP.
644  *		So that we build reply only basing on parameters
645  *		arrived with segment.
646  *	Exception: precedence violation. We do not implement it in any case.
647  */
648 
649 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
650 {
651 	const struct tcphdr *th = tcp_hdr(skb);
652 	struct {
653 		struct tcphdr th;
654 #ifdef CONFIG_TCP_MD5SIG
655 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
656 #endif
657 	} rep;
658 	struct ip_reply_arg arg;
659 #ifdef CONFIG_TCP_MD5SIG
660 	struct tcp_md5sig_key *key = NULL;
661 	const __u8 *hash_location = NULL;
662 	unsigned char newhash[16];
663 	int genhash;
664 	struct sock *sk1 = NULL;
665 #endif
666 	struct net *net;
667 	struct sock *ctl_sk;
668 
669 	/* Never send a reset in response to a reset. */
670 	if (th->rst)
671 		return;
672 
673 	/* If sk not NULL, it means we did a successful lookup and incoming
674 	 * route had to be correct. prequeue might have dropped our dst.
675 	 */
676 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
677 		return;
678 
679 	/* Swap the send and the receive. */
680 	memset(&rep, 0, sizeof(rep));
681 	rep.th.dest   = th->source;
682 	rep.th.source = th->dest;
683 	rep.th.doff   = sizeof(struct tcphdr) / 4;
684 	rep.th.rst    = 1;
685 
686 	if (th->ack) {
687 		rep.th.seq = th->ack_seq;
688 	} else {
689 		rep.th.ack = 1;
690 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
691 				       skb->len - (th->doff << 2));
692 	}
693 
694 	memset(&arg, 0, sizeof(arg));
695 	arg.iov[0].iov_base = (unsigned char *)&rep;
696 	arg.iov[0].iov_len  = sizeof(rep.th);
697 
698 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
699 #ifdef CONFIG_TCP_MD5SIG
700 	rcu_read_lock();
701 	hash_location = tcp_parse_md5sig_option(th);
702 	if (sk && sk_fullsock(sk)) {
703 		key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
704 					&ip_hdr(skb)->saddr, AF_INET);
705 	} else if (hash_location) {
706 		/*
707 		 * active side is lost. Try to find listening socket through
708 		 * source port, and then find md5 key through listening socket.
709 		 * we are not loose security here:
710 		 * Incoming packet is checked with md5 hash with finding key,
711 		 * no RST generated if md5 hash doesn't match.
712 		 */
713 		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
714 					     ip_hdr(skb)->saddr,
715 					     th->source, ip_hdr(skb)->daddr,
716 					     ntohs(th->source), inet_iif(skb),
717 					     tcp_v4_sdif(skb));
718 		/* don't send rst if it can't find key */
719 		if (!sk1)
720 			goto out;
721 
722 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
723 					&ip_hdr(skb)->saddr, AF_INET);
724 		if (!key)
725 			goto out;
726 
727 
728 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
729 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
730 			goto out;
731 
732 	}
733 
734 	if (key) {
735 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
736 				   (TCPOPT_NOP << 16) |
737 				   (TCPOPT_MD5SIG << 8) |
738 				   TCPOLEN_MD5SIG);
739 		/* Update length and the length the header thinks exists */
740 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
741 		rep.th.doff = arg.iov[0].iov_len / 4;
742 
743 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
744 				     key, ip_hdr(skb)->saddr,
745 				     ip_hdr(skb)->daddr, &rep.th);
746 	}
747 #endif
748 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
749 				      ip_hdr(skb)->saddr, /* XXX */
750 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
751 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
752 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
753 
754 	/* When socket is gone, all binding information is lost.
755 	 * routing might fail in this case. No choice here, if we choose to force
756 	 * input interface, we will misroute in case of asymmetric route.
757 	 */
758 	if (sk) {
759 		arg.bound_dev_if = sk->sk_bound_dev_if;
760 		if (sk_fullsock(sk))
761 			trace_tcp_send_reset(sk, skb);
762 	}
763 
764 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
765 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
766 
767 	arg.tos = ip_hdr(skb)->tos;
768 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
769 	local_bh_disable();
770 	ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk);
771 	if (sk)
772 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
773 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
774 	ip_send_unicast_reply(ctl_sk,
775 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
776 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
777 			      &arg, arg.iov[0].iov_len);
778 
779 	ctl_sk->sk_mark = 0;
780 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
781 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
782 	local_bh_enable();
783 
784 #ifdef CONFIG_TCP_MD5SIG
785 out:
786 	rcu_read_unlock();
787 #endif
788 }
789 
790 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
791    outside socket context is ugly, certainly. What can I do?
792  */
793 
794 static void tcp_v4_send_ack(const struct sock *sk,
795 			    struct sk_buff *skb, u32 seq, u32 ack,
796 			    u32 win, u32 tsval, u32 tsecr, int oif,
797 			    struct tcp_md5sig_key *key,
798 			    int reply_flags, u8 tos)
799 {
800 	const struct tcphdr *th = tcp_hdr(skb);
801 	struct {
802 		struct tcphdr th;
803 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
804 #ifdef CONFIG_TCP_MD5SIG
805 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
806 #endif
807 			];
808 	} rep;
809 	struct net *net = sock_net(sk);
810 	struct ip_reply_arg arg;
811 	struct sock *ctl_sk;
812 
813 	memset(&rep.th, 0, sizeof(struct tcphdr));
814 	memset(&arg, 0, sizeof(arg));
815 
816 	arg.iov[0].iov_base = (unsigned char *)&rep;
817 	arg.iov[0].iov_len  = sizeof(rep.th);
818 	if (tsecr) {
819 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
820 				   (TCPOPT_TIMESTAMP << 8) |
821 				   TCPOLEN_TIMESTAMP);
822 		rep.opt[1] = htonl(tsval);
823 		rep.opt[2] = htonl(tsecr);
824 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
825 	}
826 
827 	/* Swap the send and the receive. */
828 	rep.th.dest    = th->source;
829 	rep.th.source  = th->dest;
830 	rep.th.doff    = arg.iov[0].iov_len / 4;
831 	rep.th.seq     = htonl(seq);
832 	rep.th.ack_seq = htonl(ack);
833 	rep.th.ack     = 1;
834 	rep.th.window  = htons(win);
835 
836 #ifdef CONFIG_TCP_MD5SIG
837 	if (key) {
838 		int offset = (tsecr) ? 3 : 0;
839 
840 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
841 					  (TCPOPT_NOP << 16) |
842 					  (TCPOPT_MD5SIG << 8) |
843 					  TCPOLEN_MD5SIG);
844 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
845 		rep.th.doff = arg.iov[0].iov_len/4;
846 
847 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
848 				    key, ip_hdr(skb)->saddr,
849 				    ip_hdr(skb)->daddr, &rep.th);
850 	}
851 #endif
852 	arg.flags = reply_flags;
853 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
854 				      ip_hdr(skb)->saddr, /* XXX */
855 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
856 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
857 	if (oif)
858 		arg.bound_dev_if = oif;
859 	arg.tos = tos;
860 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
861 	local_bh_disable();
862 	ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk);
863 	if (sk)
864 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
865 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
866 	ip_send_unicast_reply(ctl_sk,
867 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
868 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
869 			      &arg, arg.iov[0].iov_len);
870 
871 	ctl_sk->sk_mark = 0;
872 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
873 	local_bh_enable();
874 }
875 
876 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
877 {
878 	struct inet_timewait_sock *tw = inet_twsk(sk);
879 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
880 
881 	tcp_v4_send_ack(sk, skb,
882 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
883 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
884 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
885 			tcptw->tw_ts_recent,
886 			tw->tw_bound_dev_if,
887 			tcp_twsk_md5_key(tcptw),
888 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
889 			tw->tw_tos
890 			);
891 
892 	inet_twsk_put(tw);
893 }
894 
895 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
896 				  struct request_sock *req)
897 {
898 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
899 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
900 	 */
901 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
902 					     tcp_sk(sk)->snd_nxt;
903 
904 	/* RFC 7323 2.3
905 	 * The window field (SEG.WND) of every outgoing segment, with the
906 	 * exception of <SYN> segments, MUST be right-shifted by
907 	 * Rcv.Wind.Shift bits:
908 	 */
909 	tcp_v4_send_ack(sk, skb, seq,
910 			tcp_rsk(req)->rcv_nxt,
911 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
912 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
913 			req->ts_recent,
914 			0,
915 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
916 					  AF_INET),
917 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
918 			ip_hdr(skb)->tos);
919 }
920 
921 /*
922  *	Send a SYN-ACK after having received a SYN.
923  *	This still operates on a request_sock only, not on a big
924  *	socket.
925  */
926 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
927 			      struct flowi *fl,
928 			      struct request_sock *req,
929 			      struct tcp_fastopen_cookie *foc,
930 			      enum tcp_synack_type synack_type)
931 {
932 	const struct inet_request_sock *ireq = inet_rsk(req);
933 	struct flowi4 fl4;
934 	int err = -1;
935 	struct sk_buff *skb;
936 
937 	/* First, grab a route. */
938 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
939 		return -1;
940 
941 	skb = tcp_make_synack(sk, dst, req, foc, synack_type);
942 
943 	if (skb) {
944 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
945 
946 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
947 					    ireq->ir_rmt_addr,
948 					    ireq_opt_deref(ireq));
949 		err = net_xmit_eval(err);
950 	}
951 
952 	return err;
953 }
954 
955 /*
956  *	IPv4 request_sock destructor.
957  */
958 static void tcp_v4_reqsk_destructor(struct request_sock *req)
959 {
960 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
961 }
962 
963 #ifdef CONFIG_TCP_MD5SIG
964 /*
965  * RFC2385 MD5 checksumming requires a mapping of
966  * IP address->MD5 Key.
967  * We need to maintain these in the sk structure.
968  */
969 
970 /* Find the Key structure for an address.  */
971 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
972 					 const union tcp_md5_addr *addr,
973 					 int family)
974 {
975 	const struct tcp_sock *tp = tcp_sk(sk);
976 	struct tcp_md5sig_key *key;
977 	const struct tcp_md5sig_info *md5sig;
978 	__be32 mask;
979 	struct tcp_md5sig_key *best_match = NULL;
980 	bool match;
981 
982 	/* caller either holds rcu_read_lock() or socket lock */
983 	md5sig = rcu_dereference_check(tp->md5sig_info,
984 				       lockdep_sock_is_held(sk));
985 	if (!md5sig)
986 		return NULL;
987 
988 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
989 		if (key->family != family)
990 			continue;
991 
992 		if (family == AF_INET) {
993 			mask = inet_make_mask(key->prefixlen);
994 			match = (key->addr.a4.s_addr & mask) ==
995 				(addr->a4.s_addr & mask);
996 #if IS_ENABLED(CONFIG_IPV6)
997 		} else if (family == AF_INET6) {
998 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
999 						  key->prefixlen);
1000 #endif
1001 		} else {
1002 			match = false;
1003 		}
1004 
1005 		if (match && (!best_match ||
1006 			      key->prefixlen > best_match->prefixlen))
1007 			best_match = key;
1008 	}
1009 	return best_match;
1010 }
1011 EXPORT_SYMBOL(tcp_md5_do_lookup);
1012 
1013 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1014 						      const union tcp_md5_addr *addr,
1015 						      int family, u8 prefixlen)
1016 {
1017 	const struct tcp_sock *tp = tcp_sk(sk);
1018 	struct tcp_md5sig_key *key;
1019 	unsigned int size = sizeof(struct in_addr);
1020 	const struct tcp_md5sig_info *md5sig;
1021 
1022 	/* caller either holds rcu_read_lock() or socket lock */
1023 	md5sig = rcu_dereference_check(tp->md5sig_info,
1024 				       lockdep_sock_is_held(sk));
1025 	if (!md5sig)
1026 		return NULL;
1027 #if IS_ENABLED(CONFIG_IPV6)
1028 	if (family == AF_INET6)
1029 		size = sizeof(struct in6_addr);
1030 #endif
1031 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
1032 		if (key->family != family)
1033 			continue;
1034 		if (!memcmp(&key->addr, addr, size) &&
1035 		    key->prefixlen == prefixlen)
1036 			return key;
1037 	}
1038 	return NULL;
1039 }
1040 
1041 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1042 					 const struct sock *addr_sk)
1043 {
1044 	const union tcp_md5_addr *addr;
1045 
1046 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1047 	return tcp_md5_do_lookup(sk, addr, AF_INET);
1048 }
1049 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1050 
1051 /* This can be called on a newly created socket, from other files */
1052 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1053 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1054 		   gfp_t gfp)
1055 {
1056 	/* Add Key to the list */
1057 	struct tcp_md5sig_key *key;
1058 	struct tcp_sock *tp = tcp_sk(sk);
1059 	struct tcp_md5sig_info *md5sig;
1060 
1061 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1062 	if (key) {
1063 		/* Pre-existing entry - just update that one. */
1064 		memcpy(key->key, newkey, newkeylen);
1065 		key->keylen = newkeylen;
1066 		return 0;
1067 	}
1068 
1069 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1070 					   lockdep_sock_is_held(sk));
1071 	if (!md5sig) {
1072 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1073 		if (!md5sig)
1074 			return -ENOMEM;
1075 
1076 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1077 		INIT_HLIST_HEAD(&md5sig->head);
1078 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1079 	}
1080 
1081 	key = sock_kmalloc(sk, sizeof(*key), gfp);
1082 	if (!key)
1083 		return -ENOMEM;
1084 	if (!tcp_alloc_md5sig_pool()) {
1085 		sock_kfree_s(sk, key, sizeof(*key));
1086 		return -ENOMEM;
1087 	}
1088 
1089 	memcpy(key->key, newkey, newkeylen);
1090 	key->keylen = newkeylen;
1091 	key->family = family;
1092 	key->prefixlen = prefixlen;
1093 	memcpy(&key->addr, addr,
1094 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1095 				      sizeof(struct in_addr));
1096 	hlist_add_head_rcu(&key->node, &md5sig->head);
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL(tcp_md5_do_add);
1100 
1101 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1102 		   u8 prefixlen)
1103 {
1104 	struct tcp_md5sig_key *key;
1105 
1106 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen);
1107 	if (!key)
1108 		return -ENOENT;
1109 	hlist_del_rcu(&key->node);
1110 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1111 	kfree_rcu(key, rcu);
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL(tcp_md5_do_del);
1115 
1116 static void tcp_clear_md5_list(struct sock *sk)
1117 {
1118 	struct tcp_sock *tp = tcp_sk(sk);
1119 	struct tcp_md5sig_key *key;
1120 	struct hlist_node *n;
1121 	struct tcp_md5sig_info *md5sig;
1122 
1123 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1124 
1125 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1126 		hlist_del_rcu(&key->node);
1127 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1128 		kfree_rcu(key, rcu);
1129 	}
1130 }
1131 
1132 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1133 				 char __user *optval, int optlen)
1134 {
1135 	struct tcp_md5sig cmd;
1136 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1137 	u8 prefixlen = 32;
1138 
1139 	if (optlen < sizeof(cmd))
1140 		return -EINVAL;
1141 
1142 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1143 		return -EFAULT;
1144 
1145 	if (sin->sin_family != AF_INET)
1146 		return -EINVAL;
1147 
1148 	if (optname == TCP_MD5SIG_EXT &&
1149 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1150 		prefixlen = cmd.tcpm_prefixlen;
1151 		if (prefixlen > 32)
1152 			return -EINVAL;
1153 	}
1154 
1155 	if (!cmd.tcpm_keylen)
1156 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1157 				      AF_INET, prefixlen);
1158 
1159 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1160 		return -EINVAL;
1161 
1162 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1163 			      AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen,
1164 			      GFP_KERNEL);
1165 }
1166 
1167 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1168 				   __be32 daddr, __be32 saddr,
1169 				   const struct tcphdr *th, int nbytes)
1170 {
1171 	struct tcp4_pseudohdr *bp;
1172 	struct scatterlist sg;
1173 	struct tcphdr *_th;
1174 
1175 	bp = hp->scratch;
1176 	bp->saddr = saddr;
1177 	bp->daddr = daddr;
1178 	bp->pad = 0;
1179 	bp->protocol = IPPROTO_TCP;
1180 	bp->len = cpu_to_be16(nbytes);
1181 
1182 	_th = (struct tcphdr *)(bp + 1);
1183 	memcpy(_th, th, sizeof(*th));
1184 	_th->check = 0;
1185 
1186 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1187 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1188 				sizeof(*bp) + sizeof(*th));
1189 	return crypto_ahash_update(hp->md5_req);
1190 }
1191 
1192 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1193 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1194 {
1195 	struct tcp_md5sig_pool *hp;
1196 	struct ahash_request *req;
1197 
1198 	hp = tcp_get_md5sig_pool();
1199 	if (!hp)
1200 		goto clear_hash_noput;
1201 	req = hp->md5_req;
1202 
1203 	if (crypto_ahash_init(req))
1204 		goto clear_hash;
1205 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1206 		goto clear_hash;
1207 	if (tcp_md5_hash_key(hp, key))
1208 		goto clear_hash;
1209 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1210 	if (crypto_ahash_final(req))
1211 		goto clear_hash;
1212 
1213 	tcp_put_md5sig_pool();
1214 	return 0;
1215 
1216 clear_hash:
1217 	tcp_put_md5sig_pool();
1218 clear_hash_noput:
1219 	memset(md5_hash, 0, 16);
1220 	return 1;
1221 }
1222 
1223 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1224 			const struct sock *sk,
1225 			const struct sk_buff *skb)
1226 {
1227 	struct tcp_md5sig_pool *hp;
1228 	struct ahash_request *req;
1229 	const struct tcphdr *th = tcp_hdr(skb);
1230 	__be32 saddr, daddr;
1231 
1232 	if (sk) { /* valid for establish/request sockets */
1233 		saddr = sk->sk_rcv_saddr;
1234 		daddr = sk->sk_daddr;
1235 	} else {
1236 		const struct iphdr *iph = ip_hdr(skb);
1237 		saddr = iph->saddr;
1238 		daddr = iph->daddr;
1239 	}
1240 
1241 	hp = tcp_get_md5sig_pool();
1242 	if (!hp)
1243 		goto clear_hash_noput;
1244 	req = hp->md5_req;
1245 
1246 	if (crypto_ahash_init(req))
1247 		goto clear_hash;
1248 
1249 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1250 		goto clear_hash;
1251 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1252 		goto clear_hash;
1253 	if (tcp_md5_hash_key(hp, key))
1254 		goto clear_hash;
1255 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1256 	if (crypto_ahash_final(req))
1257 		goto clear_hash;
1258 
1259 	tcp_put_md5sig_pool();
1260 	return 0;
1261 
1262 clear_hash:
1263 	tcp_put_md5sig_pool();
1264 clear_hash_noput:
1265 	memset(md5_hash, 0, 16);
1266 	return 1;
1267 }
1268 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1269 
1270 #endif
1271 
1272 /* Called with rcu_read_lock() */
1273 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1274 				    const struct sk_buff *skb)
1275 {
1276 #ifdef CONFIG_TCP_MD5SIG
1277 	/*
1278 	 * This gets called for each TCP segment that arrives
1279 	 * so we want to be efficient.
1280 	 * We have 3 drop cases:
1281 	 * o No MD5 hash and one expected.
1282 	 * o MD5 hash and we're not expecting one.
1283 	 * o MD5 hash and its wrong.
1284 	 */
1285 	const __u8 *hash_location = NULL;
1286 	struct tcp_md5sig_key *hash_expected;
1287 	const struct iphdr *iph = ip_hdr(skb);
1288 	const struct tcphdr *th = tcp_hdr(skb);
1289 	int genhash;
1290 	unsigned char newhash[16];
1291 
1292 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1293 					  AF_INET);
1294 	hash_location = tcp_parse_md5sig_option(th);
1295 
1296 	/* We've parsed the options - do we have a hash? */
1297 	if (!hash_expected && !hash_location)
1298 		return false;
1299 
1300 	if (hash_expected && !hash_location) {
1301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1302 		return true;
1303 	}
1304 
1305 	if (!hash_expected && hash_location) {
1306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1307 		return true;
1308 	}
1309 
1310 	/* Okay, so this is hash_expected and hash_location -
1311 	 * so we need to calculate the checksum.
1312 	 */
1313 	genhash = tcp_v4_md5_hash_skb(newhash,
1314 				      hash_expected,
1315 				      NULL, skb);
1316 
1317 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1318 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1319 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1320 				     &iph->saddr, ntohs(th->source),
1321 				     &iph->daddr, ntohs(th->dest),
1322 				     genhash ? " tcp_v4_calc_md5_hash failed"
1323 				     : "");
1324 		return true;
1325 	}
1326 	return false;
1327 #endif
1328 	return false;
1329 }
1330 
1331 static void tcp_v4_init_req(struct request_sock *req,
1332 			    const struct sock *sk_listener,
1333 			    struct sk_buff *skb)
1334 {
1335 	struct inet_request_sock *ireq = inet_rsk(req);
1336 	struct net *net = sock_net(sk_listener);
1337 
1338 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1339 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1340 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1341 }
1342 
1343 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1344 					  struct flowi *fl,
1345 					  const struct request_sock *req)
1346 {
1347 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1348 }
1349 
1350 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1351 	.family		=	PF_INET,
1352 	.obj_size	=	sizeof(struct tcp_request_sock),
1353 	.rtx_syn_ack	=	tcp_rtx_synack,
1354 	.send_ack	=	tcp_v4_reqsk_send_ack,
1355 	.destructor	=	tcp_v4_reqsk_destructor,
1356 	.send_reset	=	tcp_v4_send_reset,
1357 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1358 };
1359 
1360 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1361 	.mss_clamp	=	TCP_MSS_DEFAULT,
1362 #ifdef CONFIG_TCP_MD5SIG
1363 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1364 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1365 #endif
1366 	.init_req	=	tcp_v4_init_req,
1367 #ifdef CONFIG_SYN_COOKIES
1368 	.cookie_init_seq =	cookie_v4_init_sequence,
1369 #endif
1370 	.route_req	=	tcp_v4_route_req,
1371 	.init_seq	=	tcp_v4_init_seq,
1372 	.init_ts_off	=	tcp_v4_init_ts_off,
1373 	.send_synack	=	tcp_v4_send_synack,
1374 };
1375 
1376 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1377 {
1378 	/* Never answer to SYNs send to broadcast or multicast */
1379 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1380 		goto drop;
1381 
1382 	return tcp_conn_request(&tcp_request_sock_ops,
1383 				&tcp_request_sock_ipv4_ops, sk, skb);
1384 
1385 drop:
1386 	tcp_listendrop(sk);
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL(tcp_v4_conn_request);
1390 
1391 
1392 /*
1393  * The three way handshake has completed - we got a valid synack -
1394  * now create the new socket.
1395  */
1396 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1397 				  struct request_sock *req,
1398 				  struct dst_entry *dst,
1399 				  struct request_sock *req_unhash,
1400 				  bool *own_req)
1401 {
1402 	struct inet_request_sock *ireq;
1403 	struct inet_sock *newinet;
1404 	struct tcp_sock *newtp;
1405 	struct sock *newsk;
1406 #ifdef CONFIG_TCP_MD5SIG
1407 	struct tcp_md5sig_key *key;
1408 #endif
1409 	struct ip_options_rcu *inet_opt;
1410 
1411 	if (sk_acceptq_is_full(sk))
1412 		goto exit_overflow;
1413 
1414 	newsk = tcp_create_openreq_child(sk, req, skb);
1415 	if (!newsk)
1416 		goto exit_nonewsk;
1417 
1418 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1419 	inet_sk_rx_dst_set(newsk, skb);
1420 
1421 	newtp		      = tcp_sk(newsk);
1422 	newinet		      = inet_sk(newsk);
1423 	ireq		      = inet_rsk(req);
1424 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1425 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1426 	newsk->sk_bound_dev_if = ireq->ir_iif;
1427 	newinet->inet_saddr   = ireq->ir_loc_addr;
1428 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1429 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1430 	newinet->mc_index     = inet_iif(skb);
1431 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1432 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1433 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1434 	if (inet_opt)
1435 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1436 	newinet->inet_id = newtp->write_seq ^ jiffies;
1437 
1438 	if (!dst) {
1439 		dst = inet_csk_route_child_sock(sk, newsk, req);
1440 		if (!dst)
1441 			goto put_and_exit;
1442 	} else {
1443 		/* syncookie case : see end of cookie_v4_check() */
1444 	}
1445 	sk_setup_caps(newsk, dst);
1446 
1447 	tcp_ca_openreq_child(newsk, dst);
1448 
1449 	tcp_sync_mss(newsk, dst_mtu(dst));
1450 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1451 
1452 	tcp_initialize_rcv_mss(newsk);
1453 
1454 #ifdef CONFIG_TCP_MD5SIG
1455 	/* Copy over the MD5 key from the original socket */
1456 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1457 				AF_INET);
1458 	if (key) {
1459 		/*
1460 		 * We're using one, so create a matching key
1461 		 * on the newsk structure. If we fail to get
1462 		 * memory, then we end up not copying the key
1463 		 * across. Shucks.
1464 		 */
1465 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1466 			       AF_INET, 32, key->key, key->keylen, GFP_ATOMIC);
1467 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1468 	}
1469 #endif
1470 
1471 	if (__inet_inherit_port(sk, newsk) < 0)
1472 		goto put_and_exit;
1473 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1474 	if (likely(*own_req)) {
1475 		tcp_move_syn(newtp, req);
1476 		ireq->ireq_opt = NULL;
1477 	} else {
1478 		newinet->inet_opt = NULL;
1479 	}
1480 	return newsk;
1481 
1482 exit_overflow:
1483 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1484 exit_nonewsk:
1485 	dst_release(dst);
1486 exit:
1487 	tcp_listendrop(sk);
1488 	return NULL;
1489 put_and_exit:
1490 	newinet->inet_opt = NULL;
1491 	inet_csk_prepare_forced_close(newsk);
1492 	tcp_done(newsk);
1493 	goto exit;
1494 }
1495 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1496 
1497 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1498 {
1499 #ifdef CONFIG_SYN_COOKIES
1500 	const struct tcphdr *th = tcp_hdr(skb);
1501 
1502 	if (!th->syn)
1503 		sk = cookie_v4_check(sk, skb);
1504 #endif
1505 	return sk;
1506 }
1507 
1508 /* The socket must have it's spinlock held when we get
1509  * here, unless it is a TCP_LISTEN socket.
1510  *
1511  * We have a potential double-lock case here, so even when
1512  * doing backlog processing we use the BH locking scheme.
1513  * This is because we cannot sleep with the original spinlock
1514  * held.
1515  */
1516 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1517 {
1518 	struct sock *rsk;
1519 
1520 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1521 		struct dst_entry *dst = sk->sk_rx_dst;
1522 
1523 		sock_rps_save_rxhash(sk, skb);
1524 		sk_mark_napi_id(sk, skb);
1525 		if (dst) {
1526 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1527 			    !dst->ops->check(dst, 0)) {
1528 				dst_release(dst);
1529 				sk->sk_rx_dst = NULL;
1530 			}
1531 		}
1532 		tcp_rcv_established(sk, skb);
1533 		return 0;
1534 	}
1535 
1536 	if (tcp_checksum_complete(skb))
1537 		goto csum_err;
1538 
1539 	if (sk->sk_state == TCP_LISTEN) {
1540 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1541 
1542 		if (!nsk)
1543 			goto discard;
1544 		if (nsk != sk) {
1545 			if (tcp_child_process(sk, nsk, skb)) {
1546 				rsk = nsk;
1547 				goto reset;
1548 			}
1549 			return 0;
1550 		}
1551 	} else
1552 		sock_rps_save_rxhash(sk, skb);
1553 
1554 	if (tcp_rcv_state_process(sk, skb)) {
1555 		rsk = sk;
1556 		goto reset;
1557 	}
1558 	return 0;
1559 
1560 reset:
1561 	tcp_v4_send_reset(rsk, skb);
1562 discard:
1563 	kfree_skb(skb);
1564 	/* Be careful here. If this function gets more complicated and
1565 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1566 	 * might be destroyed here. This current version compiles correctly,
1567 	 * but you have been warned.
1568 	 */
1569 	return 0;
1570 
1571 csum_err:
1572 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1573 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1574 	goto discard;
1575 }
1576 EXPORT_SYMBOL(tcp_v4_do_rcv);
1577 
1578 int tcp_v4_early_demux(struct sk_buff *skb)
1579 {
1580 	const struct iphdr *iph;
1581 	const struct tcphdr *th;
1582 	struct sock *sk;
1583 
1584 	if (skb->pkt_type != PACKET_HOST)
1585 		return 0;
1586 
1587 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1588 		return 0;
1589 
1590 	iph = ip_hdr(skb);
1591 	th = tcp_hdr(skb);
1592 
1593 	if (th->doff < sizeof(struct tcphdr) / 4)
1594 		return 0;
1595 
1596 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1597 				       iph->saddr, th->source,
1598 				       iph->daddr, ntohs(th->dest),
1599 				       skb->skb_iif, inet_sdif(skb));
1600 	if (sk) {
1601 		skb->sk = sk;
1602 		skb->destructor = sock_edemux;
1603 		if (sk_fullsock(sk)) {
1604 			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1605 
1606 			if (dst)
1607 				dst = dst_check(dst, 0);
1608 			if (dst &&
1609 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1610 				skb_dst_set_noref(skb, dst);
1611 		}
1612 	}
1613 	return 0;
1614 }
1615 
1616 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1617 {
1618 	u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1619 
1620 	/* Only socket owner can try to collapse/prune rx queues
1621 	 * to reduce memory overhead, so add a little headroom here.
1622 	 * Few sockets backlog are possibly concurrently non empty.
1623 	 */
1624 	limit += 64*1024;
1625 
1626 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1627 	 * we can fix skb->truesize to its real value to avoid future drops.
1628 	 * This is valid because skb is not yet charged to the socket.
1629 	 * It has been noticed pure SACK packets were sometimes dropped
1630 	 * (if cooked by drivers without copybreak feature).
1631 	 */
1632 	skb_condense(skb);
1633 
1634 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1635 		bh_unlock_sock(sk);
1636 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1637 		return true;
1638 	}
1639 	return false;
1640 }
1641 EXPORT_SYMBOL(tcp_add_backlog);
1642 
1643 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1644 {
1645 	struct tcphdr *th = (struct tcphdr *)skb->data;
1646 	unsigned int eaten = skb->len;
1647 	int err;
1648 
1649 	err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1650 	if (!err) {
1651 		eaten -= skb->len;
1652 		TCP_SKB_CB(skb)->end_seq -= eaten;
1653 	}
1654 	return err;
1655 }
1656 EXPORT_SYMBOL(tcp_filter);
1657 
1658 static void tcp_v4_restore_cb(struct sk_buff *skb)
1659 {
1660 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1661 		sizeof(struct inet_skb_parm));
1662 }
1663 
1664 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1665 			   const struct tcphdr *th)
1666 {
1667 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1668 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1669 	 */
1670 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1671 		sizeof(struct inet_skb_parm));
1672 	barrier();
1673 
1674 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1675 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1676 				    skb->len - th->doff * 4);
1677 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1678 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1679 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1680 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1681 	TCP_SKB_CB(skb)->sacked	 = 0;
1682 	TCP_SKB_CB(skb)->has_rxtstamp =
1683 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1684 }
1685 
1686 /*
1687  *	From tcp_input.c
1688  */
1689 
1690 int tcp_v4_rcv(struct sk_buff *skb)
1691 {
1692 	struct net *net = dev_net(skb->dev);
1693 	int sdif = inet_sdif(skb);
1694 	const struct iphdr *iph;
1695 	const struct tcphdr *th;
1696 	bool refcounted;
1697 	struct sock *sk;
1698 	int ret;
1699 
1700 	if (skb->pkt_type != PACKET_HOST)
1701 		goto discard_it;
1702 
1703 	/* Count it even if it's bad */
1704 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1705 
1706 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1707 		goto discard_it;
1708 
1709 	th = (const struct tcphdr *)skb->data;
1710 
1711 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1712 		goto bad_packet;
1713 	if (!pskb_may_pull(skb, th->doff * 4))
1714 		goto discard_it;
1715 
1716 	/* An explanation is required here, I think.
1717 	 * Packet length and doff are validated by header prediction,
1718 	 * provided case of th->doff==0 is eliminated.
1719 	 * So, we defer the checks. */
1720 
1721 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1722 		goto csum_error;
1723 
1724 	th = (const struct tcphdr *)skb->data;
1725 	iph = ip_hdr(skb);
1726 lookup:
1727 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1728 			       th->dest, sdif, &refcounted);
1729 	if (!sk)
1730 		goto no_tcp_socket;
1731 
1732 process:
1733 	if (sk->sk_state == TCP_TIME_WAIT)
1734 		goto do_time_wait;
1735 
1736 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1737 		struct request_sock *req = inet_reqsk(sk);
1738 		bool req_stolen = false;
1739 		struct sock *nsk;
1740 
1741 		sk = req->rsk_listener;
1742 		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1743 			sk_drops_add(sk, skb);
1744 			reqsk_put(req);
1745 			goto discard_it;
1746 		}
1747 		if (tcp_checksum_complete(skb)) {
1748 			reqsk_put(req);
1749 			goto csum_error;
1750 		}
1751 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1752 			inet_csk_reqsk_queue_drop_and_put(sk, req);
1753 			goto lookup;
1754 		}
1755 		/* We own a reference on the listener, increase it again
1756 		 * as we might lose it too soon.
1757 		 */
1758 		sock_hold(sk);
1759 		refcounted = true;
1760 		nsk = NULL;
1761 		if (!tcp_filter(sk, skb)) {
1762 			th = (const struct tcphdr *)skb->data;
1763 			iph = ip_hdr(skb);
1764 			tcp_v4_fill_cb(skb, iph, th);
1765 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
1766 		}
1767 		if (!nsk) {
1768 			reqsk_put(req);
1769 			if (req_stolen) {
1770 				/* Another cpu got exclusive access to req
1771 				 * and created a full blown socket.
1772 				 * Try to feed this packet to this socket
1773 				 * instead of discarding it.
1774 				 */
1775 				tcp_v4_restore_cb(skb);
1776 				sock_put(sk);
1777 				goto lookup;
1778 			}
1779 			goto discard_and_relse;
1780 		}
1781 		if (nsk == sk) {
1782 			reqsk_put(req);
1783 			tcp_v4_restore_cb(skb);
1784 		} else if (tcp_child_process(sk, nsk, skb)) {
1785 			tcp_v4_send_reset(nsk, skb);
1786 			goto discard_and_relse;
1787 		} else {
1788 			sock_put(sk);
1789 			return 0;
1790 		}
1791 	}
1792 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1793 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1794 		goto discard_and_relse;
1795 	}
1796 
1797 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1798 		goto discard_and_relse;
1799 
1800 	if (tcp_v4_inbound_md5_hash(sk, skb))
1801 		goto discard_and_relse;
1802 
1803 	nf_reset(skb);
1804 
1805 	if (tcp_filter(sk, skb))
1806 		goto discard_and_relse;
1807 	th = (const struct tcphdr *)skb->data;
1808 	iph = ip_hdr(skb);
1809 	tcp_v4_fill_cb(skb, iph, th);
1810 
1811 	skb->dev = NULL;
1812 
1813 	if (sk->sk_state == TCP_LISTEN) {
1814 		ret = tcp_v4_do_rcv(sk, skb);
1815 		goto put_and_return;
1816 	}
1817 
1818 	sk_incoming_cpu_update(sk);
1819 
1820 	bh_lock_sock_nested(sk);
1821 	tcp_segs_in(tcp_sk(sk), skb);
1822 	ret = 0;
1823 	if (!sock_owned_by_user(sk)) {
1824 		ret = tcp_v4_do_rcv(sk, skb);
1825 	} else if (tcp_add_backlog(sk, skb)) {
1826 		goto discard_and_relse;
1827 	}
1828 	bh_unlock_sock(sk);
1829 
1830 put_and_return:
1831 	if (refcounted)
1832 		sock_put(sk);
1833 
1834 	return ret;
1835 
1836 no_tcp_socket:
1837 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1838 		goto discard_it;
1839 
1840 	tcp_v4_fill_cb(skb, iph, th);
1841 
1842 	if (tcp_checksum_complete(skb)) {
1843 csum_error:
1844 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1845 bad_packet:
1846 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
1847 	} else {
1848 		tcp_v4_send_reset(NULL, skb);
1849 	}
1850 
1851 discard_it:
1852 	/* Discard frame. */
1853 	kfree_skb(skb);
1854 	return 0;
1855 
1856 discard_and_relse:
1857 	sk_drops_add(sk, skb);
1858 	if (refcounted)
1859 		sock_put(sk);
1860 	goto discard_it;
1861 
1862 do_time_wait:
1863 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1864 		inet_twsk_put(inet_twsk(sk));
1865 		goto discard_it;
1866 	}
1867 
1868 	tcp_v4_fill_cb(skb, iph, th);
1869 
1870 	if (tcp_checksum_complete(skb)) {
1871 		inet_twsk_put(inet_twsk(sk));
1872 		goto csum_error;
1873 	}
1874 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1875 	case TCP_TW_SYN: {
1876 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1877 							&tcp_hashinfo, skb,
1878 							__tcp_hdrlen(th),
1879 							iph->saddr, th->source,
1880 							iph->daddr, th->dest,
1881 							inet_iif(skb),
1882 							sdif);
1883 		if (sk2) {
1884 			inet_twsk_deschedule_put(inet_twsk(sk));
1885 			sk = sk2;
1886 			tcp_v4_restore_cb(skb);
1887 			refcounted = false;
1888 			goto process;
1889 		}
1890 	}
1891 		/* to ACK */
1892 		/* fall through */
1893 	case TCP_TW_ACK:
1894 		tcp_v4_timewait_ack(sk, skb);
1895 		break;
1896 	case TCP_TW_RST:
1897 		tcp_v4_send_reset(sk, skb);
1898 		inet_twsk_deschedule_put(inet_twsk(sk));
1899 		goto discard_it;
1900 	case TCP_TW_SUCCESS:;
1901 	}
1902 	goto discard_it;
1903 }
1904 
1905 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1906 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1907 	.twsk_unique	= tcp_twsk_unique,
1908 	.twsk_destructor= tcp_twsk_destructor,
1909 };
1910 
1911 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1912 {
1913 	struct dst_entry *dst = skb_dst(skb);
1914 
1915 	if (dst && dst_hold_safe(dst)) {
1916 		sk->sk_rx_dst = dst;
1917 		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1918 	}
1919 }
1920 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1921 
1922 const struct inet_connection_sock_af_ops ipv4_specific = {
1923 	.queue_xmit	   = ip_queue_xmit,
1924 	.send_check	   = tcp_v4_send_check,
1925 	.rebuild_header	   = inet_sk_rebuild_header,
1926 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
1927 	.conn_request	   = tcp_v4_conn_request,
1928 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1929 	.net_header_len	   = sizeof(struct iphdr),
1930 	.setsockopt	   = ip_setsockopt,
1931 	.getsockopt	   = ip_getsockopt,
1932 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1933 	.sockaddr_len	   = sizeof(struct sockaddr_in),
1934 #ifdef CONFIG_COMPAT
1935 	.compat_setsockopt = compat_ip_setsockopt,
1936 	.compat_getsockopt = compat_ip_getsockopt,
1937 #endif
1938 	.mtu_reduced	   = tcp_v4_mtu_reduced,
1939 };
1940 EXPORT_SYMBOL(ipv4_specific);
1941 
1942 #ifdef CONFIG_TCP_MD5SIG
1943 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1944 	.md5_lookup		= tcp_v4_md5_lookup,
1945 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1946 	.md5_parse		= tcp_v4_parse_md5_keys,
1947 };
1948 #endif
1949 
1950 /* NOTE: A lot of things set to zero explicitly by call to
1951  *       sk_alloc() so need not be done here.
1952  */
1953 static int tcp_v4_init_sock(struct sock *sk)
1954 {
1955 	struct inet_connection_sock *icsk = inet_csk(sk);
1956 
1957 	tcp_init_sock(sk);
1958 
1959 	icsk->icsk_af_ops = &ipv4_specific;
1960 
1961 #ifdef CONFIG_TCP_MD5SIG
1962 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1963 #endif
1964 
1965 	return 0;
1966 }
1967 
1968 void tcp_v4_destroy_sock(struct sock *sk)
1969 {
1970 	struct tcp_sock *tp = tcp_sk(sk);
1971 
1972 	trace_tcp_destroy_sock(sk);
1973 
1974 	tcp_clear_xmit_timers(sk);
1975 
1976 	tcp_cleanup_congestion_control(sk);
1977 
1978 	tcp_cleanup_ulp(sk);
1979 
1980 	/* Cleanup up the write buffer. */
1981 	tcp_write_queue_purge(sk);
1982 
1983 	/* Check if we want to disable active TFO */
1984 	tcp_fastopen_active_disable_ofo_check(sk);
1985 
1986 	/* Cleans up our, hopefully empty, out_of_order_queue. */
1987 	skb_rbtree_purge(&tp->out_of_order_queue);
1988 
1989 #ifdef CONFIG_TCP_MD5SIG
1990 	/* Clean up the MD5 key list, if any */
1991 	if (tp->md5sig_info) {
1992 		tcp_clear_md5_list(sk);
1993 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
1994 		tp->md5sig_info = NULL;
1995 	}
1996 #endif
1997 
1998 	/* Clean up a referenced TCP bind bucket. */
1999 	if (inet_csk(sk)->icsk_bind_hash)
2000 		inet_put_port(sk);
2001 
2002 	BUG_ON(tp->fastopen_rsk);
2003 
2004 	/* If socket is aborted during connect operation */
2005 	tcp_free_fastopen_req(tp);
2006 	tcp_fastopen_destroy_cipher(sk);
2007 	tcp_saved_syn_free(tp);
2008 
2009 	sk_sockets_allocated_dec(sk);
2010 }
2011 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2012 
2013 #ifdef CONFIG_PROC_FS
2014 /* Proc filesystem TCP sock list dumping. */
2015 
2016 /*
2017  * Get next listener socket follow cur.  If cur is NULL, get first socket
2018  * starting from bucket given in st->bucket; when st->bucket is zero the
2019  * very first socket in the hash table is returned.
2020  */
2021 static void *listening_get_next(struct seq_file *seq, void *cur)
2022 {
2023 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2024 	struct tcp_iter_state *st = seq->private;
2025 	struct net *net = seq_file_net(seq);
2026 	struct inet_listen_hashbucket *ilb;
2027 	struct sock *sk = cur;
2028 
2029 	if (!sk) {
2030 get_head:
2031 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2032 		spin_lock(&ilb->lock);
2033 		sk = sk_head(&ilb->head);
2034 		st->offset = 0;
2035 		goto get_sk;
2036 	}
2037 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2038 	++st->num;
2039 	++st->offset;
2040 
2041 	sk = sk_next(sk);
2042 get_sk:
2043 	sk_for_each_from(sk) {
2044 		if (!net_eq(sock_net(sk), net))
2045 			continue;
2046 		if (sk->sk_family == afinfo->family)
2047 			return sk;
2048 	}
2049 	spin_unlock(&ilb->lock);
2050 	st->offset = 0;
2051 	if (++st->bucket < INET_LHTABLE_SIZE)
2052 		goto get_head;
2053 	return NULL;
2054 }
2055 
2056 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2057 {
2058 	struct tcp_iter_state *st = seq->private;
2059 	void *rc;
2060 
2061 	st->bucket = 0;
2062 	st->offset = 0;
2063 	rc = listening_get_next(seq, NULL);
2064 
2065 	while (rc && *pos) {
2066 		rc = listening_get_next(seq, rc);
2067 		--*pos;
2068 	}
2069 	return rc;
2070 }
2071 
2072 static inline bool empty_bucket(const struct tcp_iter_state *st)
2073 {
2074 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2075 }
2076 
2077 /*
2078  * Get first established socket starting from bucket given in st->bucket.
2079  * If st->bucket is zero, the very first socket in the hash is returned.
2080  */
2081 static void *established_get_first(struct seq_file *seq)
2082 {
2083 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2084 	struct tcp_iter_state *st = seq->private;
2085 	struct net *net = seq_file_net(seq);
2086 	void *rc = NULL;
2087 
2088 	st->offset = 0;
2089 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2090 		struct sock *sk;
2091 		struct hlist_nulls_node *node;
2092 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2093 
2094 		/* Lockless fast path for the common case of empty buckets */
2095 		if (empty_bucket(st))
2096 			continue;
2097 
2098 		spin_lock_bh(lock);
2099 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2100 			if (sk->sk_family != afinfo->family ||
2101 			    !net_eq(sock_net(sk), net)) {
2102 				continue;
2103 			}
2104 			rc = sk;
2105 			goto out;
2106 		}
2107 		spin_unlock_bh(lock);
2108 	}
2109 out:
2110 	return rc;
2111 }
2112 
2113 static void *established_get_next(struct seq_file *seq, void *cur)
2114 {
2115 	struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2116 	struct sock *sk = cur;
2117 	struct hlist_nulls_node *node;
2118 	struct tcp_iter_state *st = seq->private;
2119 	struct net *net = seq_file_net(seq);
2120 
2121 	++st->num;
2122 	++st->offset;
2123 
2124 	sk = sk_nulls_next(sk);
2125 
2126 	sk_nulls_for_each_from(sk, node) {
2127 		if (sk->sk_family == afinfo->family &&
2128 		    net_eq(sock_net(sk), net))
2129 			return sk;
2130 	}
2131 
2132 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2133 	++st->bucket;
2134 	return established_get_first(seq);
2135 }
2136 
2137 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2138 {
2139 	struct tcp_iter_state *st = seq->private;
2140 	void *rc;
2141 
2142 	st->bucket = 0;
2143 	rc = established_get_first(seq);
2144 
2145 	while (rc && pos) {
2146 		rc = established_get_next(seq, rc);
2147 		--pos;
2148 	}
2149 	return rc;
2150 }
2151 
2152 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2153 {
2154 	void *rc;
2155 	struct tcp_iter_state *st = seq->private;
2156 
2157 	st->state = TCP_SEQ_STATE_LISTENING;
2158 	rc	  = listening_get_idx(seq, &pos);
2159 
2160 	if (!rc) {
2161 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2162 		rc	  = established_get_idx(seq, pos);
2163 	}
2164 
2165 	return rc;
2166 }
2167 
2168 static void *tcp_seek_last_pos(struct seq_file *seq)
2169 {
2170 	struct tcp_iter_state *st = seq->private;
2171 	int offset = st->offset;
2172 	int orig_num = st->num;
2173 	void *rc = NULL;
2174 
2175 	switch (st->state) {
2176 	case TCP_SEQ_STATE_LISTENING:
2177 		if (st->bucket >= INET_LHTABLE_SIZE)
2178 			break;
2179 		st->state = TCP_SEQ_STATE_LISTENING;
2180 		rc = listening_get_next(seq, NULL);
2181 		while (offset-- && rc)
2182 			rc = listening_get_next(seq, rc);
2183 		if (rc)
2184 			break;
2185 		st->bucket = 0;
2186 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2187 		/* Fallthrough */
2188 	case TCP_SEQ_STATE_ESTABLISHED:
2189 		if (st->bucket > tcp_hashinfo.ehash_mask)
2190 			break;
2191 		rc = established_get_first(seq);
2192 		while (offset-- && rc)
2193 			rc = established_get_next(seq, rc);
2194 	}
2195 
2196 	st->num = orig_num;
2197 
2198 	return rc;
2199 }
2200 
2201 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2202 {
2203 	struct tcp_iter_state *st = seq->private;
2204 	void *rc;
2205 
2206 	if (*pos && *pos == st->last_pos) {
2207 		rc = tcp_seek_last_pos(seq);
2208 		if (rc)
2209 			goto out;
2210 	}
2211 
2212 	st->state = TCP_SEQ_STATE_LISTENING;
2213 	st->num = 0;
2214 	st->bucket = 0;
2215 	st->offset = 0;
2216 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2217 
2218 out:
2219 	st->last_pos = *pos;
2220 	return rc;
2221 }
2222 EXPORT_SYMBOL(tcp_seq_start);
2223 
2224 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2225 {
2226 	struct tcp_iter_state *st = seq->private;
2227 	void *rc = NULL;
2228 
2229 	if (v == SEQ_START_TOKEN) {
2230 		rc = tcp_get_idx(seq, 0);
2231 		goto out;
2232 	}
2233 
2234 	switch (st->state) {
2235 	case TCP_SEQ_STATE_LISTENING:
2236 		rc = listening_get_next(seq, v);
2237 		if (!rc) {
2238 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2239 			st->bucket = 0;
2240 			st->offset = 0;
2241 			rc	  = established_get_first(seq);
2242 		}
2243 		break;
2244 	case TCP_SEQ_STATE_ESTABLISHED:
2245 		rc = established_get_next(seq, v);
2246 		break;
2247 	}
2248 out:
2249 	++*pos;
2250 	st->last_pos = *pos;
2251 	return rc;
2252 }
2253 EXPORT_SYMBOL(tcp_seq_next);
2254 
2255 void tcp_seq_stop(struct seq_file *seq, void *v)
2256 {
2257 	struct tcp_iter_state *st = seq->private;
2258 
2259 	switch (st->state) {
2260 	case TCP_SEQ_STATE_LISTENING:
2261 		if (v != SEQ_START_TOKEN)
2262 			spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2263 		break;
2264 	case TCP_SEQ_STATE_ESTABLISHED:
2265 		if (v)
2266 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2267 		break;
2268 	}
2269 }
2270 EXPORT_SYMBOL(tcp_seq_stop);
2271 
2272 static void get_openreq4(const struct request_sock *req,
2273 			 struct seq_file *f, int i)
2274 {
2275 	const struct inet_request_sock *ireq = inet_rsk(req);
2276 	long delta = req->rsk_timer.expires - jiffies;
2277 
2278 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2279 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2280 		i,
2281 		ireq->ir_loc_addr,
2282 		ireq->ir_num,
2283 		ireq->ir_rmt_addr,
2284 		ntohs(ireq->ir_rmt_port),
2285 		TCP_SYN_RECV,
2286 		0, 0, /* could print option size, but that is af dependent. */
2287 		1,    /* timers active (only the expire timer) */
2288 		jiffies_delta_to_clock_t(delta),
2289 		req->num_timeout,
2290 		from_kuid_munged(seq_user_ns(f),
2291 				 sock_i_uid(req->rsk_listener)),
2292 		0,  /* non standard timer */
2293 		0, /* open_requests have no inode */
2294 		0,
2295 		req);
2296 }
2297 
2298 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2299 {
2300 	int timer_active;
2301 	unsigned long timer_expires;
2302 	const struct tcp_sock *tp = tcp_sk(sk);
2303 	const struct inet_connection_sock *icsk = inet_csk(sk);
2304 	const struct inet_sock *inet = inet_sk(sk);
2305 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2306 	__be32 dest = inet->inet_daddr;
2307 	__be32 src = inet->inet_rcv_saddr;
2308 	__u16 destp = ntohs(inet->inet_dport);
2309 	__u16 srcp = ntohs(inet->inet_sport);
2310 	int rx_queue;
2311 	int state;
2312 
2313 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2314 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2315 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2316 		timer_active	= 1;
2317 		timer_expires	= icsk->icsk_timeout;
2318 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2319 		timer_active	= 4;
2320 		timer_expires	= icsk->icsk_timeout;
2321 	} else if (timer_pending(&sk->sk_timer)) {
2322 		timer_active	= 2;
2323 		timer_expires	= sk->sk_timer.expires;
2324 	} else {
2325 		timer_active	= 0;
2326 		timer_expires = jiffies;
2327 	}
2328 
2329 	state = inet_sk_state_load(sk);
2330 	if (state == TCP_LISTEN)
2331 		rx_queue = sk->sk_ack_backlog;
2332 	else
2333 		/* Because we don't lock the socket,
2334 		 * we might find a transient negative value.
2335 		 */
2336 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2337 
2338 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2339 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2340 		i, src, srcp, dest, destp, state,
2341 		tp->write_seq - tp->snd_una,
2342 		rx_queue,
2343 		timer_active,
2344 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2345 		icsk->icsk_retransmits,
2346 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2347 		icsk->icsk_probes_out,
2348 		sock_i_ino(sk),
2349 		refcount_read(&sk->sk_refcnt), sk,
2350 		jiffies_to_clock_t(icsk->icsk_rto),
2351 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2352 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2353 		tp->snd_cwnd,
2354 		state == TCP_LISTEN ?
2355 		    fastopenq->max_qlen :
2356 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2357 }
2358 
2359 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2360 			       struct seq_file *f, int i)
2361 {
2362 	long delta = tw->tw_timer.expires - jiffies;
2363 	__be32 dest, src;
2364 	__u16 destp, srcp;
2365 
2366 	dest  = tw->tw_daddr;
2367 	src   = tw->tw_rcv_saddr;
2368 	destp = ntohs(tw->tw_dport);
2369 	srcp  = ntohs(tw->tw_sport);
2370 
2371 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2372 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2373 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2374 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2375 		refcount_read(&tw->tw_refcnt), tw);
2376 }
2377 
2378 #define TMPSZ 150
2379 
2380 static int tcp4_seq_show(struct seq_file *seq, void *v)
2381 {
2382 	struct tcp_iter_state *st;
2383 	struct sock *sk = v;
2384 
2385 	seq_setwidth(seq, TMPSZ - 1);
2386 	if (v == SEQ_START_TOKEN) {
2387 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2388 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2389 			   "inode");
2390 		goto out;
2391 	}
2392 	st = seq->private;
2393 
2394 	if (sk->sk_state == TCP_TIME_WAIT)
2395 		get_timewait4_sock(v, seq, st->num);
2396 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2397 		get_openreq4(v, seq, st->num);
2398 	else
2399 		get_tcp4_sock(v, seq, st->num);
2400 out:
2401 	seq_pad(seq, '\n');
2402 	return 0;
2403 }
2404 
2405 static const struct seq_operations tcp4_seq_ops = {
2406 	.show		= tcp4_seq_show,
2407 	.start		= tcp_seq_start,
2408 	.next		= tcp_seq_next,
2409 	.stop		= tcp_seq_stop,
2410 };
2411 
2412 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2413 	.family		= AF_INET,
2414 };
2415 
2416 static int __net_init tcp4_proc_init_net(struct net *net)
2417 {
2418 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2419 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2420 		return -ENOMEM;
2421 	return 0;
2422 }
2423 
2424 static void __net_exit tcp4_proc_exit_net(struct net *net)
2425 {
2426 	remove_proc_entry("tcp", net->proc_net);
2427 }
2428 
2429 static struct pernet_operations tcp4_net_ops = {
2430 	.init = tcp4_proc_init_net,
2431 	.exit = tcp4_proc_exit_net,
2432 };
2433 
2434 int __init tcp4_proc_init(void)
2435 {
2436 	return register_pernet_subsys(&tcp4_net_ops);
2437 }
2438 
2439 void tcp4_proc_exit(void)
2440 {
2441 	unregister_pernet_subsys(&tcp4_net_ops);
2442 }
2443 #endif /* CONFIG_PROC_FS */
2444 
2445 struct proto tcp_prot = {
2446 	.name			= "TCP",
2447 	.owner			= THIS_MODULE,
2448 	.close			= tcp_close,
2449 	.pre_connect		= tcp_v4_pre_connect,
2450 	.connect		= tcp_v4_connect,
2451 	.disconnect		= tcp_disconnect,
2452 	.accept			= inet_csk_accept,
2453 	.ioctl			= tcp_ioctl,
2454 	.init			= tcp_v4_init_sock,
2455 	.destroy		= tcp_v4_destroy_sock,
2456 	.shutdown		= tcp_shutdown,
2457 	.setsockopt		= tcp_setsockopt,
2458 	.getsockopt		= tcp_getsockopt,
2459 	.keepalive		= tcp_set_keepalive,
2460 	.recvmsg		= tcp_recvmsg,
2461 	.sendmsg		= tcp_sendmsg,
2462 	.sendpage		= tcp_sendpage,
2463 	.backlog_rcv		= tcp_v4_do_rcv,
2464 	.release_cb		= tcp_release_cb,
2465 	.hash			= inet_hash,
2466 	.unhash			= inet_unhash,
2467 	.get_port		= inet_csk_get_port,
2468 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2469 	.leave_memory_pressure	= tcp_leave_memory_pressure,
2470 	.stream_memory_free	= tcp_stream_memory_free,
2471 	.sockets_allocated	= &tcp_sockets_allocated,
2472 	.orphan_count		= &tcp_orphan_count,
2473 	.memory_allocated	= &tcp_memory_allocated,
2474 	.memory_pressure	= &tcp_memory_pressure,
2475 	.sysctl_mem		= sysctl_tcp_mem,
2476 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
2477 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
2478 	.max_header		= MAX_TCP_HEADER,
2479 	.obj_size		= sizeof(struct tcp_sock),
2480 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
2481 	.twsk_prot		= &tcp_timewait_sock_ops,
2482 	.rsk_prot		= &tcp_request_sock_ops,
2483 	.h.hashinfo		= &tcp_hashinfo,
2484 	.no_autobind		= true,
2485 #ifdef CONFIG_COMPAT
2486 	.compat_setsockopt	= compat_tcp_setsockopt,
2487 	.compat_getsockopt	= compat_tcp_getsockopt,
2488 #endif
2489 	.diag_destroy		= tcp_abort,
2490 };
2491 EXPORT_SYMBOL(tcp_prot);
2492 
2493 static void __net_exit tcp_sk_exit(struct net *net)
2494 {
2495 	int cpu;
2496 
2497 	module_put(net->ipv4.tcp_congestion_control->owner);
2498 
2499 	for_each_possible_cpu(cpu)
2500 		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2501 	free_percpu(net->ipv4.tcp_sk);
2502 }
2503 
2504 static int __net_init tcp_sk_init(struct net *net)
2505 {
2506 	int res, cpu, cnt;
2507 
2508 	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2509 	if (!net->ipv4.tcp_sk)
2510 		return -ENOMEM;
2511 
2512 	for_each_possible_cpu(cpu) {
2513 		struct sock *sk;
2514 
2515 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2516 					   IPPROTO_TCP, net);
2517 		if (res)
2518 			goto fail;
2519 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2520 		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2521 	}
2522 
2523 	net->ipv4.sysctl_tcp_ecn = 2;
2524 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2525 
2526 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2527 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2528 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2529 
2530 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2531 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2532 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2533 
2534 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2535 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2536 	net->ipv4.sysctl_tcp_syncookies = 1;
2537 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2538 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2539 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2540 	net->ipv4.sysctl_tcp_orphan_retries = 0;
2541 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2542 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2543 	net->ipv4.sysctl_tcp_tw_reuse = 2;
2544 
2545 	cnt = tcp_hashinfo.ehash_mask + 1;
2546 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2;
2547 	net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2548 
2549 	net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2550 	net->ipv4.sysctl_tcp_sack = 1;
2551 	net->ipv4.sysctl_tcp_window_scaling = 1;
2552 	net->ipv4.sysctl_tcp_timestamps = 1;
2553 	net->ipv4.sysctl_tcp_early_retrans = 3;
2554 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2555 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
2556 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
2557 	net->ipv4.sysctl_tcp_max_reordering = 300;
2558 	net->ipv4.sysctl_tcp_dsack = 1;
2559 	net->ipv4.sysctl_tcp_app_win = 31;
2560 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
2561 	net->ipv4.sysctl_tcp_frto = 2;
2562 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2563 	/* This limits the percentage of the congestion window which we
2564 	 * will allow a single TSO frame to consume.  Building TSO frames
2565 	 * which are too large can cause TCP streams to be bursty.
2566 	 */
2567 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2568 	/* Default TSQ limit of four TSO segments */
2569 	net->ipv4.sysctl_tcp_limit_output_bytes = 262144;
2570 	/* rfc5961 challenge ack rate limiting */
2571 	net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2572 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
2573 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2574 	net->ipv4.sysctl_tcp_autocorking = 1;
2575 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2576 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2577 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2578 	if (net != &init_net) {
2579 		memcpy(net->ipv4.sysctl_tcp_rmem,
2580 		       init_net.ipv4.sysctl_tcp_rmem,
2581 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
2582 		memcpy(net->ipv4.sysctl_tcp_wmem,
2583 		       init_net.ipv4.sysctl_tcp_wmem,
2584 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
2585 	}
2586 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2587 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2588 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2589 	spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2590 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2591 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2592 
2593 	/* Reno is always built in */
2594 	if (!net_eq(net, &init_net) &&
2595 	    try_module_get(init_net.ipv4.tcp_congestion_control->owner))
2596 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2597 	else
2598 		net->ipv4.tcp_congestion_control = &tcp_reno;
2599 
2600 	return 0;
2601 fail:
2602 	tcp_sk_exit(net);
2603 
2604 	return res;
2605 }
2606 
2607 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2608 {
2609 	struct net *net;
2610 
2611 	inet_twsk_purge(&tcp_hashinfo, AF_INET);
2612 
2613 	list_for_each_entry(net, net_exit_list, exit_list)
2614 		tcp_fastopen_ctx_destroy(net);
2615 }
2616 
2617 static struct pernet_operations __net_initdata tcp_sk_ops = {
2618        .init	   = tcp_sk_init,
2619        .exit	   = tcp_sk_exit,
2620        .exit_batch = tcp_sk_exit_batch,
2621 };
2622 
2623 void __init tcp_v4_init(void)
2624 {
2625 	if (register_pernet_subsys(&tcp_sk_ops))
2626 		panic("Failed to create the TCP control socket.\n");
2627 }
2628