xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 94cd8fa0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 
61 #include <net/net_namespace.h>
62 #include <net/icmp.h>
63 #include <net/inet_hashtables.h>
64 #include <net/tcp.h>
65 #include <net/transp_v6.h>
66 #include <net/ipv6.h>
67 #include <net/inet_common.h>
68 #include <net/timewait_sock.h>
69 #include <net/xfrm.h>
70 #include <net/secure_seq.h>
71 #include <net/busy_poll.h>
72 
73 #include <linux/inet.h>
74 #include <linux/ipv6.h>
75 #include <linux/stddef.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/inetdevice.h>
79 #include <linux/btf_ids.h>
80 
81 #include <crypto/hash.h>
82 #include <linux/scatterlist.h>
83 
84 #include <trace/events/tcp.h>
85 
86 #ifdef CONFIG_TCP_MD5SIG
87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
89 #endif
90 
91 struct inet_hashinfo tcp_hashinfo;
92 EXPORT_SYMBOL(tcp_hashinfo);
93 
94 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
95 
96 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
97 {
98 	return secure_tcp_seq(ip_hdr(skb)->daddr,
99 			      ip_hdr(skb)->saddr,
100 			      tcp_hdr(skb)->dest,
101 			      tcp_hdr(skb)->source);
102 }
103 
104 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
105 {
106 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
112 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
113 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 	struct tcp_sock *tp = tcp_sk(sk);
115 
116 	if (reuse == 2) {
117 		/* Still does not detect *everything* that goes through
118 		 * lo, since we require a loopback src or dst address
119 		 * or direct binding to 'lo' interface.
120 		 */
121 		bool loopback = false;
122 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
123 			loopback = true;
124 #if IS_ENABLED(CONFIG_IPV6)
125 		if (tw->tw_family == AF_INET6) {
126 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
127 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
129 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
130 				loopback = true;
131 		} else
132 #endif
133 		{
134 			if (ipv4_is_loopback(tw->tw_daddr) ||
135 			    ipv4_is_loopback(tw->tw_rcv_saddr))
136 				loopback = true;
137 		}
138 		if (!loopback)
139 			reuse = 0;
140 	}
141 
142 	/* With PAWS, it is safe from the viewpoint
143 	   of data integrity. Even without PAWS it is safe provided sequence
144 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
145 
146 	   Actually, the idea is close to VJ's one, only timestamp cache is
147 	   held not per host, but per port pair and TW bucket is used as state
148 	   holder.
149 
150 	   If TW bucket has been already destroyed we fall back to VJ's scheme
151 	   and use initial timestamp retrieved from peer table.
152 	 */
153 	if (tcptw->tw_ts_recent_stamp &&
154 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
155 					    tcptw->tw_ts_recent_stamp)))) {
156 		/* In case of repair and re-using TIME-WAIT sockets we still
157 		 * want to be sure that it is safe as above but honor the
158 		 * sequence numbers and time stamps set as part of the repair
159 		 * process.
160 		 *
161 		 * Without this check re-using a TIME-WAIT socket with TCP
162 		 * repair would accumulate a -1 on the repair assigned
163 		 * sequence number. The first time it is reused the sequence
164 		 * is -1, the second time -2, etc. This fixes that issue
165 		 * without appearing to create any others.
166 		 */
167 		if (likely(!tp->repair)) {
168 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
169 
170 			if (!seq)
171 				seq = 1;
172 			WRITE_ONCE(tp->write_seq, seq);
173 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
174 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
175 		}
176 		sock_hold(sktw);
177 		return 1;
178 	}
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
183 
184 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
185 			      int addr_len)
186 {
187 	/* This check is replicated from tcp_v4_connect() and intended to
188 	 * prevent BPF program called below from accessing bytes that are out
189 	 * of the bound specified by user in addr_len.
190 	 */
191 	if (addr_len < sizeof(struct sockaddr_in))
192 		return -EINVAL;
193 
194 	sock_owned_by_me(sk);
195 
196 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
197 }
198 
199 /* This will initiate an outgoing connection. */
200 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
201 {
202 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
203 	struct inet_timewait_death_row *tcp_death_row;
204 	struct inet_sock *inet = inet_sk(sk);
205 	struct tcp_sock *tp = tcp_sk(sk);
206 	struct ip_options_rcu *inet_opt;
207 	struct net *net = sock_net(sk);
208 	__be16 orig_sport, orig_dport;
209 	__be32 daddr, nexthop;
210 	struct flowi4 *fl4;
211 	struct rtable *rt;
212 	int err;
213 
214 	if (addr_len < sizeof(struct sockaddr_in))
215 		return -EINVAL;
216 
217 	if (usin->sin_family != AF_INET)
218 		return -EAFNOSUPPORT;
219 
220 	nexthop = daddr = usin->sin_addr.s_addr;
221 	inet_opt = rcu_dereference_protected(inet->inet_opt,
222 					     lockdep_sock_is_held(sk));
223 	if (inet_opt && inet_opt->opt.srr) {
224 		if (!daddr)
225 			return -EINVAL;
226 		nexthop = inet_opt->opt.faddr;
227 	}
228 
229 	orig_sport = inet->inet_sport;
230 	orig_dport = usin->sin_port;
231 	fl4 = &inet->cork.fl.u.ip4;
232 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
233 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
234 			      orig_dport, sk);
235 	if (IS_ERR(rt)) {
236 		err = PTR_ERR(rt);
237 		if (err == -ENETUNREACH)
238 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
239 		return err;
240 	}
241 
242 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
243 		ip_rt_put(rt);
244 		return -ENETUNREACH;
245 	}
246 
247 	if (!inet_opt || !inet_opt->opt.srr)
248 		daddr = fl4->daddr;
249 
250 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
251 
252 	if (!inet->inet_saddr) {
253 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
254 		if (err) {
255 			ip_rt_put(rt);
256 			return err;
257 		}
258 	} else {
259 		sk_rcv_saddr_set(sk, inet->inet_saddr);
260 	}
261 
262 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
263 		/* Reset inherited state */
264 		tp->rx_opt.ts_recent	   = 0;
265 		tp->rx_opt.ts_recent_stamp = 0;
266 		if (likely(!tp->repair))
267 			WRITE_ONCE(tp->write_seq, 0);
268 	}
269 
270 	inet->inet_dport = usin->sin_port;
271 	sk_daddr_set(sk, daddr);
272 
273 	inet_csk(sk)->icsk_ext_hdr_len = 0;
274 	if (inet_opt)
275 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
276 
277 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
278 
279 	/* Socket identity is still unknown (sport may be zero).
280 	 * However we set state to SYN-SENT and not releasing socket
281 	 * lock select source port, enter ourselves into the hash tables and
282 	 * complete initialization after this.
283 	 */
284 	tcp_set_state(sk, TCP_SYN_SENT);
285 	err = inet_hash_connect(tcp_death_row, sk);
286 	if (err)
287 		goto failure;
288 
289 	sk_set_txhash(sk);
290 
291 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
292 			       inet->inet_sport, inet->inet_dport, sk);
293 	if (IS_ERR(rt)) {
294 		err = PTR_ERR(rt);
295 		rt = NULL;
296 		goto failure;
297 	}
298 	/* OK, now commit destination to socket.  */
299 	sk->sk_gso_type = SKB_GSO_TCPV4;
300 	sk_setup_caps(sk, &rt->dst);
301 	rt = NULL;
302 
303 	if (likely(!tp->repair)) {
304 		if (!tp->write_seq)
305 			WRITE_ONCE(tp->write_seq,
306 				   secure_tcp_seq(inet->inet_saddr,
307 						  inet->inet_daddr,
308 						  inet->inet_sport,
309 						  usin->sin_port));
310 		tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr,
311 						 inet->inet_daddr);
312 	}
313 
314 	inet->inet_id = get_random_u16();
315 
316 	if (tcp_fastopen_defer_connect(sk, &err))
317 		return err;
318 	if (err)
319 		goto failure;
320 
321 	err = tcp_connect(sk);
322 
323 	if (err)
324 		goto failure;
325 
326 	return 0;
327 
328 failure:
329 	/*
330 	 * This unhashes the socket and releases the local port,
331 	 * if necessary.
332 	 */
333 	tcp_set_state(sk, TCP_CLOSE);
334 	inet_bhash2_reset_saddr(sk);
335 	ip_rt_put(rt);
336 	sk->sk_route_caps = 0;
337 	inet->inet_dport = 0;
338 	return err;
339 }
340 EXPORT_SYMBOL(tcp_v4_connect);
341 
342 /*
343  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
344  * It can be called through tcp_release_cb() if socket was owned by user
345  * at the time tcp_v4_err() was called to handle ICMP message.
346  */
347 void tcp_v4_mtu_reduced(struct sock *sk)
348 {
349 	struct inet_sock *inet = inet_sk(sk);
350 	struct dst_entry *dst;
351 	u32 mtu;
352 
353 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
354 		return;
355 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
356 	dst = inet_csk_update_pmtu(sk, mtu);
357 	if (!dst)
358 		return;
359 
360 	/* Something is about to be wrong... Remember soft error
361 	 * for the case, if this connection will not able to recover.
362 	 */
363 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
364 		sk->sk_err_soft = EMSGSIZE;
365 
366 	mtu = dst_mtu(dst);
367 
368 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
369 	    ip_sk_accept_pmtu(sk) &&
370 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
371 		tcp_sync_mss(sk, mtu);
372 
373 		/* Resend the TCP packet because it's
374 		 * clear that the old packet has been
375 		 * dropped. This is the new "fast" path mtu
376 		 * discovery.
377 		 */
378 		tcp_simple_retransmit(sk);
379 	} /* else let the usual retransmit timer handle it */
380 }
381 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
382 
383 static void do_redirect(struct sk_buff *skb, struct sock *sk)
384 {
385 	struct dst_entry *dst = __sk_dst_check(sk, 0);
386 
387 	if (dst)
388 		dst->ops->redirect(dst, sk, skb);
389 }
390 
391 
392 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
393 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
394 {
395 	struct request_sock *req = inet_reqsk(sk);
396 	struct net *net = sock_net(sk);
397 
398 	/* ICMPs are not backlogged, hence we cannot get
399 	 * an established socket here.
400 	 */
401 	if (seq != tcp_rsk(req)->snt_isn) {
402 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
403 	} else if (abort) {
404 		/*
405 		 * Still in SYN_RECV, just remove it silently.
406 		 * There is no good way to pass the error to the newly
407 		 * created socket, and POSIX does not want network
408 		 * errors returned from accept().
409 		 */
410 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
411 		tcp_listendrop(req->rsk_listener);
412 	}
413 	reqsk_put(req);
414 }
415 EXPORT_SYMBOL(tcp_req_err);
416 
417 /* TCP-LD (RFC 6069) logic */
418 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
419 {
420 	struct inet_connection_sock *icsk = inet_csk(sk);
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	struct sk_buff *skb;
423 	s32 remaining;
424 	u32 delta_us;
425 
426 	if (sock_owned_by_user(sk))
427 		return;
428 
429 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
430 	    !icsk->icsk_backoff)
431 		return;
432 
433 	skb = tcp_rtx_queue_head(sk);
434 	if (WARN_ON_ONCE(!skb))
435 		return;
436 
437 	icsk->icsk_backoff--;
438 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
439 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
440 
441 	tcp_mstamp_refresh(tp);
442 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
443 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
444 
445 	if (remaining > 0) {
446 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
447 					  remaining, TCP_RTO_MAX);
448 	} else {
449 		/* RTO revert clocked out retransmission.
450 		 * Will retransmit now.
451 		 */
452 		tcp_retransmit_timer(sk);
453 	}
454 }
455 EXPORT_SYMBOL(tcp_ld_RTO_revert);
456 
457 /*
458  * This routine is called by the ICMP module when it gets some
459  * sort of error condition.  If err < 0 then the socket should
460  * be closed and the error returned to the user.  If err > 0
461  * it's just the icmp type << 8 | icmp code.  After adjustment
462  * header points to the first 8 bytes of the tcp header.  We need
463  * to find the appropriate port.
464  *
465  * The locking strategy used here is very "optimistic". When
466  * someone else accesses the socket the ICMP is just dropped
467  * and for some paths there is no check at all.
468  * A more general error queue to queue errors for later handling
469  * is probably better.
470  *
471  */
472 
473 int tcp_v4_err(struct sk_buff *skb, u32 info)
474 {
475 	const struct iphdr *iph = (const struct iphdr *)skb->data;
476 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
477 	struct tcp_sock *tp;
478 	struct inet_sock *inet;
479 	const int type = icmp_hdr(skb)->type;
480 	const int code = icmp_hdr(skb)->code;
481 	struct sock *sk;
482 	struct request_sock *fastopen;
483 	u32 seq, snd_una;
484 	int err;
485 	struct net *net = dev_net(skb->dev);
486 
487 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
488 				       iph->daddr, th->dest, iph->saddr,
489 				       ntohs(th->source), inet_iif(skb), 0);
490 	if (!sk) {
491 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
492 		return -ENOENT;
493 	}
494 	if (sk->sk_state == TCP_TIME_WAIT) {
495 		inet_twsk_put(inet_twsk(sk));
496 		return 0;
497 	}
498 	seq = ntohl(th->seq);
499 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
500 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
501 				     type == ICMP_TIME_EXCEEDED ||
502 				     (type == ICMP_DEST_UNREACH &&
503 				      (code == ICMP_NET_UNREACH ||
504 				       code == ICMP_HOST_UNREACH)));
505 		return 0;
506 	}
507 
508 	bh_lock_sock(sk);
509 	/* If too many ICMPs get dropped on busy
510 	 * servers this needs to be solved differently.
511 	 * We do take care of PMTU discovery (RFC1191) special case :
512 	 * we can receive locally generated ICMP messages while socket is held.
513 	 */
514 	if (sock_owned_by_user(sk)) {
515 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
516 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
517 	}
518 	if (sk->sk_state == TCP_CLOSE)
519 		goto out;
520 
521 	if (static_branch_unlikely(&ip4_min_ttl)) {
522 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
523 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
524 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
525 			goto out;
526 		}
527 	}
528 
529 	tp = tcp_sk(sk);
530 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
531 	fastopen = rcu_dereference(tp->fastopen_rsk);
532 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
533 	if (sk->sk_state != TCP_LISTEN &&
534 	    !between(seq, snd_una, tp->snd_nxt)) {
535 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
536 		goto out;
537 	}
538 
539 	switch (type) {
540 	case ICMP_REDIRECT:
541 		if (!sock_owned_by_user(sk))
542 			do_redirect(skb, sk);
543 		goto out;
544 	case ICMP_SOURCE_QUENCH:
545 		/* Just silently ignore these. */
546 		goto out;
547 	case ICMP_PARAMETERPROB:
548 		err = EPROTO;
549 		break;
550 	case ICMP_DEST_UNREACH:
551 		if (code > NR_ICMP_UNREACH)
552 			goto out;
553 
554 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
555 			/* We are not interested in TCP_LISTEN and open_requests
556 			 * (SYN-ACKs send out by Linux are always <576bytes so
557 			 * they should go through unfragmented).
558 			 */
559 			if (sk->sk_state == TCP_LISTEN)
560 				goto out;
561 
562 			WRITE_ONCE(tp->mtu_info, info);
563 			if (!sock_owned_by_user(sk)) {
564 				tcp_v4_mtu_reduced(sk);
565 			} else {
566 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
567 					sock_hold(sk);
568 			}
569 			goto out;
570 		}
571 
572 		err = icmp_err_convert[code].errno;
573 		/* check if this ICMP message allows revert of backoff.
574 		 * (see RFC 6069)
575 		 */
576 		if (!fastopen &&
577 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
578 			tcp_ld_RTO_revert(sk, seq);
579 		break;
580 	case ICMP_TIME_EXCEEDED:
581 		err = EHOSTUNREACH;
582 		break;
583 	default:
584 		goto out;
585 	}
586 
587 	switch (sk->sk_state) {
588 	case TCP_SYN_SENT:
589 	case TCP_SYN_RECV:
590 		/* Only in fast or simultaneous open. If a fast open socket is
591 		 * already accepted it is treated as a connected one below.
592 		 */
593 		if (fastopen && !fastopen->sk)
594 			break;
595 
596 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
597 
598 		if (!sock_owned_by_user(sk)) {
599 			sk->sk_err = err;
600 
601 			sk_error_report(sk);
602 
603 			tcp_done(sk);
604 		} else {
605 			sk->sk_err_soft = err;
606 		}
607 		goto out;
608 	}
609 
610 	/* If we've already connected we will keep trying
611 	 * until we time out, or the user gives up.
612 	 *
613 	 * rfc1122 4.2.3.9 allows to consider as hard errors
614 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
615 	 * but it is obsoleted by pmtu discovery).
616 	 *
617 	 * Note, that in modern internet, where routing is unreliable
618 	 * and in each dark corner broken firewalls sit, sending random
619 	 * errors ordered by their masters even this two messages finally lose
620 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
621 	 *
622 	 * Now we are in compliance with RFCs.
623 	 *							--ANK (980905)
624 	 */
625 
626 	inet = inet_sk(sk);
627 	if (!sock_owned_by_user(sk) && inet->recverr) {
628 		sk->sk_err = err;
629 		sk_error_report(sk);
630 	} else	{ /* Only an error on timeout */
631 		sk->sk_err_soft = err;
632 	}
633 
634 out:
635 	bh_unlock_sock(sk);
636 	sock_put(sk);
637 	return 0;
638 }
639 
640 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
641 {
642 	struct tcphdr *th = tcp_hdr(skb);
643 
644 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
645 	skb->csum_start = skb_transport_header(skb) - skb->head;
646 	skb->csum_offset = offsetof(struct tcphdr, check);
647 }
648 
649 /* This routine computes an IPv4 TCP checksum. */
650 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
651 {
652 	const struct inet_sock *inet = inet_sk(sk);
653 
654 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
655 }
656 EXPORT_SYMBOL(tcp_v4_send_check);
657 
658 /*
659  *	This routine will send an RST to the other tcp.
660  *
661  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
662  *		      for reset.
663  *	Answer: if a packet caused RST, it is not for a socket
664  *		existing in our system, if it is matched to a socket,
665  *		it is just duplicate segment or bug in other side's TCP.
666  *		So that we build reply only basing on parameters
667  *		arrived with segment.
668  *	Exception: precedence violation. We do not implement it in any case.
669  */
670 
671 #ifdef CONFIG_TCP_MD5SIG
672 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
673 #else
674 #define OPTION_BYTES sizeof(__be32)
675 #endif
676 
677 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
678 {
679 	const struct tcphdr *th = tcp_hdr(skb);
680 	struct {
681 		struct tcphdr th;
682 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
683 	} rep;
684 	struct ip_reply_arg arg;
685 #ifdef CONFIG_TCP_MD5SIG
686 	struct tcp_md5sig_key *key = NULL;
687 	const __u8 *hash_location = NULL;
688 	unsigned char newhash[16];
689 	int genhash;
690 	struct sock *sk1 = NULL;
691 #endif
692 	u64 transmit_time = 0;
693 	struct sock *ctl_sk;
694 	struct net *net;
695 
696 	/* Never send a reset in response to a reset. */
697 	if (th->rst)
698 		return;
699 
700 	/* If sk not NULL, it means we did a successful lookup and incoming
701 	 * route had to be correct. prequeue might have dropped our dst.
702 	 */
703 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
704 		return;
705 
706 	/* Swap the send and the receive. */
707 	memset(&rep, 0, sizeof(rep));
708 	rep.th.dest   = th->source;
709 	rep.th.source = th->dest;
710 	rep.th.doff   = sizeof(struct tcphdr) / 4;
711 	rep.th.rst    = 1;
712 
713 	if (th->ack) {
714 		rep.th.seq = th->ack_seq;
715 	} else {
716 		rep.th.ack = 1;
717 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
718 				       skb->len - (th->doff << 2));
719 	}
720 
721 	memset(&arg, 0, sizeof(arg));
722 	arg.iov[0].iov_base = (unsigned char *)&rep;
723 	arg.iov[0].iov_len  = sizeof(rep.th);
724 
725 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
726 #ifdef CONFIG_TCP_MD5SIG
727 	rcu_read_lock();
728 	hash_location = tcp_parse_md5sig_option(th);
729 	if (sk && sk_fullsock(sk)) {
730 		const union tcp_md5_addr *addr;
731 		int l3index;
732 
733 		/* sdif set, means packet ingressed via a device
734 		 * in an L3 domain and inet_iif is set to it.
735 		 */
736 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
737 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
738 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
739 	} else if (hash_location) {
740 		const union tcp_md5_addr *addr;
741 		int sdif = tcp_v4_sdif(skb);
742 		int dif = inet_iif(skb);
743 		int l3index;
744 
745 		/*
746 		 * active side is lost. Try to find listening socket through
747 		 * source port, and then find md5 key through listening socket.
748 		 * we are not loose security here:
749 		 * Incoming packet is checked with md5 hash with finding key,
750 		 * no RST generated if md5 hash doesn't match.
751 		 */
752 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
753 					     NULL, 0, ip_hdr(skb)->saddr,
754 					     th->source, ip_hdr(skb)->daddr,
755 					     ntohs(th->source), dif, sdif);
756 		/* don't send rst if it can't find key */
757 		if (!sk1)
758 			goto out;
759 
760 		/* sdif set, means packet ingressed via a device
761 		 * in an L3 domain and dif is set to it.
762 		 */
763 		l3index = sdif ? dif : 0;
764 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
765 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
766 		if (!key)
767 			goto out;
768 
769 
770 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
771 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
772 			goto out;
773 
774 	}
775 
776 	if (key) {
777 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
778 				   (TCPOPT_NOP << 16) |
779 				   (TCPOPT_MD5SIG << 8) |
780 				   TCPOLEN_MD5SIG);
781 		/* Update length and the length the header thinks exists */
782 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
783 		rep.th.doff = arg.iov[0].iov_len / 4;
784 
785 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
786 				     key, ip_hdr(skb)->saddr,
787 				     ip_hdr(skb)->daddr, &rep.th);
788 	}
789 #endif
790 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
791 	if (rep.opt[0] == 0) {
792 		__be32 mrst = mptcp_reset_option(skb);
793 
794 		if (mrst) {
795 			rep.opt[0] = mrst;
796 			arg.iov[0].iov_len += sizeof(mrst);
797 			rep.th.doff = arg.iov[0].iov_len / 4;
798 		}
799 	}
800 
801 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
802 				      ip_hdr(skb)->saddr, /* XXX */
803 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
804 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
805 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
806 
807 	/* When socket is gone, all binding information is lost.
808 	 * routing might fail in this case. No choice here, if we choose to force
809 	 * input interface, we will misroute in case of asymmetric route.
810 	 */
811 	if (sk) {
812 		arg.bound_dev_if = sk->sk_bound_dev_if;
813 		if (sk_fullsock(sk))
814 			trace_tcp_send_reset(sk, skb);
815 	}
816 
817 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
818 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
819 
820 	arg.tos = ip_hdr(skb)->tos;
821 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
822 	local_bh_disable();
823 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
824 	sock_net_set(ctl_sk, net);
825 	if (sk) {
826 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
827 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
828 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
829 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
830 		transmit_time = tcp_transmit_time(sk);
831 		xfrm_sk_clone_policy(ctl_sk, sk);
832 	}
833 	ip_send_unicast_reply(ctl_sk,
834 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
835 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
836 			      &arg, arg.iov[0].iov_len,
837 			      transmit_time);
838 
839 	ctl_sk->sk_mark = 0;
840 	xfrm_sk_free_policy(ctl_sk);
841 	sock_net_set(ctl_sk, &init_net);
842 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
843 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
844 	local_bh_enable();
845 
846 #ifdef CONFIG_TCP_MD5SIG
847 out:
848 	rcu_read_unlock();
849 #endif
850 }
851 
852 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
853    outside socket context is ugly, certainly. What can I do?
854  */
855 
856 static void tcp_v4_send_ack(const struct sock *sk,
857 			    struct sk_buff *skb, u32 seq, u32 ack,
858 			    u32 win, u32 tsval, u32 tsecr, int oif,
859 			    struct tcp_md5sig_key *key,
860 			    int reply_flags, u8 tos)
861 {
862 	const struct tcphdr *th = tcp_hdr(skb);
863 	struct {
864 		struct tcphdr th;
865 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
866 #ifdef CONFIG_TCP_MD5SIG
867 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
868 #endif
869 			];
870 	} rep;
871 	struct net *net = sock_net(sk);
872 	struct ip_reply_arg arg;
873 	struct sock *ctl_sk;
874 	u64 transmit_time;
875 
876 	memset(&rep.th, 0, sizeof(struct tcphdr));
877 	memset(&arg, 0, sizeof(arg));
878 
879 	arg.iov[0].iov_base = (unsigned char *)&rep;
880 	arg.iov[0].iov_len  = sizeof(rep.th);
881 	if (tsecr) {
882 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
883 				   (TCPOPT_TIMESTAMP << 8) |
884 				   TCPOLEN_TIMESTAMP);
885 		rep.opt[1] = htonl(tsval);
886 		rep.opt[2] = htonl(tsecr);
887 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
888 	}
889 
890 	/* Swap the send and the receive. */
891 	rep.th.dest    = th->source;
892 	rep.th.source  = th->dest;
893 	rep.th.doff    = arg.iov[0].iov_len / 4;
894 	rep.th.seq     = htonl(seq);
895 	rep.th.ack_seq = htonl(ack);
896 	rep.th.ack     = 1;
897 	rep.th.window  = htons(win);
898 
899 #ifdef CONFIG_TCP_MD5SIG
900 	if (key) {
901 		int offset = (tsecr) ? 3 : 0;
902 
903 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
904 					  (TCPOPT_NOP << 16) |
905 					  (TCPOPT_MD5SIG << 8) |
906 					  TCPOLEN_MD5SIG);
907 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
908 		rep.th.doff = arg.iov[0].iov_len/4;
909 
910 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
911 				    key, ip_hdr(skb)->saddr,
912 				    ip_hdr(skb)->daddr, &rep.th);
913 	}
914 #endif
915 	arg.flags = reply_flags;
916 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
917 				      ip_hdr(skb)->saddr, /* XXX */
918 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
919 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
920 	if (oif)
921 		arg.bound_dev_if = oif;
922 	arg.tos = tos;
923 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
924 	local_bh_disable();
925 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
926 	sock_net_set(ctl_sk, net);
927 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
928 			   inet_twsk(sk)->tw_mark : sk->sk_mark;
929 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
930 			   inet_twsk(sk)->tw_priority : sk->sk_priority;
931 	transmit_time = tcp_transmit_time(sk);
932 	ip_send_unicast_reply(ctl_sk,
933 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
934 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
935 			      &arg, arg.iov[0].iov_len,
936 			      transmit_time);
937 
938 	ctl_sk->sk_mark = 0;
939 	sock_net_set(ctl_sk, &init_net);
940 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
941 	local_bh_enable();
942 }
943 
944 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
945 {
946 	struct inet_timewait_sock *tw = inet_twsk(sk);
947 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
948 
949 	tcp_v4_send_ack(sk, skb,
950 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
951 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
952 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
953 			tcptw->tw_ts_recent,
954 			tw->tw_bound_dev_if,
955 			tcp_twsk_md5_key(tcptw),
956 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
957 			tw->tw_tos
958 			);
959 
960 	inet_twsk_put(tw);
961 }
962 
963 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
964 				  struct request_sock *req)
965 {
966 	const union tcp_md5_addr *addr;
967 	int l3index;
968 
969 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
970 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
971 	 */
972 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
973 					     tcp_sk(sk)->snd_nxt;
974 
975 	/* RFC 7323 2.3
976 	 * The window field (SEG.WND) of every outgoing segment, with the
977 	 * exception of <SYN> segments, MUST be right-shifted by
978 	 * Rcv.Wind.Shift bits:
979 	 */
980 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
981 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
982 	tcp_v4_send_ack(sk, skb, seq,
983 			tcp_rsk(req)->rcv_nxt,
984 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
985 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
986 			req->ts_recent,
987 			0,
988 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
989 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
990 			ip_hdr(skb)->tos);
991 }
992 
993 /*
994  *	Send a SYN-ACK after having received a SYN.
995  *	This still operates on a request_sock only, not on a big
996  *	socket.
997  */
998 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
999 			      struct flowi *fl,
1000 			      struct request_sock *req,
1001 			      struct tcp_fastopen_cookie *foc,
1002 			      enum tcp_synack_type synack_type,
1003 			      struct sk_buff *syn_skb)
1004 {
1005 	const struct inet_request_sock *ireq = inet_rsk(req);
1006 	struct flowi4 fl4;
1007 	int err = -1;
1008 	struct sk_buff *skb;
1009 	u8 tos;
1010 
1011 	/* First, grab a route. */
1012 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1013 		return -1;
1014 
1015 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1016 
1017 	if (skb) {
1018 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1019 
1020 		tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1021 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1022 				(inet_sk(sk)->tos & INET_ECN_MASK) :
1023 				inet_sk(sk)->tos;
1024 
1025 		if (!INET_ECN_is_capable(tos) &&
1026 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1027 			tos |= INET_ECN_ECT_0;
1028 
1029 		rcu_read_lock();
1030 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1031 					    ireq->ir_rmt_addr,
1032 					    rcu_dereference(ireq->ireq_opt),
1033 					    tos);
1034 		rcu_read_unlock();
1035 		err = net_xmit_eval(err);
1036 	}
1037 
1038 	return err;
1039 }
1040 
1041 /*
1042  *	IPv4 request_sock destructor.
1043  */
1044 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1045 {
1046 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1047 }
1048 
1049 #ifdef CONFIG_TCP_MD5SIG
1050 /*
1051  * RFC2385 MD5 checksumming requires a mapping of
1052  * IP address->MD5 Key.
1053  * We need to maintain these in the sk structure.
1054  */
1055 
1056 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1057 EXPORT_SYMBOL(tcp_md5_needed);
1058 
1059 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1060 {
1061 	if (!old)
1062 		return true;
1063 
1064 	/* l3index always overrides non-l3index */
1065 	if (old->l3index && new->l3index == 0)
1066 		return false;
1067 	if (old->l3index == 0 && new->l3index)
1068 		return true;
1069 
1070 	return old->prefixlen < new->prefixlen;
1071 }
1072 
1073 /* Find the Key structure for an address.  */
1074 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1075 					   const union tcp_md5_addr *addr,
1076 					   int family)
1077 {
1078 	const struct tcp_sock *tp = tcp_sk(sk);
1079 	struct tcp_md5sig_key *key;
1080 	const struct tcp_md5sig_info *md5sig;
1081 	__be32 mask;
1082 	struct tcp_md5sig_key *best_match = NULL;
1083 	bool match;
1084 
1085 	/* caller either holds rcu_read_lock() or socket lock */
1086 	md5sig = rcu_dereference_check(tp->md5sig_info,
1087 				       lockdep_sock_is_held(sk));
1088 	if (!md5sig)
1089 		return NULL;
1090 
1091 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1092 				 lockdep_sock_is_held(sk)) {
1093 		if (key->family != family)
1094 			continue;
1095 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1096 			continue;
1097 		if (family == AF_INET) {
1098 			mask = inet_make_mask(key->prefixlen);
1099 			match = (key->addr.a4.s_addr & mask) ==
1100 				(addr->a4.s_addr & mask);
1101 #if IS_ENABLED(CONFIG_IPV6)
1102 		} else if (family == AF_INET6) {
1103 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1104 						  key->prefixlen);
1105 #endif
1106 		} else {
1107 			match = false;
1108 		}
1109 
1110 		if (match && better_md5_match(best_match, key))
1111 			best_match = key;
1112 	}
1113 	return best_match;
1114 }
1115 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1116 
1117 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1118 						      const union tcp_md5_addr *addr,
1119 						      int family, u8 prefixlen,
1120 						      int l3index, u8 flags)
1121 {
1122 	const struct tcp_sock *tp = tcp_sk(sk);
1123 	struct tcp_md5sig_key *key;
1124 	unsigned int size = sizeof(struct in_addr);
1125 	const struct tcp_md5sig_info *md5sig;
1126 
1127 	/* caller either holds rcu_read_lock() or socket lock */
1128 	md5sig = rcu_dereference_check(tp->md5sig_info,
1129 				       lockdep_sock_is_held(sk));
1130 	if (!md5sig)
1131 		return NULL;
1132 #if IS_ENABLED(CONFIG_IPV6)
1133 	if (family == AF_INET6)
1134 		size = sizeof(struct in6_addr);
1135 #endif
1136 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1137 				 lockdep_sock_is_held(sk)) {
1138 		if (key->family != family)
1139 			continue;
1140 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1141 			continue;
1142 		if (key->l3index != l3index)
1143 			continue;
1144 		if (!memcmp(&key->addr, addr, size) &&
1145 		    key->prefixlen == prefixlen)
1146 			return key;
1147 	}
1148 	return NULL;
1149 }
1150 
1151 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1152 					 const struct sock *addr_sk)
1153 {
1154 	const union tcp_md5_addr *addr;
1155 	int l3index;
1156 
1157 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1158 						 addr_sk->sk_bound_dev_if);
1159 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1160 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1161 }
1162 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1163 
1164 /* This can be called on a newly created socket, from other files */
1165 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1166 		   int family, u8 prefixlen, int l3index, u8 flags,
1167 		   const u8 *newkey, u8 newkeylen, gfp_t gfp)
1168 {
1169 	/* Add Key to the list */
1170 	struct tcp_md5sig_key *key;
1171 	struct tcp_sock *tp = tcp_sk(sk);
1172 	struct tcp_md5sig_info *md5sig;
1173 
1174 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1175 	if (key) {
1176 		/* Pre-existing entry - just update that one.
1177 		 * Note that the key might be used concurrently.
1178 		 * data_race() is telling kcsan that we do not care of
1179 		 * key mismatches, since changing MD5 key on live flows
1180 		 * can lead to packet drops.
1181 		 */
1182 		data_race(memcpy(key->key, newkey, newkeylen));
1183 
1184 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1185 		 * Also note that a reader could catch new key->keylen value
1186 		 * but old key->key[], this is the reason we use __GFP_ZERO
1187 		 * at sock_kmalloc() time below these lines.
1188 		 */
1189 		WRITE_ONCE(key->keylen, newkeylen);
1190 
1191 		return 0;
1192 	}
1193 
1194 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1195 					   lockdep_sock_is_held(sk));
1196 	if (!md5sig) {
1197 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1198 		if (!md5sig)
1199 			return -ENOMEM;
1200 
1201 		sk_gso_disable(sk);
1202 		INIT_HLIST_HEAD(&md5sig->head);
1203 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1204 	}
1205 
1206 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1207 	if (!key)
1208 		return -ENOMEM;
1209 	if (!tcp_alloc_md5sig_pool()) {
1210 		sock_kfree_s(sk, key, sizeof(*key));
1211 		return -ENOMEM;
1212 	}
1213 
1214 	memcpy(key->key, newkey, newkeylen);
1215 	key->keylen = newkeylen;
1216 	key->family = family;
1217 	key->prefixlen = prefixlen;
1218 	key->l3index = l3index;
1219 	key->flags = flags;
1220 	memcpy(&key->addr, addr,
1221 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1222 								 sizeof(struct in_addr));
1223 	hlist_add_head_rcu(&key->node, &md5sig->head);
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL(tcp_md5_do_add);
1227 
1228 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1229 		   u8 prefixlen, int l3index, u8 flags)
1230 {
1231 	struct tcp_md5sig_key *key;
1232 
1233 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1234 	if (!key)
1235 		return -ENOENT;
1236 	hlist_del_rcu(&key->node);
1237 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1238 	kfree_rcu(key, rcu);
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL(tcp_md5_do_del);
1242 
1243 static void tcp_clear_md5_list(struct sock *sk)
1244 {
1245 	struct tcp_sock *tp = tcp_sk(sk);
1246 	struct tcp_md5sig_key *key;
1247 	struct hlist_node *n;
1248 	struct tcp_md5sig_info *md5sig;
1249 
1250 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1251 
1252 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1253 		hlist_del_rcu(&key->node);
1254 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1255 		kfree_rcu(key, rcu);
1256 	}
1257 }
1258 
1259 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1260 				 sockptr_t optval, int optlen)
1261 {
1262 	struct tcp_md5sig cmd;
1263 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1264 	const union tcp_md5_addr *addr;
1265 	u8 prefixlen = 32;
1266 	int l3index = 0;
1267 	u8 flags;
1268 
1269 	if (optlen < sizeof(cmd))
1270 		return -EINVAL;
1271 
1272 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1273 		return -EFAULT;
1274 
1275 	if (sin->sin_family != AF_INET)
1276 		return -EINVAL;
1277 
1278 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1279 
1280 	if (optname == TCP_MD5SIG_EXT &&
1281 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1282 		prefixlen = cmd.tcpm_prefixlen;
1283 		if (prefixlen > 32)
1284 			return -EINVAL;
1285 	}
1286 
1287 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1288 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1289 		struct net_device *dev;
1290 
1291 		rcu_read_lock();
1292 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1293 		if (dev && netif_is_l3_master(dev))
1294 			l3index = dev->ifindex;
1295 
1296 		rcu_read_unlock();
1297 
1298 		/* ok to reference set/not set outside of rcu;
1299 		 * right now device MUST be an L3 master
1300 		 */
1301 		if (!dev || !l3index)
1302 			return -EINVAL;
1303 	}
1304 
1305 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1306 
1307 	if (!cmd.tcpm_keylen)
1308 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1309 
1310 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1311 		return -EINVAL;
1312 
1313 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1314 			      cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1315 }
1316 
1317 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1318 				   __be32 daddr, __be32 saddr,
1319 				   const struct tcphdr *th, int nbytes)
1320 {
1321 	struct tcp4_pseudohdr *bp;
1322 	struct scatterlist sg;
1323 	struct tcphdr *_th;
1324 
1325 	bp = hp->scratch;
1326 	bp->saddr = saddr;
1327 	bp->daddr = daddr;
1328 	bp->pad = 0;
1329 	bp->protocol = IPPROTO_TCP;
1330 	bp->len = cpu_to_be16(nbytes);
1331 
1332 	_th = (struct tcphdr *)(bp + 1);
1333 	memcpy(_th, th, sizeof(*th));
1334 	_th->check = 0;
1335 
1336 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1337 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1338 				sizeof(*bp) + sizeof(*th));
1339 	return crypto_ahash_update(hp->md5_req);
1340 }
1341 
1342 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1343 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1344 {
1345 	struct tcp_md5sig_pool *hp;
1346 	struct ahash_request *req;
1347 
1348 	hp = tcp_get_md5sig_pool();
1349 	if (!hp)
1350 		goto clear_hash_noput;
1351 	req = hp->md5_req;
1352 
1353 	if (crypto_ahash_init(req))
1354 		goto clear_hash;
1355 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1356 		goto clear_hash;
1357 	if (tcp_md5_hash_key(hp, key))
1358 		goto clear_hash;
1359 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1360 	if (crypto_ahash_final(req))
1361 		goto clear_hash;
1362 
1363 	tcp_put_md5sig_pool();
1364 	return 0;
1365 
1366 clear_hash:
1367 	tcp_put_md5sig_pool();
1368 clear_hash_noput:
1369 	memset(md5_hash, 0, 16);
1370 	return 1;
1371 }
1372 
1373 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1374 			const struct sock *sk,
1375 			const struct sk_buff *skb)
1376 {
1377 	struct tcp_md5sig_pool *hp;
1378 	struct ahash_request *req;
1379 	const struct tcphdr *th = tcp_hdr(skb);
1380 	__be32 saddr, daddr;
1381 
1382 	if (sk) { /* valid for establish/request sockets */
1383 		saddr = sk->sk_rcv_saddr;
1384 		daddr = sk->sk_daddr;
1385 	} else {
1386 		const struct iphdr *iph = ip_hdr(skb);
1387 		saddr = iph->saddr;
1388 		daddr = iph->daddr;
1389 	}
1390 
1391 	hp = tcp_get_md5sig_pool();
1392 	if (!hp)
1393 		goto clear_hash_noput;
1394 	req = hp->md5_req;
1395 
1396 	if (crypto_ahash_init(req))
1397 		goto clear_hash;
1398 
1399 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1400 		goto clear_hash;
1401 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1402 		goto clear_hash;
1403 	if (tcp_md5_hash_key(hp, key))
1404 		goto clear_hash;
1405 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1406 	if (crypto_ahash_final(req))
1407 		goto clear_hash;
1408 
1409 	tcp_put_md5sig_pool();
1410 	return 0;
1411 
1412 clear_hash:
1413 	tcp_put_md5sig_pool();
1414 clear_hash_noput:
1415 	memset(md5_hash, 0, 16);
1416 	return 1;
1417 }
1418 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1419 
1420 #endif
1421 
1422 static void tcp_v4_init_req(struct request_sock *req,
1423 			    const struct sock *sk_listener,
1424 			    struct sk_buff *skb)
1425 {
1426 	struct inet_request_sock *ireq = inet_rsk(req);
1427 	struct net *net = sock_net(sk_listener);
1428 
1429 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1430 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1431 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1432 }
1433 
1434 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1435 					  struct sk_buff *skb,
1436 					  struct flowi *fl,
1437 					  struct request_sock *req)
1438 {
1439 	tcp_v4_init_req(req, sk, skb);
1440 
1441 	if (security_inet_conn_request(sk, skb, req))
1442 		return NULL;
1443 
1444 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1445 }
1446 
1447 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1448 	.family		=	PF_INET,
1449 	.obj_size	=	sizeof(struct tcp_request_sock),
1450 	.rtx_syn_ack	=	tcp_rtx_synack,
1451 	.send_ack	=	tcp_v4_reqsk_send_ack,
1452 	.destructor	=	tcp_v4_reqsk_destructor,
1453 	.send_reset	=	tcp_v4_send_reset,
1454 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1455 };
1456 
1457 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1458 	.mss_clamp	=	TCP_MSS_DEFAULT,
1459 #ifdef CONFIG_TCP_MD5SIG
1460 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1461 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1462 #endif
1463 #ifdef CONFIG_SYN_COOKIES
1464 	.cookie_init_seq =	cookie_v4_init_sequence,
1465 #endif
1466 	.route_req	=	tcp_v4_route_req,
1467 	.init_seq	=	tcp_v4_init_seq,
1468 	.init_ts_off	=	tcp_v4_init_ts_off,
1469 	.send_synack	=	tcp_v4_send_synack,
1470 };
1471 
1472 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1473 {
1474 	/* Never answer to SYNs send to broadcast or multicast */
1475 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1476 		goto drop;
1477 
1478 	return tcp_conn_request(&tcp_request_sock_ops,
1479 				&tcp_request_sock_ipv4_ops, sk, skb);
1480 
1481 drop:
1482 	tcp_listendrop(sk);
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL(tcp_v4_conn_request);
1486 
1487 
1488 /*
1489  * The three way handshake has completed - we got a valid synack -
1490  * now create the new socket.
1491  */
1492 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1493 				  struct request_sock *req,
1494 				  struct dst_entry *dst,
1495 				  struct request_sock *req_unhash,
1496 				  bool *own_req)
1497 {
1498 	struct inet_request_sock *ireq;
1499 	bool found_dup_sk = false;
1500 	struct inet_sock *newinet;
1501 	struct tcp_sock *newtp;
1502 	struct sock *newsk;
1503 #ifdef CONFIG_TCP_MD5SIG
1504 	const union tcp_md5_addr *addr;
1505 	struct tcp_md5sig_key *key;
1506 	int l3index;
1507 #endif
1508 	struct ip_options_rcu *inet_opt;
1509 
1510 	if (sk_acceptq_is_full(sk))
1511 		goto exit_overflow;
1512 
1513 	newsk = tcp_create_openreq_child(sk, req, skb);
1514 	if (!newsk)
1515 		goto exit_nonewsk;
1516 
1517 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1518 	inet_sk_rx_dst_set(newsk, skb);
1519 
1520 	newtp		      = tcp_sk(newsk);
1521 	newinet		      = inet_sk(newsk);
1522 	ireq		      = inet_rsk(req);
1523 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1524 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1525 	newsk->sk_bound_dev_if = ireq->ir_iif;
1526 	newinet->inet_saddr   = ireq->ir_loc_addr;
1527 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1528 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1529 	newinet->mc_index     = inet_iif(skb);
1530 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1531 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1532 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1533 	if (inet_opt)
1534 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1535 	newinet->inet_id = get_random_u16();
1536 
1537 	/* Set ToS of the new socket based upon the value of incoming SYN.
1538 	 * ECT bits are set later in tcp_init_transfer().
1539 	 */
1540 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1541 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1542 
1543 	if (!dst) {
1544 		dst = inet_csk_route_child_sock(sk, newsk, req);
1545 		if (!dst)
1546 			goto put_and_exit;
1547 	} else {
1548 		/* syncookie case : see end of cookie_v4_check() */
1549 	}
1550 	sk_setup_caps(newsk, dst);
1551 
1552 	tcp_ca_openreq_child(newsk, dst);
1553 
1554 	tcp_sync_mss(newsk, dst_mtu(dst));
1555 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1556 
1557 	tcp_initialize_rcv_mss(newsk);
1558 
1559 #ifdef CONFIG_TCP_MD5SIG
1560 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1561 	/* Copy over the MD5 key from the original socket */
1562 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1563 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1564 	if (key) {
1565 		/*
1566 		 * We're using one, so create a matching key
1567 		 * on the newsk structure. If we fail to get
1568 		 * memory, then we end up not copying the key
1569 		 * across. Shucks.
1570 		 */
1571 		tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, key->flags,
1572 			       key->key, key->keylen, GFP_ATOMIC);
1573 		sk_gso_disable(newsk);
1574 	}
1575 #endif
1576 
1577 	if (__inet_inherit_port(sk, newsk) < 0)
1578 		goto put_and_exit;
1579 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1580 				       &found_dup_sk);
1581 	if (likely(*own_req)) {
1582 		tcp_move_syn(newtp, req);
1583 		ireq->ireq_opt = NULL;
1584 	} else {
1585 		newinet->inet_opt = NULL;
1586 
1587 		if (!req_unhash && found_dup_sk) {
1588 			/* This code path should only be executed in the
1589 			 * syncookie case only
1590 			 */
1591 			bh_unlock_sock(newsk);
1592 			sock_put(newsk);
1593 			newsk = NULL;
1594 		}
1595 	}
1596 	return newsk;
1597 
1598 exit_overflow:
1599 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1600 exit_nonewsk:
1601 	dst_release(dst);
1602 exit:
1603 	tcp_listendrop(sk);
1604 	return NULL;
1605 put_and_exit:
1606 	newinet->inet_opt = NULL;
1607 	inet_csk_prepare_forced_close(newsk);
1608 	tcp_done(newsk);
1609 	goto exit;
1610 }
1611 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1612 
1613 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1614 {
1615 #ifdef CONFIG_SYN_COOKIES
1616 	const struct tcphdr *th = tcp_hdr(skb);
1617 
1618 	if (!th->syn)
1619 		sk = cookie_v4_check(sk, skb);
1620 #endif
1621 	return sk;
1622 }
1623 
1624 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1625 			 struct tcphdr *th, u32 *cookie)
1626 {
1627 	u16 mss = 0;
1628 #ifdef CONFIG_SYN_COOKIES
1629 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1630 				    &tcp_request_sock_ipv4_ops, sk, th);
1631 	if (mss) {
1632 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1633 		tcp_synq_overflow(sk);
1634 	}
1635 #endif
1636 	return mss;
1637 }
1638 
1639 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1640 							   u32));
1641 /* The socket must have it's spinlock held when we get
1642  * here, unless it is a TCP_LISTEN socket.
1643  *
1644  * We have a potential double-lock case here, so even when
1645  * doing backlog processing we use the BH locking scheme.
1646  * This is because we cannot sleep with the original spinlock
1647  * held.
1648  */
1649 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1650 {
1651 	enum skb_drop_reason reason;
1652 	struct sock *rsk;
1653 
1654 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1655 		struct dst_entry *dst;
1656 
1657 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1658 						lockdep_sock_is_held(sk));
1659 
1660 		sock_rps_save_rxhash(sk, skb);
1661 		sk_mark_napi_id(sk, skb);
1662 		if (dst) {
1663 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1664 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1665 					     dst, 0)) {
1666 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1667 				dst_release(dst);
1668 			}
1669 		}
1670 		tcp_rcv_established(sk, skb);
1671 		return 0;
1672 	}
1673 
1674 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1675 	if (tcp_checksum_complete(skb))
1676 		goto csum_err;
1677 
1678 	if (sk->sk_state == TCP_LISTEN) {
1679 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1680 
1681 		if (!nsk)
1682 			goto discard;
1683 		if (nsk != sk) {
1684 			if (tcp_child_process(sk, nsk, skb)) {
1685 				rsk = nsk;
1686 				goto reset;
1687 			}
1688 			return 0;
1689 		}
1690 	} else
1691 		sock_rps_save_rxhash(sk, skb);
1692 
1693 	if (tcp_rcv_state_process(sk, skb)) {
1694 		rsk = sk;
1695 		goto reset;
1696 	}
1697 	return 0;
1698 
1699 reset:
1700 	tcp_v4_send_reset(rsk, skb);
1701 discard:
1702 	kfree_skb_reason(skb, reason);
1703 	/* Be careful here. If this function gets more complicated and
1704 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1705 	 * might be destroyed here. This current version compiles correctly,
1706 	 * but you have been warned.
1707 	 */
1708 	return 0;
1709 
1710 csum_err:
1711 	reason = SKB_DROP_REASON_TCP_CSUM;
1712 	trace_tcp_bad_csum(skb);
1713 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1714 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1715 	goto discard;
1716 }
1717 EXPORT_SYMBOL(tcp_v4_do_rcv);
1718 
1719 int tcp_v4_early_demux(struct sk_buff *skb)
1720 {
1721 	struct net *net = dev_net(skb->dev);
1722 	const struct iphdr *iph;
1723 	const struct tcphdr *th;
1724 	struct sock *sk;
1725 
1726 	if (skb->pkt_type != PACKET_HOST)
1727 		return 0;
1728 
1729 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1730 		return 0;
1731 
1732 	iph = ip_hdr(skb);
1733 	th = tcp_hdr(skb);
1734 
1735 	if (th->doff < sizeof(struct tcphdr) / 4)
1736 		return 0;
1737 
1738 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1739 				       iph->saddr, th->source,
1740 				       iph->daddr, ntohs(th->dest),
1741 				       skb->skb_iif, inet_sdif(skb));
1742 	if (sk) {
1743 		skb->sk = sk;
1744 		skb->destructor = sock_edemux;
1745 		if (sk_fullsock(sk)) {
1746 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1747 
1748 			if (dst)
1749 				dst = dst_check(dst, 0);
1750 			if (dst &&
1751 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1752 				skb_dst_set_noref(skb, dst);
1753 		}
1754 	}
1755 	return 0;
1756 }
1757 
1758 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1759 		     enum skb_drop_reason *reason)
1760 {
1761 	u32 limit, tail_gso_size, tail_gso_segs;
1762 	struct skb_shared_info *shinfo;
1763 	const struct tcphdr *th;
1764 	struct tcphdr *thtail;
1765 	struct sk_buff *tail;
1766 	unsigned int hdrlen;
1767 	bool fragstolen;
1768 	u32 gso_segs;
1769 	u32 gso_size;
1770 	int delta;
1771 
1772 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1773 	 * we can fix skb->truesize to its real value to avoid future drops.
1774 	 * This is valid because skb is not yet charged to the socket.
1775 	 * It has been noticed pure SACK packets were sometimes dropped
1776 	 * (if cooked by drivers without copybreak feature).
1777 	 */
1778 	skb_condense(skb);
1779 
1780 	skb_dst_drop(skb);
1781 
1782 	if (unlikely(tcp_checksum_complete(skb))) {
1783 		bh_unlock_sock(sk);
1784 		trace_tcp_bad_csum(skb);
1785 		*reason = SKB_DROP_REASON_TCP_CSUM;
1786 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1787 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1788 		return true;
1789 	}
1790 
1791 	/* Attempt coalescing to last skb in backlog, even if we are
1792 	 * above the limits.
1793 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1794 	 */
1795 	th = (const struct tcphdr *)skb->data;
1796 	hdrlen = th->doff * 4;
1797 
1798 	tail = sk->sk_backlog.tail;
1799 	if (!tail)
1800 		goto no_coalesce;
1801 	thtail = (struct tcphdr *)tail->data;
1802 
1803 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1804 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1805 	    ((TCP_SKB_CB(tail)->tcp_flags |
1806 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1807 	    !((TCP_SKB_CB(tail)->tcp_flags &
1808 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1809 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1810 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1811 #ifdef CONFIG_TLS_DEVICE
1812 	    tail->decrypted != skb->decrypted ||
1813 #endif
1814 	    thtail->doff != th->doff ||
1815 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1816 		goto no_coalesce;
1817 
1818 	__skb_pull(skb, hdrlen);
1819 
1820 	shinfo = skb_shinfo(skb);
1821 	gso_size = shinfo->gso_size ?: skb->len;
1822 	gso_segs = shinfo->gso_segs ?: 1;
1823 
1824 	shinfo = skb_shinfo(tail);
1825 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1826 	tail_gso_segs = shinfo->gso_segs ?: 1;
1827 
1828 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1829 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1830 
1831 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1832 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1833 			thtail->window = th->window;
1834 		}
1835 
1836 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1837 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1838 		 * is not entered if we append a packet with a FIN.
1839 		 * SYN, RST, URG are not present.
1840 		 * ACK is set on both packets.
1841 		 * PSH : we do not really care in TCP stack,
1842 		 *       at least for 'GRO' packets.
1843 		 */
1844 		thtail->fin |= th->fin;
1845 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1846 
1847 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1848 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1849 			tail->tstamp = skb->tstamp;
1850 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1851 		}
1852 
1853 		/* Not as strict as GRO. We only need to carry mss max value */
1854 		shinfo->gso_size = max(gso_size, tail_gso_size);
1855 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1856 
1857 		sk->sk_backlog.len += delta;
1858 		__NET_INC_STATS(sock_net(sk),
1859 				LINUX_MIB_TCPBACKLOGCOALESCE);
1860 		kfree_skb_partial(skb, fragstolen);
1861 		return false;
1862 	}
1863 	__skb_push(skb, hdrlen);
1864 
1865 no_coalesce:
1866 	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1867 
1868 	/* Only socket owner can try to collapse/prune rx queues
1869 	 * to reduce memory overhead, so add a little headroom here.
1870 	 * Few sockets backlog are possibly concurrently non empty.
1871 	 */
1872 	limit += 64 * 1024;
1873 
1874 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1875 		bh_unlock_sock(sk);
1876 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1877 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1878 		return true;
1879 	}
1880 	return false;
1881 }
1882 EXPORT_SYMBOL(tcp_add_backlog);
1883 
1884 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1885 {
1886 	struct tcphdr *th = (struct tcphdr *)skb->data;
1887 
1888 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1889 }
1890 EXPORT_SYMBOL(tcp_filter);
1891 
1892 static void tcp_v4_restore_cb(struct sk_buff *skb)
1893 {
1894 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1895 		sizeof(struct inet_skb_parm));
1896 }
1897 
1898 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1899 			   const struct tcphdr *th)
1900 {
1901 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1902 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1903 	 */
1904 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1905 		sizeof(struct inet_skb_parm));
1906 	barrier();
1907 
1908 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1909 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1910 				    skb->len - th->doff * 4);
1911 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1912 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1913 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1914 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1915 	TCP_SKB_CB(skb)->sacked	 = 0;
1916 	TCP_SKB_CB(skb)->has_rxtstamp =
1917 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1918 }
1919 
1920 /*
1921  *	From tcp_input.c
1922  */
1923 
1924 int tcp_v4_rcv(struct sk_buff *skb)
1925 {
1926 	struct net *net = dev_net(skb->dev);
1927 	enum skb_drop_reason drop_reason;
1928 	int sdif = inet_sdif(skb);
1929 	int dif = inet_iif(skb);
1930 	const struct iphdr *iph;
1931 	const struct tcphdr *th;
1932 	bool refcounted;
1933 	struct sock *sk;
1934 	int ret;
1935 
1936 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1937 	if (skb->pkt_type != PACKET_HOST)
1938 		goto discard_it;
1939 
1940 	/* Count it even if it's bad */
1941 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1942 
1943 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1944 		goto discard_it;
1945 
1946 	th = (const struct tcphdr *)skb->data;
1947 
1948 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
1949 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
1950 		goto bad_packet;
1951 	}
1952 	if (!pskb_may_pull(skb, th->doff * 4))
1953 		goto discard_it;
1954 
1955 	/* An explanation is required here, I think.
1956 	 * Packet length and doff are validated by header prediction,
1957 	 * provided case of th->doff==0 is eliminated.
1958 	 * So, we defer the checks. */
1959 
1960 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1961 		goto csum_error;
1962 
1963 	th = (const struct tcphdr *)skb->data;
1964 	iph = ip_hdr(skb);
1965 lookup:
1966 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
1967 			       skb, __tcp_hdrlen(th), th->source,
1968 			       th->dest, sdif, &refcounted);
1969 	if (!sk)
1970 		goto no_tcp_socket;
1971 
1972 process:
1973 	if (sk->sk_state == TCP_TIME_WAIT)
1974 		goto do_time_wait;
1975 
1976 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1977 		struct request_sock *req = inet_reqsk(sk);
1978 		bool req_stolen = false;
1979 		struct sock *nsk;
1980 
1981 		sk = req->rsk_listener;
1982 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1983 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
1984 		else
1985 			drop_reason = tcp_inbound_md5_hash(sk, skb,
1986 						   &iph->saddr, &iph->daddr,
1987 						   AF_INET, dif, sdif);
1988 		if (unlikely(drop_reason)) {
1989 			sk_drops_add(sk, skb);
1990 			reqsk_put(req);
1991 			goto discard_it;
1992 		}
1993 		if (tcp_checksum_complete(skb)) {
1994 			reqsk_put(req);
1995 			goto csum_error;
1996 		}
1997 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1998 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
1999 			if (!nsk) {
2000 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2001 				goto lookup;
2002 			}
2003 			sk = nsk;
2004 			/* reuseport_migrate_sock() has already held one sk_refcnt
2005 			 * before returning.
2006 			 */
2007 		} else {
2008 			/* We own a reference on the listener, increase it again
2009 			 * as we might lose it too soon.
2010 			 */
2011 			sock_hold(sk);
2012 		}
2013 		refcounted = true;
2014 		nsk = NULL;
2015 		if (!tcp_filter(sk, skb)) {
2016 			th = (const struct tcphdr *)skb->data;
2017 			iph = ip_hdr(skb);
2018 			tcp_v4_fill_cb(skb, iph, th);
2019 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2020 		} else {
2021 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2022 		}
2023 		if (!nsk) {
2024 			reqsk_put(req);
2025 			if (req_stolen) {
2026 				/* Another cpu got exclusive access to req
2027 				 * and created a full blown socket.
2028 				 * Try to feed this packet to this socket
2029 				 * instead of discarding it.
2030 				 */
2031 				tcp_v4_restore_cb(skb);
2032 				sock_put(sk);
2033 				goto lookup;
2034 			}
2035 			goto discard_and_relse;
2036 		}
2037 		nf_reset_ct(skb);
2038 		if (nsk == sk) {
2039 			reqsk_put(req);
2040 			tcp_v4_restore_cb(skb);
2041 		} else if (tcp_child_process(sk, nsk, skb)) {
2042 			tcp_v4_send_reset(nsk, skb);
2043 			goto discard_and_relse;
2044 		} else {
2045 			sock_put(sk);
2046 			return 0;
2047 		}
2048 	}
2049 
2050 	if (static_branch_unlikely(&ip4_min_ttl)) {
2051 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2052 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2053 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2054 			goto discard_and_relse;
2055 		}
2056 	}
2057 
2058 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2059 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2060 		goto discard_and_relse;
2061 	}
2062 
2063 	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2064 					   &iph->daddr, AF_INET, dif, sdif);
2065 	if (drop_reason)
2066 		goto discard_and_relse;
2067 
2068 	nf_reset_ct(skb);
2069 
2070 	if (tcp_filter(sk, skb)) {
2071 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2072 		goto discard_and_relse;
2073 	}
2074 	th = (const struct tcphdr *)skb->data;
2075 	iph = ip_hdr(skb);
2076 	tcp_v4_fill_cb(skb, iph, th);
2077 
2078 	skb->dev = NULL;
2079 
2080 	if (sk->sk_state == TCP_LISTEN) {
2081 		ret = tcp_v4_do_rcv(sk, skb);
2082 		goto put_and_return;
2083 	}
2084 
2085 	sk_incoming_cpu_update(sk);
2086 
2087 	bh_lock_sock_nested(sk);
2088 	tcp_segs_in(tcp_sk(sk), skb);
2089 	ret = 0;
2090 	if (!sock_owned_by_user(sk)) {
2091 		ret = tcp_v4_do_rcv(sk, skb);
2092 	} else {
2093 		if (tcp_add_backlog(sk, skb, &drop_reason))
2094 			goto discard_and_relse;
2095 	}
2096 	bh_unlock_sock(sk);
2097 
2098 put_and_return:
2099 	if (refcounted)
2100 		sock_put(sk);
2101 
2102 	return ret;
2103 
2104 no_tcp_socket:
2105 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2106 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2107 		goto discard_it;
2108 
2109 	tcp_v4_fill_cb(skb, iph, th);
2110 
2111 	if (tcp_checksum_complete(skb)) {
2112 csum_error:
2113 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2114 		trace_tcp_bad_csum(skb);
2115 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2116 bad_packet:
2117 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2118 	} else {
2119 		tcp_v4_send_reset(NULL, skb);
2120 	}
2121 
2122 discard_it:
2123 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2124 	/* Discard frame. */
2125 	kfree_skb_reason(skb, drop_reason);
2126 	return 0;
2127 
2128 discard_and_relse:
2129 	sk_drops_add(sk, skb);
2130 	if (refcounted)
2131 		sock_put(sk);
2132 	goto discard_it;
2133 
2134 do_time_wait:
2135 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2136 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2137 		inet_twsk_put(inet_twsk(sk));
2138 		goto discard_it;
2139 	}
2140 
2141 	tcp_v4_fill_cb(skb, iph, th);
2142 
2143 	if (tcp_checksum_complete(skb)) {
2144 		inet_twsk_put(inet_twsk(sk));
2145 		goto csum_error;
2146 	}
2147 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2148 	case TCP_TW_SYN: {
2149 		struct sock *sk2 = inet_lookup_listener(net,
2150 							net->ipv4.tcp_death_row.hashinfo,
2151 							skb, __tcp_hdrlen(th),
2152 							iph->saddr, th->source,
2153 							iph->daddr, th->dest,
2154 							inet_iif(skb),
2155 							sdif);
2156 		if (sk2) {
2157 			inet_twsk_deschedule_put(inet_twsk(sk));
2158 			sk = sk2;
2159 			tcp_v4_restore_cb(skb);
2160 			refcounted = false;
2161 			goto process;
2162 		}
2163 	}
2164 		/* to ACK */
2165 		fallthrough;
2166 	case TCP_TW_ACK:
2167 		tcp_v4_timewait_ack(sk, skb);
2168 		break;
2169 	case TCP_TW_RST:
2170 		tcp_v4_send_reset(sk, skb);
2171 		inet_twsk_deschedule_put(inet_twsk(sk));
2172 		goto discard_it;
2173 	case TCP_TW_SUCCESS:;
2174 	}
2175 	goto discard_it;
2176 }
2177 
2178 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2179 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2180 	.twsk_unique	= tcp_twsk_unique,
2181 	.twsk_destructor= tcp_twsk_destructor,
2182 };
2183 
2184 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2185 {
2186 	struct dst_entry *dst = skb_dst(skb);
2187 
2188 	if (dst && dst_hold_safe(dst)) {
2189 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2190 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2191 	}
2192 }
2193 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2194 
2195 const struct inet_connection_sock_af_ops ipv4_specific = {
2196 	.queue_xmit	   = ip_queue_xmit,
2197 	.send_check	   = tcp_v4_send_check,
2198 	.rebuild_header	   = inet_sk_rebuild_header,
2199 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2200 	.conn_request	   = tcp_v4_conn_request,
2201 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2202 	.net_header_len	   = sizeof(struct iphdr),
2203 	.setsockopt	   = ip_setsockopt,
2204 	.getsockopt	   = ip_getsockopt,
2205 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2206 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2207 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2208 };
2209 EXPORT_SYMBOL(ipv4_specific);
2210 
2211 #ifdef CONFIG_TCP_MD5SIG
2212 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2213 	.md5_lookup		= tcp_v4_md5_lookup,
2214 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2215 	.md5_parse		= tcp_v4_parse_md5_keys,
2216 };
2217 #endif
2218 
2219 /* NOTE: A lot of things set to zero explicitly by call to
2220  *       sk_alloc() so need not be done here.
2221  */
2222 static int tcp_v4_init_sock(struct sock *sk)
2223 {
2224 	struct inet_connection_sock *icsk = inet_csk(sk);
2225 
2226 	tcp_init_sock(sk);
2227 
2228 	icsk->icsk_af_ops = &ipv4_specific;
2229 
2230 #ifdef CONFIG_TCP_MD5SIG
2231 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2232 #endif
2233 
2234 	return 0;
2235 }
2236 
2237 void tcp_v4_destroy_sock(struct sock *sk)
2238 {
2239 	struct tcp_sock *tp = tcp_sk(sk);
2240 
2241 	trace_tcp_destroy_sock(sk);
2242 
2243 	tcp_clear_xmit_timers(sk);
2244 
2245 	tcp_cleanup_congestion_control(sk);
2246 
2247 	tcp_cleanup_ulp(sk);
2248 
2249 	/* Cleanup up the write buffer. */
2250 	tcp_write_queue_purge(sk);
2251 
2252 	/* Check if we want to disable active TFO */
2253 	tcp_fastopen_active_disable_ofo_check(sk);
2254 
2255 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2256 	skb_rbtree_purge(&tp->out_of_order_queue);
2257 
2258 #ifdef CONFIG_TCP_MD5SIG
2259 	/* Clean up the MD5 key list, if any */
2260 	if (tp->md5sig_info) {
2261 		tcp_clear_md5_list(sk);
2262 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2263 		tp->md5sig_info = NULL;
2264 	}
2265 #endif
2266 
2267 	/* Clean up a referenced TCP bind bucket. */
2268 	if (inet_csk(sk)->icsk_bind_hash)
2269 		inet_put_port(sk);
2270 
2271 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2272 
2273 	/* If socket is aborted during connect operation */
2274 	tcp_free_fastopen_req(tp);
2275 	tcp_fastopen_destroy_cipher(sk);
2276 	tcp_saved_syn_free(tp);
2277 
2278 	sk_sockets_allocated_dec(sk);
2279 }
2280 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2281 
2282 #ifdef CONFIG_PROC_FS
2283 /* Proc filesystem TCP sock list dumping. */
2284 
2285 static unsigned short seq_file_family(const struct seq_file *seq);
2286 
2287 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2288 {
2289 	unsigned short family = seq_file_family(seq);
2290 
2291 	/* AF_UNSPEC is used as a match all */
2292 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2293 		net_eq(sock_net(sk), seq_file_net(seq)));
2294 }
2295 
2296 /* Find a non empty bucket (starting from st->bucket)
2297  * and return the first sk from it.
2298  */
2299 static void *listening_get_first(struct seq_file *seq)
2300 {
2301 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2302 	struct tcp_iter_state *st = seq->private;
2303 
2304 	st->offset = 0;
2305 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2306 		struct inet_listen_hashbucket *ilb2;
2307 		struct hlist_nulls_node *node;
2308 		struct sock *sk;
2309 
2310 		ilb2 = &hinfo->lhash2[st->bucket];
2311 		if (hlist_nulls_empty(&ilb2->nulls_head))
2312 			continue;
2313 
2314 		spin_lock(&ilb2->lock);
2315 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2316 			if (seq_sk_match(seq, sk))
2317 				return sk;
2318 		}
2319 		spin_unlock(&ilb2->lock);
2320 	}
2321 
2322 	return NULL;
2323 }
2324 
2325 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2326  * If "cur" is the last one in the st->bucket,
2327  * call listening_get_first() to return the first sk of the next
2328  * non empty bucket.
2329  */
2330 static void *listening_get_next(struct seq_file *seq, void *cur)
2331 {
2332 	struct tcp_iter_state *st = seq->private;
2333 	struct inet_listen_hashbucket *ilb2;
2334 	struct hlist_nulls_node *node;
2335 	struct inet_hashinfo *hinfo;
2336 	struct sock *sk = cur;
2337 
2338 	++st->num;
2339 	++st->offset;
2340 
2341 	sk = sk_nulls_next(sk);
2342 	sk_nulls_for_each_from(sk, node) {
2343 		if (seq_sk_match(seq, sk))
2344 			return sk;
2345 	}
2346 
2347 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2348 	ilb2 = &hinfo->lhash2[st->bucket];
2349 	spin_unlock(&ilb2->lock);
2350 	++st->bucket;
2351 	return listening_get_first(seq);
2352 }
2353 
2354 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2355 {
2356 	struct tcp_iter_state *st = seq->private;
2357 	void *rc;
2358 
2359 	st->bucket = 0;
2360 	st->offset = 0;
2361 	rc = listening_get_first(seq);
2362 
2363 	while (rc && *pos) {
2364 		rc = listening_get_next(seq, rc);
2365 		--*pos;
2366 	}
2367 	return rc;
2368 }
2369 
2370 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2371 				const struct tcp_iter_state *st)
2372 {
2373 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2374 }
2375 
2376 /*
2377  * Get first established socket starting from bucket given in st->bucket.
2378  * If st->bucket is zero, the very first socket in the hash is returned.
2379  */
2380 static void *established_get_first(struct seq_file *seq)
2381 {
2382 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2383 	struct tcp_iter_state *st = seq->private;
2384 
2385 	st->offset = 0;
2386 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2387 		struct sock *sk;
2388 		struct hlist_nulls_node *node;
2389 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2390 
2391 		/* Lockless fast path for the common case of empty buckets */
2392 		if (empty_bucket(hinfo, st))
2393 			continue;
2394 
2395 		spin_lock_bh(lock);
2396 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2397 			if (seq_sk_match(seq, sk))
2398 				return sk;
2399 		}
2400 		spin_unlock_bh(lock);
2401 	}
2402 
2403 	return NULL;
2404 }
2405 
2406 static void *established_get_next(struct seq_file *seq, void *cur)
2407 {
2408 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2409 	struct tcp_iter_state *st = seq->private;
2410 	struct hlist_nulls_node *node;
2411 	struct sock *sk = cur;
2412 
2413 	++st->num;
2414 	++st->offset;
2415 
2416 	sk = sk_nulls_next(sk);
2417 
2418 	sk_nulls_for_each_from(sk, node) {
2419 		if (seq_sk_match(seq, sk))
2420 			return sk;
2421 	}
2422 
2423 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2424 	++st->bucket;
2425 	return established_get_first(seq);
2426 }
2427 
2428 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2429 {
2430 	struct tcp_iter_state *st = seq->private;
2431 	void *rc;
2432 
2433 	st->bucket = 0;
2434 	rc = established_get_first(seq);
2435 
2436 	while (rc && pos) {
2437 		rc = established_get_next(seq, rc);
2438 		--pos;
2439 	}
2440 	return rc;
2441 }
2442 
2443 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2444 {
2445 	void *rc;
2446 	struct tcp_iter_state *st = seq->private;
2447 
2448 	st->state = TCP_SEQ_STATE_LISTENING;
2449 	rc	  = listening_get_idx(seq, &pos);
2450 
2451 	if (!rc) {
2452 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2453 		rc	  = established_get_idx(seq, pos);
2454 	}
2455 
2456 	return rc;
2457 }
2458 
2459 static void *tcp_seek_last_pos(struct seq_file *seq)
2460 {
2461 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2462 	struct tcp_iter_state *st = seq->private;
2463 	int bucket = st->bucket;
2464 	int offset = st->offset;
2465 	int orig_num = st->num;
2466 	void *rc = NULL;
2467 
2468 	switch (st->state) {
2469 	case TCP_SEQ_STATE_LISTENING:
2470 		if (st->bucket > hinfo->lhash2_mask)
2471 			break;
2472 		st->state = TCP_SEQ_STATE_LISTENING;
2473 		rc = listening_get_first(seq);
2474 		while (offset-- && rc && bucket == st->bucket)
2475 			rc = listening_get_next(seq, rc);
2476 		if (rc)
2477 			break;
2478 		st->bucket = 0;
2479 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2480 		fallthrough;
2481 	case TCP_SEQ_STATE_ESTABLISHED:
2482 		if (st->bucket > hinfo->ehash_mask)
2483 			break;
2484 		rc = established_get_first(seq);
2485 		while (offset-- && rc && bucket == st->bucket)
2486 			rc = established_get_next(seq, rc);
2487 	}
2488 
2489 	st->num = orig_num;
2490 
2491 	return rc;
2492 }
2493 
2494 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2495 {
2496 	struct tcp_iter_state *st = seq->private;
2497 	void *rc;
2498 
2499 	if (*pos && *pos == st->last_pos) {
2500 		rc = tcp_seek_last_pos(seq);
2501 		if (rc)
2502 			goto out;
2503 	}
2504 
2505 	st->state = TCP_SEQ_STATE_LISTENING;
2506 	st->num = 0;
2507 	st->bucket = 0;
2508 	st->offset = 0;
2509 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2510 
2511 out:
2512 	st->last_pos = *pos;
2513 	return rc;
2514 }
2515 EXPORT_SYMBOL(tcp_seq_start);
2516 
2517 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2518 {
2519 	struct tcp_iter_state *st = seq->private;
2520 	void *rc = NULL;
2521 
2522 	if (v == SEQ_START_TOKEN) {
2523 		rc = tcp_get_idx(seq, 0);
2524 		goto out;
2525 	}
2526 
2527 	switch (st->state) {
2528 	case TCP_SEQ_STATE_LISTENING:
2529 		rc = listening_get_next(seq, v);
2530 		if (!rc) {
2531 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2532 			st->bucket = 0;
2533 			st->offset = 0;
2534 			rc	  = established_get_first(seq);
2535 		}
2536 		break;
2537 	case TCP_SEQ_STATE_ESTABLISHED:
2538 		rc = established_get_next(seq, v);
2539 		break;
2540 	}
2541 out:
2542 	++*pos;
2543 	st->last_pos = *pos;
2544 	return rc;
2545 }
2546 EXPORT_SYMBOL(tcp_seq_next);
2547 
2548 void tcp_seq_stop(struct seq_file *seq, void *v)
2549 {
2550 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2551 	struct tcp_iter_state *st = seq->private;
2552 
2553 	switch (st->state) {
2554 	case TCP_SEQ_STATE_LISTENING:
2555 		if (v != SEQ_START_TOKEN)
2556 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2557 		break;
2558 	case TCP_SEQ_STATE_ESTABLISHED:
2559 		if (v)
2560 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2561 		break;
2562 	}
2563 }
2564 EXPORT_SYMBOL(tcp_seq_stop);
2565 
2566 static void get_openreq4(const struct request_sock *req,
2567 			 struct seq_file *f, int i)
2568 {
2569 	const struct inet_request_sock *ireq = inet_rsk(req);
2570 	long delta = req->rsk_timer.expires - jiffies;
2571 
2572 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2573 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2574 		i,
2575 		ireq->ir_loc_addr,
2576 		ireq->ir_num,
2577 		ireq->ir_rmt_addr,
2578 		ntohs(ireq->ir_rmt_port),
2579 		TCP_SYN_RECV,
2580 		0, 0, /* could print option size, but that is af dependent. */
2581 		1,    /* timers active (only the expire timer) */
2582 		jiffies_delta_to_clock_t(delta),
2583 		req->num_timeout,
2584 		from_kuid_munged(seq_user_ns(f),
2585 				 sock_i_uid(req->rsk_listener)),
2586 		0,  /* non standard timer */
2587 		0, /* open_requests have no inode */
2588 		0,
2589 		req);
2590 }
2591 
2592 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2593 {
2594 	int timer_active;
2595 	unsigned long timer_expires;
2596 	const struct tcp_sock *tp = tcp_sk(sk);
2597 	const struct inet_connection_sock *icsk = inet_csk(sk);
2598 	const struct inet_sock *inet = inet_sk(sk);
2599 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2600 	__be32 dest = inet->inet_daddr;
2601 	__be32 src = inet->inet_rcv_saddr;
2602 	__u16 destp = ntohs(inet->inet_dport);
2603 	__u16 srcp = ntohs(inet->inet_sport);
2604 	int rx_queue;
2605 	int state;
2606 
2607 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2608 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2609 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2610 		timer_active	= 1;
2611 		timer_expires	= icsk->icsk_timeout;
2612 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2613 		timer_active	= 4;
2614 		timer_expires	= icsk->icsk_timeout;
2615 	} else if (timer_pending(&sk->sk_timer)) {
2616 		timer_active	= 2;
2617 		timer_expires	= sk->sk_timer.expires;
2618 	} else {
2619 		timer_active	= 0;
2620 		timer_expires = jiffies;
2621 	}
2622 
2623 	state = inet_sk_state_load(sk);
2624 	if (state == TCP_LISTEN)
2625 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2626 	else
2627 		/* Because we don't lock the socket,
2628 		 * we might find a transient negative value.
2629 		 */
2630 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2631 				      READ_ONCE(tp->copied_seq), 0);
2632 
2633 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2634 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2635 		i, src, srcp, dest, destp, state,
2636 		READ_ONCE(tp->write_seq) - tp->snd_una,
2637 		rx_queue,
2638 		timer_active,
2639 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2640 		icsk->icsk_retransmits,
2641 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2642 		icsk->icsk_probes_out,
2643 		sock_i_ino(sk),
2644 		refcount_read(&sk->sk_refcnt), sk,
2645 		jiffies_to_clock_t(icsk->icsk_rto),
2646 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2647 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2648 		tcp_snd_cwnd(tp),
2649 		state == TCP_LISTEN ?
2650 		    fastopenq->max_qlen :
2651 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2652 }
2653 
2654 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2655 			       struct seq_file *f, int i)
2656 {
2657 	long delta = tw->tw_timer.expires - jiffies;
2658 	__be32 dest, src;
2659 	__u16 destp, srcp;
2660 
2661 	dest  = tw->tw_daddr;
2662 	src   = tw->tw_rcv_saddr;
2663 	destp = ntohs(tw->tw_dport);
2664 	srcp  = ntohs(tw->tw_sport);
2665 
2666 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2667 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2668 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2669 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2670 		refcount_read(&tw->tw_refcnt), tw);
2671 }
2672 
2673 #define TMPSZ 150
2674 
2675 static int tcp4_seq_show(struct seq_file *seq, void *v)
2676 {
2677 	struct tcp_iter_state *st;
2678 	struct sock *sk = v;
2679 
2680 	seq_setwidth(seq, TMPSZ - 1);
2681 	if (v == SEQ_START_TOKEN) {
2682 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2683 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2684 			   "inode");
2685 		goto out;
2686 	}
2687 	st = seq->private;
2688 
2689 	if (sk->sk_state == TCP_TIME_WAIT)
2690 		get_timewait4_sock(v, seq, st->num);
2691 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2692 		get_openreq4(v, seq, st->num);
2693 	else
2694 		get_tcp4_sock(v, seq, st->num);
2695 out:
2696 	seq_pad(seq, '\n');
2697 	return 0;
2698 }
2699 
2700 #ifdef CONFIG_BPF_SYSCALL
2701 struct bpf_tcp_iter_state {
2702 	struct tcp_iter_state state;
2703 	unsigned int cur_sk;
2704 	unsigned int end_sk;
2705 	unsigned int max_sk;
2706 	struct sock **batch;
2707 	bool st_bucket_done;
2708 };
2709 
2710 struct bpf_iter__tcp {
2711 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2712 	__bpf_md_ptr(struct sock_common *, sk_common);
2713 	uid_t uid __aligned(8);
2714 };
2715 
2716 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2717 			     struct sock_common *sk_common, uid_t uid)
2718 {
2719 	struct bpf_iter__tcp ctx;
2720 
2721 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2722 	ctx.meta = meta;
2723 	ctx.sk_common = sk_common;
2724 	ctx.uid = uid;
2725 	return bpf_iter_run_prog(prog, &ctx);
2726 }
2727 
2728 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2729 {
2730 	while (iter->cur_sk < iter->end_sk)
2731 		sock_put(iter->batch[iter->cur_sk++]);
2732 }
2733 
2734 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2735 				      unsigned int new_batch_sz)
2736 {
2737 	struct sock **new_batch;
2738 
2739 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2740 			     GFP_USER | __GFP_NOWARN);
2741 	if (!new_batch)
2742 		return -ENOMEM;
2743 
2744 	bpf_iter_tcp_put_batch(iter);
2745 	kvfree(iter->batch);
2746 	iter->batch = new_batch;
2747 	iter->max_sk = new_batch_sz;
2748 
2749 	return 0;
2750 }
2751 
2752 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2753 						 struct sock *start_sk)
2754 {
2755 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2756 	struct bpf_tcp_iter_state *iter = seq->private;
2757 	struct tcp_iter_state *st = &iter->state;
2758 	struct hlist_nulls_node *node;
2759 	unsigned int expected = 1;
2760 	struct sock *sk;
2761 
2762 	sock_hold(start_sk);
2763 	iter->batch[iter->end_sk++] = start_sk;
2764 
2765 	sk = sk_nulls_next(start_sk);
2766 	sk_nulls_for_each_from(sk, node) {
2767 		if (seq_sk_match(seq, sk)) {
2768 			if (iter->end_sk < iter->max_sk) {
2769 				sock_hold(sk);
2770 				iter->batch[iter->end_sk++] = sk;
2771 			}
2772 			expected++;
2773 		}
2774 	}
2775 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2776 
2777 	return expected;
2778 }
2779 
2780 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2781 						   struct sock *start_sk)
2782 {
2783 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2784 	struct bpf_tcp_iter_state *iter = seq->private;
2785 	struct tcp_iter_state *st = &iter->state;
2786 	struct hlist_nulls_node *node;
2787 	unsigned int expected = 1;
2788 	struct sock *sk;
2789 
2790 	sock_hold(start_sk);
2791 	iter->batch[iter->end_sk++] = start_sk;
2792 
2793 	sk = sk_nulls_next(start_sk);
2794 	sk_nulls_for_each_from(sk, node) {
2795 		if (seq_sk_match(seq, sk)) {
2796 			if (iter->end_sk < iter->max_sk) {
2797 				sock_hold(sk);
2798 				iter->batch[iter->end_sk++] = sk;
2799 			}
2800 			expected++;
2801 		}
2802 	}
2803 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2804 
2805 	return expected;
2806 }
2807 
2808 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2809 {
2810 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2811 	struct bpf_tcp_iter_state *iter = seq->private;
2812 	struct tcp_iter_state *st = &iter->state;
2813 	unsigned int expected;
2814 	bool resized = false;
2815 	struct sock *sk;
2816 
2817 	/* The st->bucket is done.  Directly advance to the next
2818 	 * bucket instead of having the tcp_seek_last_pos() to skip
2819 	 * one by one in the current bucket and eventually find out
2820 	 * it has to advance to the next bucket.
2821 	 */
2822 	if (iter->st_bucket_done) {
2823 		st->offset = 0;
2824 		st->bucket++;
2825 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2826 		    st->bucket > hinfo->lhash2_mask) {
2827 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2828 			st->bucket = 0;
2829 		}
2830 	}
2831 
2832 again:
2833 	/* Get a new batch */
2834 	iter->cur_sk = 0;
2835 	iter->end_sk = 0;
2836 	iter->st_bucket_done = false;
2837 
2838 	sk = tcp_seek_last_pos(seq);
2839 	if (!sk)
2840 		return NULL; /* Done */
2841 
2842 	if (st->state == TCP_SEQ_STATE_LISTENING)
2843 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2844 	else
2845 		expected = bpf_iter_tcp_established_batch(seq, sk);
2846 
2847 	if (iter->end_sk == expected) {
2848 		iter->st_bucket_done = true;
2849 		return sk;
2850 	}
2851 
2852 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2853 		resized = true;
2854 		goto again;
2855 	}
2856 
2857 	return sk;
2858 }
2859 
2860 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2861 {
2862 	/* bpf iter does not support lseek, so it always
2863 	 * continue from where it was stop()-ped.
2864 	 */
2865 	if (*pos)
2866 		return bpf_iter_tcp_batch(seq);
2867 
2868 	return SEQ_START_TOKEN;
2869 }
2870 
2871 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2872 {
2873 	struct bpf_tcp_iter_state *iter = seq->private;
2874 	struct tcp_iter_state *st = &iter->state;
2875 	struct sock *sk;
2876 
2877 	/* Whenever seq_next() is called, the iter->cur_sk is
2878 	 * done with seq_show(), so advance to the next sk in
2879 	 * the batch.
2880 	 */
2881 	if (iter->cur_sk < iter->end_sk) {
2882 		/* Keeping st->num consistent in tcp_iter_state.
2883 		 * bpf_iter_tcp does not use st->num.
2884 		 * meta.seq_num is used instead.
2885 		 */
2886 		st->num++;
2887 		/* Move st->offset to the next sk in the bucket such that
2888 		 * the future start() will resume at st->offset in
2889 		 * st->bucket.  See tcp_seek_last_pos().
2890 		 */
2891 		st->offset++;
2892 		sock_put(iter->batch[iter->cur_sk++]);
2893 	}
2894 
2895 	if (iter->cur_sk < iter->end_sk)
2896 		sk = iter->batch[iter->cur_sk];
2897 	else
2898 		sk = bpf_iter_tcp_batch(seq);
2899 
2900 	++*pos;
2901 	/* Keeping st->last_pos consistent in tcp_iter_state.
2902 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2903 	 */
2904 	st->last_pos = *pos;
2905 	return sk;
2906 }
2907 
2908 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2909 {
2910 	struct bpf_iter_meta meta;
2911 	struct bpf_prog *prog;
2912 	struct sock *sk = v;
2913 	bool slow;
2914 	uid_t uid;
2915 	int ret;
2916 
2917 	if (v == SEQ_START_TOKEN)
2918 		return 0;
2919 
2920 	if (sk_fullsock(sk))
2921 		slow = lock_sock_fast(sk);
2922 
2923 	if (unlikely(sk_unhashed(sk))) {
2924 		ret = SEQ_SKIP;
2925 		goto unlock;
2926 	}
2927 
2928 	if (sk->sk_state == TCP_TIME_WAIT) {
2929 		uid = 0;
2930 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2931 		const struct request_sock *req = v;
2932 
2933 		uid = from_kuid_munged(seq_user_ns(seq),
2934 				       sock_i_uid(req->rsk_listener));
2935 	} else {
2936 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2937 	}
2938 
2939 	meta.seq = seq;
2940 	prog = bpf_iter_get_info(&meta, false);
2941 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
2942 
2943 unlock:
2944 	if (sk_fullsock(sk))
2945 		unlock_sock_fast(sk, slow);
2946 	return ret;
2947 
2948 }
2949 
2950 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2951 {
2952 	struct bpf_tcp_iter_state *iter = seq->private;
2953 	struct bpf_iter_meta meta;
2954 	struct bpf_prog *prog;
2955 
2956 	if (!v) {
2957 		meta.seq = seq;
2958 		prog = bpf_iter_get_info(&meta, true);
2959 		if (prog)
2960 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
2961 	}
2962 
2963 	if (iter->cur_sk < iter->end_sk) {
2964 		bpf_iter_tcp_put_batch(iter);
2965 		iter->st_bucket_done = false;
2966 	}
2967 }
2968 
2969 static const struct seq_operations bpf_iter_tcp_seq_ops = {
2970 	.show		= bpf_iter_tcp_seq_show,
2971 	.start		= bpf_iter_tcp_seq_start,
2972 	.next		= bpf_iter_tcp_seq_next,
2973 	.stop		= bpf_iter_tcp_seq_stop,
2974 };
2975 #endif
2976 static unsigned short seq_file_family(const struct seq_file *seq)
2977 {
2978 	const struct tcp_seq_afinfo *afinfo;
2979 
2980 #ifdef CONFIG_BPF_SYSCALL
2981 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
2982 	if (seq->op == &bpf_iter_tcp_seq_ops)
2983 		return AF_UNSPEC;
2984 #endif
2985 
2986 	/* Iterated from proc fs */
2987 	afinfo = pde_data(file_inode(seq->file));
2988 	return afinfo->family;
2989 }
2990 
2991 static const struct seq_operations tcp4_seq_ops = {
2992 	.show		= tcp4_seq_show,
2993 	.start		= tcp_seq_start,
2994 	.next		= tcp_seq_next,
2995 	.stop		= tcp_seq_stop,
2996 };
2997 
2998 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2999 	.family		= AF_INET,
3000 };
3001 
3002 static int __net_init tcp4_proc_init_net(struct net *net)
3003 {
3004 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3005 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3006 		return -ENOMEM;
3007 	return 0;
3008 }
3009 
3010 static void __net_exit tcp4_proc_exit_net(struct net *net)
3011 {
3012 	remove_proc_entry("tcp", net->proc_net);
3013 }
3014 
3015 static struct pernet_operations tcp4_net_ops = {
3016 	.init = tcp4_proc_init_net,
3017 	.exit = tcp4_proc_exit_net,
3018 };
3019 
3020 int __init tcp4_proc_init(void)
3021 {
3022 	return register_pernet_subsys(&tcp4_net_ops);
3023 }
3024 
3025 void tcp4_proc_exit(void)
3026 {
3027 	unregister_pernet_subsys(&tcp4_net_ops);
3028 }
3029 #endif /* CONFIG_PROC_FS */
3030 
3031 /* @wake is one when sk_stream_write_space() calls us.
3032  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3033  * This mimics the strategy used in sock_def_write_space().
3034  */
3035 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3036 {
3037 	const struct tcp_sock *tp = tcp_sk(sk);
3038 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3039 			    READ_ONCE(tp->snd_nxt);
3040 
3041 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3042 }
3043 EXPORT_SYMBOL(tcp_stream_memory_free);
3044 
3045 struct proto tcp_prot = {
3046 	.name			= "TCP",
3047 	.owner			= THIS_MODULE,
3048 	.close			= tcp_close,
3049 	.pre_connect		= tcp_v4_pre_connect,
3050 	.connect		= tcp_v4_connect,
3051 	.disconnect		= tcp_disconnect,
3052 	.accept			= inet_csk_accept,
3053 	.ioctl			= tcp_ioctl,
3054 	.init			= tcp_v4_init_sock,
3055 	.destroy		= tcp_v4_destroy_sock,
3056 	.shutdown		= tcp_shutdown,
3057 	.setsockopt		= tcp_setsockopt,
3058 	.getsockopt		= tcp_getsockopt,
3059 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3060 	.keepalive		= tcp_set_keepalive,
3061 	.recvmsg		= tcp_recvmsg,
3062 	.sendmsg		= tcp_sendmsg,
3063 	.sendpage		= tcp_sendpage,
3064 	.backlog_rcv		= tcp_v4_do_rcv,
3065 	.release_cb		= tcp_release_cb,
3066 	.hash			= inet_hash,
3067 	.unhash			= inet_unhash,
3068 	.get_port		= inet_csk_get_port,
3069 	.put_port		= inet_put_port,
3070 #ifdef CONFIG_BPF_SYSCALL
3071 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3072 #endif
3073 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3074 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3075 	.stream_memory_free	= tcp_stream_memory_free,
3076 	.sockets_allocated	= &tcp_sockets_allocated,
3077 	.orphan_count		= &tcp_orphan_count,
3078 
3079 	.memory_allocated	= &tcp_memory_allocated,
3080 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3081 
3082 	.memory_pressure	= &tcp_memory_pressure,
3083 	.sysctl_mem		= sysctl_tcp_mem,
3084 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3085 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3086 	.max_header		= MAX_TCP_HEADER,
3087 	.obj_size		= sizeof(struct tcp_sock),
3088 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3089 	.twsk_prot		= &tcp_timewait_sock_ops,
3090 	.rsk_prot		= &tcp_request_sock_ops,
3091 	.h.hashinfo		= NULL,
3092 	.no_autobind		= true,
3093 	.diag_destroy		= tcp_abort,
3094 };
3095 EXPORT_SYMBOL(tcp_prot);
3096 
3097 static void __net_exit tcp_sk_exit(struct net *net)
3098 {
3099 	if (net->ipv4.tcp_congestion_control)
3100 		bpf_module_put(net->ipv4.tcp_congestion_control,
3101 			       net->ipv4.tcp_congestion_control->owner);
3102 }
3103 
3104 static void __net_init tcp_set_hashinfo(struct net *net)
3105 {
3106 	struct inet_hashinfo *hinfo;
3107 	unsigned int ehash_entries;
3108 	struct net *old_net;
3109 
3110 	if (net_eq(net, &init_net))
3111 		goto fallback;
3112 
3113 	old_net = current->nsproxy->net_ns;
3114 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3115 	if (!ehash_entries)
3116 		goto fallback;
3117 
3118 	ehash_entries = roundup_pow_of_two(ehash_entries);
3119 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3120 	if (!hinfo) {
3121 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3122 			"for a netns, fallback to the global one\n",
3123 			ehash_entries);
3124 fallback:
3125 		hinfo = &tcp_hashinfo;
3126 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3127 	}
3128 
3129 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3130 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3131 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3132 }
3133 
3134 static int __net_init tcp_sk_init(struct net *net)
3135 {
3136 	net->ipv4.sysctl_tcp_ecn = 2;
3137 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3138 
3139 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3140 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3141 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3142 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3143 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3144 
3145 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3146 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3147 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3148 
3149 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3150 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3151 	net->ipv4.sysctl_tcp_syncookies = 1;
3152 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3153 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3154 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3155 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3156 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3157 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3158 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3159 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3160 
3161 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3162 	tcp_set_hashinfo(net);
3163 
3164 	net->ipv4.sysctl_tcp_sack = 1;
3165 	net->ipv4.sysctl_tcp_window_scaling = 1;
3166 	net->ipv4.sysctl_tcp_timestamps = 1;
3167 	net->ipv4.sysctl_tcp_early_retrans = 3;
3168 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3169 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3170 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3171 	net->ipv4.sysctl_tcp_max_reordering = 300;
3172 	net->ipv4.sysctl_tcp_dsack = 1;
3173 	net->ipv4.sysctl_tcp_app_win = 31;
3174 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3175 	net->ipv4.sysctl_tcp_frto = 2;
3176 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3177 	/* This limits the percentage of the congestion window which we
3178 	 * will allow a single TSO frame to consume.  Building TSO frames
3179 	 * which are too large can cause TCP streams to be bursty.
3180 	 */
3181 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3182 	/* Default TSQ limit of 16 TSO segments */
3183 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3184 
3185 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3186 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3187 
3188 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3189 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3190 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3191 	net->ipv4.sysctl_tcp_autocorking = 1;
3192 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3193 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3194 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3195 	if (net != &init_net) {
3196 		memcpy(net->ipv4.sysctl_tcp_rmem,
3197 		       init_net.ipv4.sysctl_tcp_rmem,
3198 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3199 		memcpy(net->ipv4.sysctl_tcp_wmem,
3200 		       init_net.ipv4.sysctl_tcp_wmem,
3201 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3202 	}
3203 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3204 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3205 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3206 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3207 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3208 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3209 
3210 	/* Reno is always built in */
3211 	if (!net_eq(net, &init_net) &&
3212 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3213 			       init_net.ipv4.tcp_congestion_control->owner))
3214 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3215 	else
3216 		net->ipv4.tcp_congestion_control = &tcp_reno;
3217 
3218 	return 0;
3219 }
3220 
3221 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3222 {
3223 	struct net *net;
3224 
3225 	tcp_twsk_purge(net_exit_list, AF_INET);
3226 
3227 	list_for_each_entry(net, net_exit_list, exit_list) {
3228 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3229 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3230 		tcp_fastopen_ctx_destroy(net);
3231 	}
3232 }
3233 
3234 static struct pernet_operations __net_initdata tcp_sk_ops = {
3235        .init	   = tcp_sk_init,
3236        .exit	   = tcp_sk_exit,
3237        .exit_batch = tcp_sk_exit_batch,
3238 };
3239 
3240 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3241 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3242 		     struct sock_common *sk_common, uid_t uid)
3243 
3244 #define INIT_BATCH_SZ 16
3245 
3246 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3247 {
3248 	struct bpf_tcp_iter_state *iter = priv_data;
3249 	int err;
3250 
3251 	err = bpf_iter_init_seq_net(priv_data, aux);
3252 	if (err)
3253 		return err;
3254 
3255 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3256 	if (err) {
3257 		bpf_iter_fini_seq_net(priv_data);
3258 		return err;
3259 	}
3260 
3261 	return 0;
3262 }
3263 
3264 static void bpf_iter_fini_tcp(void *priv_data)
3265 {
3266 	struct bpf_tcp_iter_state *iter = priv_data;
3267 
3268 	bpf_iter_fini_seq_net(priv_data);
3269 	kvfree(iter->batch);
3270 }
3271 
3272 static const struct bpf_iter_seq_info tcp_seq_info = {
3273 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3274 	.init_seq_private	= bpf_iter_init_tcp,
3275 	.fini_seq_private	= bpf_iter_fini_tcp,
3276 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3277 };
3278 
3279 static const struct bpf_func_proto *
3280 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3281 			    const struct bpf_prog *prog)
3282 {
3283 	switch (func_id) {
3284 	case BPF_FUNC_setsockopt:
3285 		return &bpf_sk_setsockopt_proto;
3286 	case BPF_FUNC_getsockopt:
3287 		return &bpf_sk_getsockopt_proto;
3288 	default:
3289 		return NULL;
3290 	}
3291 }
3292 
3293 static struct bpf_iter_reg tcp_reg_info = {
3294 	.target			= "tcp",
3295 	.ctx_arg_info_size	= 1,
3296 	.ctx_arg_info		= {
3297 		{ offsetof(struct bpf_iter__tcp, sk_common),
3298 		  PTR_TO_BTF_ID_OR_NULL },
3299 	},
3300 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3301 	.seq_info		= &tcp_seq_info,
3302 };
3303 
3304 static void __init bpf_iter_register(void)
3305 {
3306 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3307 	if (bpf_iter_reg_target(&tcp_reg_info))
3308 		pr_warn("Warning: could not register bpf iterator tcp\n");
3309 }
3310 
3311 #endif
3312 
3313 void __init tcp_v4_init(void)
3314 {
3315 	int cpu, res;
3316 
3317 	for_each_possible_cpu(cpu) {
3318 		struct sock *sk;
3319 
3320 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3321 					   IPPROTO_TCP, &init_net);
3322 		if (res)
3323 			panic("Failed to create the TCP control socket.\n");
3324 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3325 
3326 		/* Please enforce IP_DF and IPID==0 for RST and
3327 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3328 		 */
3329 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3330 
3331 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3332 	}
3333 	if (register_pernet_subsys(&tcp_sk_ops))
3334 		panic("Failed to create the TCP control socket.\n");
3335 
3336 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3337 	bpf_iter_register();
3338 #endif
3339 }
3340