1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/netdma.h> 76 #include <net/secure_seq.h> 77 #include <net/tcp_memcontrol.h> 78 #include <net/busy_poll.h> 79 80 #include <linux/inet.h> 81 #include <linux/ipv6.h> 82 #include <linux/stddef.h> 83 #include <linux/proc_fs.h> 84 #include <linux/seq_file.h> 85 86 #include <linux/crypto.h> 87 #include <linux/scatterlist.h> 88 89 int sysctl_tcp_tw_reuse __read_mostly; 90 int sysctl_tcp_low_latency __read_mostly; 91 EXPORT_SYMBOL(sysctl_tcp_low_latency); 92 93 94 #ifdef CONFIG_TCP_MD5SIG 95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 96 __be32 daddr, __be32 saddr, const struct tcphdr *th); 97 #endif 98 99 struct inet_hashinfo tcp_hashinfo; 100 EXPORT_SYMBOL(tcp_hashinfo); 101 102 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 103 { 104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 105 ip_hdr(skb)->saddr, 106 tcp_hdr(skb)->dest, 107 tcp_hdr(skb)->source); 108 } 109 110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 111 { 112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 113 struct tcp_sock *tp = tcp_sk(sk); 114 115 /* With PAWS, it is safe from the viewpoint 116 of data integrity. Even without PAWS it is safe provided sequence 117 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 118 119 Actually, the idea is close to VJ's one, only timestamp cache is 120 held not per host, but per port pair and TW bucket is used as state 121 holder. 122 123 If TW bucket has been already destroyed we fall back to VJ's scheme 124 and use initial timestamp retrieved from peer table. 125 */ 126 if (tcptw->tw_ts_recent_stamp && 127 (twp == NULL || (sysctl_tcp_tw_reuse && 128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 130 if (tp->write_seq == 0) 131 tp->write_seq = 1; 132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 134 sock_hold(sktw); 135 return 1; 136 } 137 138 return 0; 139 } 140 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 141 142 /* This will initiate an outgoing connection. */ 143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 144 { 145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 146 struct inet_sock *inet = inet_sk(sk); 147 struct tcp_sock *tp = tcp_sk(sk); 148 __be16 orig_sport, orig_dport; 149 __be32 daddr, nexthop; 150 struct flowi4 *fl4; 151 struct rtable *rt; 152 int err; 153 struct ip_options_rcu *inet_opt; 154 155 if (addr_len < sizeof(struct sockaddr_in)) 156 return -EINVAL; 157 158 if (usin->sin_family != AF_INET) 159 return -EAFNOSUPPORT; 160 161 nexthop = daddr = usin->sin_addr.s_addr; 162 inet_opt = rcu_dereference_protected(inet->inet_opt, 163 sock_owned_by_user(sk)); 164 if (inet_opt && inet_opt->opt.srr) { 165 if (!daddr) 166 return -EINVAL; 167 nexthop = inet_opt->opt.faddr; 168 } 169 170 orig_sport = inet->inet_sport; 171 orig_dport = usin->sin_port; 172 fl4 = &inet->cork.fl.u.ip4; 173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 175 IPPROTO_TCP, 176 orig_sport, orig_dport, sk, true); 177 if (IS_ERR(rt)) { 178 err = PTR_ERR(rt); 179 if (err == -ENETUNREACH) 180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 181 return err; 182 } 183 184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 185 ip_rt_put(rt); 186 return -ENETUNREACH; 187 } 188 189 if (!inet_opt || !inet_opt->opt.srr) 190 daddr = fl4->daddr; 191 192 if (!inet->inet_saddr) 193 inet->inet_saddr = fl4->saddr; 194 inet->inet_rcv_saddr = inet->inet_saddr; 195 196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 197 /* Reset inherited state */ 198 tp->rx_opt.ts_recent = 0; 199 tp->rx_opt.ts_recent_stamp = 0; 200 if (likely(!tp->repair)) 201 tp->write_seq = 0; 202 } 203 204 if (tcp_death_row.sysctl_tw_recycle && 205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 206 tcp_fetch_timewait_stamp(sk, &rt->dst); 207 208 inet->inet_dport = usin->sin_port; 209 inet->inet_daddr = daddr; 210 211 inet_csk(sk)->icsk_ext_hdr_len = 0; 212 if (inet_opt) 213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 214 215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 216 217 /* Socket identity is still unknown (sport may be zero). 218 * However we set state to SYN-SENT and not releasing socket 219 * lock select source port, enter ourselves into the hash tables and 220 * complete initialization after this. 221 */ 222 tcp_set_state(sk, TCP_SYN_SENT); 223 err = inet_hash_connect(&tcp_death_row, sk); 224 if (err) 225 goto failure; 226 227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 228 inet->inet_sport, inet->inet_dport, sk); 229 if (IS_ERR(rt)) { 230 err = PTR_ERR(rt); 231 rt = NULL; 232 goto failure; 233 } 234 /* OK, now commit destination to socket. */ 235 sk->sk_gso_type = SKB_GSO_TCPV4; 236 sk_setup_caps(sk, &rt->dst); 237 238 if (!tp->write_seq && likely(!tp->repair)) 239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 240 inet->inet_daddr, 241 inet->inet_sport, 242 usin->sin_port); 243 244 inet->inet_id = tp->write_seq ^ jiffies; 245 246 err = tcp_connect(sk); 247 248 rt = NULL; 249 if (err) 250 goto failure; 251 252 return 0; 253 254 failure: 255 /* 256 * This unhashes the socket and releases the local port, 257 * if necessary. 258 */ 259 tcp_set_state(sk, TCP_CLOSE); 260 ip_rt_put(rt); 261 sk->sk_route_caps = 0; 262 inet->inet_dport = 0; 263 return err; 264 } 265 EXPORT_SYMBOL(tcp_v4_connect); 266 267 /* 268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 269 * It can be called through tcp_release_cb() if socket was owned by user 270 * at the time tcp_v4_err() was called to handle ICMP message. 271 */ 272 static void tcp_v4_mtu_reduced(struct sock *sk) 273 { 274 struct dst_entry *dst; 275 struct inet_sock *inet = inet_sk(sk); 276 u32 mtu = tcp_sk(sk)->mtu_info; 277 278 dst = inet_csk_update_pmtu(sk, mtu); 279 if (!dst) 280 return; 281 282 /* Something is about to be wrong... Remember soft error 283 * for the case, if this connection will not able to recover. 284 */ 285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 286 sk->sk_err_soft = EMSGSIZE; 287 288 mtu = dst_mtu(dst); 289 290 if (inet->pmtudisc != IP_PMTUDISC_DONT && 291 ip_sk_accept_pmtu(sk) && 292 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 293 tcp_sync_mss(sk, mtu); 294 295 /* Resend the TCP packet because it's 296 * clear that the old packet has been 297 * dropped. This is the new "fast" path mtu 298 * discovery. 299 */ 300 tcp_simple_retransmit(sk); 301 } /* else let the usual retransmit timer handle it */ 302 } 303 304 static void do_redirect(struct sk_buff *skb, struct sock *sk) 305 { 306 struct dst_entry *dst = __sk_dst_check(sk, 0); 307 308 if (dst) 309 dst->ops->redirect(dst, sk, skb); 310 } 311 312 /* 313 * This routine is called by the ICMP module when it gets some 314 * sort of error condition. If err < 0 then the socket should 315 * be closed and the error returned to the user. If err > 0 316 * it's just the icmp type << 8 | icmp code. After adjustment 317 * header points to the first 8 bytes of the tcp header. We need 318 * to find the appropriate port. 319 * 320 * The locking strategy used here is very "optimistic". When 321 * someone else accesses the socket the ICMP is just dropped 322 * and for some paths there is no check at all. 323 * A more general error queue to queue errors for later handling 324 * is probably better. 325 * 326 */ 327 328 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 329 { 330 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 331 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 332 struct inet_connection_sock *icsk; 333 struct tcp_sock *tp; 334 struct inet_sock *inet; 335 const int type = icmp_hdr(icmp_skb)->type; 336 const int code = icmp_hdr(icmp_skb)->code; 337 struct sock *sk; 338 struct sk_buff *skb; 339 struct request_sock *req; 340 __u32 seq; 341 __u32 remaining; 342 int err; 343 struct net *net = dev_net(icmp_skb->dev); 344 345 if (icmp_skb->len < (iph->ihl << 2) + 8) { 346 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 347 return; 348 } 349 350 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest, 351 iph->saddr, th->source, inet_iif(icmp_skb)); 352 if (!sk) { 353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 354 return; 355 } 356 if (sk->sk_state == TCP_TIME_WAIT) { 357 inet_twsk_put(inet_twsk(sk)); 358 return; 359 } 360 361 bh_lock_sock(sk); 362 /* If too many ICMPs get dropped on busy 363 * servers this needs to be solved differently. 364 * We do take care of PMTU discovery (RFC1191) special case : 365 * we can receive locally generated ICMP messages while socket is held. 366 */ 367 if (sock_owned_by_user(sk)) { 368 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 370 } 371 if (sk->sk_state == TCP_CLOSE) 372 goto out; 373 374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 376 goto out; 377 } 378 379 icsk = inet_csk(sk); 380 tp = tcp_sk(sk); 381 req = tp->fastopen_rsk; 382 seq = ntohl(th->seq); 383 if (sk->sk_state != TCP_LISTEN && 384 !between(seq, tp->snd_una, tp->snd_nxt) && 385 (req == NULL || seq != tcp_rsk(req)->snt_isn)) { 386 /* For a Fast Open socket, allow seq to be snt_isn. */ 387 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 388 goto out; 389 } 390 391 switch (type) { 392 case ICMP_REDIRECT: 393 do_redirect(icmp_skb, sk); 394 goto out; 395 case ICMP_SOURCE_QUENCH: 396 /* Just silently ignore these. */ 397 goto out; 398 case ICMP_PARAMETERPROB: 399 err = EPROTO; 400 break; 401 case ICMP_DEST_UNREACH: 402 if (code > NR_ICMP_UNREACH) 403 goto out; 404 405 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 406 /* We are not interested in TCP_LISTEN and open_requests 407 * (SYN-ACKs send out by Linux are always <576bytes so 408 * they should go through unfragmented). 409 */ 410 if (sk->sk_state == TCP_LISTEN) 411 goto out; 412 413 tp->mtu_info = info; 414 if (!sock_owned_by_user(sk)) { 415 tcp_v4_mtu_reduced(sk); 416 } else { 417 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 418 sock_hold(sk); 419 } 420 goto out; 421 } 422 423 err = icmp_err_convert[code].errno; 424 /* check if icmp_skb allows revert of backoff 425 * (see draft-zimmermann-tcp-lcd) */ 426 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 427 break; 428 if (seq != tp->snd_una || !icsk->icsk_retransmits || 429 !icsk->icsk_backoff) 430 break; 431 432 /* XXX (TFO) - revisit the following logic for TFO */ 433 434 if (sock_owned_by_user(sk)) 435 break; 436 437 icsk->icsk_backoff--; 438 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) : 439 TCP_TIMEOUT_INIT) << icsk->icsk_backoff; 440 tcp_bound_rto(sk); 441 442 skb = tcp_write_queue_head(sk); 443 BUG_ON(!skb); 444 445 remaining = icsk->icsk_rto - min(icsk->icsk_rto, 446 tcp_time_stamp - TCP_SKB_CB(skb)->when); 447 448 if (remaining) { 449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 450 remaining, TCP_RTO_MAX); 451 } else { 452 /* RTO revert clocked out retransmission. 453 * Will retransmit now */ 454 tcp_retransmit_timer(sk); 455 } 456 457 break; 458 case ICMP_TIME_EXCEEDED: 459 err = EHOSTUNREACH; 460 break; 461 default: 462 goto out; 463 } 464 465 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather 466 * than following the TCP_SYN_RECV case and closing the socket, 467 * we ignore the ICMP error and keep trying like a fully established 468 * socket. Is this the right thing to do? 469 */ 470 if (req && req->sk == NULL) 471 goto out; 472 473 switch (sk->sk_state) { 474 struct request_sock *req, **prev; 475 case TCP_LISTEN: 476 if (sock_owned_by_user(sk)) 477 goto out; 478 479 req = inet_csk_search_req(sk, &prev, th->dest, 480 iph->daddr, iph->saddr); 481 if (!req) 482 goto out; 483 484 /* ICMPs are not backlogged, hence we cannot get 485 an established socket here. 486 */ 487 WARN_ON(req->sk); 488 489 if (seq != tcp_rsk(req)->snt_isn) { 490 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 491 goto out; 492 } 493 494 /* 495 * Still in SYN_RECV, just remove it silently. 496 * There is no good way to pass the error to the newly 497 * created socket, and POSIX does not want network 498 * errors returned from accept(). 499 */ 500 inet_csk_reqsk_queue_drop(sk, req, prev); 501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 502 goto out; 503 504 case TCP_SYN_SENT: 505 case TCP_SYN_RECV: /* Cannot happen. 506 It can f.e. if SYNs crossed, 507 or Fast Open. 508 */ 509 if (!sock_owned_by_user(sk)) { 510 sk->sk_err = err; 511 512 sk->sk_error_report(sk); 513 514 tcp_done(sk); 515 } else { 516 sk->sk_err_soft = err; 517 } 518 goto out; 519 } 520 521 /* If we've already connected we will keep trying 522 * until we time out, or the user gives up. 523 * 524 * rfc1122 4.2.3.9 allows to consider as hard errors 525 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 526 * but it is obsoleted by pmtu discovery). 527 * 528 * Note, that in modern internet, where routing is unreliable 529 * and in each dark corner broken firewalls sit, sending random 530 * errors ordered by their masters even this two messages finally lose 531 * their original sense (even Linux sends invalid PORT_UNREACHs) 532 * 533 * Now we are in compliance with RFCs. 534 * --ANK (980905) 535 */ 536 537 inet = inet_sk(sk); 538 if (!sock_owned_by_user(sk) && inet->recverr) { 539 sk->sk_err = err; 540 sk->sk_error_report(sk); 541 } else { /* Only an error on timeout */ 542 sk->sk_err_soft = err; 543 } 544 545 out: 546 bh_unlock_sock(sk); 547 sock_put(sk); 548 } 549 550 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 551 { 552 struct tcphdr *th = tcp_hdr(skb); 553 554 if (skb->ip_summed == CHECKSUM_PARTIAL) { 555 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 556 skb->csum_start = skb_transport_header(skb) - skb->head; 557 skb->csum_offset = offsetof(struct tcphdr, check); 558 } else { 559 th->check = tcp_v4_check(skb->len, saddr, daddr, 560 csum_partial(th, 561 th->doff << 2, 562 skb->csum)); 563 } 564 } 565 566 /* This routine computes an IPv4 TCP checksum. */ 567 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 568 { 569 const struct inet_sock *inet = inet_sk(sk); 570 571 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 572 } 573 EXPORT_SYMBOL(tcp_v4_send_check); 574 575 /* 576 * This routine will send an RST to the other tcp. 577 * 578 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 579 * for reset. 580 * Answer: if a packet caused RST, it is not for a socket 581 * existing in our system, if it is matched to a socket, 582 * it is just duplicate segment or bug in other side's TCP. 583 * So that we build reply only basing on parameters 584 * arrived with segment. 585 * Exception: precedence violation. We do not implement it in any case. 586 */ 587 588 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) 589 { 590 const struct tcphdr *th = tcp_hdr(skb); 591 struct { 592 struct tcphdr th; 593 #ifdef CONFIG_TCP_MD5SIG 594 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 595 #endif 596 } rep; 597 struct ip_reply_arg arg; 598 #ifdef CONFIG_TCP_MD5SIG 599 struct tcp_md5sig_key *key; 600 const __u8 *hash_location = NULL; 601 unsigned char newhash[16]; 602 int genhash; 603 struct sock *sk1 = NULL; 604 #endif 605 struct net *net; 606 607 /* Never send a reset in response to a reset. */ 608 if (th->rst) 609 return; 610 611 if (skb_rtable(skb)->rt_type != RTN_LOCAL) 612 return; 613 614 /* Swap the send and the receive. */ 615 memset(&rep, 0, sizeof(rep)); 616 rep.th.dest = th->source; 617 rep.th.source = th->dest; 618 rep.th.doff = sizeof(struct tcphdr) / 4; 619 rep.th.rst = 1; 620 621 if (th->ack) { 622 rep.th.seq = th->ack_seq; 623 } else { 624 rep.th.ack = 1; 625 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 626 skb->len - (th->doff << 2)); 627 } 628 629 memset(&arg, 0, sizeof(arg)); 630 arg.iov[0].iov_base = (unsigned char *)&rep; 631 arg.iov[0].iov_len = sizeof(rep.th); 632 633 #ifdef CONFIG_TCP_MD5SIG 634 hash_location = tcp_parse_md5sig_option(th); 635 if (!sk && hash_location) { 636 /* 637 * active side is lost. Try to find listening socket through 638 * source port, and then find md5 key through listening socket. 639 * we are not loose security here: 640 * Incoming packet is checked with md5 hash with finding key, 641 * no RST generated if md5 hash doesn't match. 642 */ 643 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev), 644 &tcp_hashinfo, ip_hdr(skb)->saddr, 645 th->source, ip_hdr(skb)->daddr, 646 ntohs(th->source), inet_iif(skb)); 647 /* don't send rst if it can't find key */ 648 if (!sk1) 649 return; 650 rcu_read_lock(); 651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 652 &ip_hdr(skb)->saddr, AF_INET); 653 if (!key) 654 goto release_sk1; 655 656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb); 657 if (genhash || memcmp(hash_location, newhash, 16) != 0) 658 goto release_sk1; 659 } else { 660 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 661 &ip_hdr(skb)->saddr, 662 AF_INET) : NULL; 663 } 664 665 if (key) { 666 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 667 (TCPOPT_NOP << 16) | 668 (TCPOPT_MD5SIG << 8) | 669 TCPOLEN_MD5SIG); 670 /* Update length and the length the header thinks exists */ 671 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 672 rep.th.doff = arg.iov[0].iov_len / 4; 673 674 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 675 key, ip_hdr(skb)->saddr, 676 ip_hdr(skb)->daddr, &rep.th); 677 } 678 #endif 679 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 680 ip_hdr(skb)->saddr, /* XXX */ 681 arg.iov[0].iov_len, IPPROTO_TCP, 0); 682 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 683 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 684 /* When socket is gone, all binding information is lost. 685 * routing might fail in this case. No choice here, if we choose to force 686 * input interface, we will misroute in case of asymmetric route. 687 */ 688 if (sk) 689 arg.bound_dev_if = sk->sk_bound_dev_if; 690 691 net = dev_net(skb_dst(skb)->dev); 692 arg.tos = ip_hdr(skb)->tos; 693 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 694 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 695 696 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 697 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 698 699 #ifdef CONFIG_TCP_MD5SIG 700 release_sk1: 701 if (sk1) { 702 rcu_read_unlock(); 703 sock_put(sk1); 704 } 705 #endif 706 } 707 708 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 709 outside socket context is ugly, certainly. What can I do? 710 */ 711 712 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 713 u32 win, u32 tsval, u32 tsecr, int oif, 714 struct tcp_md5sig_key *key, 715 int reply_flags, u8 tos) 716 { 717 const struct tcphdr *th = tcp_hdr(skb); 718 struct { 719 struct tcphdr th; 720 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 721 #ifdef CONFIG_TCP_MD5SIG 722 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 723 #endif 724 ]; 725 } rep; 726 struct ip_reply_arg arg; 727 struct net *net = dev_net(skb_dst(skb)->dev); 728 729 memset(&rep.th, 0, sizeof(struct tcphdr)); 730 memset(&arg, 0, sizeof(arg)); 731 732 arg.iov[0].iov_base = (unsigned char *)&rep; 733 arg.iov[0].iov_len = sizeof(rep.th); 734 if (tsecr) { 735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 736 (TCPOPT_TIMESTAMP << 8) | 737 TCPOLEN_TIMESTAMP); 738 rep.opt[1] = htonl(tsval); 739 rep.opt[2] = htonl(tsecr); 740 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 741 } 742 743 /* Swap the send and the receive. */ 744 rep.th.dest = th->source; 745 rep.th.source = th->dest; 746 rep.th.doff = arg.iov[0].iov_len / 4; 747 rep.th.seq = htonl(seq); 748 rep.th.ack_seq = htonl(ack); 749 rep.th.ack = 1; 750 rep.th.window = htons(win); 751 752 #ifdef CONFIG_TCP_MD5SIG 753 if (key) { 754 int offset = (tsecr) ? 3 : 0; 755 756 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 757 (TCPOPT_NOP << 16) | 758 (TCPOPT_MD5SIG << 8) | 759 TCPOLEN_MD5SIG); 760 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 761 rep.th.doff = arg.iov[0].iov_len/4; 762 763 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 764 key, ip_hdr(skb)->saddr, 765 ip_hdr(skb)->daddr, &rep.th); 766 } 767 #endif 768 arg.flags = reply_flags; 769 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 770 ip_hdr(skb)->saddr, /* XXX */ 771 arg.iov[0].iov_len, IPPROTO_TCP, 0); 772 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 773 if (oif) 774 arg.bound_dev_if = oif; 775 arg.tos = tos; 776 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 777 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 778 779 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 780 } 781 782 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 783 { 784 struct inet_timewait_sock *tw = inet_twsk(sk); 785 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 786 787 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 788 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 789 tcp_time_stamp + tcptw->tw_ts_offset, 790 tcptw->tw_ts_recent, 791 tw->tw_bound_dev_if, 792 tcp_twsk_md5_key(tcptw), 793 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 794 tw->tw_tos 795 ); 796 797 inet_twsk_put(tw); 798 } 799 800 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb, 801 struct request_sock *req) 802 { 803 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 804 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 805 */ 806 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ? 807 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, 808 tcp_rsk(req)->rcv_nxt, req->rcv_wnd, 809 tcp_time_stamp, 810 req->ts_recent, 811 0, 812 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 813 AF_INET), 814 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 815 ip_hdr(skb)->tos); 816 } 817 818 /* 819 * Send a SYN-ACK after having received a SYN. 820 * This still operates on a request_sock only, not on a big 821 * socket. 822 */ 823 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst, 824 struct request_sock *req, 825 u16 queue_mapping) 826 { 827 const struct inet_request_sock *ireq = inet_rsk(req); 828 struct flowi4 fl4; 829 int err = -1; 830 struct sk_buff * skb; 831 832 /* First, grab a route. */ 833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 834 return -1; 835 836 skb = tcp_make_synack(sk, dst, req, NULL); 837 838 if (skb) { 839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 840 841 skb_set_queue_mapping(skb, queue_mapping); 842 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 843 ireq->ir_rmt_addr, 844 ireq->opt); 845 err = net_xmit_eval(err); 846 if (!tcp_rsk(req)->snt_synack && !err) 847 tcp_rsk(req)->snt_synack = tcp_time_stamp; 848 } 849 850 return err; 851 } 852 853 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req) 854 { 855 int res = tcp_v4_send_synack(sk, NULL, req, 0); 856 857 if (!res) 858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 859 return res; 860 } 861 862 /* 863 * IPv4 request_sock destructor. 864 */ 865 static void tcp_v4_reqsk_destructor(struct request_sock *req) 866 { 867 kfree(inet_rsk(req)->opt); 868 } 869 870 /* 871 * Return true if a syncookie should be sent 872 */ 873 bool tcp_syn_flood_action(struct sock *sk, 874 const struct sk_buff *skb, 875 const char *proto) 876 { 877 const char *msg = "Dropping request"; 878 bool want_cookie = false; 879 struct listen_sock *lopt; 880 881 882 883 #ifdef CONFIG_SYN_COOKIES 884 if (sysctl_tcp_syncookies) { 885 msg = "Sending cookies"; 886 want_cookie = true; 887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 888 } else 889 #endif 890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 891 892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 893 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) { 894 lopt->synflood_warned = 1; 895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 896 proto, ntohs(tcp_hdr(skb)->dest), msg); 897 } 898 return want_cookie; 899 } 900 EXPORT_SYMBOL(tcp_syn_flood_action); 901 902 /* 903 * Save and compile IPv4 options into the request_sock if needed. 904 */ 905 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb) 906 { 907 const struct ip_options *opt = &(IPCB(skb)->opt); 908 struct ip_options_rcu *dopt = NULL; 909 910 if (opt && opt->optlen) { 911 int opt_size = sizeof(*dopt) + opt->optlen; 912 913 dopt = kmalloc(opt_size, GFP_ATOMIC); 914 if (dopt) { 915 if (ip_options_echo(&dopt->opt, skb)) { 916 kfree(dopt); 917 dopt = NULL; 918 } 919 } 920 } 921 return dopt; 922 } 923 924 #ifdef CONFIG_TCP_MD5SIG 925 /* 926 * RFC2385 MD5 checksumming requires a mapping of 927 * IP address->MD5 Key. 928 * We need to maintain these in the sk structure. 929 */ 930 931 /* Find the Key structure for an address. */ 932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk, 933 const union tcp_md5_addr *addr, 934 int family) 935 { 936 struct tcp_sock *tp = tcp_sk(sk); 937 struct tcp_md5sig_key *key; 938 unsigned int size = sizeof(struct in_addr); 939 struct tcp_md5sig_info *md5sig; 940 941 /* caller either holds rcu_read_lock() or socket lock */ 942 md5sig = rcu_dereference_check(tp->md5sig_info, 943 sock_owned_by_user(sk) || 944 lockdep_is_held(&sk->sk_lock.slock)); 945 if (!md5sig) 946 return NULL; 947 #if IS_ENABLED(CONFIG_IPV6) 948 if (family == AF_INET6) 949 size = sizeof(struct in6_addr); 950 #endif 951 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 952 if (key->family != family) 953 continue; 954 if (!memcmp(&key->addr, addr, size)) 955 return key; 956 } 957 return NULL; 958 } 959 EXPORT_SYMBOL(tcp_md5_do_lookup); 960 961 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, 962 struct sock *addr_sk) 963 { 964 union tcp_md5_addr *addr; 965 966 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr; 967 return tcp_md5_do_lookup(sk, addr, AF_INET); 968 } 969 EXPORT_SYMBOL(tcp_v4_md5_lookup); 970 971 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk, 972 struct request_sock *req) 973 { 974 union tcp_md5_addr *addr; 975 976 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr; 977 return tcp_md5_do_lookup(sk, addr, AF_INET); 978 } 979 980 /* This can be called on a newly created socket, from other files */ 981 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 982 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 983 { 984 /* Add Key to the list */ 985 struct tcp_md5sig_key *key; 986 struct tcp_sock *tp = tcp_sk(sk); 987 struct tcp_md5sig_info *md5sig; 988 989 key = tcp_md5_do_lookup(sk, addr, family); 990 if (key) { 991 /* Pre-existing entry - just update that one. */ 992 memcpy(key->key, newkey, newkeylen); 993 key->keylen = newkeylen; 994 return 0; 995 } 996 997 md5sig = rcu_dereference_protected(tp->md5sig_info, 998 sock_owned_by_user(sk)); 999 if (!md5sig) { 1000 md5sig = kmalloc(sizeof(*md5sig), gfp); 1001 if (!md5sig) 1002 return -ENOMEM; 1003 1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1005 INIT_HLIST_HEAD(&md5sig->head); 1006 rcu_assign_pointer(tp->md5sig_info, md5sig); 1007 } 1008 1009 key = sock_kmalloc(sk, sizeof(*key), gfp); 1010 if (!key) 1011 return -ENOMEM; 1012 if (!tcp_alloc_md5sig_pool()) { 1013 sock_kfree_s(sk, key, sizeof(*key)); 1014 return -ENOMEM; 1015 } 1016 1017 memcpy(key->key, newkey, newkeylen); 1018 key->keylen = newkeylen; 1019 key->family = family; 1020 memcpy(&key->addr, addr, 1021 (family == AF_INET6) ? sizeof(struct in6_addr) : 1022 sizeof(struct in_addr)); 1023 hlist_add_head_rcu(&key->node, &md5sig->head); 1024 return 0; 1025 } 1026 EXPORT_SYMBOL(tcp_md5_do_add); 1027 1028 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 1029 { 1030 struct tcp_md5sig_key *key; 1031 1032 key = tcp_md5_do_lookup(sk, addr, family); 1033 if (!key) 1034 return -ENOENT; 1035 hlist_del_rcu(&key->node); 1036 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1037 kfree_rcu(key, rcu); 1038 return 0; 1039 } 1040 EXPORT_SYMBOL(tcp_md5_do_del); 1041 1042 static void tcp_clear_md5_list(struct sock *sk) 1043 { 1044 struct tcp_sock *tp = tcp_sk(sk); 1045 struct tcp_md5sig_key *key; 1046 struct hlist_node *n; 1047 struct tcp_md5sig_info *md5sig; 1048 1049 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1050 1051 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1052 hlist_del_rcu(&key->node); 1053 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1054 kfree_rcu(key, rcu); 1055 } 1056 } 1057 1058 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1059 int optlen) 1060 { 1061 struct tcp_md5sig cmd; 1062 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1063 1064 if (optlen < sizeof(cmd)) 1065 return -EINVAL; 1066 1067 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1068 return -EFAULT; 1069 1070 if (sin->sin_family != AF_INET) 1071 return -EINVAL; 1072 1073 if (!cmd.tcpm_key || !cmd.tcpm_keylen) 1074 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1075 AF_INET); 1076 1077 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1078 return -EINVAL; 1079 1080 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1081 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1082 GFP_KERNEL); 1083 } 1084 1085 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1086 __be32 daddr, __be32 saddr, int nbytes) 1087 { 1088 struct tcp4_pseudohdr *bp; 1089 struct scatterlist sg; 1090 1091 bp = &hp->md5_blk.ip4; 1092 1093 /* 1094 * 1. the TCP pseudo-header (in the order: source IP address, 1095 * destination IP address, zero-padded protocol number, and 1096 * segment length) 1097 */ 1098 bp->saddr = saddr; 1099 bp->daddr = daddr; 1100 bp->pad = 0; 1101 bp->protocol = IPPROTO_TCP; 1102 bp->len = cpu_to_be16(nbytes); 1103 1104 sg_init_one(&sg, bp, sizeof(*bp)); 1105 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1106 } 1107 1108 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1109 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1110 { 1111 struct tcp_md5sig_pool *hp; 1112 struct hash_desc *desc; 1113 1114 hp = tcp_get_md5sig_pool(); 1115 if (!hp) 1116 goto clear_hash_noput; 1117 desc = &hp->md5_desc; 1118 1119 if (crypto_hash_init(desc)) 1120 goto clear_hash; 1121 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1122 goto clear_hash; 1123 if (tcp_md5_hash_header(hp, th)) 1124 goto clear_hash; 1125 if (tcp_md5_hash_key(hp, key)) 1126 goto clear_hash; 1127 if (crypto_hash_final(desc, md5_hash)) 1128 goto clear_hash; 1129 1130 tcp_put_md5sig_pool(); 1131 return 0; 1132 1133 clear_hash: 1134 tcp_put_md5sig_pool(); 1135 clear_hash_noput: 1136 memset(md5_hash, 0, 16); 1137 return 1; 1138 } 1139 1140 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key, 1141 const struct sock *sk, const struct request_sock *req, 1142 const struct sk_buff *skb) 1143 { 1144 struct tcp_md5sig_pool *hp; 1145 struct hash_desc *desc; 1146 const struct tcphdr *th = tcp_hdr(skb); 1147 __be32 saddr, daddr; 1148 1149 if (sk) { 1150 saddr = inet_sk(sk)->inet_saddr; 1151 daddr = inet_sk(sk)->inet_daddr; 1152 } else if (req) { 1153 saddr = inet_rsk(req)->ir_loc_addr; 1154 daddr = inet_rsk(req)->ir_rmt_addr; 1155 } else { 1156 const struct iphdr *iph = ip_hdr(skb); 1157 saddr = iph->saddr; 1158 daddr = iph->daddr; 1159 } 1160 1161 hp = tcp_get_md5sig_pool(); 1162 if (!hp) 1163 goto clear_hash_noput; 1164 desc = &hp->md5_desc; 1165 1166 if (crypto_hash_init(desc)) 1167 goto clear_hash; 1168 1169 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1170 goto clear_hash; 1171 if (tcp_md5_hash_header(hp, th)) 1172 goto clear_hash; 1173 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1174 goto clear_hash; 1175 if (tcp_md5_hash_key(hp, key)) 1176 goto clear_hash; 1177 if (crypto_hash_final(desc, md5_hash)) 1178 goto clear_hash; 1179 1180 tcp_put_md5sig_pool(); 1181 return 0; 1182 1183 clear_hash: 1184 tcp_put_md5sig_pool(); 1185 clear_hash_noput: 1186 memset(md5_hash, 0, 16); 1187 return 1; 1188 } 1189 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1190 1191 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb) 1192 { 1193 /* 1194 * This gets called for each TCP segment that arrives 1195 * so we want to be efficient. 1196 * We have 3 drop cases: 1197 * o No MD5 hash and one expected. 1198 * o MD5 hash and we're not expecting one. 1199 * o MD5 hash and its wrong. 1200 */ 1201 const __u8 *hash_location = NULL; 1202 struct tcp_md5sig_key *hash_expected; 1203 const struct iphdr *iph = ip_hdr(skb); 1204 const struct tcphdr *th = tcp_hdr(skb); 1205 int genhash; 1206 unsigned char newhash[16]; 1207 1208 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1209 AF_INET); 1210 hash_location = tcp_parse_md5sig_option(th); 1211 1212 /* We've parsed the options - do we have a hash? */ 1213 if (!hash_expected && !hash_location) 1214 return false; 1215 1216 if (hash_expected && !hash_location) { 1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1218 return true; 1219 } 1220 1221 if (!hash_expected && hash_location) { 1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1223 return true; 1224 } 1225 1226 /* Okay, so this is hash_expected and hash_location - 1227 * so we need to calculate the checksum. 1228 */ 1229 genhash = tcp_v4_md5_hash_skb(newhash, 1230 hash_expected, 1231 NULL, NULL, skb); 1232 1233 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1234 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1235 &iph->saddr, ntohs(th->source), 1236 &iph->daddr, ntohs(th->dest), 1237 genhash ? " tcp_v4_calc_md5_hash failed" 1238 : ""); 1239 return true; 1240 } 1241 return false; 1242 } 1243 1244 #endif 1245 1246 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1247 .family = PF_INET, 1248 .obj_size = sizeof(struct tcp_request_sock), 1249 .rtx_syn_ack = tcp_v4_rtx_synack, 1250 .send_ack = tcp_v4_reqsk_send_ack, 1251 .destructor = tcp_v4_reqsk_destructor, 1252 .send_reset = tcp_v4_send_reset, 1253 .syn_ack_timeout = tcp_syn_ack_timeout, 1254 }; 1255 1256 #ifdef CONFIG_TCP_MD5SIG 1257 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1258 .md5_lookup = tcp_v4_reqsk_md5_lookup, 1259 .calc_md5_hash = tcp_v4_md5_hash_skb, 1260 }; 1261 #endif 1262 1263 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb, 1264 struct request_sock *req, 1265 struct tcp_fastopen_cookie *foc, 1266 struct tcp_fastopen_cookie *valid_foc) 1267 { 1268 bool skip_cookie = false; 1269 struct fastopen_queue *fastopenq; 1270 1271 if (likely(!fastopen_cookie_present(foc))) { 1272 /* See include/net/tcp.h for the meaning of these knobs */ 1273 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) || 1274 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) && 1275 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1))) 1276 skip_cookie = true; /* no cookie to validate */ 1277 else 1278 return false; 1279 } 1280 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq; 1281 /* A FO option is present; bump the counter. */ 1282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE); 1283 1284 /* Make sure the listener has enabled fastopen, and we don't 1285 * exceed the max # of pending TFO requests allowed before trying 1286 * to validating the cookie in order to avoid burning CPU cycles 1287 * unnecessarily. 1288 * 1289 * XXX (TFO) - The implication of checking the max_qlen before 1290 * processing a cookie request is that clients can't differentiate 1291 * between qlen overflow causing Fast Open to be disabled 1292 * temporarily vs a server not supporting Fast Open at all. 1293 */ 1294 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 || 1295 fastopenq == NULL || fastopenq->max_qlen == 0) 1296 return false; 1297 1298 if (fastopenq->qlen >= fastopenq->max_qlen) { 1299 struct request_sock *req1; 1300 spin_lock(&fastopenq->lock); 1301 req1 = fastopenq->rskq_rst_head; 1302 if ((req1 == NULL) || time_after(req1->expires, jiffies)) { 1303 spin_unlock(&fastopenq->lock); 1304 NET_INC_STATS_BH(sock_net(sk), 1305 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 1306 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/ 1307 foc->len = -1; 1308 return false; 1309 } 1310 fastopenq->rskq_rst_head = req1->dl_next; 1311 fastopenq->qlen--; 1312 spin_unlock(&fastopenq->lock); 1313 reqsk_free(req1); 1314 } 1315 if (skip_cookie) { 1316 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1317 return true; 1318 } 1319 1320 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) { 1321 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) { 1322 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, 1323 ip_hdr(skb)->daddr, valid_foc); 1324 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) || 1325 memcmp(&foc->val[0], &valid_foc->val[0], 1326 TCP_FASTOPEN_COOKIE_SIZE) != 0) 1327 return false; 1328 valid_foc->len = -1; 1329 } 1330 /* Acknowledge the data received from the peer. */ 1331 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1332 return true; 1333 } else if (foc->len == 0) { /* Client requesting a cookie */ 1334 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, 1335 ip_hdr(skb)->daddr, valid_foc); 1336 NET_INC_STATS_BH(sock_net(sk), 1337 LINUX_MIB_TCPFASTOPENCOOKIEREQD); 1338 } else { 1339 /* Client sent a cookie with wrong size. Treat it 1340 * the same as invalid and return a valid one. 1341 */ 1342 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, 1343 ip_hdr(skb)->daddr, valid_foc); 1344 } 1345 return false; 1346 } 1347 1348 static int tcp_v4_conn_req_fastopen(struct sock *sk, 1349 struct sk_buff *skb, 1350 struct sk_buff *skb_synack, 1351 struct request_sock *req) 1352 { 1353 struct tcp_sock *tp = tcp_sk(sk); 1354 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1355 const struct inet_request_sock *ireq = inet_rsk(req); 1356 struct sock *child; 1357 int err; 1358 1359 req->num_retrans = 0; 1360 req->num_timeout = 0; 1361 req->sk = NULL; 1362 1363 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); 1364 if (child == NULL) { 1365 NET_INC_STATS_BH(sock_net(sk), 1366 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1367 kfree_skb(skb_synack); 1368 return -1; 1369 } 1370 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr, 1371 ireq->ir_rmt_addr, ireq->opt); 1372 err = net_xmit_eval(err); 1373 if (!err) 1374 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1375 /* XXX (TFO) - is it ok to ignore error and continue? */ 1376 1377 spin_lock(&queue->fastopenq->lock); 1378 queue->fastopenq->qlen++; 1379 spin_unlock(&queue->fastopenq->lock); 1380 1381 /* Initialize the child socket. Have to fix some values to take 1382 * into account the child is a Fast Open socket and is created 1383 * only out of the bits carried in the SYN packet. 1384 */ 1385 tp = tcp_sk(child); 1386 1387 tp->fastopen_rsk = req; 1388 /* Do a hold on the listner sk so that if the listener is being 1389 * closed, the child that has been accepted can live on and still 1390 * access listen_lock. 1391 */ 1392 sock_hold(sk); 1393 tcp_rsk(req)->listener = sk; 1394 1395 /* RFC1323: The window in SYN & SYN/ACK segments is never 1396 * scaled. So correct it appropriately. 1397 */ 1398 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 1399 1400 /* Activate the retrans timer so that SYNACK can be retransmitted. 1401 * The request socket is not added to the SYN table of the parent 1402 * because it's been added to the accept queue directly. 1403 */ 1404 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 1405 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 1406 1407 /* Add the child socket directly into the accept queue */ 1408 inet_csk_reqsk_queue_add(sk, req, child); 1409 1410 /* Now finish processing the fastopen child socket. */ 1411 inet_csk(child)->icsk_af_ops->rebuild_header(child); 1412 tcp_init_congestion_control(child); 1413 tcp_mtup_init(child); 1414 tcp_init_metrics(child); 1415 tcp_init_buffer_space(child); 1416 1417 /* Queue the data carried in the SYN packet. We need to first 1418 * bump skb's refcnt because the caller will attempt to free it. 1419 * 1420 * XXX (TFO) - we honor a zero-payload TFO request for now. 1421 * (Any reason not to?) 1422 */ 1423 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) { 1424 /* Don't queue the skb if there is no payload in SYN. 1425 * XXX (TFO) - How about SYN+FIN? 1426 */ 1427 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1428 } else { 1429 skb = skb_get(skb); 1430 skb_dst_drop(skb); 1431 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 1432 skb_set_owner_r(skb, child); 1433 __skb_queue_tail(&child->sk_receive_queue, skb); 1434 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1435 tp->syn_data_acked = 1; 1436 } 1437 sk->sk_data_ready(sk, 0); 1438 bh_unlock_sock(child); 1439 sock_put(child); 1440 WARN_ON(req->sk == NULL); 1441 return 0; 1442 } 1443 1444 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1445 { 1446 struct tcp_options_received tmp_opt; 1447 struct request_sock *req; 1448 struct inet_request_sock *ireq; 1449 struct tcp_sock *tp = tcp_sk(sk); 1450 struct dst_entry *dst = NULL; 1451 __be32 saddr = ip_hdr(skb)->saddr; 1452 __be32 daddr = ip_hdr(skb)->daddr; 1453 __u32 isn = TCP_SKB_CB(skb)->when; 1454 bool want_cookie = false; 1455 struct flowi4 fl4; 1456 struct tcp_fastopen_cookie foc = { .len = -1 }; 1457 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 1458 struct sk_buff *skb_synack; 1459 int do_fastopen; 1460 1461 /* Never answer to SYNs send to broadcast or multicast */ 1462 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1463 goto drop; 1464 1465 /* TW buckets are converted to open requests without 1466 * limitations, they conserve resources and peer is 1467 * evidently real one. 1468 */ 1469 if ((sysctl_tcp_syncookies == 2 || 1470 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 1471 want_cookie = tcp_syn_flood_action(sk, skb, "TCP"); 1472 if (!want_cookie) 1473 goto drop; 1474 } 1475 1476 /* Accept backlog is full. If we have already queued enough 1477 * of warm entries in syn queue, drop request. It is better than 1478 * clogging syn queue with openreqs with exponentially increasing 1479 * timeout. 1480 */ 1481 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 1482 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1483 goto drop; 1484 } 1485 1486 req = inet_reqsk_alloc(&tcp_request_sock_ops); 1487 if (!req) 1488 goto drop; 1489 1490 #ifdef CONFIG_TCP_MD5SIG 1491 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops; 1492 #endif 1493 1494 tcp_clear_options(&tmp_opt); 1495 tmp_opt.mss_clamp = TCP_MSS_DEFAULT; 1496 tmp_opt.user_mss = tp->rx_opt.user_mss; 1497 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 1498 1499 if (want_cookie && !tmp_opt.saw_tstamp) 1500 tcp_clear_options(&tmp_opt); 1501 1502 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 1503 tcp_openreq_init(req, &tmp_opt, skb); 1504 1505 ireq = inet_rsk(req); 1506 ireq->ir_loc_addr = daddr; 1507 ireq->ir_rmt_addr = saddr; 1508 ireq->no_srccheck = inet_sk(sk)->transparent; 1509 ireq->opt = tcp_v4_save_options(skb); 1510 1511 if (security_inet_conn_request(sk, skb, req)) 1512 goto drop_and_free; 1513 1514 if (!want_cookie || tmp_opt.tstamp_ok) 1515 TCP_ECN_create_request(req, skb, sock_net(sk)); 1516 1517 if (want_cookie) { 1518 isn = cookie_v4_init_sequence(sk, skb, &req->mss); 1519 req->cookie_ts = tmp_opt.tstamp_ok; 1520 } else if (!isn) { 1521 /* VJ's idea. We save last timestamp seen 1522 * from the destination in peer table, when entering 1523 * state TIME-WAIT, and check against it before 1524 * accepting new connection request. 1525 * 1526 * If "isn" is not zero, this request hit alive 1527 * timewait bucket, so that all the necessary checks 1528 * are made in the function processing timewait state. 1529 */ 1530 if (tmp_opt.saw_tstamp && 1531 tcp_death_row.sysctl_tw_recycle && 1532 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL && 1533 fl4.daddr == saddr) { 1534 if (!tcp_peer_is_proven(req, dst, true)) { 1535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 1536 goto drop_and_release; 1537 } 1538 } 1539 /* Kill the following clause, if you dislike this way. */ 1540 else if (!sysctl_tcp_syncookies && 1541 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 1542 (sysctl_max_syn_backlog >> 2)) && 1543 !tcp_peer_is_proven(req, dst, false)) { 1544 /* Without syncookies last quarter of 1545 * backlog is filled with destinations, 1546 * proven to be alive. 1547 * It means that we continue to communicate 1548 * to destinations, already remembered 1549 * to the moment of synflood. 1550 */ 1551 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 1552 &saddr, ntohs(tcp_hdr(skb)->source)); 1553 goto drop_and_release; 1554 } 1555 1556 isn = tcp_v4_init_sequence(skb); 1557 } 1558 tcp_rsk(req)->snt_isn = isn; 1559 1560 if (dst == NULL) { 1561 dst = inet_csk_route_req(sk, &fl4, req); 1562 if (dst == NULL) 1563 goto drop_and_free; 1564 } 1565 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc); 1566 1567 /* We don't call tcp_v4_send_synack() directly because we need 1568 * to make sure a child socket can be created successfully before 1569 * sending back synack! 1570 * 1571 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack() 1572 * (or better yet, call tcp_send_synack() in the child context 1573 * directly, but will have to fix bunch of other code first) 1574 * after syn_recv_sock() except one will need to first fix the 1575 * latter to remove its dependency on the current implementation 1576 * of tcp_v4_send_synack()->tcp_select_initial_window(). 1577 */ 1578 skb_synack = tcp_make_synack(sk, dst, req, 1579 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL); 1580 1581 if (skb_synack) { 1582 __tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr); 1583 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb)); 1584 } else 1585 goto drop_and_free; 1586 1587 if (likely(!do_fastopen)) { 1588 int err; 1589 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr, 1590 ireq->ir_rmt_addr, ireq->opt); 1591 err = net_xmit_eval(err); 1592 if (err || want_cookie) 1593 goto drop_and_free; 1594 1595 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1596 tcp_rsk(req)->listener = NULL; 1597 /* Add the request_sock to the SYN table */ 1598 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 1599 if (fastopen_cookie_present(&foc) && foc.len != 0) 1600 NET_INC_STATS_BH(sock_net(sk), 1601 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1602 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req)) 1603 goto drop_and_free; 1604 1605 return 0; 1606 1607 drop_and_release: 1608 dst_release(dst); 1609 drop_and_free: 1610 reqsk_free(req); 1611 drop: 1612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1613 return 0; 1614 } 1615 EXPORT_SYMBOL(tcp_v4_conn_request); 1616 1617 1618 /* 1619 * The three way handshake has completed - we got a valid synack - 1620 * now create the new socket. 1621 */ 1622 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, 1623 struct request_sock *req, 1624 struct dst_entry *dst) 1625 { 1626 struct inet_request_sock *ireq; 1627 struct inet_sock *newinet; 1628 struct tcp_sock *newtp; 1629 struct sock *newsk; 1630 #ifdef CONFIG_TCP_MD5SIG 1631 struct tcp_md5sig_key *key; 1632 #endif 1633 struct ip_options_rcu *inet_opt; 1634 1635 if (sk_acceptq_is_full(sk)) 1636 goto exit_overflow; 1637 1638 newsk = tcp_create_openreq_child(sk, req, skb); 1639 if (!newsk) 1640 goto exit_nonewsk; 1641 1642 newsk->sk_gso_type = SKB_GSO_TCPV4; 1643 inet_sk_rx_dst_set(newsk, skb); 1644 1645 newtp = tcp_sk(newsk); 1646 newinet = inet_sk(newsk); 1647 ireq = inet_rsk(req); 1648 newinet->inet_daddr = ireq->ir_rmt_addr; 1649 newinet->inet_rcv_saddr = ireq->ir_loc_addr; 1650 newinet->inet_saddr = ireq->ir_loc_addr; 1651 inet_opt = ireq->opt; 1652 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1653 ireq->opt = NULL; 1654 newinet->mc_index = inet_iif(skb); 1655 newinet->mc_ttl = ip_hdr(skb)->ttl; 1656 newinet->rcv_tos = ip_hdr(skb)->tos; 1657 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1658 if (inet_opt) 1659 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1660 newinet->inet_id = newtp->write_seq ^ jiffies; 1661 1662 if (!dst) { 1663 dst = inet_csk_route_child_sock(sk, newsk, req); 1664 if (!dst) 1665 goto put_and_exit; 1666 } else { 1667 /* syncookie case : see end of cookie_v4_check() */ 1668 } 1669 sk_setup_caps(newsk, dst); 1670 1671 tcp_mtup_init(newsk); 1672 tcp_sync_mss(newsk, dst_mtu(dst)); 1673 newtp->advmss = dst_metric_advmss(dst); 1674 if (tcp_sk(sk)->rx_opt.user_mss && 1675 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1676 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1677 1678 tcp_initialize_rcv_mss(newsk); 1679 1680 #ifdef CONFIG_TCP_MD5SIG 1681 /* Copy over the MD5 key from the original socket */ 1682 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1683 AF_INET); 1684 if (key != NULL) { 1685 /* 1686 * We're using one, so create a matching key 1687 * on the newsk structure. If we fail to get 1688 * memory, then we end up not copying the key 1689 * across. Shucks. 1690 */ 1691 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1692 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1693 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1694 } 1695 #endif 1696 1697 if (__inet_inherit_port(sk, newsk) < 0) 1698 goto put_and_exit; 1699 __inet_hash_nolisten(newsk, NULL); 1700 1701 return newsk; 1702 1703 exit_overflow: 1704 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1705 exit_nonewsk: 1706 dst_release(dst); 1707 exit: 1708 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1709 return NULL; 1710 put_and_exit: 1711 inet_csk_prepare_forced_close(newsk); 1712 tcp_done(newsk); 1713 goto exit; 1714 } 1715 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1716 1717 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) 1718 { 1719 struct tcphdr *th = tcp_hdr(skb); 1720 const struct iphdr *iph = ip_hdr(skb); 1721 struct sock *nsk; 1722 struct request_sock **prev; 1723 /* Find possible connection requests. */ 1724 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source, 1725 iph->saddr, iph->daddr); 1726 if (req) 1727 return tcp_check_req(sk, skb, req, prev, false); 1728 1729 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr, 1730 th->source, iph->daddr, th->dest, inet_iif(skb)); 1731 1732 if (nsk) { 1733 if (nsk->sk_state != TCP_TIME_WAIT) { 1734 bh_lock_sock(nsk); 1735 return nsk; 1736 } 1737 inet_twsk_put(inet_twsk(nsk)); 1738 return NULL; 1739 } 1740 1741 #ifdef CONFIG_SYN_COOKIES 1742 if (!th->syn) 1743 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); 1744 #endif 1745 return sk; 1746 } 1747 1748 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb) 1749 { 1750 const struct iphdr *iph = ip_hdr(skb); 1751 1752 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1753 if (!tcp_v4_check(skb->len, iph->saddr, 1754 iph->daddr, skb->csum)) { 1755 skb->ip_summed = CHECKSUM_UNNECESSARY; 1756 return 0; 1757 } 1758 } 1759 1760 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1761 skb->len, IPPROTO_TCP, 0); 1762 1763 if (skb->len <= 76) { 1764 return __skb_checksum_complete(skb); 1765 } 1766 return 0; 1767 } 1768 1769 1770 /* The socket must have it's spinlock held when we get 1771 * here. 1772 * 1773 * We have a potential double-lock case here, so even when 1774 * doing backlog processing we use the BH locking scheme. 1775 * This is because we cannot sleep with the original spinlock 1776 * held. 1777 */ 1778 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1779 { 1780 struct sock *rsk; 1781 #ifdef CONFIG_TCP_MD5SIG 1782 /* 1783 * We really want to reject the packet as early as possible 1784 * if: 1785 * o We're expecting an MD5'd packet and this is no MD5 tcp option 1786 * o There is an MD5 option and we're not expecting one 1787 */ 1788 if (tcp_v4_inbound_md5_hash(sk, skb)) 1789 goto discard; 1790 #endif 1791 1792 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1793 struct dst_entry *dst = sk->sk_rx_dst; 1794 1795 sock_rps_save_rxhash(sk, skb); 1796 if (dst) { 1797 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1798 dst->ops->check(dst, 0) == NULL) { 1799 dst_release(dst); 1800 sk->sk_rx_dst = NULL; 1801 } 1802 } 1803 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len); 1804 return 0; 1805 } 1806 1807 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) 1808 goto csum_err; 1809 1810 if (sk->sk_state == TCP_LISTEN) { 1811 struct sock *nsk = tcp_v4_hnd_req(sk, skb); 1812 if (!nsk) 1813 goto discard; 1814 1815 if (nsk != sk) { 1816 sock_rps_save_rxhash(nsk, skb); 1817 if (tcp_child_process(sk, nsk, skb)) { 1818 rsk = nsk; 1819 goto reset; 1820 } 1821 return 0; 1822 } 1823 } else 1824 sock_rps_save_rxhash(sk, skb); 1825 1826 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { 1827 rsk = sk; 1828 goto reset; 1829 } 1830 return 0; 1831 1832 reset: 1833 tcp_v4_send_reset(rsk, skb); 1834 discard: 1835 kfree_skb(skb); 1836 /* Be careful here. If this function gets more complicated and 1837 * gcc suffers from register pressure on the x86, sk (in %ebx) 1838 * might be destroyed here. This current version compiles correctly, 1839 * but you have been warned. 1840 */ 1841 return 0; 1842 1843 csum_err: 1844 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 1845 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1846 goto discard; 1847 } 1848 EXPORT_SYMBOL(tcp_v4_do_rcv); 1849 1850 void tcp_v4_early_demux(struct sk_buff *skb) 1851 { 1852 const struct iphdr *iph; 1853 const struct tcphdr *th; 1854 struct sock *sk; 1855 1856 if (skb->pkt_type != PACKET_HOST) 1857 return; 1858 1859 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1860 return; 1861 1862 iph = ip_hdr(skb); 1863 th = tcp_hdr(skb); 1864 1865 if (th->doff < sizeof(struct tcphdr) / 4) 1866 return; 1867 1868 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1869 iph->saddr, th->source, 1870 iph->daddr, ntohs(th->dest), 1871 skb->skb_iif); 1872 if (sk) { 1873 skb->sk = sk; 1874 skb->destructor = sock_edemux; 1875 if (sk->sk_state != TCP_TIME_WAIT) { 1876 struct dst_entry *dst = sk->sk_rx_dst; 1877 1878 if (dst) 1879 dst = dst_check(dst, 0); 1880 if (dst && 1881 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1882 skb_dst_set_noref(skb, dst); 1883 } 1884 } 1885 } 1886 1887 /* Packet is added to VJ-style prequeue for processing in process 1888 * context, if a reader task is waiting. Apparently, this exciting 1889 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93) 1890 * failed somewhere. Latency? Burstiness? Well, at least now we will 1891 * see, why it failed. 8)8) --ANK 1892 * 1893 */ 1894 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb) 1895 { 1896 struct tcp_sock *tp = tcp_sk(sk); 1897 1898 if (sysctl_tcp_low_latency || !tp->ucopy.task) 1899 return false; 1900 1901 if (skb->len <= tcp_hdrlen(skb) && 1902 skb_queue_len(&tp->ucopy.prequeue) == 0) 1903 return false; 1904 1905 skb_dst_force(skb); 1906 __skb_queue_tail(&tp->ucopy.prequeue, skb); 1907 tp->ucopy.memory += skb->truesize; 1908 if (tp->ucopy.memory > sk->sk_rcvbuf) { 1909 struct sk_buff *skb1; 1910 1911 BUG_ON(sock_owned_by_user(sk)); 1912 1913 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) { 1914 sk_backlog_rcv(sk, skb1); 1915 NET_INC_STATS_BH(sock_net(sk), 1916 LINUX_MIB_TCPPREQUEUEDROPPED); 1917 } 1918 1919 tp->ucopy.memory = 0; 1920 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) { 1921 wake_up_interruptible_sync_poll(sk_sleep(sk), 1922 POLLIN | POLLRDNORM | POLLRDBAND); 1923 if (!inet_csk_ack_scheduled(sk)) 1924 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1925 (3 * tcp_rto_min(sk)) / 4, 1926 TCP_RTO_MAX); 1927 } 1928 return true; 1929 } 1930 EXPORT_SYMBOL(tcp_prequeue); 1931 1932 /* 1933 * From tcp_input.c 1934 */ 1935 1936 int tcp_v4_rcv(struct sk_buff *skb) 1937 { 1938 const struct iphdr *iph; 1939 const struct tcphdr *th; 1940 struct sock *sk; 1941 int ret; 1942 struct net *net = dev_net(skb->dev); 1943 1944 if (skb->pkt_type != PACKET_HOST) 1945 goto discard_it; 1946 1947 /* Count it even if it's bad */ 1948 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1949 1950 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1951 goto discard_it; 1952 1953 th = tcp_hdr(skb); 1954 1955 if (th->doff < sizeof(struct tcphdr) / 4) 1956 goto bad_packet; 1957 if (!pskb_may_pull(skb, th->doff * 4)) 1958 goto discard_it; 1959 1960 /* An explanation is required here, I think. 1961 * Packet length and doff are validated by header prediction, 1962 * provided case of th->doff==0 is eliminated. 1963 * So, we defer the checks. */ 1964 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb)) 1965 goto csum_error; 1966 1967 th = tcp_hdr(skb); 1968 iph = ip_hdr(skb); 1969 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1970 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1971 skb->len - th->doff * 4); 1972 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1973 TCP_SKB_CB(skb)->when = 0; 1974 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1975 TCP_SKB_CB(skb)->sacked = 0; 1976 1977 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 1978 if (!sk) 1979 goto no_tcp_socket; 1980 1981 process: 1982 if (sk->sk_state == TCP_TIME_WAIT) 1983 goto do_time_wait; 1984 1985 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1986 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 1987 goto discard_and_relse; 1988 } 1989 1990 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1991 goto discard_and_relse; 1992 nf_reset(skb); 1993 1994 if (sk_filter(sk, skb)) 1995 goto discard_and_relse; 1996 1997 sk_mark_napi_id(sk, skb); 1998 skb->dev = NULL; 1999 2000 bh_lock_sock_nested(sk); 2001 ret = 0; 2002 if (!sock_owned_by_user(sk)) { 2003 #ifdef CONFIG_NET_DMA 2004 struct tcp_sock *tp = tcp_sk(sk); 2005 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 2006 tp->ucopy.dma_chan = net_dma_find_channel(); 2007 if (tp->ucopy.dma_chan) 2008 ret = tcp_v4_do_rcv(sk, skb); 2009 else 2010 #endif 2011 { 2012 if (!tcp_prequeue(sk, skb)) 2013 ret = tcp_v4_do_rcv(sk, skb); 2014 } 2015 } else if (unlikely(sk_add_backlog(sk, skb, 2016 sk->sk_rcvbuf + sk->sk_sndbuf))) { 2017 bh_unlock_sock(sk); 2018 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP); 2019 goto discard_and_relse; 2020 } 2021 bh_unlock_sock(sk); 2022 2023 sock_put(sk); 2024 2025 return ret; 2026 2027 no_tcp_socket: 2028 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2029 goto discard_it; 2030 2031 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 2032 csum_error: 2033 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS); 2034 bad_packet: 2035 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 2036 } else { 2037 tcp_v4_send_reset(NULL, skb); 2038 } 2039 2040 discard_it: 2041 /* Discard frame. */ 2042 kfree_skb(skb); 2043 return 0; 2044 2045 discard_and_relse: 2046 sock_put(sk); 2047 goto discard_it; 2048 2049 do_time_wait: 2050 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2051 inet_twsk_put(inet_twsk(sk)); 2052 goto discard_it; 2053 } 2054 2055 if (skb->len < (th->doff << 2)) { 2056 inet_twsk_put(inet_twsk(sk)); 2057 goto bad_packet; 2058 } 2059 if (tcp_checksum_complete(skb)) { 2060 inet_twsk_put(inet_twsk(sk)); 2061 goto csum_error; 2062 } 2063 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2064 case TCP_TW_SYN: { 2065 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 2066 &tcp_hashinfo, 2067 iph->saddr, th->source, 2068 iph->daddr, th->dest, 2069 inet_iif(skb)); 2070 if (sk2) { 2071 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); 2072 inet_twsk_put(inet_twsk(sk)); 2073 sk = sk2; 2074 goto process; 2075 } 2076 /* Fall through to ACK */ 2077 } 2078 case TCP_TW_ACK: 2079 tcp_v4_timewait_ack(sk, skb); 2080 break; 2081 case TCP_TW_RST: 2082 goto no_tcp_socket; 2083 case TCP_TW_SUCCESS:; 2084 } 2085 goto discard_it; 2086 } 2087 2088 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2089 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2090 .twsk_unique = tcp_twsk_unique, 2091 .twsk_destructor= tcp_twsk_destructor, 2092 }; 2093 2094 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2095 { 2096 struct dst_entry *dst = skb_dst(skb); 2097 2098 dst_hold(dst); 2099 sk->sk_rx_dst = dst; 2100 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 2101 } 2102 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2103 2104 const struct inet_connection_sock_af_ops ipv4_specific = { 2105 .queue_xmit = ip_queue_xmit, 2106 .send_check = tcp_v4_send_check, 2107 .rebuild_header = inet_sk_rebuild_header, 2108 .sk_rx_dst_set = inet_sk_rx_dst_set, 2109 .conn_request = tcp_v4_conn_request, 2110 .syn_recv_sock = tcp_v4_syn_recv_sock, 2111 .net_header_len = sizeof(struct iphdr), 2112 .setsockopt = ip_setsockopt, 2113 .getsockopt = ip_getsockopt, 2114 .addr2sockaddr = inet_csk_addr2sockaddr, 2115 .sockaddr_len = sizeof(struct sockaddr_in), 2116 .bind_conflict = inet_csk_bind_conflict, 2117 #ifdef CONFIG_COMPAT 2118 .compat_setsockopt = compat_ip_setsockopt, 2119 .compat_getsockopt = compat_ip_getsockopt, 2120 #endif 2121 }; 2122 EXPORT_SYMBOL(ipv4_specific); 2123 2124 #ifdef CONFIG_TCP_MD5SIG 2125 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2126 .md5_lookup = tcp_v4_md5_lookup, 2127 .calc_md5_hash = tcp_v4_md5_hash_skb, 2128 .md5_parse = tcp_v4_parse_md5_keys, 2129 }; 2130 #endif 2131 2132 /* NOTE: A lot of things set to zero explicitly by call to 2133 * sk_alloc() so need not be done here. 2134 */ 2135 static int tcp_v4_init_sock(struct sock *sk) 2136 { 2137 struct inet_connection_sock *icsk = inet_csk(sk); 2138 2139 tcp_init_sock(sk); 2140 2141 icsk->icsk_af_ops = &ipv4_specific; 2142 2143 #ifdef CONFIG_TCP_MD5SIG 2144 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2145 #endif 2146 2147 return 0; 2148 } 2149 2150 void tcp_v4_destroy_sock(struct sock *sk) 2151 { 2152 struct tcp_sock *tp = tcp_sk(sk); 2153 2154 tcp_clear_xmit_timers(sk); 2155 2156 tcp_cleanup_congestion_control(sk); 2157 2158 /* Cleanup up the write buffer. */ 2159 tcp_write_queue_purge(sk); 2160 2161 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2162 __skb_queue_purge(&tp->out_of_order_queue); 2163 2164 #ifdef CONFIG_TCP_MD5SIG 2165 /* Clean up the MD5 key list, if any */ 2166 if (tp->md5sig_info) { 2167 tcp_clear_md5_list(sk); 2168 kfree_rcu(tp->md5sig_info, rcu); 2169 tp->md5sig_info = NULL; 2170 } 2171 #endif 2172 2173 #ifdef CONFIG_NET_DMA 2174 /* Cleans up our sk_async_wait_queue */ 2175 __skb_queue_purge(&sk->sk_async_wait_queue); 2176 #endif 2177 2178 /* Clean prequeue, it must be empty really */ 2179 __skb_queue_purge(&tp->ucopy.prequeue); 2180 2181 /* Clean up a referenced TCP bind bucket. */ 2182 if (inet_csk(sk)->icsk_bind_hash) 2183 inet_put_port(sk); 2184 2185 BUG_ON(tp->fastopen_rsk != NULL); 2186 2187 /* If socket is aborted during connect operation */ 2188 tcp_free_fastopen_req(tp); 2189 2190 sk_sockets_allocated_dec(sk); 2191 sock_release_memcg(sk); 2192 } 2193 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2194 2195 #ifdef CONFIG_PROC_FS 2196 /* Proc filesystem TCP sock list dumping. */ 2197 2198 /* 2199 * Get next listener socket follow cur. If cur is NULL, get first socket 2200 * starting from bucket given in st->bucket; when st->bucket is zero the 2201 * very first socket in the hash table is returned. 2202 */ 2203 static void *listening_get_next(struct seq_file *seq, void *cur) 2204 { 2205 struct inet_connection_sock *icsk; 2206 struct hlist_nulls_node *node; 2207 struct sock *sk = cur; 2208 struct inet_listen_hashbucket *ilb; 2209 struct tcp_iter_state *st = seq->private; 2210 struct net *net = seq_file_net(seq); 2211 2212 if (!sk) { 2213 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2214 spin_lock_bh(&ilb->lock); 2215 sk = sk_nulls_head(&ilb->head); 2216 st->offset = 0; 2217 goto get_sk; 2218 } 2219 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2220 ++st->num; 2221 ++st->offset; 2222 2223 if (st->state == TCP_SEQ_STATE_OPENREQ) { 2224 struct request_sock *req = cur; 2225 2226 icsk = inet_csk(st->syn_wait_sk); 2227 req = req->dl_next; 2228 while (1) { 2229 while (req) { 2230 if (req->rsk_ops->family == st->family) { 2231 cur = req; 2232 goto out; 2233 } 2234 req = req->dl_next; 2235 } 2236 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) 2237 break; 2238 get_req: 2239 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; 2240 } 2241 sk = sk_nulls_next(st->syn_wait_sk); 2242 st->state = TCP_SEQ_STATE_LISTENING; 2243 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2244 } else { 2245 icsk = inet_csk(sk); 2246 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2247 if (reqsk_queue_len(&icsk->icsk_accept_queue)) 2248 goto start_req; 2249 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2250 sk = sk_nulls_next(sk); 2251 } 2252 get_sk: 2253 sk_nulls_for_each_from(sk, node) { 2254 if (!net_eq(sock_net(sk), net)) 2255 continue; 2256 if (sk->sk_family == st->family) { 2257 cur = sk; 2258 goto out; 2259 } 2260 icsk = inet_csk(sk); 2261 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2262 if (reqsk_queue_len(&icsk->icsk_accept_queue)) { 2263 start_req: 2264 st->uid = sock_i_uid(sk); 2265 st->syn_wait_sk = sk; 2266 st->state = TCP_SEQ_STATE_OPENREQ; 2267 st->sbucket = 0; 2268 goto get_req; 2269 } 2270 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2271 } 2272 spin_unlock_bh(&ilb->lock); 2273 st->offset = 0; 2274 if (++st->bucket < INET_LHTABLE_SIZE) { 2275 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2276 spin_lock_bh(&ilb->lock); 2277 sk = sk_nulls_head(&ilb->head); 2278 goto get_sk; 2279 } 2280 cur = NULL; 2281 out: 2282 return cur; 2283 } 2284 2285 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2286 { 2287 struct tcp_iter_state *st = seq->private; 2288 void *rc; 2289 2290 st->bucket = 0; 2291 st->offset = 0; 2292 rc = listening_get_next(seq, NULL); 2293 2294 while (rc && *pos) { 2295 rc = listening_get_next(seq, rc); 2296 --*pos; 2297 } 2298 return rc; 2299 } 2300 2301 static inline bool empty_bucket(const struct tcp_iter_state *st) 2302 { 2303 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2304 } 2305 2306 /* 2307 * Get first established socket starting from bucket given in st->bucket. 2308 * If st->bucket is zero, the very first socket in the hash is returned. 2309 */ 2310 static void *established_get_first(struct seq_file *seq) 2311 { 2312 struct tcp_iter_state *st = seq->private; 2313 struct net *net = seq_file_net(seq); 2314 void *rc = NULL; 2315 2316 st->offset = 0; 2317 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2318 struct sock *sk; 2319 struct hlist_nulls_node *node; 2320 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2321 2322 /* Lockless fast path for the common case of empty buckets */ 2323 if (empty_bucket(st)) 2324 continue; 2325 2326 spin_lock_bh(lock); 2327 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2328 if (sk->sk_family != st->family || 2329 !net_eq(sock_net(sk), net)) { 2330 continue; 2331 } 2332 rc = sk; 2333 goto out; 2334 } 2335 spin_unlock_bh(lock); 2336 } 2337 out: 2338 return rc; 2339 } 2340 2341 static void *established_get_next(struct seq_file *seq, void *cur) 2342 { 2343 struct sock *sk = cur; 2344 struct hlist_nulls_node *node; 2345 struct tcp_iter_state *st = seq->private; 2346 struct net *net = seq_file_net(seq); 2347 2348 ++st->num; 2349 ++st->offset; 2350 2351 sk = sk_nulls_next(sk); 2352 2353 sk_nulls_for_each_from(sk, node) { 2354 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2355 return sk; 2356 } 2357 2358 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2359 ++st->bucket; 2360 return established_get_first(seq); 2361 } 2362 2363 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2364 { 2365 struct tcp_iter_state *st = seq->private; 2366 void *rc; 2367 2368 st->bucket = 0; 2369 rc = established_get_first(seq); 2370 2371 while (rc && pos) { 2372 rc = established_get_next(seq, rc); 2373 --pos; 2374 } 2375 return rc; 2376 } 2377 2378 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2379 { 2380 void *rc; 2381 struct tcp_iter_state *st = seq->private; 2382 2383 st->state = TCP_SEQ_STATE_LISTENING; 2384 rc = listening_get_idx(seq, &pos); 2385 2386 if (!rc) { 2387 st->state = TCP_SEQ_STATE_ESTABLISHED; 2388 rc = established_get_idx(seq, pos); 2389 } 2390 2391 return rc; 2392 } 2393 2394 static void *tcp_seek_last_pos(struct seq_file *seq) 2395 { 2396 struct tcp_iter_state *st = seq->private; 2397 int offset = st->offset; 2398 int orig_num = st->num; 2399 void *rc = NULL; 2400 2401 switch (st->state) { 2402 case TCP_SEQ_STATE_OPENREQ: 2403 case TCP_SEQ_STATE_LISTENING: 2404 if (st->bucket >= INET_LHTABLE_SIZE) 2405 break; 2406 st->state = TCP_SEQ_STATE_LISTENING; 2407 rc = listening_get_next(seq, NULL); 2408 while (offset-- && rc) 2409 rc = listening_get_next(seq, rc); 2410 if (rc) 2411 break; 2412 st->bucket = 0; 2413 st->state = TCP_SEQ_STATE_ESTABLISHED; 2414 /* Fallthrough */ 2415 case TCP_SEQ_STATE_ESTABLISHED: 2416 if (st->bucket > tcp_hashinfo.ehash_mask) 2417 break; 2418 rc = established_get_first(seq); 2419 while (offset-- && rc) 2420 rc = established_get_next(seq, rc); 2421 } 2422 2423 st->num = orig_num; 2424 2425 return rc; 2426 } 2427 2428 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2429 { 2430 struct tcp_iter_state *st = seq->private; 2431 void *rc; 2432 2433 if (*pos && *pos == st->last_pos) { 2434 rc = tcp_seek_last_pos(seq); 2435 if (rc) 2436 goto out; 2437 } 2438 2439 st->state = TCP_SEQ_STATE_LISTENING; 2440 st->num = 0; 2441 st->bucket = 0; 2442 st->offset = 0; 2443 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2444 2445 out: 2446 st->last_pos = *pos; 2447 return rc; 2448 } 2449 2450 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2451 { 2452 struct tcp_iter_state *st = seq->private; 2453 void *rc = NULL; 2454 2455 if (v == SEQ_START_TOKEN) { 2456 rc = tcp_get_idx(seq, 0); 2457 goto out; 2458 } 2459 2460 switch (st->state) { 2461 case TCP_SEQ_STATE_OPENREQ: 2462 case TCP_SEQ_STATE_LISTENING: 2463 rc = listening_get_next(seq, v); 2464 if (!rc) { 2465 st->state = TCP_SEQ_STATE_ESTABLISHED; 2466 st->bucket = 0; 2467 st->offset = 0; 2468 rc = established_get_first(seq); 2469 } 2470 break; 2471 case TCP_SEQ_STATE_ESTABLISHED: 2472 rc = established_get_next(seq, v); 2473 break; 2474 } 2475 out: 2476 ++*pos; 2477 st->last_pos = *pos; 2478 return rc; 2479 } 2480 2481 static void tcp_seq_stop(struct seq_file *seq, void *v) 2482 { 2483 struct tcp_iter_state *st = seq->private; 2484 2485 switch (st->state) { 2486 case TCP_SEQ_STATE_OPENREQ: 2487 if (v) { 2488 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); 2489 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2490 } 2491 case TCP_SEQ_STATE_LISTENING: 2492 if (v != SEQ_START_TOKEN) 2493 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2494 break; 2495 case TCP_SEQ_STATE_ESTABLISHED: 2496 if (v) 2497 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2498 break; 2499 } 2500 } 2501 2502 int tcp_seq_open(struct inode *inode, struct file *file) 2503 { 2504 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2505 struct tcp_iter_state *s; 2506 int err; 2507 2508 err = seq_open_net(inode, file, &afinfo->seq_ops, 2509 sizeof(struct tcp_iter_state)); 2510 if (err < 0) 2511 return err; 2512 2513 s = ((struct seq_file *)file->private_data)->private; 2514 s->family = afinfo->family; 2515 s->last_pos = 0; 2516 return 0; 2517 } 2518 EXPORT_SYMBOL(tcp_seq_open); 2519 2520 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2521 { 2522 int rc = 0; 2523 struct proc_dir_entry *p; 2524 2525 afinfo->seq_ops.start = tcp_seq_start; 2526 afinfo->seq_ops.next = tcp_seq_next; 2527 afinfo->seq_ops.stop = tcp_seq_stop; 2528 2529 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2530 afinfo->seq_fops, afinfo); 2531 if (!p) 2532 rc = -ENOMEM; 2533 return rc; 2534 } 2535 EXPORT_SYMBOL(tcp_proc_register); 2536 2537 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2538 { 2539 remove_proc_entry(afinfo->name, net->proc_net); 2540 } 2541 EXPORT_SYMBOL(tcp_proc_unregister); 2542 2543 static void get_openreq4(const struct sock *sk, const struct request_sock *req, 2544 struct seq_file *f, int i, kuid_t uid) 2545 { 2546 const struct inet_request_sock *ireq = inet_rsk(req); 2547 long delta = req->expires - jiffies; 2548 2549 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2550 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2551 i, 2552 ireq->ir_loc_addr, 2553 ntohs(inet_sk(sk)->inet_sport), 2554 ireq->ir_rmt_addr, 2555 ntohs(ireq->ir_rmt_port), 2556 TCP_SYN_RECV, 2557 0, 0, /* could print option size, but that is af dependent. */ 2558 1, /* timers active (only the expire timer) */ 2559 jiffies_delta_to_clock_t(delta), 2560 req->num_timeout, 2561 from_kuid_munged(seq_user_ns(f), uid), 2562 0, /* non standard timer */ 2563 0, /* open_requests have no inode */ 2564 atomic_read(&sk->sk_refcnt), 2565 req); 2566 } 2567 2568 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2569 { 2570 int timer_active; 2571 unsigned long timer_expires; 2572 const struct tcp_sock *tp = tcp_sk(sk); 2573 const struct inet_connection_sock *icsk = inet_csk(sk); 2574 const struct inet_sock *inet = inet_sk(sk); 2575 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq; 2576 __be32 dest = inet->inet_daddr; 2577 __be32 src = inet->inet_rcv_saddr; 2578 __u16 destp = ntohs(inet->inet_dport); 2579 __u16 srcp = ntohs(inet->inet_sport); 2580 int rx_queue; 2581 2582 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2583 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2584 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2585 timer_active = 1; 2586 timer_expires = icsk->icsk_timeout; 2587 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2588 timer_active = 4; 2589 timer_expires = icsk->icsk_timeout; 2590 } else if (timer_pending(&sk->sk_timer)) { 2591 timer_active = 2; 2592 timer_expires = sk->sk_timer.expires; 2593 } else { 2594 timer_active = 0; 2595 timer_expires = jiffies; 2596 } 2597 2598 if (sk->sk_state == TCP_LISTEN) 2599 rx_queue = sk->sk_ack_backlog; 2600 else 2601 /* 2602 * because we dont lock socket, we might find a transient negative value 2603 */ 2604 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2605 2606 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2607 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2608 i, src, srcp, dest, destp, sk->sk_state, 2609 tp->write_seq - tp->snd_una, 2610 rx_queue, 2611 timer_active, 2612 jiffies_delta_to_clock_t(timer_expires - jiffies), 2613 icsk->icsk_retransmits, 2614 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2615 icsk->icsk_probes_out, 2616 sock_i_ino(sk), 2617 atomic_read(&sk->sk_refcnt), sk, 2618 jiffies_to_clock_t(icsk->icsk_rto), 2619 jiffies_to_clock_t(icsk->icsk_ack.ato), 2620 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2621 tp->snd_cwnd, 2622 sk->sk_state == TCP_LISTEN ? 2623 (fastopenq ? fastopenq->max_qlen : 0) : 2624 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2625 } 2626 2627 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2628 struct seq_file *f, int i) 2629 { 2630 __be32 dest, src; 2631 __u16 destp, srcp; 2632 long delta = tw->tw_ttd - jiffies; 2633 2634 dest = tw->tw_daddr; 2635 src = tw->tw_rcv_saddr; 2636 destp = ntohs(tw->tw_dport); 2637 srcp = ntohs(tw->tw_sport); 2638 2639 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2640 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2641 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2642 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2643 atomic_read(&tw->tw_refcnt), tw); 2644 } 2645 2646 #define TMPSZ 150 2647 2648 static int tcp4_seq_show(struct seq_file *seq, void *v) 2649 { 2650 struct tcp_iter_state *st; 2651 struct sock *sk = v; 2652 2653 seq_setwidth(seq, TMPSZ - 1); 2654 if (v == SEQ_START_TOKEN) { 2655 seq_puts(seq, " sl local_address rem_address st tx_queue " 2656 "rx_queue tr tm->when retrnsmt uid timeout " 2657 "inode"); 2658 goto out; 2659 } 2660 st = seq->private; 2661 2662 switch (st->state) { 2663 case TCP_SEQ_STATE_LISTENING: 2664 case TCP_SEQ_STATE_ESTABLISHED: 2665 if (sk->sk_state == TCP_TIME_WAIT) 2666 get_timewait4_sock(v, seq, st->num); 2667 else 2668 get_tcp4_sock(v, seq, st->num); 2669 break; 2670 case TCP_SEQ_STATE_OPENREQ: 2671 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid); 2672 break; 2673 } 2674 out: 2675 seq_pad(seq, '\n'); 2676 return 0; 2677 } 2678 2679 static const struct file_operations tcp_afinfo_seq_fops = { 2680 .owner = THIS_MODULE, 2681 .open = tcp_seq_open, 2682 .read = seq_read, 2683 .llseek = seq_lseek, 2684 .release = seq_release_net 2685 }; 2686 2687 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2688 .name = "tcp", 2689 .family = AF_INET, 2690 .seq_fops = &tcp_afinfo_seq_fops, 2691 .seq_ops = { 2692 .show = tcp4_seq_show, 2693 }, 2694 }; 2695 2696 static int __net_init tcp4_proc_init_net(struct net *net) 2697 { 2698 return tcp_proc_register(net, &tcp4_seq_afinfo); 2699 } 2700 2701 static void __net_exit tcp4_proc_exit_net(struct net *net) 2702 { 2703 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2704 } 2705 2706 static struct pernet_operations tcp4_net_ops = { 2707 .init = tcp4_proc_init_net, 2708 .exit = tcp4_proc_exit_net, 2709 }; 2710 2711 int __init tcp4_proc_init(void) 2712 { 2713 return register_pernet_subsys(&tcp4_net_ops); 2714 } 2715 2716 void tcp4_proc_exit(void) 2717 { 2718 unregister_pernet_subsys(&tcp4_net_ops); 2719 } 2720 #endif /* CONFIG_PROC_FS */ 2721 2722 struct proto tcp_prot = { 2723 .name = "TCP", 2724 .owner = THIS_MODULE, 2725 .close = tcp_close, 2726 .connect = tcp_v4_connect, 2727 .disconnect = tcp_disconnect, 2728 .accept = inet_csk_accept, 2729 .ioctl = tcp_ioctl, 2730 .init = tcp_v4_init_sock, 2731 .destroy = tcp_v4_destroy_sock, 2732 .shutdown = tcp_shutdown, 2733 .setsockopt = tcp_setsockopt, 2734 .getsockopt = tcp_getsockopt, 2735 .recvmsg = tcp_recvmsg, 2736 .sendmsg = tcp_sendmsg, 2737 .sendpage = tcp_sendpage, 2738 .backlog_rcv = tcp_v4_do_rcv, 2739 .release_cb = tcp_release_cb, 2740 .mtu_reduced = tcp_v4_mtu_reduced, 2741 .hash = inet_hash, 2742 .unhash = inet_unhash, 2743 .get_port = inet_csk_get_port, 2744 .enter_memory_pressure = tcp_enter_memory_pressure, 2745 .stream_memory_free = tcp_stream_memory_free, 2746 .sockets_allocated = &tcp_sockets_allocated, 2747 .orphan_count = &tcp_orphan_count, 2748 .memory_allocated = &tcp_memory_allocated, 2749 .memory_pressure = &tcp_memory_pressure, 2750 .sysctl_mem = sysctl_tcp_mem, 2751 .sysctl_wmem = sysctl_tcp_wmem, 2752 .sysctl_rmem = sysctl_tcp_rmem, 2753 .max_header = MAX_TCP_HEADER, 2754 .obj_size = sizeof(struct tcp_sock), 2755 .slab_flags = SLAB_DESTROY_BY_RCU, 2756 .twsk_prot = &tcp_timewait_sock_ops, 2757 .rsk_prot = &tcp_request_sock_ops, 2758 .h.hashinfo = &tcp_hashinfo, 2759 .no_autobind = true, 2760 #ifdef CONFIG_COMPAT 2761 .compat_setsockopt = compat_tcp_setsockopt, 2762 .compat_getsockopt = compat_tcp_getsockopt, 2763 #endif 2764 #ifdef CONFIG_MEMCG_KMEM 2765 .init_cgroup = tcp_init_cgroup, 2766 .destroy_cgroup = tcp_destroy_cgroup, 2767 .proto_cgroup = tcp_proto_cgroup, 2768 #endif 2769 }; 2770 EXPORT_SYMBOL(tcp_prot); 2771 2772 static int __net_init tcp_sk_init(struct net *net) 2773 { 2774 net->ipv4.sysctl_tcp_ecn = 2; 2775 return 0; 2776 } 2777 2778 static void __net_exit tcp_sk_exit(struct net *net) 2779 { 2780 } 2781 2782 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2783 { 2784 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2785 } 2786 2787 static struct pernet_operations __net_initdata tcp_sk_ops = { 2788 .init = tcp_sk_init, 2789 .exit = tcp_sk_exit, 2790 .exit_batch = tcp_sk_exit_batch, 2791 }; 2792 2793 void __init tcp_v4_init(void) 2794 { 2795 inet_hashinfo_init(&tcp_hashinfo); 2796 if (register_pernet_subsys(&tcp_sk_ops)) 2797 panic("Failed to create the TCP control socket.\n"); 2798 } 2799