1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/inet.h> 79 #include <linux/ipv6.h> 80 #include <linux/stddef.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 84 #include <crypto/hash.h> 85 #include <linux/scatterlist.h> 86 87 int sysctl_tcp_low_latency __read_mostly; 88 89 #ifdef CONFIG_TCP_MD5SIG 90 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 91 __be32 daddr, __be32 saddr, const struct tcphdr *th); 92 #endif 93 94 struct inet_hashinfo tcp_hashinfo; 95 EXPORT_SYMBOL(tcp_hashinfo); 96 97 static u32 tcp_v4_init_sequence(const struct sk_buff *skb, u32 *tsoff) 98 { 99 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 100 ip_hdr(skb)->saddr, 101 tcp_hdr(skb)->dest, 102 tcp_hdr(skb)->source, tsoff); 103 } 104 105 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 106 { 107 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 108 struct tcp_sock *tp = tcp_sk(sk); 109 110 /* With PAWS, it is safe from the viewpoint 111 of data integrity. Even without PAWS it is safe provided sequence 112 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 113 114 Actually, the idea is close to VJ's one, only timestamp cache is 115 held not per host, but per port pair and TW bucket is used as state 116 holder. 117 118 If TW bucket has been already destroyed we fall back to VJ's scheme 119 and use initial timestamp retrieved from peer table. 120 */ 121 if (tcptw->tw_ts_recent_stamp && 122 (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse && 123 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 124 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 125 if (tp->write_seq == 0) 126 tp->write_seq = 1; 127 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 128 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 129 sock_hold(sktw); 130 return 1; 131 } 132 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 136 137 /* This will initiate an outgoing connection. */ 138 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 139 { 140 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 141 struct inet_sock *inet = inet_sk(sk); 142 struct tcp_sock *tp = tcp_sk(sk); 143 __be16 orig_sport, orig_dport; 144 __be32 daddr, nexthop; 145 struct flowi4 *fl4; 146 struct rtable *rt; 147 int err; 148 struct ip_options_rcu *inet_opt; 149 150 if (addr_len < sizeof(struct sockaddr_in)) 151 return -EINVAL; 152 153 if (usin->sin_family != AF_INET) 154 return -EAFNOSUPPORT; 155 156 nexthop = daddr = usin->sin_addr.s_addr; 157 inet_opt = rcu_dereference_protected(inet->inet_opt, 158 lockdep_sock_is_held(sk)); 159 if (inet_opt && inet_opt->opt.srr) { 160 if (!daddr) 161 return -EINVAL; 162 nexthop = inet_opt->opt.faddr; 163 } 164 165 orig_sport = inet->inet_sport; 166 orig_dport = usin->sin_port; 167 fl4 = &inet->cork.fl.u.ip4; 168 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 169 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 170 IPPROTO_TCP, 171 orig_sport, orig_dport, sk); 172 if (IS_ERR(rt)) { 173 err = PTR_ERR(rt); 174 if (err == -ENETUNREACH) 175 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 176 return err; 177 } 178 179 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 180 ip_rt_put(rt); 181 return -ENETUNREACH; 182 } 183 184 if (!inet_opt || !inet_opt->opt.srr) 185 daddr = fl4->daddr; 186 187 if (!inet->inet_saddr) 188 inet->inet_saddr = fl4->saddr; 189 sk_rcv_saddr_set(sk, inet->inet_saddr); 190 191 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 192 /* Reset inherited state */ 193 tp->rx_opt.ts_recent = 0; 194 tp->rx_opt.ts_recent_stamp = 0; 195 if (likely(!tp->repair)) 196 tp->write_seq = 0; 197 } 198 199 if (tcp_death_row.sysctl_tw_recycle && 200 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 201 tcp_fetch_timewait_stamp(sk, &rt->dst); 202 203 inet->inet_dport = usin->sin_port; 204 sk_daddr_set(sk, daddr); 205 206 inet_csk(sk)->icsk_ext_hdr_len = 0; 207 if (inet_opt) 208 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 209 210 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 211 212 /* Socket identity is still unknown (sport may be zero). 213 * However we set state to SYN-SENT and not releasing socket 214 * lock select source port, enter ourselves into the hash tables and 215 * complete initialization after this. 216 */ 217 tcp_set_state(sk, TCP_SYN_SENT); 218 err = inet_hash_connect(&tcp_death_row, sk); 219 if (err) 220 goto failure; 221 222 sk_set_txhash(sk); 223 224 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 225 inet->inet_sport, inet->inet_dport, sk); 226 if (IS_ERR(rt)) { 227 err = PTR_ERR(rt); 228 rt = NULL; 229 goto failure; 230 } 231 /* OK, now commit destination to socket. */ 232 sk->sk_gso_type = SKB_GSO_TCPV4; 233 sk_setup_caps(sk, &rt->dst); 234 235 if (!tp->write_seq && likely(!tp->repair)) 236 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 237 inet->inet_daddr, 238 inet->inet_sport, 239 usin->sin_port, 240 &tp->tsoffset); 241 242 inet->inet_id = tp->write_seq ^ jiffies; 243 244 err = tcp_connect(sk); 245 246 rt = NULL; 247 if (err) 248 goto failure; 249 250 return 0; 251 252 failure: 253 /* 254 * This unhashes the socket and releases the local port, 255 * if necessary. 256 */ 257 tcp_set_state(sk, TCP_CLOSE); 258 ip_rt_put(rt); 259 sk->sk_route_caps = 0; 260 inet->inet_dport = 0; 261 return err; 262 } 263 EXPORT_SYMBOL(tcp_v4_connect); 264 265 /* 266 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 267 * It can be called through tcp_release_cb() if socket was owned by user 268 * at the time tcp_v4_err() was called to handle ICMP message. 269 */ 270 void tcp_v4_mtu_reduced(struct sock *sk) 271 { 272 struct dst_entry *dst; 273 struct inet_sock *inet = inet_sk(sk); 274 u32 mtu = tcp_sk(sk)->mtu_info; 275 276 dst = inet_csk_update_pmtu(sk, mtu); 277 if (!dst) 278 return; 279 280 /* Something is about to be wrong... Remember soft error 281 * for the case, if this connection will not able to recover. 282 */ 283 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 284 sk->sk_err_soft = EMSGSIZE; 285 286 mtu = dst_mtu(dst); 287 288 if (inet->pmtudisc != IP_PMTUDISC_DONT && 289 ip_sk_accept_pmtu(sk) && 290 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 291 tcp_sync_mss(sk, mtu); 292 293 /* Resend the TCP packet because it's 294 * clear that the old packet has been 295 * dropped. This is the new "fast" path mtu 296 * discovery. 297 */ 298 tcp_simple_retransmit(sk); 299 } /* else let the usual retransmit timer handle it */ 300 } 301 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 302 303 static void do_redirect(struct sk_buff *skb, struct sock *sk) 304 { 305 struct dst_entry *dst = __sk_dst_check(sk, 0); 306 307 if (dst) 308 dst->ops->redirect(dst, sk, skb); 309 } 310 311 312 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 313 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 314 { 315 struct request_sock *req = inet_reqsk(sk); 316 struct net *net = sock_net(sk); 317 318 /* ICMPs are not backlogged, hence we cannot get 319 * an established socket here. 320 */ 321 if (seq != tcp_rsk(req)->snt_isn) { 322 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 323 } else if (abort) { 324 /* 325 * Still in SYN_RECV, just remove it silently. 326 * There is no good way to pass the error to the newly 327 * created socket, and POSIX does not want network 328 * errors returned from accept(). 329 */ 330 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 331 tcp_listendrop(req->rsk_listener); 332 } 333 reqsk_put(req); 334 } 335 EXPORT_SYMBOL(tcp_req_err); 336 337 /* 338 * This routine is called by the ICMP module when it gets some 339 * sort of error condition. If err < 0 then the socket should 340 * be closed and the error returned to the user. If err > 0 341 * it's just the icmp type << 8 | icmp code. After adjustment 342 * header points to the first 8 bytes of the tcp header. We need 343 * to find the appropriate port. 344 * 345 * The locking strategy used here is very "optimistic". When 346 * someone else accesses the socket the ICMP is just dropped 347 * and for some paths there is no check at all. 348 * A more general error queue to queue errors for later handling 349 * is probably better. 350 * 351 */ 352 353 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 354 { 355 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 356 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 357 struct inet_connection_sock *icsk; 358 struct tcp_sock *tp; 359 struct inet_sock *inet; 360 const int type = icmp_hdr(icmp_skb)->type; 361 const int code = icmp_hdr(icmp_skb)->code; 362 struct sock *sk; 363 struct sk_buff *skb; 364 struct request_sock *fastopen; 365 __u32 seq, snd_una; 366 __u32 remaining; 367 int err; 368 struct net *net = dev_net(icmp_skb->dev); 369 370 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 371 th->dest, iph->saddr, ntohs(th->source), 372 inet_iif(icmp_skb)); 373 if (!sk) { 374 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 375 return; 376 } 377 if (sk->sk_state == TCP_TIME_WAIT) { 378 inet_twsk_put(inet_twsk(sk)); 379 return; 380 } 381 seq = ntohl(th->seq); 382 if (sk->sk_state == TCP_NEW_SYN_RECV) 383 return tcp_req_err(sk, seq, 384 type == ICMP_PARAMETERPROB || 385 type == ICMP_TIME_EXCEEDED || 386 (type == ICMP_DEST_UNREACH && 387 (code == ICMP_NET_UNREACH || 388 code == ICMP_HOST_UNREACH))); 389 390 bh_lock_sock(sk); 391 /* If too many ICMPs get dropped on busy 392 * servers this needs to be solved differently. 393 * We do take care of PMTU discovery (RFC1191) special case : 394 * we can receive locally generated ICMP messages while socket is held. 395 */ 396 if (sock_owned_by_user(sk)) { 397 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 398 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 399 } 400 if (sk->sk_state == TCP_CLOSE) 401 goto out; 402 403 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 404 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 405 goto out; 406 } 407 408 icsk = inet_csk(sk); 409 tp = tcp_sk(sk); 410 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 411 fastopen = tp->fastopen_rsk; 412 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 413 if (sk->sk_state != TCP_LISTEN && 414 !between(seq, snd_una, tp->snd_nxt)) { 415 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 416 goto out; 417 } 418 419 switch (type) { 420 case ICMP_REDIRECT: 421 do_redirect(icmp_skb, sk); 422 goto out; 423 case ICMP_SOURCE_QUENCH: 424 /* Just silently ignore these. */ 425 goto out; 426 case ICMP_PARAMETERPROB: 427 err = EPROTO; 428 break; 429 case ICMP_DEST_UNREACH: 430 if (code > NR_ICMP_UNREACH) 431 goto out; 432 433 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 434 /* We are not interested in TCP_LISTEN and open_requests 435 * (SYN-ACKs send out by Linux are always <576bytes so 436 * they should go through unfragmented). 437 */ 438 if (sk->sk_state == TCP_LISTEN) 439 goto out; 440 441 tp->mtu_info = info; 442 if (!sock_owned_by_user(sk)) { 443 tcp_v4_mtu_reduced(sk); 444 } else { 445 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 446 sock_hold(sk); 447 } 448 goto out; 449 } 450 451 err = icmp_err_convert[code].errno; 452 /* check if icmp_skb allows revert of backoff 453 * (see draft-zimmermann-tcp-lcd) */ 454 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 455 break; 456 if (seq != tp->snd_una || !icsk->icsk_retransmits || 457 !icsk->icsk_backoff || fastopen) 458 break; 459 460 if (sock_owned_by_user(sk)) 461 break; 462 463 icsk->icsk_backoff--; 464 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 465 TCP_TIMEOUT_INIT; 466 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 467 468 skb = tcp_write_queue_head(sk); 469 BUG_ON(!skb); 470 471 remaining = icsk->icsk_rto - 472 min(icsk->icsk_rto, 473 tcp_time_stamp - tcp_skb_timestamp(skb)); 474 475 if (remaining) { 476 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 477 remaining, TCP_RTO_MAX); 478 } else { 479 /* RTO revert clocked out retransmission. 480 * Will retransmit now */ 481 tcp_retransmit_timer(sk); 482 } 483 484 break; 485 case ICMP_TIME_EXCEEDED: 486 err = EHOSTUNREACH; 487 break; 488 default: 489 goto out; 490 } 491 492 switch (sk->sk_state) { 493 case TCP_SYN_SENT: 494 case TCP_SYN_RECV: 495 /* Only in fast or simultaneous open. If a fast open socket is 496 * is already accepted it is treated as a connected one below. 497 */ 498 if (fastopen && !fastopen->sk) 499 break; 500 501 if (!sock_owned_by_user(sk)) { 502 sk->sk_err = err; 503 504 sk->sk_error_report(sk); 505 506 tcp_done(sk); 507 } else { 508 sk->sk_err_soft = err; 509 } 510 goto out; 511 } 512 513 /* If we've already connected we will keep trying 514 * until we time out, or the user gives up. 515 * 516 * rfc1122 4.2.3.9 allows to consider as hard errors 517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 518 * but it is obsoleted by pmtu discovery). 519 * 520 * Note, that in modern internet, where routing is unreliable 521 * and in each dark corner broken firewalls sit, sending random 522 * errors ordered by their masters even this two messages finally lose 523 * their original sense (even Linux sends invalid PORT_UNREACHs) 524 * 525 * Now we are in compliance with RFCs. 526 * --ANK (980905) 527 */ 528 529 inet = inet_sk(sk); 530 if (!sock_owned_by_user(sk) && inet->recverr) { 531 sk->sk_err = err; 532 sk->sk_error_report(sk); 533 } else { /* Only an error on timeout */ 534 sk->sk_err_soft = err; 535 } 536 537 out: 538 bh_unlock_sock(sk); 539 sock_put(sk); 540 } 541 542 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 543 { 544 struct tcphdr *th = tcp_hdr(skb); 545 546 if (skb->ip_summed == CHECKSUM_PARTIAL) { 547 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 548 skb->csum_start = skb_transport_header(skb) - skb->head; 549 skb->csum_offset = offsetof(struct tcphdr, check); 550 } else { 551 th->check = tcp_v4_check(skb->len, saddr, daddr, 552 csum_partial(th, 553 th->doff << 2, 554 skb->csum)); 555 } 556 } 557 558 /* This routine computes an IPv4 TCP checksum. */ 559 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 560 { 561 const struct inet_sock *inet = inet_sk(sk); 562 563 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 564 } 565 EXPORT_SYMBOL(tcp_v4_send_check); 566 567 /* 568 * This routine will send an RST to the other tcp. 569 * 570 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 571 * for reset. 572 * Answer: if a packet caused RST, it is not for a socket 573 * existing in our system, if it is matched to a socket, 574 * it is just duplicate segment or bug in other side's TCP. 575 * So that we build reply only basing on parameters 576 * arrived with segment. 577 * Exception: precedence violation. We do not implement it in any case. 578 */ 579 580 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 581 { 582 const struct tcphdr *th = tcp_hdr(skb); 583 struct { 584 struct tcphdr th; 585 #ifdef CONFIG_TCP_MD5SIG 586 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 587 #endif 588 } rep; 589 struct ip_reply_arg arg; 590 #ifdef CONFIG_TCP_MD5SIG 591 struct tcp_md5sig_key *key = NULL; 592 const __u8 *hash_location = NULL; 593 unsigned char newhash[16]; 594 int genhash; 595 struct sock *sk1 = NULL; 596 #endif 597 struct net *net; 598 599 /* Never send a reset in response to a reset. */ 600 if (th->rst) 601 return; 602 603 /* If sk not NULL, it means we did a successful lookup and incoming 604 * route had to be correct. prequeue might have dropped our dst. 605 */ 606 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 607 return; 608 609 /* Swap the send and the receive. */ 610 memset(&rep, 0, sizeof(rep)); 611 rep.th.dest = th->source; 612 rep.th.source = th->dest; 613 rep.th.doff = sizeof(struct tcphdr) / 4; 614 rep.th.rst = 1; 615 616 if (th->ack) { 617 rep.th.seq = th->ack_seq; 618 } else { 619 rep.th.ack = 1; 620 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 621 skb->len - (th->doff << 2)); 622 } 623 624 memset(&arg, 0, sizeof(arg)); 625 arg.iov[0].iov_base = (unsigned char *)&rep; 626 arg.iov[0].iov_len = sizeof(rep.th); 627 628 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 629 #ifdef CONFIG_TCP_MD5SIG 630 rcu_read_lock(); 631 hash_location = tcp_parse_md5sig_option(th); 632 if (sk && sk_fullsock(sk)) { 633 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 634 &ip_hdr(skb)->saddr, AF_INET); 635 } else if (hash_location) { 636 /* 637 * active side is lost. Try to find listening socket through 638 * source port, and then find md5 key through listening socket. 639 * we are not loose security here: 640 * Incoming packet is checked with md5 hash with finding key, 641 * no RST generated if md5 hash doesn't match. 642 */ 643 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 644 ip_hdr(skb)->saddr, 645 th->source, ip_hdr(skb)->daddr, 646 ntohs(th->source), inet_iif(skb)); 647 /* don't send rst if it can't find key */ 648 if (!sk1) 649 goto out; 650 651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 652 &ip_hdr(skb)->saddr, AF_INET); 653 if (!key) 654 goto out; 655 656 657 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 658 if (genhash || memcmp(hash_location, newhash, 16) != 0) 659 goto out; 660 661 } 662 663 if (key) { 664 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 665 (TCPOPT_NOP << 16) | 666 (TCPOPT_MD5SIG << 8) | 667 TCPOLEN_MD5SIG); 668 /* Update length and the length the header thinks exists */ 669 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 670 rep.th.doff = arg.iov[0].iov_len / 4; 671 672 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 673 key, ip_hdr(skb)->saddr, 674 ip_hdr(skb)->daddr, &rep.th); 675 } 676 #endif 677 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 678 ip_hdr(skb)->saddr, /* XXX */ 679 arg.iov[0].iov_len, IPPROTO_TCP, 0); 680 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 681 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 682 683 /* When socket is gone, all binding information is lost. 684 * routing might fail in this case. No choice here, if we choose to force 685 * input interface, we will misroute in case of asymmetric route. 686 */ 687 if (sk) 688 arg.bound_dev_if = sk->sk_bound_dev_if; 689 690 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 691 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 692 693 arg.tos = ip_hdr(skb)->tos; 694 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 695 local_bh_disable(); 696 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 697 skb, &TCP_SKB_CB(skb)->header.h4.opt, 698 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 699 &arg, arg.iov[0].iov_len); 700 701 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 702 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 703 local_bh_enable(); 704 705 #ifdef CONFIG_TCP_MD5SIG 706 out: 707 rcu_read_unlock(); 708 #endif 709 } 710 711 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 712 outside socket context is ugly, certainly. What can I do? 713 */ 714 715 static void tcp_v4_send_ack(const struct sock *sk, 716 struct sk_buff *skb, u32 seq, u32 ack, 717 u32 win, u32 tsval, u32 tsecr, int oif, 718 struct tcp_md5sig_key *key, 719 int reply_flags, u8 tos) 720 { 721 const struct tcphdr *th = tcp_hdr(skb); 722 struct { 723 struct tcphdr th; 724 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 725 #ifdef CONFIG_TCP_MD5SIG 726 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 727 #endif 728 ]; 729 } rep; 730 struct net *net = sock_net(sk); 731 struct ip_reply_arg arg; 732 733 memset(&rep.th, 0, sizeof(struct tcphdr)); 734 memset(&arg, 0, sizeof(arg)); 735 736 arg.iov[0].iov_base = (unsigned char *)&rep; 737 arg.iov[0].iov_len = sizeof(rep.th); 738 if (tsecr) { 739 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 740 (TCPOPT_TIMESTAMP << 8) | 741 TCPOLEN_TIMESTAMP); 742 rep.opt[1] = htonl(tsval); 743 rep.opt[2] = htonl(tsecr); 744 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 745 } 746 747 /* Swap the send and the receive. */ 748 rep.th.dest = th->source; 749 rep.th.source = th->dest; 750 rep.th.doff = arg.iov[0].iov_len / 4; 751 rep.th.seq = htonl(seq); 752 rep.th.ack_seq = htonl(ack); 753 rep.th.ack = 1; 754 rep.th.window = htons(win); 755 756 #ifdef CONFIG_TCP_MD5SIG 757 if (key) { 758 int offset = (tsecr) ? 3 : 0; 759 760 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 761 (TCPOPT_NOP << 16) | 762 (TCPOPT_MD5SIG << 8) | 763 TCPOLEN_MD5SIG); 764 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 765 rep.th.doff = arg.iov[0].iov_len/4; 766 767 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 768 key, ip_hdr(skb)->saddr, 769 ip_hdr(skb)->daddr, &rep.th); 770 } 771 #endif 772 arg.flags = reply_flags; 773 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 774 ip_hdr(skb)->saddr, /* XXX */ 775 arg.iov[0].iov_len, IPPROTO_TCP, 0); 776 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 777 if (oif) 778 arg.bound_dev_if = oif; 779 arg.tos = tos; 780 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 781 local_bh_disable(); 782 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 783 skb, &TCP_SKB_CB(skb)->header.h4.opt, 784 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 785 &arg, arg.iov[0].iov_len); 786 787 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 788 local_bh_enable(); 789 } 790 791 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 792 { 793 struct inet_timewait_sock *tw = inet_twsk(sk); 794 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 795 796 tcp_v4_send_ack(sk, skb, 797 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 798 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 799 tcp_time_stamp + tcptw->tw_ts_offset, 800 tcptw->tw_ts_recent, 801 tw->tw_bound_dev_if, 802 tcp_twsk_md5_key(tcptw), 803 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 804 tw->tw_tos 805 ); 806 807 inet_twsk_put(tw); 808 } 809 810 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 811 struct request_sock *req) 812 { 813 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 814 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 815 */ 816 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 817 tcp_sk(sk)->snd_nxt; 818 819 /* RFC 7323 2.3 820 * The window field (SEG.WND) of every outgoing segment, with the 821 * exception of <SYN> segments, MUST be right-shifted by 822 * Rcv.Wind.Shift bits: 823 */ 824 tcp_v4_send_ack(sk, skb, seq, 825 tcp_rsk(req)->rcv_nxt, 826 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 827 tcp_time_stamp + tcp_rsk(req)->ts_off, 828 req->ts_recent, 829 0, 830 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 831 AF_INET), 832 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 833 ip_hdr(skb)->tos); 834 } 835 836 /* 837 * Send a SYN-ACK after having received a SYN. 838 * This still operates on a request_sock only, not on a big 839 * socket. 840 */ 841 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 842 struct flowi *fl, 843 struct request_sock *req, 844 struct tcp_fastopen_cookie *foc, 845 enum tcp_synack_type synack_type) 846 { 847 const struct inet_request_sock *ireq = inet_rsk(req); 848 struct flowi4 fl4; 849 int err = -1; 850 struct sk_buff *skb; 851 852 /* First, grab a route. */ 853 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 854 return -1; 855 856 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 857 858 if (skb) { 859 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 860 861 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 862 ireq->ir_rmt_addr, 863 ireq->opt); 864 err = net_xmit_eval(err); 865 } 866 867 return err; 868 } 869 870 /* 871 * IPv4 request_sock destructor. 872 */ 873 static void tcp_v4_reqsk_destructor(struct request_sock *req) 874 { 875 kfree(inet_rsk(req)->opt); 876 } 877 878 #ifdef CONFIG_TCP_MD5SIG 879 /* 880 * RFC2385 MD5 checksumming requires a mapping of 881 * IP address->MD5 Key. 882 * We need to maintain these in the sk structure. 883 */ 884 885 /* Find the Key structure for an address. */ 886 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 887 const union tcp_md5_addr *addr, 888 int family) 889 { 890 const struct tcp_sock *tp = tcp_sk(sk); 891 struct tcp_md5sig_key *key; 892 unsigned int size = sizeof(struct in_addr); 893 const struct tcp_md5sig_info *md5sig; 894 895 /* caller either holds rcu_read_lock() or socket lock */ 896 md5sig = rcu_dereference_check(tp->md5sig_info, 897 lockdep_sock_is_held(sk)); 898 if (!md5sig) 899 return NULL; 900 #if IS_ENABLED(CONFIG_IPV6) 901 if (family == AF_INET6) 902 size = sizeof(struct in6_addr); 903 #endif 904 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 905 if (key->family != family) 906 continue; 907 if (!memcmp(&key->addr, addr, size)) 908 return key; 909 } 910 return NULL; 911 } 912 EXPORT_SYMBOL(tcp_md5_do_lookup); 913 914 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 915 const struct sock *addr_sk) 916 { 917 const union tcp_md5_addr *addr; 918 919 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 920 return tcp_md5_do_lookup(sk, addr, AF_INET); 921 } 922 EXPORT_SYMBOL(tcp_v4_md5_lookup); 923 924 /* This can be called on a newly created socket, from other files */ 925 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 926 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 927 { 928 /* Add Key to the list */ 929 struct tcp_md5sig_key *key; 930 struct tcp_sock *tp = tcp_sk(sk); 931 struct tcp_md5sig_info *md5sig; 932 933 key = tcp_md5_do_lookup(sk, addr, family); 934 if (key) { 935 /* Pre-existing entry - just update that one. */ 936 memcpy(key->key, newkey, newkeylen); 937 key->keylen = newkeylen; 938 return 0; 939 } 940 941 md5sig = rcu_dereference_protected(tp->md5sig_info, 942 lockdep_sock_is_held(sk)); 943 if (!md5sig) { 944 md5sig = kmalloc(sizeof(*md5sig), gfp); 945 if (!md5sig) 946 return -ENOMEM; 947 948 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 949 INIT_HLIST_HEAD(&md5sig->head); 950 rcu_assign_pointer(tp->md5sig_info, md5sig); 951 } 952 953 key = sock_kmalloc(sk, sizeof(*key), gfp); 954 if (!key) 955 return -ENOMEM; 956 if (!tcp_alloc_md5sig_pool()) { 957 sock_kfree_s(sk, key, sizeof(*key)); 958 return -ENOMEM; 959 } 960 961 memcpy(key->key, newkey, newkeylen); 962 key->keylen = newkeylen; 963 key->family = family; 964 memcpy(&key->addr, addr, 965 (family == AF_INET6) ? sizeof(struct in6_addr) : 966 sizeof(struct in_addr)); 967 hlist_add_head_rcu(&key->node, &md5sig->head); 968 return 0; 969 } 970 EXPORT_SYMBOL(tcp_md5_do_add); 971 972 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 973 { 974 struct tcp_md5sig_key *key; 975 976 key = tcp_md5_do_lookup(sk, addr, family); 977 if (!key) 978 return -ENOENT; 979 hlist_del_rcu(&key->node); 980 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 981 kfree_rcu(key, rcu); 982 return 0; 983 } 984 EXPORT_SYMBOL(tcp_md5_do_del); 985 986 static void tcp_clear_md5_list(struct sock *sk) 987 { 988 struct tcp_sock *tp = tcp_sk(sk); 989 struct tcp_md5sig_key *key; 990 struct hlist_node *n; 991 struct tcp_md5sig_info *md5sig; 992 993 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 994 995 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 996 hlist_del_rcu(&key->node); 997 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 998 kfree_rcu(key, rcu); 999 } 1000 } 1001 1002 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1003 int optlen) 1004 { 1005 struct tcp_md5sig cmd; 1006 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1007 1008 if (optlen < sizeof(cmd)) 1009 return -EINVAL; 1010 1011 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1012 return -EFAULT; 1013 1014 if (sin->sin_family != AF_INET) 1015 return -EINVAL; 1016 1017 if (!cmd.tcpm_keylen) 1018 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1019 AF_INET); 1020 1021 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1022 return -EINVAL; 1023 1024 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1025 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1026 GFP_KERNEL); 1027 } 1028 1029 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1030 __be32 daddr, __be32 saddr, 1031 const struct tcphdr *th, int nbytes) 1032 { 1033 struct tcp4_pseudohdr *bp; 1034 struct scatterlist sg; 1035 struct tcphdr *_th; 1036 1037 bp = hp->scratch; 1038 bp->saddr = saddr; 1039 bp->daddr = daddr; 1040 bp->pad = 0; 1041 bp->protocol = IPPROTO_TCP; 1042 bp->len = cpu_to_be16(nbytes); 1043 1044 _th = (struct tcphdr *)(bp + 1); 1045 memcpy(_th, th, sizeof(*th)); 1046 _th->check = 0; 1047 1048 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1049 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1050 sizeof(*bp) + sizeof(*th)); 1051 return crypto_ahash_update(hp->md5_req); 1052 } 1053 1054 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1055 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1056 { 1057 struct tcp_md5sig_pool *hp; 1058 struct ahash_request *req; 1059 1060 hp = tcp_get_md5sig_pool(); 1061 if (!hp) 1062 goto clear_hash_noput; 1063 req = hp->md5_req; 1064 1065 if (crypto_ahash_init(req)) 1066 goto clear_hash; 1067 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1068 goto clear_hash; 1069 if (tcp_md5_hash_key(hp, key)) 1070 goto clear_hash; 1071 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1072 if (crypto_ahash_final(req)) 1073 goto clear_hash; 1074 1075 tcp_put_md5sig_pool(); 1076 return 0; 1077 1078 clear_hash: 1079 tcp_put_md5sig_pool(); 1080 clear_hash_noput: 1081 memset(md5_hash, 0, 16); 1082 return 1; 1083 } 1084 1085 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1086 const struct sock *sk, 1087 const struct sk_buff *skb) 1088 { 1089 struct tcp_md5sig_pool *hp; 1090 struct ahash_request *req; 1091 const struct tcphdr *th = tcp_hdr(skb); 1092 __be32 saddr, daddr; 1093 1094 if (sk) { /* valid for establish/request sockets */ 1095 saddr = sk->sk_rcv_saddr; 1096 daddr = sk->sk_daddr; 1097 } else { 1098 const struct iphdr *iph = ip_hdr(skb); 1099 saddr = iph->saddr; 1100 daddr = iph->daddr; 1101 } 1102 1103 hp = tcp_get_md5sig_pool(); 1104 if (!hp) 1105 goto clear_hash_noput; 1106 req = hp->md5_req; 1107 1108 if (crypto_ahash_init(req)) 1109 goto clear_hash; 1110 1111 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1112 goto clear_hash; 1113 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1114 goto clear_hash; 1115 if (tcp_md5_hash_key(hp, key)) 1116 goto clear_hash; 1117 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1118 if (crypto_ahash_final(req)) 1119 goto clear_hash; 1120 1121 tcp_put_md5sig_pool(); 1122 return 0; 1123 1124 clear_hash: 1125 tcp_put_md5sig_pool(); 1126 clear_hash_noput: 1127 memset(md5_hash, 0, 16); 1128 return 1; 1129 } 1130 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1131 1132 #endif 1133 1134 /* Called with rcu_read_lock() */ 1135 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1136 const struct sk_buff *skb) 1137 { 1138 #ifdef CONFIG_TCP_MD5SIG 1139 /* 1140 * This gets called for each TCP segment that arrives 1141 * so we want to be efficient. 1142 * We have 3 drop cases: 1143 * o No MD5 hash and one expected. 1144 * o MD5 hash and we're not expecting one. 1145 * o MD5 hash and its wrong. 1146 */ 1147 const __u8 *hash_location = NULL; 1148 struct tcp_md5sig_key *hash_expected; 1149 const struct iphdr *iph = ip_hdr(skb); 1150 const struct tcphdr *th = tcp_hdr(skb); 1151 int genhash; 1152 unsigned char newhash[16]; 1153 1154 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1155 AF_INET); 1156 hash_location = tcp_parse_md5sig_option(th); 1157 1158 /* We've parsed the options - do we have a hash? */ 1159 if (!hash_expected && !hash_location) 1160 return false; 1161 1162 if (hash_expected && !hash_location) { 1163 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1164 return true; 1165 } 1166 1167 if (!hash_expected && hash_location) { 1168 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1169 return true; 1170 } 1171 1172 /* Okay, so this is hash_expected and hash_location - 1173 * so we need to calculate the checksum. 1174 */ 1175 genhash = tcp_v4_md5_hash_skb(newhash, 1176 hash_expected, 1177 NULL, skb); 1178 1179 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1180 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1181 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1182 &iph->saddr, ntohs(th->source), 1183 &iph->daddr, ntohs(th->dest), 1184 genhash ? " tcp_v4_calc_md5_hash failed" 1185 : ""); 1186 return true; 1187 } 1188 return false; 1189 #endif 1190 return false; 1191 } 1192 1193 static void tcp_v4_init_req(struct request_sock *req, 1194 const struct sock *sk_listener, 1195 struct sk_buff *skb) 1196 { 1197 struct inet_request_sock *ireq = inet_rsk(req); 1198 1199 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1200 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1201 ireq->opt = tcp_v4_save_options(skb); 1202 } 1203 1204 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1205 struct flowi *fl, 1206 const struct request_sock *req, 1207 bool *strict) 1208 { 1209 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req); 1210 1211 if (strict) { 1212 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr) 1213 *strict = true; 1214 else 1215 *strict = false; 1216 } 1217 1218 return dst; 1219 } 1220 1221 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1222 .family = PF_INET, 1223 .obj_size = sizeof(struct tcp_request_sock), 1224 .rtx_syn_ack = tcp_rtx_synack, 1225 .send_ack = tcp_v4_reqsk_send_ack, 1226 .destructor = tcp_v4_reqsk_destructor, 1227 .send_reset = tcp_v4_send_reset, 1228 .syn_ack_timeout = tcp_syn_ack_timeout, 1229 }; 1230 1231 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1232 .mss_clamp = TCP_MSS_DEFAULT, 1233 #ifdef CONFIG_TCP_MD5SIG 1234 .req_md5_lookup = tcp_v4_md5_lookup, 1235 .calc_md5_hash = tcp_v4_md5_hash_skb, 1236 #endif 1237 .init_req = tcp_v4_init_req, 1238 #ifdef CONFIG_SYN_COOKIES 1239 .cookie_init_seq = cookie_v4_init_sequence, 1240 #endif 1241 .route_req = tcp_v4_route_req, 1242 .init_seq = tcp_v4_init_sequence, 1243 .send_synack = tcp_v4_send_synack, 1244 }; 1245 1246 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1247 { 1248 /* Never answer to SYNs send to broadcast or multicast */ 1249 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1250 goto drop; 1251 1252 return tcp_conn_request(&tcp_request_sock_ops, 1253 &tcp_request_sock_ipv4_ops, sk, skb); 1254 1255 drop: 1256 tcp_listendrop(sk); 1257 return 0; 1258 } 1259 EXPORT_SYMBOL(tcp_v4_conn_request); 1260 1261 1262 /* 1263 * The three way handshake has completed - we got a valid synack - 1264 * now create the new socket. 1265 */ 1266 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1267 struct request_sock *req, 1268 struct dst_entry *dst, 1269 struct request_sock *req_unhash, 1270 bool *own_req) 1271 { 1272 struct inet_request_sock *ireq; 1273 struct inet_sock *newinet; 1274 struct tcp_sock *newtp; 1275 struct sock *newsk; 1276 #ifdef CONFIG_TCP_MD5SIG 1277 struct tcp_md5sig_key *key; 1278 #endif 1279 struct ip_options_rcu *inet_opt; 1280 1281 if (sk_acceptq_is_full(sk)) 1282 goto exit_overflow; 1283 1284 newsk = tcp_create_openreq_child(sk, req, skb); 1285 if (!newsk) 1286 goto exit_nonewsk; 1287 1288 newsk->sk_gso_type = SKB_GSO_TCPV4; 1289 inet_sk_rx_dst_set(newsk, skb); 1290 1291 newtp = tcp_sk(newsk); 1292 newinet = inet_sk(newsk); 1293 ireq = inet_rsk(req); 1294 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1295 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1296 newsk->sk_bound_dev_if = ireq->ir_iif; 1297 newinet->inet_saddr = ireq->ir_loc_addr; 1298 inet_opt = ireq->opt; 1299 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1300 ireq->opt = NULL; 1301 newinet->mc_index = inet_iif(skb); 1302 newinet->mc_ttl = ip_hdr(skb)->ttl; 1303 newinet->rcv_tos = ip_hdr(skb)->tos; 1304 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1305 if (inet_opt) 1306 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1307 newinet->inet_id = newtp->write_seq ^ jiffies; 1308 1309 if (!dst) { 1310 dst = inet_csk_route_child_sock(sk, newsk, req); 1311 if (!dst) 1312 goto put_and_exit; 1313 } else { 1314 /* syncookie case : see end of cookie_v4_check() */ 1315 } 1316 sk_setup_caps(newsk, dst); 1317 1318 tcp_ca_openreq_child(newsk, dst); 1319 1320 tcp_sync_mss(newsk, dst_mtu(dst)); 1321 newtp->advmss = dst_metric_advmss(dst); 1322 if (tcp_sk(sk)->rx_opt.user_mss && 1323 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1324 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1325 1326 tcp_initialize_rcv_mss(newsk); 1327 1328 #ifdef CONFIG_TCP_MD5SIG 1329 /* Copy over the MD5 key from the original socket */ 1330 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1331 AF_INET); 1332 if (key) { 1333 /* 1334 * We're using one, so create a matching key 1335 * on the newsk structure. If we fail to get 1336 * memory, then we end up not copying the key 1337 * across. Shucks. 1338 */ 1339 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1340 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1341 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1342 } 1343 #endif 1344 1345 if (__inet_inherit_port(sk, newsk) < 0) 1346 goto put_and_exit; 1347 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1348 if (*own_req) 1349 tcp_move_syn(newtp, req); 1350 1351 return newsk; 1352 1353 exit_overflow: 1354 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1355 exit_nonewsk: 1356 dst_release(dst); 1357 exit: 1358 tcp_listendrop(sk); 1359 return NULL; 1360 put_and_exit: 1361 inet_csk_prepare_forced_close(newsk); 1362 tcp_done(newsk); 1363 goto exit; 1364 } 1365 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1366 1367 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1368 { 1369 #ifdef CONFIG_SYN_COOKIES 1370 const struct tcphdr *th = tcp_hdr(skb); 1371 1372 if (!th->syn) 1373 sk = cookie_v4_check(sk, skb); 1374 #endif 1375 return sk; 1376 } 1377 1378 /* The socket must have it's spinlock held when we get 1379 * here, unless it is a TCP_LISTEN socket. 1380 * 1381 * We have a potential double-lock case here, so even when 1382 * doing backlog processing we use the BH locking scheme. 1383 * This is because we cannot sleep with the original spinlock 1384 * held. 1385 */ 1386 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1387 { 1388 struct sock *rsk; 1389 1390 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1391 struct dst_entry *dst = sk->sk_rx_dst; 1392 1393 sock_rps_save_rxhash(sk, skb); 1394 sk_mark_napi_id(sk, skb); 1395 if (dst) { 1396 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1397 !dst->ops->check(dst, 0)) { 1398 dst_release(dst); 1399 sk->sk_rx_dst = NULL; 1400 } 1401 } 1402 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len); 1403 return 0; 1404 } 1405 1406 if (tcp_checksum_complete(skb)) 1407 goto csum_err; 1408 1409 if (sk->sk_state == TCP_LISTEN) { 1410 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1411 1412 if (!nsk) 1413 goto discard; 1414 if (nsk != sk) { 1415 sock_rps_save_rxhash(nsk, skb); 1416 sk_mark_napi_id(nsk, skb); 1417 if (tcp_child_process(sk, nsk, skb)) { 1418 rsk = nsk; 1419 goto reset; 1420 } 1421 return 0; 1422 } 1423 } else 1424 sock_rps_save_rxhash(sk, skb); 1425 1426 if (tcp_rcv_state_process(sk, skb)) { 1427 rsk = sk; 1428 goto reset; 1429 } 1430 return 0; 1431 1432 reset: 1433 tcp_v4_send_reset(rsk, skb); 1434 discard: 1435 kfree_skb(skb); 1436 /* Be careful here. If this function gets more complicated and 1437 * gcc suffers from register pressure on the x86, sk (in %ebx) 1438 * might be destroyed here. This current version compiles correctly, 1439 * but you have been warned. 1440 */ 1441 return 0; 1442 1443 csum_err: 1444 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1445 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1446 goto discard; 1447 } 1448 EXPORT_SYMBOL(tcp_v4_do_rcv); 1449 1450 void tcp_v4_early_demux(struct sk_buff *skb) 1451 { 1452 const struct iphdr *iph; 1453 const struct tcphdr *th; 1454 struct sock *sk; 1455 1456 if (skb->pkt_type != PACKET_HOST) 1457 return; 1458 1459 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1460 return; 1461 1462 iph = ip_hdr(skb); 1463 th = tcp_hdr(skb); 1464 1465 if (th->doff < sizeof(struct tcphdr) / 4) 1466 return; 1467 1468 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1469 iph->saddr, th->source, 1470 iph->daddr, ntohs(th->dest), 1471 skb->skb_iif); 1472 if (sk) { 1473 skb->sk = sk; 1474 skb->destructor = sock_edemux; 1475 if (sk_fullsock(sk)) { 1476 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1477 1478 if (dst) 1479 dst = dst_check(dst, 0); 1480 if (dst && 1481 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1482 skb_dst_set_noref(skb, dst); 1483 } 1484 } 1485 } 1486 1487 /* Packet is added to VJ-style prequeue for processing in process 1488 * context, if a reader task is waiting. Apparently, this exciting 1489 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93) 1490 * failed somewhere. Latency? Burstiness? Well, at least now we will 1491 * see, why it failed. 8)8) --ANK 1492 * 1493 */ 1494 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb) 1495 { 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 1498 if (sysctl_tcp_low_latency || !tp->ucopy.task) 1499 return false; 1500 1501 if (skb->len <= tcp_hdrlen(skb) && 1502 skb_queue_len(&tp->ucopy.prequeue) == 0) 1503 return false; 1504 1505 /* Before escaping RCU protected region, we need to take care of skb 1506 * dst. Prequeue is only enabled for established sockets. 1507 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst 1508 * Instead of doing full sk_rx_dst validity here, let's perform 1509 * an optimistic check. 1510 */ 1511 if (likely(sk->sk_rx_dst)) 1512 skb_dst_drop(skb); 1513 else 1514 skb_dst_force_safe(skb); 1515 1516 __skb_queue_tail(&tp->ucopy.prequeue, skb); 1517 tp->ucopy.memory += skb->truesize; 1518 if (skb_queue_len(&tp->ucopy.prequeue) >= 32 || 1519 tp->ucopy.memory + atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) { 1520 struct sk_buff *skb1; 1521 1522 BUG_ON(sock_owned_by_user(sk)); 1523 __NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUEDROPPED, 1524 skb_queue_len(&tp->ucopy.prequeue)); 1525 1526 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1527 sk_backlog_rcv(sk, skb1); 1528 1529 tp->ucopy.memory = 0; 1530 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) { 1531 wake_up_interruptible_sync_poll(sk_sleep(sk), 1532 POLLIN | POLLRDNORM | POLLRDBAND); 1533 if (!inet_csk_ack_scheduled(sk)) 1534 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1535 (3 * tcp_rto_min(sk)) / 4, 1536 TCP_RTO_MAX); 1537 } 1538 return true; 1539 } 1540 EXPORT_SYMBOL(tcp_prequeue); 1541 1542 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1543 { 1544 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1545 1546 /* Only socket owner can try to collapse/prune rx queues 1547 * to reduce memory overhead, so add a little headroom here. 1548 * Few sockets backlog are possibly concurrently non empty. 1549 */ 1550 limit += 64*1024; 1551 1552 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1553 * we can fix skb->truesize to its real value to avoid future drops. 1554 * This is valid because skb is not yet charged to the socket. 1555 * It has been noticed pure SACK packets were sometimes dropped 1556 * (if cooked by drivers without copybreak feature). 1557 */ 1558 if (!skb->data_len) 1559 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 1560 1561 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1562 bh_unlock_sock(sk); 1563 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1564 return true; 1565 } 1566 return false; 1567 } 1568 EXPORT_SYMBOL(tcp_add_backlog); 1569 1570 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1571 { 1572 struct tcphdr *th = (struct tcphdr *)skb->data; 1573 unsigned int eaten = skb->len; 1574 int err; 1575 1576 err = sk_filter_trim_cap(sk, skb, th->doff * 4); 1577 if (!err) { 1578 eaten -= skb->len; 1579 TCP_SKB_CB(skb)->end_seq -= eaten; 1580 } 1581 return err; 1582 } 1583 EXPORT_SYMBOL(tcp_filter); 1584 1585 /* 1586 * From tcp_input.c 1587 */ 1588 1589 int tcp_v4_rcv(struct sk_buff *skb) 1590 { 1591 struct net *net = dev_net(skb->dev); 1592 const struct iphdr *iph; 1593 const struct tcphdr *th; 1594 bool refcounted; 1595 struct sock *sk; 1596 int ret; 1597 1598 if (skb->pkt_type != PACKET_HOST) 1599 goto discard_it; 1600 1601 /* Count it even if it's bad */ 1602 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1603 1604 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1605 goto discard_it; 1606 1607 th = (const struct tcphdr *)skb->data; 1608 1609 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1610 goto bad_packet; 1611 if (!pskb_may_pull(skb, th->doff * 4)) 1612 goto discard_it; 1613 1614 /* An explanation is required here, I think. 1615 * Packet length and doff are validated by header prediction, 1616 * provided case of th->doff==0 is eliminated. 1617 * So, we defer the checks. */ 1618 1619 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1620 goto csum_error; 1621 1622 th = (const struct tcphdr *)skb->data; 1623 iph = ip_hdr(skb); 1624 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1625 * barrier() makes sure compiler wont play fool^Waliasing games. 1626 */ 1627 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1628 sizeof(struct inet_skb_parm)); 1629 barrier(); 1630 1631 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1632 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1633 skb->len - th->doff * 4); 1634 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1635 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1636 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1637 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1638 TCP_SKB_CB(skb)->sacked = 0; 1639 1640 lookup: 1641 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1642 th->dest, &refcounted); 1643 if (!sk) 1644 goto no_tcp_socket; 1645 1646 process: 1647 if (sk->sk_state == TCP_TIME_WAIT) 1648 goto do_time_wait; 1649 1650 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1651 struct request_sock *req = inet_reqsk(sk); 1652 struct sock *nsk; 1653 1654 sk = req->rsk_listener; 1655 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1656 sk_drops_add(sk, skb); 1657 reqsk_put(req); 1658 goto discard_it; 1659 } 1660 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1661 inet_csk_reqsk_queue_drop_and_put(sk, req); 1662 goto lookup; 1663 } 1664 /* We own a reference on the listener, increase it again 1665 * as we might lose it too soon. 1666 */ 1667 sock_hold(sk); 1668 refcounted = true; 1669 nsk = tcp_check_req(sk, skb, req, false); 1670 if (!nsk) { 1671 reqsk_put(req); 1672 goto discard_and_relse; 1673 } 1674 if (nsk == sk) { 1675 reqsk_put(req); 1676 } else if (tcp_child_process(sk, nsk, skb)) { 1677 tcp_v4_send_reset(nsk, skb); 1678 goto discard_and_relse; 1679 } else { 1680 sock_put(sk); 1681 return 0; 1682 } 1683 } 1684 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1685 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1686 goto discard_and_relse; 1687 } 1688 1689 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1690 goto discard_and_relse; 1691 1692 if (tcp_v4_inbound_md5_hash(sk, skb)) 1693 goto discard_and_relse; 1694 1695 nf_reset(skb); 1696 1697 if (tcp_filter(sk, skb)) 1698 goto discard_and_relse; 1699 th = (const struct tcphdr *)skb->data; 1700 iph = ip_hdr(skb); 1701 1702 skb->dev = NULL; 1703 1704 if (sk->sk_state == TCP_LISTEN) { 1705 ret = tcp_v4_do_rcv(sk, skb); 1706 goto put_and_return; 1707 } 1708 1709 sk_incoming_cpu_update(sk); 1710 1711 bh_lock_sock_nested(sk); 1712 tcp_segs_in(tcp_sk(sk), skb); 1713 ret = 0; 1714 if (!sock_owned_by_user(sk)) { 1715 if (!tcp_prequeue(sk, skb)) 1716 ret = tcp_v4_do_rcv(sk, skb); 1717 } else if (tcp_add_backlog(sk, skb)) { 1718 goto discard_and_relse; 1719 } 1720 bh_unlock_sock(sk); 1721 1722 put_and_return: 1723 if (refcounted) 1724 sock_put(sk); 1725 1726 return ret; 1727 1728 no_tcp_socket: 1729 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1730 goto discard_it; 1731 1732 if (tcp_checksum_complete(skb)) { 1733 csum_error: 1734 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1735 bad_packet: 1736 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1737 } else { 1738 tcp_v4_send_reset(NULL, skb); 1739 } 1740 1741 discard_it: 1742 /* Discard frame. */ 1743 kfree_skb(skb); 1744 return 0; 1745 1746 discard_and_relse: 1747 sk_drops_add(sk, skb); 1748 if (refcounted) 1749 sock_put(sk); 1750 goto discard_it; 1751 1752 do_time_wait: 1753 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1754 inet_twsk_put(inet_twsk(sk)); 1755 goto discard_it; 1756 } 1757 1758 if (tcp_checksum_complete(skb)) { 1759 inet_twsk_put(inet_twsk(sk)); 1760 goto csum_error; 1761 } 1762 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1763 case TCP_TW_SYN: { 1764 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1765 &tcp_hashinfo, skb, 1766 __tcp_hdrlen(th), 1767 iph->saddr, th->source, 1768 iph->daddr, th->dest, 1769 inet_iif(skb)); 1770 if (sk2) { 1771 inet_twsk_deschedule_put(inet_twsk(sk)); 1772 sk = sk2; 1773 refcounted = false; 1774 goto process; 1775 } 1776 /* Fall through to ACK */ 1777 } 1778 case TCP_TW_ACK: 1779 tcp_v4_timewait_ack(sk, skb); 1780 break; 1781 case TCP_TW_RST: 1782 tcp_v4_send_reset(sk, skb); 1783 inet_twsk_deschedule_put(inet_twsk(sk)); 1784 goto discard_it; 1785 case TCP_TW_SUCCESS:; 1786 } 1787 goto discard_it; 1788 } 1789 1790 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1791 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1792 .twsk_unique = tcp_twsk_unique, 1793 .twsk_destructor= tcp_twsk_destructor, 1794 }; 1795 1796 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1797 { 1798 struct dst_entry *dst = skb_dst(skb); 1799 1800 if (dst && dst_hold_safe(dst)) { 1801 sk->sk_rx_dst = dst; 1802 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1803 } 1804 } 1805 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1806 1807 const struct inet_connection_sock_af_ops ipv4_specific = { 1808 .queue_xmit = ip_queue_xmit, 1809 .send_check = tcp_v4_send_check, 1810 .rebuild_header = inet_sk_rebuild_header, 1811 .sk_rx_dst_set = inet_sk_rx_dst_set, 1812 .conn_request = tcp_v4_conn_request, 1813 .syn_recv_sock = tcp_v4_syn_recv_sock, 1814 .net_header_len = sizeof(struct iphdr), 1815 .setsockopt = ip_setsockopt, 1816 .getsockopt = ip_getsockopt, 1817 .addr2sockaddr = inet_csk_addr2sockaddr, 1818 .sockaddr_len = sizeof(struct sockaddr_in), 1819 .bind_conflict = inet_csk_bind_conflict, 1820 #ifdef CONFIG_COMPAT 1821 .compat_setsockopt = compat_ip_setsockopt, 1822 .compat_getsockopt = compat_ip_getsockopt, 1823 #endif 1824 .mtu_reduced = tcp_v4_mtu_reduced, 1825 }; 1826 EXPORT_SYMBOL(ipv4_specific); 1827 1828 #ifdef CONFIG_TCP_MD5SIG 1829 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1830 .md5_lookup = tcp_v4_md5_lookup, 1831 .calc_md5_hash = tcp_v4_md5_hash_skb, 1832 .md5_parse = tcp_v4_parse_md5_keys, 1833 }; 1834 #endif 1835 1836 /* NOTE: A lot of things set to zero explicitly by call to 1837 * sk_alloc() so need not be done here. 1838 */ 1839 static int tcp_v4_init_sock(struct sock *sk) 1840 { 1841 struct inet_connection_sock *icsk = inet_csk(sk); 1842 1843 tcp_init_sock(sk); 1844 1845 icsk->icsk_af_ops = &ipv4_specific; 1846 1847 #ifdef CONFIG_TCP_MD5SIG 1848 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1849 #endif 1850 1851 return 0; 1852 } 1853 1854 void tcp_v4_destroy_sock(struct sock *sk) 1855 { 1856 struct tcp_sock *tp = tcp_sk(sk); 1857 1858 tcp_clear_xmit_timers(sk); 1859 1860 tcp_cleanup_congestion_control(sk); 1861 1862 /* Cleanup up the write buffer. */ 1863 tcp_write_queue_purge(sk); 1864 1865 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1866 skb_rbtree_purge(&tp->out_of_order_queue); 1867 1868 #ifdef CONFIG_TCP_MD5SIG 1869 /* Clean up the MD5 key list, if any */ 1870 if (tp->md5sig_info) { 1871 tcp_clear_md5_list(sk); 1872 kfree_rcu(tp->md5sig_info, rcu); 1873 tp->md5sig_info = NULL; 1874 } 1875 #endif 1876 1877 /* Clean prequeue, it must be empty really */ 1878 __skb_queue_purge(&tp->ucopy.prequeue); 1879 1880 /* Clean up a referenced TCP bind bucket. */ 1881 if (inet_csk(sk)->icsk_bind_hash) 1882 inet_put_port(sk); 1883 1884 BUG_ON(tp->fastopen_rsk); 1885 1886 /* If socket is aborted during connect operation */ 1887 tcp_free_fastopen_req(tp); 1888 tcp_saved_syn_free(tp); 1889 1890 local_bh_disable(); 1891 sk_sockets_allocated_dec(sk); 1892 local_bh_enable(); 1893 } 1894 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1895 1896 #ifdef CONFIG_PROC_FS 1897 /* Proc filesystem TCP sock list dumping. */ 1898 1899 /* 1900 * Get next listener socket follow cur. If cur is NULL, get first socket 1901 * starting from bucket given in st->bucket; when st->bucket is zero the 1902 * very first socket in the hash table is returned. 1903 */ 1904 static void *listening_get_next(struct seq_file *seq, void *cur) 1905 { 1906 struct tcp_iter_state *st = seq->private; 1907 struct net *net = seq_file_net(seq); 1908 struct inet_listen_hashbucket *ilb; 1909 struct sock *sk = cur; 1910 1911 if (!sk) { 1912 get_head: 1913 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1914 spin_lock(&ilb->lock); 1915 sk = sk_head(&ilb->head); 1916 st->offset = 0; 1917 goto get_sk; 1918 } 1919 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1920 ++st->num; 1921 ++st->offset; 1922 1923 sk = sk_next(sk); 1924 get_sk: 1925 sk_for_each_from(sk) { 1926 if (!net_eq(sock_net(sk), net)) 1927 continue; 1928 if (sk->sk_family == st->family) 1929 return sk; 1930 } 1931 spin_unlock(&ilb->lock); 1932 st->offset = 0; 1933 if (++st->bucket < INET_LHTABLE_SIZE) 1934 goto get_head; 1935 return NULL; 1936 } 1937 1938 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 1939 { 1940 struct tcp_iter_state *st = seq->private; 1941 void *rc; 1942 1943 st->bucket = 0; 1944 st->offset = 0; 1945 rc = listening_get_next(seq, NULL); 1946 1947 while (rc && *pos) { 1948 rc = listening_get_next(seq, rc); 1949 --*pos; 1950 } 1951 return rc; 1952 } 1953 1954 static inline bool empty_bucket(const struct tcp_iter_state *st) 1955 { 1956 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 1957 } 1958 1959 /* 1960 * Get first established socket starting from bucket given in st->bucket. 1961 * If st->bucket is zero, the very first socket in the hash is returned. 1962 */ 1963 static void *established_get_first(struct seq_file *seq) 1964 { 1965 struct tcp_iter_state *st = seq->private; 1966 struct net *net = seq_file_net(seq); 1967 void *rc = NULL; 1968 1969 st->offset = 0; 1970 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 1971 struct sock *sk; 1972 struct hlist_nulls_node *node; 1973 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 1974 1975 /* Lockless fast path for the common case of empty buckets */ 1976 if (empty_bucket(st)) 1977 continue; 1978 1979 spin_lock_bh(lock); 1980 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 1981 if (sk->sk_family != st->family || 1982 !net_eq(sock_net(sk), net)) { 1983 continue; 1984 } 1985 rc = sk; 1986 goto out; 1987 } 1988 spin_unlock_bh(lock); 1989 } 1990 out: 1991 return rc; 1992 } 1993 1994 static void *established_get_next(struct seq_file *seq, void *cur) 1995 { 1996 struct sock *sk = cur; 1997 struct hlist_nulls_node *node; 1998 struct tcp_iter_state *st = seq->private; 1999 struct net *net = seq_file_net(seq); 2000 2001 ++st->num; 2002 ++st->offset; 2003 2004 sk = sk_nulls_next(sk); 2005 2006 sk_nulls_for_each_from(sk, node) { 2007 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2008 return sk; 2009 } 2010 2011 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2012 ++st->bucket; 2013 return established_get_first(seq); 2014 } 2015 2016 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2017 { 2018 struct tcp_iter_state *st = seq->private; 2019 void *rc; 2020 2021 st->bucket = 0; 2022 rc = established_get_first(seq); 2023 2024 while (rc && pos) { 2025 rc = established_get_next(seq, rc); 2026 --pos; 2027 } 2028 return rc; 2029 } 2030 2031 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2032 { 2033 void *rc; 2034 struct tcp_iter_state *st = seq->private; 2035 2036 st->state = TCP_SEQ_STATE_LISTENING; 2037 rc = listening_get_idx(seq, &pos); 2038 2039 if (!rc) { 2040 st->state = TCP_SEQ_STATE_ESTABLISHED; 2041 rc = established_get_idx(seq, pos); 2042 } 2043 2044 return rc; 2045 } 2046 2047 static void *tcp_seek_last_pos(struct seq_file *seq) 2048 { 2049 struct tcp_iter_state *st = seq->private; 2050 int offset = st->offset; 2051 int orig_num = st->num; 2052 void *rc = NULL; 2053 2054 switch (st->state) { 2055 case TCP_SEQ_STATE_LISTENING: 2056 if (st->bucket >= INET_LHTABLE_SIZE) 2057 break; 2058 st->state = TCP_SEQ_STATE_LISTENING; 2059 rc = listening_get_next(seq, NULL); 2060 while (offset-- && rc) 2061 rc = listening_get_next(seq, rc); 2062 if (rc) 2063 break; 2064 st->bucket = 0; 2065 st->state = TCP_SEQ_STATE_ESTABLISHED; 2066 /* Fallthrough */ 2067 case TCP_SEQ_STATE_ESTABLISHED: 2068 if (st->bucket > tcp_hashinfo.ehash_mask) 2069 break; 2070 rc = established_get_first(seq); 2071 while (offset-- && rc) 2072 rc = established_get_next(seq, rc); 2073 } 2074 2075 st->num = orig_num; 2076 2077 return rc; 2078 } 2079 2080 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2081 { 2082 struct tcp_iter_state *st = seq->private; 2083 void *rc; 2084 2085 if (*pos && *pos == st->last_pos) { 2086 rc = tcp_seek_last_pos(seq); 2087 if (rc) 2088 goto out; 2089 } 2090 2091 st->state = TCP_SEQ_STATE_LISTENING; 2092 st->num = 0; 2093 st->bucket = 0; 2094 st->offset = 0; 2095 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2096 2097 out: 2098 st->last_pos = *pos; 2099 return rc; 2100 } 2101 2102 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2103 { 2104 struct tcp_iter_state *st = seq->private; 2105 void *rc = NULL; 2106 2107 if (v == SEQ_START_TOKEN) { 2108 rc = tcp_get_idx(seq, 0); 2109 goto out; 2110 } 2111 2112 switch (st->state) { 2113 case TCP_SEQ_STATE_LISTENING: 2114 rc = listening_get_next(seq, v); 2115 if (!rc) { 2116 st->state = TCP_SEQ_STATE_ESTABLISHED; 2117 st->bucket = 0; 2118 st->offset = 0; 2119 rc = established_get_first(seq); 2120 } 2121 break; 2122 case TCP_SEQ_STATE_ESTABLISHED: 2123 rc = established_get_next(seq, v); 2124 break; 2125 } 2126 out: 2127 ++*pos; 2128 st->last_pos = *pos; 2129 return rc; 2130 } 2131 2132 static void tcp_seq_stop(struct seq_file *seq, void *v) 2133 { 2134 struct tcp_iter_state *st = seq->private; 2135 2136 switch (st->state) { 2137 case TCP_SEQ_STATE_LISTENING: 2138 if (v != SEQ_START_TOKEN) 2139 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2140 break; 2141 case TCP_SEQ_STATE_ESTABLISHED: 2142 if (v) 2143 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2144 break; 2145 } 2146 } 2147 2148 int tcp_seq_open(struct inode *inode, struct file *file) 2149 { 2150 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2151 struct tcp_iter_state *s; 2152 int err; 2153 2154 err = seq_open_net(inode, file, &afinfo->seq_ops, 2155 sizeof(struct tcp_iter_state)); 2156 if (err < 0) 2157 return err; 2158 2159 s = ((struct seq_file *)file->private_data)->private; 2160 s->family = afinfo->family; 2161 s->last_pos = 0; 2162 return 0; 2163 } 2164 EXPORT_SYMBOL(tcp_seq_open); 2165 2166 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2167 { 2168 int rc = 0; 2169 struct proc_dir_entry *p; 2170 2171 afinfo->seq_ops.start = tcp_seq_start; 2172 afinfo->seq_ops.next = tcp_seq_next; 2173 afinfo->seq_ops.stop = tcp_seq_stop; 2174 2175 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2176 afinfo->seq_fops, afinfo); 2177 if (!p) 2178 rc = -ENOMEM; 2179 return rc; 2180 } 2181 EXPORT_SYMBOL(tcp_proc_register); 2182 2183 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2184 { 2185 remove_proc_entry(afinfo->name, net->proc_net); 2186 } 2187 EXPORT_SYMBOL(tcp_proc_unregister); 2188 2189 static void get_openreq4(const struct request_sock *req, 2190 struct seq_file *f, int i) 2191 { 2192 const struct inet_request_sock *ireq = inet_rsk(req); 2193 long delta = req->rsk_timer.expires - jiffies; 2194 2195 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2196 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2197 i, 2198 ireq->ir_loc_addr, 2199 ireq->ir_num, 2200 ireq->ir_rmt_addr, 2201 ntohs(ireq->ir_rmt_port), 2202 TCP_SYN_RECV, 2203 0, 0, /* could print option size, but that is af dependent. */ 2204 1, /* timers active (only the expire timer) */ 2205 jiffies_delta_to_clock_t(delta), 2206 req->num_timeout, 2207 from_kuid_munged(seq_user_ns(f), 2208 sock_i_uid(req->rsk_listener)), 2209 0, /* non standard timer */ 2210 0, /* open_requests have no inode */ 2211 0, 2212 req); 2213 } 2214 2215 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2216 { 2217 int timer_active; 2218 unsigned long timer_expires; 2219 const struct tcp_sock *tp = tcp_sk(sk); 2220 const struct inet_connection_sock *icsk = inet_csk(sk); 2221 const struct inet_sock *inet = inet_sk(sk); 2222 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2223 __be32 dest = inet->inet_daddr; 2224 __be32 src = inet->inet_rcv_saddr; 2225 __u16 destp = ntohs(inet->inet_dport); 2226 __u16 srcp = ntohs(inet->inet_sport); 2227 int rx_queue; 2228 int state; 2229 2230 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2231 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2232 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2233 timer_active = 1; 2234 timer_expires = icsk->icsk_timeout; 2235 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2236 timer_active = 4; 2237 timer_expires = icsk->icsk_timeout; 2238 } else if (timer_pending(&sk->sk_timer)) { 2239 timer_active = 2; 2240 timer_expires = sk->sk_timer.expires; 2241 } else { 2242 timer_active = 0; 2243 timer_expires = jiffies; 2244 } 2245 2246 state = sk_state_load(sk); 2247 if (state == TCP_LISTEN) 2248 rx_queue = sk->sk_ack_backlog; 2249 else 2250 /* Because we don't lock the socket, 2251 * we might find a transient negative value. 2252 */ 2253 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2254 2255 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2256 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2257 i, src, srcp, dest, destp, state, 2258 tp->write_seq - tp->snd_una, 2259 rx_queue, 2260 timer_active, 2261 jiffies_delta_to_clock_t(timer_expires - jiffies), 2262 icsk->icsk_retransmits, 2263 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2264 icsk->icsk_probes_out, 2265 sock_i_ino(sk), 2266 atomic_read(&sk->sk_refcnt), sk, 2267 jiffies_to_clock_t(icsk->icsk_rto), 2268 jiffies_to_clock_t(icsk->icsk_ack.ato), 2269 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2270 tp->snd_cwnd, 2271 state == TCP_LISTEN ? 2272 fastopenq->max_qlen : 2273 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2274 } 2275 2276 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2277 struct seq_file *f, int i) 2278 { 2279 long delta = tw->tw_timer.expires - jiffies; 2280 __be32 dest, src; 2281 __u16 destp, srcp; 2282 2283 dest = tw->tw_daddr; 2284 src = tw->tw_rcv_saddr; 2285 destp = ntohs(tw->tw_dport); 2286 srcp = ntohs(tw->tw_sport); 2287 2288 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2289 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2290 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2291 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2292 atomic_read(&tw->tw_refcnt), tw); 2293 } 2294 2295 #define TMPSZ 150 2296 2297 static int tcp4_seq_show(struct seq_file *seq, void *v) 2298 { 2299 struct tcp_iter_state *st; 2300 struct sock *sk = v; 2301 2302 seq_setwidth(seq, TMPSZ - 1); 2303 if (v == SEQ_START_TOKEN) { 2304 seq_puts(seq, " sl local_address rem_address st tx_queue " 2305 "rx_queue tr tm->when retrnsmt uid timeout " 2306 "inode"); 2307 goto out; 2308 } 2309 st = seq->private; 2310 2311 if (sk->sk_state == TCP_TIME_WAIT) 2312 get_timewait4_sock(v, seq, st->num); 2313 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2314 get_openreq4(v, seq, st->num); 2315 else 2316 get_tcp4_sock(v, seq, st->num); 2317 out: 2318 seq_pad(seq, '\n'); 2319 return 0; 2320 } 2321 2322 static const struct file_operations tcp_afinfo_seq_fops = { 2323 .owner = THIS_MODULE, 2324 .open = tcp_seq_open, 2325 .read = seq_read, 2326 .llseek = seq_lseek, 2327 .release = seq_release_net 2328 }; 2329 2330 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2331 .name = "tcp", 2332 .family = AF_INET, 2333 .seq_fops = &tcp_afinfo_seq_fops, 2334 .seq_ops = { 2335 .show = tcp4_seq_show, 2336 }, 2337 }; 2338 2339 static int __net_init tcp4_proc_init_net(struct net *net) 2340 { 2341 return tcp_proc_register(net, &tcp4_seq_afinfo); 2342 } 2343 2344 static void __net_exit tcp4_proc_exit_net(struct net *net) 2345 { 2346 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2347 } 2348 2349 static struct pernet_operations tcp4_net_ops = { 2350 .init = tcp4_proc_init_net, 2351 .exit = tcp4_proc_exit_net, 2352 }; 2353 2354 int __init tcp4_proc_init(void) 2355 { 2356 return register_pernet_subsys(&tcp4_net_ops); 2357 } 2358 2359 void tcp4_proc_exit(void) 2360 { 2361 unregister_pernet_subsys(&tcp4_net_ops); 2362 } 2363 #endif /* CONFIG_PROC_FS */ 2364 2365 struct proto tcp_prot = { 2366 .name = "TCP", 2367 .owner = THIS_MODULE, 2368 .close = tcp_close, 2369 .connect = tcp_v4_connect, 2370 .disconnect = tcp_disconnect, 2371 .accept = inet_csk_accept, 2372 .ioctl = tcp_ioctl, 2373 .init = tcp_v4_init_sock, 2374 .destroy = tcp_v4_destroy_sock, 2375 .shutdown = tcp_shutdown, 2376 .setsockopt = tcp_setsockopt, 2377 .getsockopt = tcp_getsockopt, 2378 .recvmsg = tcp_recvmsg, 2379 .sendmsg = tcp_sendmsg, 2380 .sendpage = tcp_sendpage, 2381 .backlog_rcv = tcp_v4_do_rcv, 2382 .release_cb = tcp_release_cb, 2383 .hash = inet_hash, 2384 .unhash = inet_unhash, 2385 .get_port = inet_csk_get_port, 2386 .enter_memory_pressure = tcp_enter_memory_pressure, 2387 .stream_memory_free = tcp_stream_memory_free, 2388 .sockets_allocated = &tcp_sockets_allocated, 2389 .orphan_count = &tcp_orphan_count, 2390 .memory_allocated = &tcp_memory_allocated, 2391 .memory_pressure = &tcp_memory_pressure, 2392 .sysctl_mem = sysctl_tcp_mem, 2393 .sysctl_wmem = sysctl_tcp_wmem, 2394 .sysctl_rmem = sysctl_tcp_rmem, 2395 .max_header = MAX_TCP_HEADER, 2396 .obj_size = sizeof(struct tcp_sock), 2397 .slab_flags = SLAB_DESTROY_BY_RCU, 2398 .twsk_prot = &tcp_timewait_sock_ops, 2399 .rsk_prot = &tcp_request_sock_ops, 2400 .h.hashinfo = &tcp_hashinfo, 2401 .no_autobind = true, 2402 #ifdef CONFIG_COMPAT 2403 .compat_setsockopt = compat_tcp_setsockopt, 2404 .compat_getsockopt = compat_tcp_getsockopt, 2405 #endif 2406 .diag_destroy = tcp_abort, 2407 }; 2408 EXPORT_SYMBOL(tcp_prot); 2409 2410 static void __net_exit tcp_sk_exit(struct net *net) 2411 { 2412 int cpu; 2413 2414 for_each_possible_cpu(cpu) 2415 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2416 free_percpu(net->ipv4.tcp_sk); 2417 } 2418 2419 static int __net_init tcp_sk_init(struct net *net) 2420 { 2421 int res, cpu; 2422 2423 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2424 if (!net->ipv4.tcp_sk) 2425 return -ENOMEM; 2426 2427 for_each_possible_cpu(cpu) { 2428 struct sock *sk; 2429 2430 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2431 IPPROTO_TCP, net); 2432 if (res) 2433 goto fail; 2434 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2435 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2436 } 2437 2438 net->ipv4.sysctl_tcp_ecn = 2; 2439 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2440 2441 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2442 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2443 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2444 2445 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2446 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2447 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2448 2449 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2450 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2451 net->ipv4.sysctl_tcp_syncookies = 1; 2452 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2453 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2454 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2455 net->ipv4.sysctl_tcp_orphan_retries = 0; 2456 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2457 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2458 net->ipv4.sysctl_tcp_tw_reuse = 0; 2459 2460 return 0; 2461 fail: 2462 tcp_sk_exit(net); 2463 2464 return res; 2465 } 2466 2467 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2468 { 2469 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2470 } 2471 2472 static struct pernet_operations __net_initdata tcp_sk_ops = { 2473 .init = tcp_sk_init, 2474 .exit = tcp_sk_exit, 2475 .exit_batch = tcp_sk_exit_batch, 2476 }; 2477 2478 void __init tcp_v4_init(void) 2479 { 2480 inet_hashinfo_init(&tcp_hashinfo); 2481 if (register_pernet_subsys(&tcp_sk_ops)) 2482 panic("Failed to create the TCP control socket.\n"); 2483 } 2484