xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 75f25bd3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64 
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76 
77 #include <linux/inet.h>
78 #include <linux/ipv6.h>
79 #include <linux/stddef.h>
80 #include <linux/proc_fs.h>
81 #include <linux/seq_file.h>
82 
83 #include <linux/crypto.h>
84 #include <linux/scatterlist.h>
85 
86 int sysctl_tcp_tw_reuse __read_mostly;
87 int sysctl_tcp_low_latency __read_mostly;
88 EXPORT_SYMBOL(sysctl_tcp_low_latency);
89 
90 
91 #ifdef CONFIG_TCP_MD5SIG
92 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93 						   __be32 addr);
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
95 			       __be32 daddr, __be32 saddr, struct tcphdr *th);
96 #else
97 static inline
98 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99 {
100 	return NULL;
101 }
102 #endif
103 
104 struct inet_hashinfo tcp_hashinfo;
105 EXPORT_SYMBOL(tcp_hashinfo);
106 
107 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108 {
109 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110 					  ip_hdr(skb)->saddr,
111 					  tcp_hdr(skb)->dest,
112 					  tcp_hdr(skb)->source);
113 }
114 
115 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 {
117 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118 	struct tcp_sock *tp = tcp_sk(sk);
119 
120 	/* With PAWS, it is safe from the viewpoint
121 	   of data integrity. Even without PAWS it is safe provided sequence
122 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123 
124 	   Actually, the idea is close to VJ's one, only timestamp cache is
125 	   held not per host, but per port pair and TW bucket is used as state
126 	   holder.
127 
128 	   If TW bucket has been already destroyed we fall back to VJ's scheme
129 	   and use initial timestamp retrieved from peer table.
130 	 */
131 	if (tcptw->tw_ts_recent_stamp &&
132 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
133 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135 		if (tp->write_seq == 0)
136 			tp->write_seq = 1;
137 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
138 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139 		sock_hold(sktw);
140 		return 1;
141 	}
142 
143 	return 0;
144 }
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146 
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 {
150 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 	struct inet_sock *inet = inet_sk(sk);
152 	struct tcp_sock *tp = tcp_sk(sk);
153 	__be16 orig_sport, orig_dport;
154 	__be32 daddr, nexthop;
155 	struct flowi4 *fl4;
156 	struct rtable *rt;
157 	int err;
158 	struct ip_options_rcu *inet_opt;
159 
160 	if (addr_len < sizeof(struct sockaddr_in))
161 		return -EINVAL;
162 
163 	if (usin->sin_family != AF_INET)
164 		return -EAFNOSUPPORT;
165 
166 	nexthop = daddr = usin->sin_addr.s_addr;
167 	inet_opt = rcu_dereference_protected(inet->inet_opt,
168 					     sock_owned_by_user(sk));
169 	if (inet_opt && inet_opt->opt.srr) {
170 		if (!daddr)
171 			return -EINVAL;
172 		nexthop = inet_opt->opt.faddr;
173 	}
174 
175 	orig_sport = inet->inet_sport;
176 	orig_dport = usin->sin_port;
177 	fl4 = &inet->cork.fl.u.ip4;
178 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
179 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
180 			      IPPROTO_TCP,
181 			      orig_sport, orig_dport, sk, true);
182 	if (IS_ERR(rt)) {
183 		err = PTR_ERR(rt);
184 		if (err == -ENETUNREACH)
185 			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
186 		return err;
187 	}
188 
189 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
190 		ip_rt_put(rt);
191 		return -ENETUNREACH;
192 	}
193 
194 	if (!inet_opt || !inet_opt->opt.srr)
195 		daddr = fl4->daddr;
196 
197 	if (!inet->inet_saddr)
198 		inet->inet_saddr = fl4->saddr;
199 	inet->inet_rcv_saddr = inet->inet_saddr;
200 
201 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
202 		/* Reset inherited state */
203 		tp->rx_opt.ts_recent	   = 0;
204 		tp->rx_opt.ts_recent_stamp = 0;
205 		tp->write_seq		   = 0;
206 	}
207 
208 	if (tcp_death_row.sysctl_tw_recycle &&
209 	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
210 		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211 		/*
212 		 * VJ's idea. We save last timestamp seen from
213 		 * the destination in peer table, when entering state
214 		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215 		 * when trying new connection.
216 		 */
217 		if (peer) {
218 			inet_peer_refcheck(peer);
219 			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
220 				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
221 				tp->rx_opt.ts_recent = peer->tcp_ts;
222 			}
223 		}
224 	}
225 
226 	inet->inet_dport = usin->sin_port;
227 	inet->inet_daddr = daddr;
228 
229 	inet_csk(sk)->icsk_ext_hdr_len = 0;
230 	if (inet_opt)
231 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232 
233 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234 
235 	/* Socket identity is still unknown (sport may be zero).
236 	 * However we set state to SYN-SENT and not releasing socket
237 	 * lock select source port, enter ourselves into the hash tables and
238 	 * complete initialization after this.
239 	 */
240 	tcp_set_state(sk, TCP_SYN_SENT);
241 	err = inet_hash_connect(&tcp_death_row, sk);
242 	if (err)
243 		goto failure;
244 
245 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
246 			       inet->inet_sport, inet->inet_dport, sk);
247 	if (IS_ERR(rt)) {
248 		err = PTR_ERR(rt);
249 		rt = NULL;
250 		goto failure;
251 	}
252 	/* OK, now commit destination to socket.  */
253 	sk->sk_gso_type = SKB_GSO_TCPV4;
254 	sk_setup_caps(sk, &rt->dst);
255 
256 	if (!tp->write_seq)
257 		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
258 							   inet->inet_daddr,
259 							   inet->inet_sport,
260 							   usin->sin_port);
261 
262 	inet->inet_id = tp->write_seq ^ jiffies;
263 
264 	err = tcp_connect(sk);
265 	rt = NULL;
266 	if (err)
267 		goto failure;
268 
269 	return 0;
270 
271 failure:
272 	/*
273 	 * This unhashes the socket and releases the local port,
274 	 * if necessary.
275 	 */
276 	tcp_set_state(sk, TCP_CLOSE);
277 	ip_rt_put(rt);
278 	sk->sk_route_caps = 0;
279 	inet->inet_dport = 0;
280 	return err;
281 }
282 EXPORT_SYMBOL(tcp_v4_connect);
283 
284 /*
285  * This routine does path mtu discovery as defined in RFC1191.
286  */
287 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288 {
289 	struct dst_entry *dst;
290 	struct inet_sock *inet = inet_sk(sk);
291 
292 	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293 	 * send out by Linux are always <576bytes so they should go through
294 	 * unfragmented).
295 	 */
296 	if (sk->sk_state == TCP_LISTEN)
297 		return;
298 
299 	/* We don't check in the destentry if pmtu discovery is forbidden
300 	 * on this route. We just assume that no packet_to_big packets
301 	 * are send back when pmtu discovery is not active.
302 	 * There is a small race when the user changes this flag in the
303 	 * route, but I think that's acceptable.
304 	 */
305 	if ((dst = __sk_dst_check(sk, 0)) == NULL)
306 		return;
307 
308 	dst->ops->update_pmtu(dst, mtu);
309 
310 	/* Something is about to be wrong... Remember soft error
311 	 * for the case, if this connection will not able to recover.
312 	 */
313 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314 		sk->sk_err_soft = EMSGSIZE;
315 
316 	mtu = dst_mtu(dst);
317 
318 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
320 		tcp_sync_mss(sk, mtu);
321 
322 		/* Resend the TCP packet because it's
323 		 * clear that the old packet has been
324 		 * dropped. This is the new "fast" path mtu
325 		 * discovery.
326 		 */
327 		tcp_simple_retransmit(sk);
328 	} /* else let the usual retransmit timer handle it */
329 }
330 
331 /*
332  * This routine is called by the ICMP module when it gets some
333  * sort of error condition.  If err < 0 then the socket should
334  * be closed and the error returned to the user.  If err > 0
335  * it's just the icmp type << 8 | icmp code.  After adjustment
336  * header points to the first 8 bytes of the tcp header.  We need
337  * to find the appropriate port.
338  *
339  * The locking strategy used here is very "optimistic". When
340  * someone else accesses the socket the ICMP is just dropped
341  * and for some paths there is no check at all.
342  * A more general error queue to queue errors for later handling
343  * is probably better.
344  *
345  */
346 
347 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348 {
349 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
350 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
351 	struct inet_connection_sock *icsk;
352 	struct tcp_sock *tp;
353 	struct inet_sock *inet;
354 	const int type = icmp_hdr(icmp_skb)->type;
355 	const int code = icmp_hdr(icmp_skb)->code;
356 	struct sock *sk;
357 	struct sk_buff *skb;
358 	__u32 seq;
359 	__u32 remaining;
360 	int err;
361 	struct net *net = dev_net(icmp_skb->dev);
362 
363 	if (icmp_skb->len < (iph->ihl << 2) + 8) {
364 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365 		return;
366 	}
367 
368 	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
369 			iph->saddr, th->source, inet_iif(icmp_skb));
370 	if (!sk) {
371 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 		return;
373 	}
374 	if (sk->sk_state == TCP_TIME_WAIT) {
375 		inet_twsk_put(inet_twsk(sk));
376 		return;
377 	}
378 
379 	bh_lock_sock(sk);
380 	/* If too many ICMPs get dropped on busy
381 	 * servers this needs to be solved differently.
382 	 */
383 	if (sock_owned_by_user(sk))
384 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385 
386 	if (sk->sk_state == TCP_CLOSE)
387 		goto out;
388 
389 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
390 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
391 		goto out;
392 	}
393 
394 	icsk = inet_csk(sk);
395 	tp = tcp_sk(sk);
396 	seq = ntohl(th->seq);
397 	if (sk->sk_state != TCP_LISTEN &&
398 	    !between(seq, tp->snd_una, tp->snd_nxt)) {
399 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
400 		goto out;
401 	}
402 
403 	switch (type) {
404 	case ICMP_SOURCE_QUENCH:
405 		/* Just silently ignore these. */
406 		goto out;
407 	case ICMP_PARAMETERPROB:
408 		err = EPROTO;
409 		break;
410 	case ICMP_DEST_UNREACH:
411 		if (code > NR_ICMP_UNREACH)
412 			goto out;
413 
414 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
415 			if (!sock_owned_by_user(sk))
416 				do_pmtu_discovery(sk, iph, info);
417 			goto out;
418 		}
419 
420 		err = icmp_err_convert[code].errno;
421 		/* check if icmp_skb allows revert of backoff
422 		 * (see draft-zimmermann-tcp-lcd) */
423 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424 			break;
425 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
426 		    !icsk->icsk_backoff)
427 			break;
428 
429 		if (sock_owned_by_user(sk))
430 			break;
431 
432 		icsk->icsk_backoff--;
433 		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
434 			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435 		tcp_bound_rto(sk);
436 
437 		skb = tcp_write_queue_head(sk);
438 		BUG_ON(!skb);
439 
440 		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441 				tcp_time_stamp - TCP_SKB_CB(skb)->when);
442 
443 		if (remaining) {
444 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 						  remaining, TCP_RTO_MAX);
446 		} else {
447 			/* RTO revert clocked out retransmission.
448 			 * Will retransmit now */
449 			tcp_retransmit_timer(sk);
450 		}
451 
452 		break;
453 	case ICMP_TIME_EXCEEDED:
454 		err = EHOSTUNREACH;
455 		break;
456 	default:
457 		goto out;
458 	}
459 
460 	switch (sk->sk_state) {
461 		struct request_sock *req, **prev;
462 	case TCP_LISTEN:
463 		if (sock_owned_by_user(sk))
464 			goto out;
465 
466 		req = inet_csk_search_req(sk, &prev, th->dest,
467 					  iph->daddr, iph->saddr);
468 		if (!req)
469 			goto out;
470 
471 		/* ICMPs are not backlogged, hence we cannot get
472 		   an established socket here.
473 		 */
474 		WARN_ON(req->sk);
475 
476 		if (seq != tcp_rsk(req)->snt_isn) {
477 			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 			goto out;
479 		}
480 
481 		/*
482 		 * Still in SYN_RECV, just remove it silently.
483 		 * There is no good way to pass the error to the newly
484 		 * created socket, and POSIX does not want network
485 		 * errors returned from accept().
486 		 */
487 		inet_csk_reqsk_queue_drop(sk, req, prev);
488 		goto out;
489 
490 	case TCP_SYN_SENT:
491 	case TCP_SYN_RECV:  /* Cannot happen.
492 			       It can f.e. if SYNs crossed.
493 			     */
494 		if (!sock_owned_by_user(sk)) {
495 			sk->sk_err = err;
496 
497 			sk->sk_error_report(sk);
498 
499 			tcp_done(sk);
500 		} else {
501 			sk->sk_err_soft = err;
502 		}
503 		goto out;
504 	}
505 
506 	/* If we've already connected we will keep trying
507 	 * until we time out, or the user gives up.
508 	 *
509 	 * rfc1122 4.2.3.9 allows to consider as hard errors
510 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511 	 * but it is obsoleted by pmtu discovery).
512 	 *
513 	 * Note, that in modern internet, where routing is unreliable
514 	 * and in each dark corner broken firewalls sit, sending random
515 	 * errors ordered by their masters even this two messages finally lose
516 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
517 	 *
518 	 * Now we are in compliance with RFCs.
519 	 *							--ANK (980905)
520 	 */
521 
522 	inet = inet_sk(sk);
523 	if (!sock_owned_by_user(sk) && inet->recverr) {
524 		sk->sk_err = err;
525 		sk->sk_error_report(sk);
526 	} else	{ /* Only an error on timeout */
527 		sk->sk_err_soft = err;
528 	}
529 
530 out:
531 	bh_unlock_sock(sk);
532 	sock_put(sk);
533 }
534 
535 static void __tcp_v4_send_check(struct sk_buff *skb,
536 				__be32 saddr, __be32 daddr)
537 {
538 	struct tcphdr *th = tcp_hdr(skb);
539 
540 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
541 		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
542 		skb->csum_start = skb_transport_header(skb) - skb->head;
543 		skb->csum_offset = offsetof(struct tcphdr, check);
544 	} else {
545 		th->check = tcp_v4_check(skb->len, saddr, daddr,
546 					 csum_partial(th,
547 						      th->doff << 2,
548 						      skb->csum));
549 	}
550 }
551 
552 /* This routine computes an IPv4 TCP checksum. */
553 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554 {
555 	struct inet_sock *inet = inet_sk(sk);
556 
557 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558 }
559 EXPORT_SYMBOL(tcp_v4_send_check);
560 
561 int tcp_v4_gso_send_check(struct sk_buff *skb)
562 {
563 	const struct iphdr *iph;
564 	struct tcphdr *th;
565 
566 	if (!pskb_may_pull(skb, sizeof(*th)))
567 		return -EINVAL;
568 
569 	iph = ip_hdr(skb);
570 	th = tcp_hdr(skb);
571 
572 	th->check = 0;
573 	skb->ip_summed = CHECKSUM_PARTIAL;
574 	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
575 	return 0;
576 }
577 
578 /*
579  *	This routine will send an RST to the other tcp.
580  *
581  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
582  *		      for reset.
583  *	Answer: if a packet caused RST, it is not for a socket
584  *		existing in our system, if it is matched to a socket,
585  *		it is just duplicate segment or bug in other side's TCP.
586  *		So that we build reply only basing on parameters
587  *		arrived with segment.
588  *	Exception: precedence violation. We do not implement it in any case.
589  */
590 
591 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592 {
593 	struct tcphdr *th = tcp_hdr(skb);
594 	struct {
595 		struct tcphdr th;
596 #ifdef CONFIG_TCP_MD5SIG
597 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
598 #endif
599 	} rep;
600 	struct ip_reply_arg arg;
601 #ifdef CONFIG_TCP_MD5SIG
602 	struct tcp_md5sig_key *key;
603 #endif
604 	struct net *net;
605 
606 	/* Never send a reset in response to a reset. */
607 	if (th->rst)
608 		return;
609 
610 	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611 		return;
612 
613 	/* Swap the send and the receive. */
614 	memset(&rep, 0, sizeof(rep));
615 	rep.th.dest   = th->source;
616 	rep.th.source = th->dest;
617 	rep.th.doff   = sizeof(struct tcphdr) / 4;
618 	rep.th.rst    = 1;
619 
620 	if (th->ack) {
621 		rep.th.seq = th->ack_seq;
622 	} else {
623 		rep.th.ack = 1;
624 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625 				       skb->len - (th->doff << 2));
626 	}
627 
628 	memset(&arg, 0, sizeof(arg));
629 	arg.iov[0].iov_base = (unsigned char *)&rep;
630 	arg.iov[0].iov_len  = sizeof(rep.th);
631 
632 #ifdef CONFIG_TCP_MD5SIG
633 	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
634 	if (key) {
635 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
636 				   (TCPOPT_NOP << 16) |
637 				   (TCPOPT_MD5SIG << 8) |
638 				   TCPOLEN_MD5SIG);
639 		/* Update length and the length the header thinks exists */
640 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
641 		rep.th.doff = arg.iov[0].iov_len / 4;
642 
643 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
644 				     key, ip_hdr(skb)->saddr,
645 				     ip_hdr(skb)->daddr, &rep.th);
646 	}
647 #endif
648 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
649 				      ip_hdr(skb)->saddr, /* XXX */
650 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
651 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
652 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653 
654 	net = dev_net(skb_dst(skb)->dev);
655 	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
656 		      &arg, arg.iov[0].iov_len);
657 
658 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
659 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
660 }
661 
662 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
663    outside socket context is ugly, certainly. What can I do?
664  */
665 
666 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
667 			    u32 win, u32 ts, int oif,
668 			    struct tcp_md5sig_key *key,
669 			    int reply_flags)
670 {
671 	struct tcphdr *th = tcp_hdr(skb);
672 	struct {
673 		struct tcphdr th;
674 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
675 #ifdef CONFIG_TCP_MD5SIG
676 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
677 #endif
678 			];
679 	} rep;
680 	struct ip_reply_arg arg;
681 	struct net *net = dev_net(skb_dst(skb)->dev);
682 
683 	memset(&rep.th, 0, sizeof(struct tcphdr));
684 	memset(&arg, 0, sizeof(arg));
685 
686 	arg.iov[0].iov_base = (unsigned char *)&rep;
687 	arg.iov[0].iov_len  = sizeof(rep.th);
688 	if (ts) {
689 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
690 				   (TCPOPT_TIMESTAMP << 8) |
691 				   TCPOLEN_TIMESTAMP);
692 		rep.opt[1] = htonl(tcp_time_stamp);
693 		rep.opt[2] = htonl(ts);
694 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 
697 	/* Swap the send and the receive. */
698 	rep.th.dest    = th->source;
699 	rep.th.source  = th->dest;
700 	rep.th.doff    = arg.iov[0].iov_len / 4;
701 	rep.th.seq     = htonl(seq);
702 	rep.th.ack_seq = htonl(ack);
703 	rep.th.ack     = 1;
704 	rep.th.window  = htons(win);
705 
706 #ifdef CONFIG_TCP_MD5SIG
707 	if (key) {
708 		int offset = (ts) ? 3 : 0;
709 
710 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
711 					  (TCPOPT_NOP << 16) |
712 					  (TCPOPT_MD5SIG << 8) |
713 					  TCPOLEN_MD5SIG);
714 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
715 		rep.th.doff = arg.iov[0].iov_len/4;
716 
717 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
718 				    key, ip_hdr(skb)->saddr,
719 				    ip_hdr(skb)->daddr, &rep.th);
720 	}
721 #endif
722 	arg.flags = reply_flags;
723 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
724 				      ip_hdr(skb)->saddr, /* XXX */
725 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
726 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
727 	if (oif)
728 		arg.bound_dev_if = oif;
729 
730 	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
731 		      &arg, arg.iov[0].iov_len);
732 
733 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
734 }
735 
736 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
737 {
738 	struct inet_timewait_sock *tw = inet_twsk(sk);
739 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
740 
741 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
742 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
743 			tcptw->tw_ts_recent,
744 			tw->tw_bound_dev_if,
745 			tcp_twsk_md5_key(tcptw),
746 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
747 			);
748 
749 	inet_twsk_put(tw);
750 }
751 
752 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
753 				  struct request_sock *req)
754 {
755 	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
756 			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
757 			req->ts_recent,
758 			0,
759 			tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
760 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
761 }
762 
763 /*
764  *	Send a SYN-ACK after having received a SYN.
765  *	This still operates on a request_sock only, not on a big
766  *	socket.
767  */
768 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
769 			      struct request_sock *req,
770 			      struct request_values *rvp)
771 {
772 	const struct inet_request_sock *ireq = inet_rsk(req);
773 	struct flowi4 fl4;
774 	int err = -1;
775 	struct sk_buff * skb;
776 
777 	/* First, grab a route. */
778 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
779 		return -1;
780 
781 	skb = tcp_make_synack(sk, dst, req, rvp);
782 
783 	if (skb) {
784 		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
785 
786 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
787 					    ireq->rmt_addr,
788 					    ireq->opt);
789 		err = net_xmit_eval(err);
790 	}
791 
792 	dst_release(dst);
793 	return err;
794 }
795 
796 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
797 			      struct request_values *rvp)
798 {
799 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
800 	return tcp_v4_send_synack(sk, NULL, req, rvp);
801 }
802 
803 /*
804  *	IPv4 request_sock destructor.
805  */
806 static void tcp_v4_reqsk_destructor(struct request_sock *req)
807 {
808 	kfree(inet_rsk(req)->opt);
809 }
810 
811 static void syn_flood_warning(const struct sk_buff *skb)
812 {
813 	const char *msg;
814 
815 #ifdef CONFIG_SYN_COOKIES
816 	if (sysctl_tcp_syncookies)
817 		msg = "Sending cookies";
818 	else
819 #endif
820 		msg = "Dropping request";
821 
822 	pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
823 				ntohs(tcp_hdr(skb)->dest), msg);
824 }
825 
826 /*
827  * Save and compile IPv4 options into the request_sock if needed.
828  */
829 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
830 						  struct sk_buff *skb)
831 {
832 	const struct ip_options *opt = &(IPCB(skb)->opt);
833 	struct ip_options_rcu *dopt = NULL;
834 
835 	if (opt && opt->optlen) {
836 		int opt_size = sizeof(*dopt) + opt->optlen;
837 
838 		dopt = kmalloc(opt_size, GFP_ATOMIC);
839 		if (dopt) {
840 			if (ip_options_echo(&dopt->opt, skb)) {
841 				kfree(dopt);
842 				dopt = NULL;
843 			}
844 		}
845 	}
846 	return dopt;
847 }
848 
849 #ifdef CONFIG_TCP_MD5SIG
850 /*
851  * RFC2385 MD5 checksumming requires a mapping of
852  * IP address->MD5 Key.
853  * We need to maintain these in the sk structure.
854  */
855 
856 /* Find the Key structure for an address.  */
857 static struct tcp_md5sig_key *
858 			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
859 {
860 	struct tcp_sock *tp = tcp_sk(sk);
861 	int i;
862 
863 	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
864 		return NULL;
865 	for (i = 0; i < tp->md5sig_info->entries4; i++) {
866 		if (tp->md5sig_info->keys4[i].addr == addr)
867 			return &tp->md5sig_info->keys4[i].base;
868 	}
869 	return NULL;
870 }
871 
872 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
873 					 struct sock *addr_sk)
874 {
875 	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
876 }
877 EXPORT_SYMBOL(tcp_v4_md5_lookup);
878 
879 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
880 						      struct request_sock *req)
881 {
882 	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
883 }
884 
885 /* This can be called on a newly created socket, from other files */
886 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
887 		      u8 *newkey, u8 newkeylen)
888 {
889 	/* Add Key to the list */
890 	struct tcp_md5sig_key *key;
891 	struct tcp_sock *tp = tcp_sk(sk);
892 	struct tcp4_md5sig_key *keys;
893 
894 	key = tcp_v4_md5_do_lookup(sk, addr);
895 	if (key) {
896 		/* Pre-existing entry - just update that one. */
897 		kfree(key->key);
898 		key->key = newkey;
899 		key->keylen = newkeylen;
900 	} else {
901 		struct tcp_md5sig_info *md5sig;
902 
903 		if (!tp->md5sig_info) {
904 			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
905 						  GFP_ATOMIC);
906 			if (!tp->md5sig_info) {
907 				kfree(newkey);
908 				return -ENOMEM;
909 			}
910 			sk_nocaps_add(sk, NETIF_F_GSO_MASK);
911 		}
912 		if (tcp_alloc_md5sig_pool(sk) == NULL) {
913 			kfree(newkey);
914 			return -ENOMEM;
915 		}
916 		md5sig = tp->md5sig_info;
917 
918 		if (md5sig->alloced4 == md5sig->entries4) {
919 			keys = kmalloc((sizeof(*keys) *
920 					(md5sig->entries4 + 1)), GFP_ATOMIC);
921 			if (!keys) {
922 				kfree(newkey);
923 				tcp_free_md5sig_pool();
924 				return -ENOMEM;
925 			}
926 
927 			if (md5sig->entries4)
928 				memcpy(keys, md5sig->keys4,
929 				       sizeof(*keys) * md5sig->entries4);
930 
931 			/* Free old key list, and reference new one */
932 			kfree(md5sig->keys4);
933 			md5sig->keys4 = keys;
934 			md5sig->alloced4++;
935 		}
936 		md5sig->entries4++;
937 		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
938 		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
939 		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
940 	}
941 	return 0;
942 }
943 EXPORT_SYMBOL(tcp_v4_md5_do_add);
944 
945 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
946 			       u8 *newkey, u8 newkeylen)
947 {
948 	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
949 				 newkey, newkeylen);
950 }
951 
952 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
953 {
954 	struct tcp_sock *tp = tcp_sk(sk);
955 	int i;
956 
957 	for (i = 0; i < tp->md5sig_info->entries4; i++) {
958 		if (tp->md5sig_info->keys4[i].addr == addr) {
959 			/* Free the key */
960 			kfree(tp->md5sig_info->keys4[i].base.key);
961 			tp->md5sig_info->entries4--;
962 
963 			if (tp->md5sig_info->entries4 == 0) {
964 				kfree(tp->md5sig_info->keys4);
965 				tp->md5sig_info->keys4 = NULL;
966 				tp->md5sig_info->alloced4 = 0;
967 			} else if (tp->md5sig_info->entries4 != i) {
968 				/* Need to do some manipulation */
969 				memmove(&tp->md5sig_info->keys4[i],
970 					&tp->md5sig_info->keys4[i+1],
971 					(tp->md5sig_info->entries4 - i) *
972 					 sizeof(struct tcp4_md5sig_key));
973 			}
974 			tcp_free_md5sig_pool();
975 			return 0;
976 		}
977 	}
978 	return -ENOENT;
979 }
980 EXPORT_SYMBOL(tcp_v4_md5_do_del);
981 
982 static void tcp_v4_clear_md5_list(struct sock *sk)
983 {
984 	struct tcp_sock *tp = tcp_sk(sk);
985 
986 	/* Free each key, then the set of key keys,
987 	 * the crypto element, and then decrement our
988 	 * hold on the last resort crypto.
989 	 */
990 	if (tp->md5sig_info->entries4) {
991 		int i;
992 		for (i = 0; i < tp->md5sig_info->entries4; i++)
993 			kfree(tp->md5sig_info->keys4[i].base.key);
994 		tp->md5sig_info->entries4 = 0;
995 		tcp_free_md5sig_pool();
996 	}
997 	if (tp->md5sig_info->keys4) {
998 		kfree(tp->md5sig_info->keys4);
999 		tp->md5sig_info->keys4 = NULL;
1000 		tp->md5sig_info->alloced4  = 0;
1001 	}
1002 }
1003 
1004 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1005 				 int optlen)
1006 {
1007 	struct tcp_md5sig cmd;
1008 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1009 	u8 *newkey;
1010 
1011 	if (optlen < sizeof(cmd))
1012 		return -EINVAL;
1013 
1014 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1015 		return -EFAULT;
1016 
1017 	if (sin->sin_family != AF_INET)
1018 		return -EINVAL;
1019 
1020 	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1021 		if (!tcp_sk(sk)->md5sig_info)
1022 			return -ENOENT;
1023 		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1024 	}
1025 
1026 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1027 		return -EINVAL;
1028 
1029 	if (!tcp_sk(sk)->md5sig_info) {
1030 		struct tcp_sock *tp = tcp_sk(sk);
1031 		struct tcp_md5sig_info *p;
1032 
1033 		p = kzalloc(sizeof(*p), sk->sk_allocation);
1034 		if (!p)
1035 			return -EINVAL;
1036 
1037 		tp->md5sig_info = p;
1038 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1039 	}
1040 
1041 	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1042 	if (!newkey)
1043 		return -ENOMEM;
1044 	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1045 				 newkey, cmd.tcpm_keylen);
1046 }
1047 
1048 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1049 					__be32 daddr, __be32 saddr, int nbytes)
1050 {
1051 	struct tcp4_pseudohdr *bp;
1052 	struct scatterlist sg;
1053 
1054 	bp = &hp->md5_blk.ip4;
1055 
1056 	/*
1057 	 * 1. the TCP pseudo-header (in the order: source IP address,
1058 	 * destination IP address, zero-padded protocol number, and
1059 	 * segment length)
1060 	 */
1061 	bp->saddr = saddr;
1062 	bp->daddr = daddr;
1063 	bp->pad = 0;
1064 	bp->protocol = IPPROTO_TCP;
1065 	bp->len = cpu_to_be16(nbytes);
1066 
1067 	sg_init_one(&sg, bp, sizeof(*bp));
1068 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1069 }
1070 
1071 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1072 			       __be32 daddr, __be32 saddr, struct tcphdr *th)
1073 {
1074 	struct tcp_md5sig_pool *hp;
1075 	struct hash_desc *desc;
1076 
1077 	hp = tcp_get_md5sig_pool();
1078 	if (!hp)
1079 		goto clear_hash_noput;
1080 	desc = &hp->md5_desc;
1081 
1082 	if (crypto_hash_init(desc))
1083 		goto clear_hash;
1084 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1085 		goto clear_hash;
1086 	if (tcp_md5_hash_header(hp, th))
1087 		goto clear_hash;
1088 	if (tcp_md5_hash_key(hp, key))
1089 		goto clear_hash;
1090 	if (crypto_hash_final(desc, md5_hash))
1091 		goto clear_hash;
1092 
1093 	tcp_put_md5sig_pool();
1094 	return 0;
1095 
1096 clear_hash:
1097 	tcp_put_md5sig_pool();
1098 clear_hash_noput:
1099 	memset(md5_hash, 0, 16);
1100 	return 1;
1101 }
1102 
1103 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1104 			struct sock *sk, struct request_sock *req,
1105 			struct sk_buff *skb)
1106 {
1107 	struct tcp_md5sig_pool *hp;
1108 	struct hash_desc *desc;
1109 	struct tcphdr *th = tcp_hdr(skb);
1110 	__be32 saddr, daddr;
1111 
1112 	if (sk) {
1113 		saddr = inet_sk(sk)->inet_saddr;
1114 		daddr = inet_sk(sk)->inet_daddr;
1115 	} else if (req) {
1116 		saddr = inet_rsk(req)->loc_addr;
1117 		daddr = inet_rsk(req)->rmt_addr;
1118 	} else {
1119 		const struct iphdr *iph = ip_hdr(skb);
1120 		saddr = iph->saddr;
1121 		daddr = iph->daddr;
1122 	}
1123 
1124 	hp = tcp_get_md5sig_pool();
1125 	if (!hp)
1126 		goto clear_hash_noput;
1127 	desc = &hp->md5_desc;
1128 
1129 	if (crypto_hash_init(desc))
1130 		goto clear_hash;
1131 
1132 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1133 		goto clear_hash;
1134 	if (tcp_md5_hash_header(hp, th))
1135 		goto clear_hash;
1136 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1137 		goto clear_hash;
1138 	if (tcp_md5_hash_key(hp, key))
1139 		goto clear_hash;
1140 	if (crypto_hash_final(desc, md5_hash))
1141 		goto clear_hash;
1142 
1143 	tcp_put_md5sig_pool();
1144 	return 0;
1145 
1146 clear_hash:
1147 	tcp_put_md5sig_pool();
1148 clear_hash_noput:
1149 	memset(md5_hash, 0, 16);
1150 	return 1;
1151 }
1152 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1153 
1154 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1155 {
1156 	/*
1157 	 * This gets called for each TCP segment that arrives
1158 	 * so we want to be efficient.
1159 	 * We have 3 drop cases:
1160 	 * o No MD5 hash and one expected.
1161 	 * o MD5 hash and we're not expecting one.
1162 	 * o MD5 hash and its wrong.
1163 	 */
1164 	__u8 *hash_location = NULL;
1165 	struct tcp_md5sig_key *hash_expected;
1166 	const struct iphdr *iph = ip_hdr(skb);
1167 	struct tcphdr *th = tcp_hdr(skb);
1168 	int genhash;
1169 	unsigned char newhash[16];
1170 
1171 	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1172 	hash_location = tcp_parse_md5sig_option(th);
1173 
1174 	/* We've parsed the options - do we have a hash? */
1175 	if (!hash_expected && !hash_location)
1176 		return 0;
1177 
1178 	if (hash_expected && !hash_location) {
1179 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1180 		return 1;
1181 	}
1182 
1183 	if (!hash_expected && hash_location) {
1184 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1185 		return 1;
1186 	}
1187 
1188 	/* Okay, so this is hash_expected and hash_location -
1189 	 * so we need to calculate the checksum.
1190 	 */
1191 	genhash = tcp_v4_md5_hash_skb(newhash,
1192 				      hash_expected,
1193 				      NULL, NULL, skb);
1194 
1195 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1196 		if (net_ratelimit()) {
1197 			printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1198 			       &iph->saddr, ntohs(th->source),
1199 			       &iph->daddr, ntohs(th->dest),
1200 			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1201 		}
1202 		return 1;
1203 	}
1204 	return 0;
1205 }
1206 
1207 #endif
1208 
1209 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1210 	.family		=	PF_INET,
1211 	.obj_size	=	sizeof(struct tcp_request_sock),
1212 	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1213 	.send_ack	=	tcp_v4_reqsk_send_ack,
1214 	.destructor	=	tcp_v4_reqsk_destructor,
1215 	.send_reset	=	tcp_v4_send_reset,
1216 	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1217 };
1218 
1219 #ifdef CONFIG_TCP_MD5SIG
1220 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1221 	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1222 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1223 };
1224 #endif
1225 
1226 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1227 {
1228 	struct tcp_extend_values tmp_ext;
1229 	struct tcp_options_received tmp_opt;
1230 	u8 *hash_location;
1231 	struct request_sock *req;
1232 	struct inet_request_sock *ireq;
1233 	struct tcp_sock *tp = tcp_sk(sk);
1234 	struct dst_entry *dst = NULL;
1235 	__be32 saddr = ip_hdr(skb)->saddr;
1236 	__be32 daddr = ip_hdr(skb)->daddr;
1237 	__u32 isn = TCP_SKB_CB(skb)->when;
1238 #ifdef CONFIG_SYN_COOKIES
1239 	int want_cookie = 0;
1240 #else
1241 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1242 #endif
1243 
1244 	/* Never answer to SYNs send to broadcast or multicast */
1245 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1246 		goto drop;
1247 
1248 	/* TW buckets are converted to open requests without
1249 	 * limitations, they conserve resources and peer is
1250 	 * evidently real one.
1251 	 */
1252 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1253 		if (net_ratelimit())
1254 			syn_flood_warning(skb);
1255 #ifdef CONFIG_SYN_COOKIES
1256 		if (sysctl_tcp_syncookies) {
1257 			want_cookie = 1;
1258 		} else
1259 #endif
1260 		goto drop;
1261 	}
1262 
1263 	/* Accept backlog is full. If we have already queued enough
1264 	 * of warm entries in syn queue, drop request. It is better than
1265 	 * clogging syn queue with openreqs with exponentially increasing
1266 	 * timeout.
1267 	 */
1268 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1269 		goto drop;
1270 
1271 	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1272 	if (!req)
1273 		goto drop;
1274 
1275 #ifdef CONFIG_TCP_MD5SIG
1276 	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1277 #endif
1278 
1279 	tcp_clear_options(&tmp_opt);
1280 	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1281 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1282 	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1283 
1284 	if (tmp_opt.cookie_plus > 0 &&
1285 	    tmp_opt.saw_tstamp &&
1286 	    !tp->rx_opt.cookie_out_never &&
1287 	    (sysctl_tcp_cookie_size > 0 ||
1288 	     (tp->cookie_values != NULL &&
1289 	      tp->cookie_values->cookie_desired > 0))) {
1290 		u8 *c;
1291 		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1292 		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1293 
1294 		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1295 			goto drop_and_release;
1296 
1297 		/* Secret recipe starts with IP addresses */
1298 		*mess++ ^= (__force u32)daddr;
1299 		*mess++ ^= (__force u32)saddr;
1300 
1301 		/* plus variable length Initiator Cookie */
1302 		c = (u8 *)mess;
1303 		while (l-- > 0)
1304 			*c++ ^= *hash_location++;
1305 
1306 #ifdef CONFIG_SYN_COOKIES
1307 		want_cookie = 0;	/* not our kind of cookie */
1308 #endif
1309 		tmp_ext.cookie_out_never = 0; /* false */
1310 		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1311 	} else if (!tp->rx_opt.cookie_in_always) {
1312 		/* redundant indications, but ensure initialization. */
1313 		tmp_ext.cookie_out_never = 1; /* true */
1314 		tmp_ext.cookie_plus = 0;
1315 	} else {
1316 		goto drop_and_release;
1317 	}
1318 	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1319 
1320 	if (want_cookie && !tmp_opt.saw_tstamp)
1321 		tcp_clear_options(&tmp_opt);
1322 
1323 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1324 	tcp_openreq_init(req, &tmp_opt, skb);
1325 
1326 	ireq = inet_rsk(req);
1327 	ireq->loc_addr = daddr;
1328 	ireq->rmt_addr = saddr;
1329 	ireq->no_srccheck = inet_sk(sk)->transparent;
1330 	ireq->opt = tcp_v4_save_options(sk, skb);
1331 
1332 	if (security_inet_conn_request(sk, skb, req))
1333 		goto drop_and_free;
1334 
1335 	if (!want_cookie || tmp_opt.tstamp_ok)
1336 		TCP_ECN_create_request(req, tcp_hdr(skb));
1337 
1338 	if (want_cookie) {
1339 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1340 		req->cookie_ts = tmp_opt.tstamp_ok;
1341 	} else if (!isn) {
1342 		struct inet_peer *peer = NULL;
1343 		struct flowi4 fl4;
1344 
1345 		/* VJ's idea. We save last timestamp seen
1346 		 * from the destination in peer table, when entering
1347 		 * state TIME-WAIT, and check against it before
1348 		 * accepting new connection request.
1349 		 *
1350 		 * If "isn" is not zero, this request hit alive
1351 		 * timewait bucket, so that all the necessary checks
1352 		 * are made in the function processing timewait state.
1353 		 */
1354 		if (tmp_opt.saw_tstamp &&
1355 		    tcp_death_row.sysctl_tw_recycle &&
1356 		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1357 		    fl4.daddr == saddr &&
1358 		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1359 			inet_peer_refcheck(peer);
1360 			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1361 			    (s32)(peer->tcp_ts - req->ts_recent) >
1362 							TCP_PAWS_WINDOW) {
1363 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1364 				goto drop_and_release;
1365 			}
1366 		}
1367 		/* Kill the following clause, if you dislike this way. */
1368 		else if (!sysctl_tcp_syncookies &&
1369 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1370 			  (sysctl_max_syn_backlog >> 2)) &&
1371 			 (!peer || !peer->tcp_ts_stamp) &&
1372 			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1373 			/* Without syncookies last quarter of
1374 			 * backlog is filled with destinations,
1375 			 * proven to be alive.
1376 			 * It means that we continue to communicate
1377 			 * to destinations, already remembered
1378 			 * to the moment of synflood.
1379 			 */
1380 			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1381 				       &saddr, ntohs(tcp_hdr(skb)->source));
1382 			goto drop_and_release;
1383 		}
1384 
1385 		isn = tcp_v4_init_sequence(skb);
1386 	}
1387 	tcp_rsk(req)->snt_isn = isn;
1388 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1389 
1390 	if (tcp_v4_send_synack(sk, dst, req,
1391 			       (struct request_values *)&tmp_ext) ||
1392 	    want_cookie)
1393 		goto drop_and_free;
1394 
1395 	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1396 	return 0;
1397 
1398 drop_and_release:
1399 	dst_release(dst);
1400 drop_and_free:
1401 	reqsk_free(req);
1402 drop:
1403 	return 0;
1404 }
1405 EXPORT_SYMBOL(tcp_v4_conn_request);
1406 
1407 
1408 /*
1409  * The three way handshake has completed - we got a valid synack -
1410  * now create the new socket.
1411  */
1412 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1413 				  struct request_sock *req,
1414 				  struct dst_entry *dst)
1415 {
1416 	struct inet_request_sock *ireq;
1417 	struct inet_sock *newinet;
1418 	struct tcp_sock *newtp;
1419 	struct sock *newsk;
1420 #ifdef CONFIG_TCP_MD5SIG
1421 	struct tcp_md5sig_key *key;
1422 #endif
1423 	struct ip_options_rcu *inet_opt;
1424 
1425 	if (sk_acceptq_is_full(sk))
1426 		goto exit_overflow;
1427 
1428 	newsk = tcp_create_openreq_child(sk, req, skb);
1429 	if (!newsk)
1430 		goto exit_nonewsk;
1431 
1432 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1433 
1434 	newtp		      = tcp_sk(newsk);
1435 	newinet		      = inet_sk(newsk);
1436 	ireq		      = inet_rsk(req);
1437 	newinet->inet_daddr   = ireq->rmt_addr;
1438 	newinet->inet_rcv_saddr = ireq->loc_addr;
1439 	newinet->inet_saddr	      = ireq->loc_addr;
1440 	inet_opt	      = ireq->opt;
1441 	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1442 	ireq->opt	      = NULL;
1443 	newinet->mc_index     = inet_iif(skb);
1444 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1445 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1446 	if (inet_opt)
1447 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1448 	newinet->inet_id = newtp->write_seq ^ jiffies;
1449 
1450 	if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1451 		goto put_and_exit;
1452 
1453 	sk_setup_caps(newsk, dst);
1454 
1455 	tcp_mtup_init(newsk);
1456 	tcp_sync_mss(newsk, dst_mtu(dst));
1457 	newtp->advmss = dst_metric_advmss(dst);
1458 	if (tcp_sk(sk)->rx_opt.user_mss &&
1459 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1460 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1461 
1462 	tcp_initialize_rcv_mss(newsk);
1463 	if (tcp_rsk(req)->snt_synack)
1464 		tcp_valid_rtt_meas(newsk,
1465 		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1466 	newtp->total_retrans = req->retrans;
1467 
1468 #ifdef CONFIG_TCP_MD5SIG
1469 	/* Copy over the MD5 key from the original socket */
1470 	key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1471 	if (key != NULL) {
1472 		/*
1473 		 * We're using one, so create a matching key
1474 		 * on the newsk structure. If we fail to get
1475 		 * memory, then we end up not copying the key
1476 		 * across. Shucks.
1477 		 */
1478 		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1479 		if (newkey != NULL)
1480 			tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1481 					  newkey, key->keylen);
1482 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1483 	}
1484 #endif
1485 
1486 	if (__inet_inherit_port(sk, newsk) < 0)
1487 		goto put_and_exit;
1488 	__inet_hash_nolisten(newsk, NULL);
1489 
1490 	return newsk;
1491 
1492 exit_overflow:
1493 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1494 exit_nonewsk:
1495 	dst_release(dst);
1496 exit:
1497 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1498 	return NULL;
1499 put_and_exit:
1500 	sock_put(newsk);
1501 	goto exit;
1502 }
1503 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1504 
1505 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1506 {
1507 	struct tcphdr *th = tcp_hdr(skb);
1508 	const struct iphdr *iph = ip_hdr(skb);
1509 	struct sock *nsk;
1510 	struct request_sock **prev;
1511 	/* Find possible connection requests. */
1512 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1513 						       iph->saddr, iph->daddr);
1514 	if (req)
1515 		return tcp_check_req(sk, skb, req, prev);
1516 
1517 	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1518 			th->source, iph->daddr, th->dest, inet_iif(skb));
1519 
1520 	if (nsk) {
1521 		if (nsk->sk_state != TCP_TIME_WAIT) {
1522 			bh_lock_sock(nsk);
1523 			return nsk;
1524 		}
1525 		inet_twsk_put(inet_twsk(nsk));
1526 		return NULL;
1527 	}
1528 
1529 #ifdef CONFIG_SYN_COOKIES
1530 	if (!th->syn)
1531 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1532 #endif
1533 	return sk;
1534 }
1535 
1536 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1537 {
1538 	const struct iphdr *iph = ip_hdr(skb);
1539 
1540 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1541 		if (!tcp_v4_check(skb->len, iph->saddr,
1542 				  iph->daddr, skb->csum)) {
1543 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1544 			return 0;
1545 		}
1546 	}
1547 
1548 	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1549 				       skb->len, IPPROTO_TCP, 0);
1550 
1551 	if (skb->len <= 76) {
1552 		return __skb_checksum_complete(skb);
1553 	}
1554 	return 0;
1555 }
1556 
1557 
1558 /* The socket must have it's spinlock held when we get
1559  * here.
1560  *
1561  * We have a potential double-lock case here, so even when
1562  * doing backlog processing we use the BH locking scheme.
1563  * This is because we cannot sleep with the original spinlock
1564  * held.
1565  */
1566 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1567 {
1568 	struct sock *rsk;
1569 #ifdef CONFIG_TCP_MD5SIG
1570 	/*
1571 	 * We really want to reject the packet as early as possible
1572 	 * if:
1573 	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1574 	 *  o There is an MD5 option and we're not expecting one
1575 	 */
1576 	if (tcp_v4_inbound_md5_hash(sk, skb))
1577 		goto discard;
1578 #endif
1579 
1580 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1581 		sock_rps_save_rxhash(sk, skb->rxhash);
1582 		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1583 			rsk = sk;
1584 			goto reset;
1585 		}
1586 		return 0;
1587 	}
1588 
1589 	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1590 		goto csum_err;
1591 
1592 	if (sk->sk_state == TCP_LISTEN) {
1593 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1594 		if (!nsk)
1595 			goto discard;
1596 
1597 		if (nsk != sk) {
1598 			sock_rps_save_rxhash(nsk, skb->rxhash);
1599 			if (tcp_child_process(sk, nsk, skb)) {
1600 				rsk = nsk;
1601 				goto reset;
1602 			}
1603 			return 0;
1604 		}
1605 	} else
1606 		sock_rps_save_rxhash(sk, skb->rxhash);
1607 
1608 	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1609 		rsk = sk;
1610 		goto reset;
1611 	}
1612 	return 0;
1613 
1614 reset:
1615 	tcp_v4_send_reset(rsk, skb);
1616 discard:
1617 	kfree_skb(skb);
1618 	/* Be careful here. If this function gets more complicated and
1619 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1620 	 * might be destroyed here. This current version compiles correctly,
1621 	 * but you have been warned.
1622 	 */
1623 	return 0;
1624 
1625 csum_err:
1626 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1627 	goto discard;
1628 }
1629 EXPORT_SYMBOL(tcp_v4_do_rcv);
1630 
1631 /*
1632  *	From tcp_input.c
1633  */
1634 
1635 int tcp_v4_rcv(struct sk_buff *skb)
1636 {
1637 	const struct iphdr *iph;
1638 	struct tcphdr *th;
1639 	struct sock *sk;
1640 	int ret;
1641 	struct net *net = dev_net(skb->dev);
1642 
1643 	if (skb->pkt_type != PACKET_HOST)
1644 		goto discard_it;
1645 
1646 	/* Count it even if it's bad */
1647 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1648 
1649 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1650 		goto discard_it;
1651 
1652 	th = tcp_hdr(skb);
1653 
1654 	if (th->doff < sizeof(struct tcphdr) / 4)
1655 		goto bad_packet;
1656 	if (!pskb_may_pull(skb, th->doff * 4))
1657 		goto discard_it;
1658 
1659 	/* An explanation is required here, I think.
1660 	 * Packet length and doff are validated by header prediction,
1661 	 * provided case of th->doff==0 is eliminated.
1662 	 * So, we defer the checks. */
1663 	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1664 		goto bad_packet;
1665 
1666 	th = tcp_hdr(skb);
1667 	iph = ip_hdr(skb);
1668 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1669 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1670 				    skb->len - th->doff * 4);
1671 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1672 	TCP_SKB_CB(skb)->when	 = 0;
1673 	TCP_SKB_CB(skb)->flags	 = iph->tos;
1674 	TCP_SKB_CB(skb)->sacked	 = 0;
1675 
1676 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1677 	if (!sk)
1678 		goto no_tcp_socket;
1679 
1680 process:
1681 	if (sk->sk_state == TCP_TIME_WAIT)
1682 		goto do_time_wait;
1683 
1684 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1685 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1686 		goto discard_and_relse;
1687 	}
1688 
1689 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1690 		goto discard_and_relse;
1691 	nf_reset(skb);
1692 
1693 	if (sk_filter(sk, skb))
1694 		goto discard_and_relse;
1695 
1696 	skb->dev = NULL;
1697 
1698 	bh_lock_sock_nested(sk);
1699 	ret = 0;
1700 	if (!sock_owned_by_user(sk)) {
1701 #ifdef CONFIG_NET_DMA
1702 		struct tcp_sock *tp = tcp_sk(sk);
1703 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1704 			tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1705 		if (tp->ucopy.dma_chan)
1706 			ret = tcp_v4_do_rcv(sk, skb);
1707 		else
1708 #endif
1709 		{
1710 			if (!tcp_prequeue(sk, skb))
1711 				ret = tcp_v4_do_rcv(sk, skb);
1712 		}
1713 	} else if (unlikely(sk_add_backlog(sk, skb))) {
1714 		bh_unlock_sock(sk);
1715 		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1716 		goto discard_and_relse;
1717 	}
1718 	bh_unlock_sock(sk);
1719 
1720 	sock_put(sk);
1721 
1722 	return ret;
1723 
1724 no_tcp_socket:
1725 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1726 		goto discard_it;
1727 
1728 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1729 bad_packet:
1730 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1731 	} else {
1732 		tcp_v4_send_reset(NULL, skb);
1733 	}
1734 
1735 discard_it:
1736 	/* Discard frame. */
1737 	kfree_skb(skb);
1738 	return 0;
1739 
1740 discard_and_relse:
1741 	sock_put(sk);
1742 	goto discard_it;
1743 
1744 do_time_wait:
1745 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1746 		inet_twsk_put(inet_twsk(sk));
1747 		goto discard_it;
1748 	}
1749 
1750 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1751 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1752 		inet_twsk_put(inet_twsk(sk));
1753 		goto discard_it;
1754 	}
1755 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1756 	case TCP_TW_SYN: {
1757 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1758 							&tcp_hashinfo,
1759 							iph->daddr, th->dest,
1760 							inet_iif(skb));
1761 		if (sk2) {
1762 			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1763 			inet_twsk_put(inet_twsk(sk));
1764 			sk = sk2;
1765 			goto process;
1766 		}
1767 		/* Fall through to ACK */
1768 	}
1769 	case TCP_TW_ACK:
1770 		tcp_v4_timewait_ack(sk, skb);
1771 		break;
1772 	case TCP_TW_RST:
1773 		goto no_tcp_socket;
1774 	case TCP_TW_SUCCESS:;
1775 	}
1776 	goto discard_it;
1777 }
1778 
1779 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1780 {
1781 	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1782 	struct inet_sock *inet = inet_sk(sk);
1783 	struct inet_peer *peer;
1784 
1785 	if (!rt ||
1786 	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1787 		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1788 		*release_it = true;
1789 	} else {
1790 		if (!rt->peer)
1791 			rt_bind_peer(rt, inet->inet_daddr, 1);
1792 		peer = rt->peer;
1793 		*release_it = false;
1794 	}
1795 
1796 	return peer;
1797 }
1798 EXPORT_SYMBOL(tcp_v4_get_peer);
1799 
1800 void *tcp_v4_tw_get_peer(struct sock *sk)
1801 {
1802 	struct inet_timewait_sock *tw = inet_twsk(sk);
1803 
1804 	return inet_getpeer_v4(tw->tw_daddr, 1);
1805 }
1806 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1807 
1808 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1809 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1810 	.twsk_unique	= tcp_twsk_unique,
1811 	.twsk_destructor= tcp_twsk_destructor,
1812 	.twsk_getpeer	= tcp_v4_tw_get_peer,
1813 };
1814 
1815 const struct inet_connection_sock_af_ops ipv4_specific = {
1816 	.queue_xmit	   = ip_queue_xmit,
1817 	.send_check	   = tcp_v4_send_check,
1818 	.rebuild_header	   = inet_sk_rebuild_header,
1819 	.conn_request	   = tcp_v4_conn_request,
1820 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1821 	.get_peer	   = tcp_v4_get_peer,
1822 	.net_header_len	   = sizeof(struct iphdr),
1823 	.setsockopt	   = ip_setsockopt,
1824 	.getsockopt	   = ip_getsockopt,
1825 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1826 	.sockaddr_len	   = sizeof(struct sockaddr_in),
1827 	.bind_conflict	   = inet_csk_bind_conflict,
1828 #ifdef CONFIG_COMPAT
1829 	.compat_setsockopt = compat_ip_setsockopt,
1830 	.compat_getsockopt = compat_ip_getsockopt,
1831 #endif
1832 };
1833 EXPORT_SYMBOL(ipv4_specific);
1834 
1835 #ifdef CONFIG_TCP_MD5SIG
1836 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1837 	.md5_lookup		= tcp_v4_md5_lookup,
1838 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1839 	.md5_add		= tcp_v4_md5_add_func,
1840 	.md5_parse		= tcp_v4_parse_md5_keys,
1841 };
1842 #endif
1843 
1844 /* NOTE: A lot of things set to zero explicitly by call to
1845  *       sk_alloc() so need not be done here.
1846  */
1847 static int tcp_v4_init_sock(struct sock *sk)
1848 {
1849 	struct inet_connection_sock *icsk = inet_csk(sk);
1850 	struct tcp_sock *tp = tcp_sk(sk);
1851 
1852 	skb_queue_head_init(&tp->out_of_order_queue);
1853 	tcp_init_xmit_timers(sk);
1854 	tcp_prequeue_init(tp);
1855 
1856 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1857 	tp->mdev = TCP_TIMEOUT_INIT;
1858 
1859 	/* So many TCP implementations out there (incorrectly) count the
1860 	 * initial SYN frame in their delayed-ACK and congestion control
1861 	 * algorithms that we must have the following bandaid to talk
1862 	 * efficiently to them.  -DaveM
1863 	 */
1864 	tp->snd_cwnd = TCP_INIT_CWND;
1865 
1866 	/* See draft-stevens-tcpca-spec-01 for discussion of the
1867 	 * initialization of these values.
1868 	 */
1869 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1870 	tp->snd_cwnd_clamp = ~0;
1871 	tp->mss_cache = TCP_MSS_DEFAULT;
1872 
1873 	tp->reordering = sysctl_tcp_reordering;
1874 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1875 
1876 	sk->sk_state = TCP_CLOSE;
1877 
1878 	sk->sk_write_space = sk_stream_write_space;
1879 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1880 
1881 	icsk->icsk_af_ops = &ipv4_specific;
1882 	icsk->icsk_sync_mss = tcp_sync_mss;
1883 #ifdef CONFIG_TCP_MD5SIG
1884 	tp->af_specific = &tcp_sock_ipv4_specific;
1885 #endif
1886 
1887 	/* TCP Cookie Transactions */
1888 	if (sysctl_tcp_cookie_size > 0) {
1889 		/* Default, cookies without s_data_payload. */
1890 		tp->cookie_values =
1891 			kzalloc(sizeof(*tp->cookie_values),
1892 				sk->sk_allocation);
1893 		if (tp->cookie_values != NULL)
1894 			kref_init(&tp->cookie_values->kref);
1895 	}
1896 	/* Presumed zeroed, in order of appearance:
1897 	 *	cookie_in_always, cookie_out_never,
1898 	 *	s_data_constant, s_data_in, s_data_out
1899 	 */
1900 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1901 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1902 
1903 	local_bh_disable();
1904 	percpu_counter_inc(&tcp_sockets_allocated);
1905 	local_bh_enable();
1906 
1907 	return 0;
1908 }
1909 
1910 void tcp_v4_destroy_sock(struct sock *sk)
1911 {
1912 	struct tcp_sock *tp = tcp_sk(sk);
1913 
1914 	tcp_clear_xmit_timers(sk);
1915 
1916 	tcp_cleanup_congestion_control(sk);
1917 
1918 	/* Cleanup up the write buffer. */
1919 	tcp_write_queue_purge(sk);
1920 
1921 	/* Cleans up our, hopefully empty, out_of_order_queue. */
1922 	__skb_queue_purge(&tp->out_of_order_queue);
1923 
1924 #ifdef CONFIG_TCP_MD5SIG
1925 	/* Clean up the MD5 key list, if any */
1926 	if (tp->md5sig_info) {
1927 		tcp_v4_clear_md5_list(sk);
1928 		kfree(tp->md5sig_info);
1929 		tp->md5sig_info = NULL;
1930 	}
1931 #endif
1932 
1933 #ifdef CONFIG_NET_DMA
1934 	/* Cleans up our sk_async_wait_queue */
1935 	__skb_queue_purge(&sk->sk_async_wait_queue);
1936 #endif
1937 
1938 	/* Clean prequeue, it must be empty really */
1939 	__skb_queue_purge(&tp->ucopy.prequeue);
1940 
1941 	/* Clean up a referenced TCP bind bucket. */
1942 	if (inet_csk(sk)->icsk_bind_hash)
1943 		inet_put_port(sk);
1944 
1945 	/*
1946 	 * If sendmsg cached page exists, toss it.
1947 	 */
1948 	if (sk->sk_sndmsg_page) {
1949 		__free_page(sk->sk_sndmsg_page);
1950 		sk->sk_sndmsg_page = NULL;
1951 	}
1952 
1953 	/* TCP Cookie Transactions */
1954 	if (tp->cookie_values != NULL) {
1955 		kref_put(&tp->cookie_values->kref,
1956 			 tcp_cookie_values_release);
1957 		tp->cookie_values = NULL;
1958 	}
1959 
1960 	percpu_counter_dec(&tcp_sockets_allocated);
1961 }
1962 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1963 
1964 #ifdef CONFIG_PROC_FS
1965 /* Proc filesystem TCP sock list dumping. */
1966 
1967 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1968 {
1969 	return hlist_nulls_empty(head) ? NULL :
1970 		list_entry(head->first, struct inet_timewait_sock, tw_node);
1971 }
1972 
1973 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1974 {
1975 	return !is_a_nulls(tw->tw_node.next) ?
1976 		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1977 }
1978 
1979 /*
1980  * Get next listener socket follow cur.  If cur is NULL, get first socket
1981  * starting from bucket given in st->bucket; when st->bucket is zero the
1982  * very first socket in the hash table is returned.
1983  */
1984 static void *listening_get_next(struct seq_file *seq, void *cur)
1985 {
1986 	struct inet_connection_sock *icsk;
1987 	struct hlist_nulls_node *node;
1988 	struct sock *sk = cur;
1989 	struct inet_listen_hashbucket *ilb;
1990 	struct tcp_iter_state *st = seq->private;
1991 	struct net *net = seq_file_net(seq);
1992 
1993 	if (!sk) {
1994 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1995 		spin_lock_bh(&ilb->lock);
1996 		sk = sk_nulls_head(&ilb->head);
1997 		st->offset = 0;
1998 		goto get_sk;
1999 	}
2000 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2001 	++st->num;
2002 	++st->offset;
2003 
2004 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2005 		struct request_sock *req = cur;
2006 
2007 		icsk = inet_csk(st->syn_wait_sk);
2008 		req = req->dl_next;
2009 		while (1) {
2010 			while (req) {
2011 				if (req->rsk_ops->family == st->family) {
2012 					cur = req;
2013 					goto out;
2014 				}
2015 				req = req->dl_next;
2016 			}
2017 			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2018 				break;
2019 get_req:
2020 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2021 		}
2022 		sk	  = sk_nulls_next(st->syn_wait_sk);
2023 		st->state = TCP_SEQ_STATE_LISTENING;
2024 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025 	} else {
2026 		icsk = inet_csk(sk);
2027 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2029 			goto start_req;
2030 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2031 		sk = sk_nulls_next(sk);
2032 	}
2033 get_sk:
2034 	sk_nulls_for_each_from(sk, node) {
2035 		if (!net_eq(sock_net(sk), net))
2036 			continue;
2037 		if (sk->sk_family == st->family) {
2038 			cur = sk;
2039 			goto out;
2040 		}
2041 		icsk = inet_csk(sk);
2042 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2043 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2044 start_req:
2045 			st->uid		= sock_i_uid(sk);
2046 			st->syn_wait_sk = sk;
2047 			st->state	= TCP_SEQ_STATE_OPENREQ;
2048 			st->sbucket	= 0;
2049 			goto get_req;
2050 		}
2051 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2052 	}
2053 	spin_unlock_bh(&ilb->lock);
2054 	st->offset = 0;
2055 	if (++st->bucket < INET_LHTABLE_SIZE) {
2056 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2057 		spin_lock_bh(&ilb->lock);
2058 		sk = sk_nulls_head(&ilb->head);
2059 		goto get_sk;
2060 	}
2061 	cur = NULL;
2062 out:
2063 	return cur;
2064 }
2065 
2066 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2067 {
2068 	struct tcp_iter_state *st = seq->private;
2069 	void *rc;
2070 
2071 	st->bucket = 0;
2072 	st->offset = 0;
2073 	rc = listening_get_next(seq, NULL);
2074 
2075 	while (rc && *pos) {
2076 		rc = listening_get_next(seq, rc);
2077 		--*pos;
2078 	}
2079 	return rc;
2080 }
2081 
2082 static inline int empty_bucket(struct tcp_iter_state *st)
2083 {
2084 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2085 		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2086 }
2087 
2088 /*
2089  * Get first established socket starting from bucket given in st->bucket.
2090  * If st->bucket is zero, the very first socket in the hash is returned.
2091  */
2092 static void *established_get_first(struct seq_file *seq)
2093 {
2094 	struct tcp_iter_state *st = seq->private;
2095 	struct net *net = seq_file_net(seq);
2096 	void *rc = NULL;
2097 
2098 	st->offset = 0;
2099 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2100 		struct sock *sk;
2101 		struct hlist_nulls_node *node;
2102 		struct inet_timewait_sock *tw;
2103 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2104 
2105 		/* Lockless fast path for the common case of empty buckets */
2106 		if (empty_bucket(st))
2107 			continue;
2108 
2109 		spin_lock_bh(lock);
2110 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2111 			if (sk->sk_family != st->family ||
2112 			    !net_eq(sock_net(sk), net)) {
2113 				continue;
2114 			}
2115 			rc = sk;
2116 			goto out;
2117 		}
2118 		st->state = TCP_SEQ_STATE_TIME_WAIT;
2119 		inet_twsk_for_each(tw, node,
2120 				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2121 			if (tw->tw_family != st->family ||
2122 			    !net_eq(twsk_net(tw), net)) {
2123 				continue;
2124 			}
2125 			rc = tw;
2126 			goto out;
2127 		}
2128 		spin_unlock_bh(lock);
2129 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2130 	}
2131 out:
2132 	return rc;
2133 }
2134 
2135 static void *established_get_next(struct seq_file *seq, void *cur)
2136 {
2137 	struct sock *sk = cur;
2138 	struct inet_timewait_sock *tw;
2139 	struct hlist_nulls_node *node;
2140 	struct tcp_iter_state *st = seq->private;
2141 	struct net *net = seq_file_net(seq);
2142 
2143 	++st->num;
2144 	++st->offset;
2145 
2146 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2147 		tw = cur;
2148 		tw = tw_next(tw);
2149 get_tw:
2150 		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2151 			tw = tw_next(tw);
2152 		}
2153 		if (tw) {
2154 			cur = tw;
2155 			goto out;
2156 		}
2157 		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2158 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2159 
2160 		/* Look for next non empty bucket */
2161 		st->offset = 0;
2162 		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2163 				empty_bucket(st))
2164 			;
2165 		if (st->bucket > tcp_hashinfo.ehash_mask)
2166 			return NULL;
2167 
2168 		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2169 		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2170 	} else
2171 		sk = sk_nulls_next(sk);
2172 
2173 	sk_nulls_for_each_from(sk, node) {
2174 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2175 			goto found;
2176 	}
2177 
2178 	st->state = TCP_SEQ_STATE_TIME_WAIT;
2179 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2180 	goto get_tw;
2181 found:
2182 	cur = sk;
2183 out:
2184 	return cur;
2185 }
2186 
2187 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2188 {
2189 	struct tcp_iter_state *st = seq->private;
2190 	void *rc;
2191 
2192 	st->bucket = 0;
2193 	rc = established_get_first(seq);
2194 
2195 	while (rc && pos) {
2196 		rc = established_get_next(seq, rc);
2197 		--pos;
2198 	}
2199 	return rc;
2200 }
2201 
2202 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2203 {
2204 	void *rc;
2205 	struct tcp_iter_state *st = seq->private;
2206 
2207 	st->state = TCP_SEQ_STATE_LISTENING;
2208 	rc	  = listening_get_idx(seq, &pos);
2209 
2210 	if (!rc) {
2211 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2212 		rc	  = established_get_idx(seq, pos);
2213 	}
2214 
2215 	return rc;
2216 }
2217 
2218 static void *tcp_seek_last_pos(struct seq_file *seq)
2219 {
2220 	struct tcp_iter_state *st = seq->private;
2221 	int offset = st->offset;
2222 	int orig_num = st->num;
2223 	void *rc = NULL;
2224 
2225 	switch (st->state) {
2226 	case TCP_SEQ_STATE_OPENREQ:
2227 	case TCP_SEQ_STATE_LISTENING:
2228 		if (st->bucket >= INET_LHTABLE_SIZE)
2229 			break;
2230 		st->state = TCP_SEQ_STATE_LISTENING;
2231 		rc = listening_get_next(seq, NULL);
2232 		while (offset-- && rc)
2233 			rc = listening_get_next(seq, rc);
2234 		if (rc)
2235 			break;
2236 		st->bucket = 0;
2237 		/* Fallthrough */
2238 	case TCP_SEQ_STATE_ESTABLISHED:
2239 	case TCP_SEQ_STATE_TIME_WAIT:
2240 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2241 		if (st->bucket > tcp_hashinfo.ehash_mask)
2242 			break;
2243 		rc = established_get_first(seq);
2244 		while (offset-- && rc)
2245 			rc = established_get_next(seq, rc);
2246 	}
2247 
2248 	st->num = orig_num;
2249 
2250 	return rc;
2251 }
2252 
2253 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2254 {
2255 	struct tcp_iter_state *st = seq->private;
2256 	void *rc;
2257 
2258 	if (*pos && *pos == st->last_pos) {
2259 		rc = tcp_seek_last_pos(seq);
2260 		if (rc)
2261 			goto out;
2262 	}
2263 
2264 	st->state = TCP_SEQ_STATE_LISTENING;
2265 	st->num = 0;
2266 	st->bucket = 0;
2267 	st->offset = 0;
2268 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2269 
2270 out:
2271 	st->last_pos = *pos;
2272 	return rc;
2273 }
2274 
2275 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2276 {
2277 	struct tcp_iter_state *st = seq->private;
2278 	void *rc = NULL;
2279 
2280 	if (v == SEQ_START_TOKEN) {
2281 		rc = tcp_get_idx(seq, 0);
2282 		goto out;
2283 	}
2284 
2285 	switch (st->state) {
2286 	case TCP_SEQ_STATE_OPENREQ:
2287 	case TCP_SEQ_STATE_LISTENING:
2288 		rc = listening_get_next(seq, v);
2289 		if (!rc) {
2290 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2291 			st->bucket = 0;
2292 			st->offset = 0;
2293 			rc	  = established_get_first(seq);
2294 		}
2295 		break;
2296 	case TCP_SEQ_STATE_ESTABLISHED:
2297 	case TCP_SEQ_STATE_TIME_WAIT:
2298 		rc = established_get_next(seq, v);
2299 		break;
2300 	}
2301 out:
2302 	++*pos;
2303 	st->last_pos = *pos;
2304 	return rc;
2305 }
2306 
2307 static void tcp_seq_stop(struct seq_file *seq, void *v)
2308 {
2309 	struct tcp_iter_state *st = seq->private;
2310 
2311 	switch (st->state) {
2312 	case TCP_SEQ_STATE_OPENREQ:
2313 		if (v) {
2314 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2315 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2316 		}
2317 	case TCP_SEQ_STATE_LISTENING:
2318 		if (v != SEQ_START_TOKEN)
2319 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2320 		break;
2321 	case TCP_SEQ_STATE_TIME_WAIT:
2322 	case TCP_SEQ_STATE_ESTABLISHED:
2323 		if (v)
2324 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2325 		break;
2326 	}
2327 }
2328 
2329 static int tcp_seq_open(struct inode *inode, struct file *file)
2330 {
2331 	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2332 	struct tcp_iter_state *s;
2333 	int err;
2334 
2335 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2336 			  sizeof(struct tcp_iter_state));
2337 	if (err < 0)
2338 		return err;
2339 
2340 	s = ((struct seq_file *)file->private_data)->private;
2341 	s->family		= afinfo->family;
2342 	s->last_pos 		= 0;
2343 	return 0;
2344 }
2345 
2346 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2347 {
2348 	int rc = 0;
2349 	struct proc_dir_entry *p;
2350 
2351 	afinfo->seq_fops.open		= tcp_seq_open;
2352 	afinfo->seq_fops.read		= seq_read;
2353 	afinfo->seq_fops.llseek		= seq_lseek;
2354 	afinfo->seq_fops.release	= seq_release_net;
2355 
2356 	afinfo->seq_ops.start		= tcp_seq_start;
2357 	afinfo->seq_ops.next		= tcp_seq_next;
2358 	afinfo->seq_ops.stop		= tcp_seq_stop;
2359 
2360 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2361 			     &afinfo->seq_fops, afinfo);
2362 	if (!p)
2363 		rc = -ENOMEM;
2364 	return rc;
2365 }
2366 EXPORT_SYMBOL(tcp_proc_register);
2367 
2368 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2369 {
2370 	proc_net_remove(net, afinfo->name);
2371 }
2372 EXPORT_SYMBOL(tcp_proc_unregister);
2373 
2374 static void get_openreq4(struct sock *sk, struct request_sock *req,
2375 			 struct seq_file *f, int i, int uid, int *len)
2376 {
2377 	const struct inet_request_sock *ireq = inet_rsk(req);
2378 	int ttd = req->expires - jiffies;
2379 
2380 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2381 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2382 		i,
2383 		ireq->loc_addr,
2384 		ntohs(inet_sk(sk)->inet_sport),
2385 		ireq->rmt_addr,
2386 		ntohs(ireq->rmt_port),
2387 		TCP_SYN_RECV,
2388 		0, 0, /* could print option size, but that is af dependent. */
2389 		1,    /* timers active (only the expire timer) */
2390 		jiffies_to_clock_t(ttd),
2391 		req->retrans,
2392 		uid,
2393 		0,  /* non standard timer */
2394 		0, /* open_requests have no inode */
2395 		atomic_read(&sk->sk_refcnt),
2396 		req,
2397 		len);
2398 }
2399 
2400 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2401 {
2402 	int timer_active;
2403 	unsigned long timer_expires;
2404 	struct tcp_sock *tp = tcp_sk(sk);
2405 	const struct inet_connection_sock *icsk = inet_csk(sk);
2406 	struct inet_sock *inet = inet_sk(sk);
2407 	__be32 dest = inet->inet_daddr;
2408 	__be32 src = inet->inet_rcv_saddr;
2409 	__u16 destp = ntohs(inet->inet_dport);
2410 	__u16 srcp = ntohs(inet->inet_sport);
2411 	int rx_queue;
2412 
2413 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2414 		timer_active	= 1;
2415 		timer_expires	= icsk->icsk_timeout;
2416 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2417 		timer_active	= 4;
2418 		timer_expires	= icsk->icsk_timeout;
2419 	} else if (timer_pending(&sk->sk_timer)) {
2420 		timer_active	= 2;
2421 		timer_expires	= sk->sk_timer.expires;
2422 	} else {
2423 		timer_active	= 0;
2424 		timer_expires = jiffies;
2425 	}
2426 
2427 	if (sk->sk_state == TCP_LISTEN)
2428 		rx_queue = sk->sk_ack_backlog;
2429 	else
2430 		/*
2431 		 * because we dont lock socket, we might find a transient negative value
2432 		 */
2433 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2434 
2435 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2436 			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2437 		i, src, srcp, dest, destp, sk->sk_state,
2438 		tp->write_seq - tp->snd_una,
2439 		rx_queue,
2440 		timer_active,
2441 		jiffies_to_clock_t(timer_expires - jiffies),
2442 		icsk->icsk_retransmits,
2443 		sock_i_uid(sk),
2444 		icsk->icsk_probes_out,
2445 		sock_i_ino(sk),
2446 		atomic_read(&sk->sk_refcnt), sk,
2447 		jiffies_to_clock_t(icsk->icsk_rto),
2448 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2449 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2450 		tp->snd_cwnd,
2451 		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2452 		len);
2453 }
2454 
2455 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2456 			       struct seq_file *f, int i, int *len)
2457 {
2458 	__be32 dest, src;
2459 	__u16 destp, srcp;
2460 	int ttd = tw->tw_ttd - jiffies;
2461 
2462 	if (ttd < 0)
2463 		ttd = 0;
2464 
2465 	dest  = tw->tw_daddr;
2466 	src   = tw->tw_rcv_saddr;
2467 	destp = ntohs(tw->tw_dport);
2468 	srcp  = ntohs(tw->tw_sport);
2469 
2470 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2471 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2472 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2473 		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2474 		atomic_read(&tw->tw_refcnt), tw, len);
2475 }
2476 
2477 #define TMPSZ 150
2478 
2479 static int tcp4_seq_show(struct seq_file *seq, void *v)
2480 {
2481 	struct tcp_iter_state *st;
2482 	int len;
2483 
2484 	if (v == SEQ_START_TOKEN) {
2485 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2486 			   "  sl  local_address rem_address   st tx_queue "
2487 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2488 			   "inode");
2489 		goto out;
2490 	}
2491 	st = seq->private;
2492 
2493 	switch (st->state) {
2494 	case TCP_SEQ_STATE_LISTENING:
2495 	case TCP_SEQ_STATE_ESTABLISHED:
2496 		get_tcp4_sock(v, seq, st->num, &len);
2497 		break;
2498 	case TCP_SEQ_STATE_OPENREQ:
2499 		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2500 		break;
2501 	case TCP_SEQ_STATE_TIME_WAIT:
2502 		get_timewait4_sock(v, seq, st->num, &len);
2503 		break;
2504 	}
2505 	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2506 out:
2507 	return 0;
2508 }
2509 
2510 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2511 	.name		= "tcp",
2512 	.family		= AF_INET,
2513 	.seq_fops	= {
2514 		.owner		= THIS_MODULE,
2515 	},
2516 	.seq_ops	= {
2517 		.show		= tcp4_seq_show,
2518 	},
2519 };
2520 
2521 static int __net_init tcp4_proc_init_net(struct net *net)
2522 {
2523 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2524 }
2525 
2526 static void __net_exit tcp4_proc_exit_net(struct net *net)
2527 {
2528 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2529 }
2530 
2531 static struct pernet_operations tcp4_net_ops = {
2532 	.init = tcp4_proc_init_net,
2533 	.exit = tcp4_proc_exit_net,
2534 };
2535 
2536 int __init tcp4_proc_init(void)
2537 {
2538 	return register_pernet_subsys(&tcp4_net_ops);
2539 }
2540 
2541 void tcp4_proc_exit(void)
2542 {
2543 	unregister_pernet_subsys(&tcp4_net_ops);
2544 }
2545 #endif /* CONFIG_PROC_FS */
2546 
2547 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2548 {
2549 	const struct iphdr *iph = skb_gro_network_header(skb);
2550 
2551 	switch (skb->ip_summed) {
2552 	case CHECKSUM_COMPLETE:
2553 		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2554 				  skb->csum)) {
2555 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2556 			break;
2557 		}
2558 
2559 		/* fall through */
2560 	case CHECKSUM_NONE:
2561 		NAPI_GRO_CB(skb)->flush = 1;
2562 		return NULL;
2563 	}
2564 
2565 	return tcp_gro_receive(head, skb);
2566 }
2567 
2568 int tcp4_gro_complete(struct sk_buff *skb)
2569 {
2570 	const struct iphdr *iph = ip_hdr(skb);
2571 	struct tcphdr *th = tcp_hdr(skb);
2572 
2573 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2574 				  iph->saddr, iph->daddr, 0);
2575 	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2576 
2577 	return tcp_gro_complete(skb);
2578 }
2579 
2580 struct proto tcp_prot = {
2581 	.name			= "TCP",
2582 	.owner			= THIS_MODULE,
2583 	.close			= tcp_close,
2584 	.connect		= tcp_v4_connect,
2585 	.disconnect		= tcp_disconnect,
2586 	.accept			= inet_csk_accept,
2587 	.ioctl			= tcp_ioctl,
2588 	.init			= tcp_v4_init_sock,
2589 	.destroy		= tcp_v4_destroy_sock,
2590 	.shutdown		= tcp_shutdown,
2591 	.setsockopt		= tcp_setsockopt,
2592 	.getsockopt		= tcp_getsockopt,
2593 	.recvmsg		= tcp_recvmsg,
2594 	.sendmsg		= tcp_sendmsg,
2595 	.sendpage		= tcp_sendpage,
2596 	.backlog_rcv		= tcp_v4_do_rcv,
2597 	.hash			= inet_hash,
2598 	.unhash			= inet_unhash,
2599 	.get_port		= inet_csk_get_port,
2600 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2601 	.sockets_allocated	= &tcp_sockets_allocated,
2602 	.orphan_count		= &tcp_orphan_count,
2603 	.memory_allocated	= &tcp_memory_allocated,
2604 	.memory_pressure	= &tcp_memory_pressure,
2605 	.sysctl_mem		= sysctl_tcp_mem,
2606 	.sysctl_wmem		= sysctl_tcp_wmem,
2607 	.sysctl_rmem		= sysctl_tcp_rmem,
2608 	.max_header		= MAX_TCP_HEADER,
2609 	.obj_size		= sizeof(struct tcp_sock),
2610 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2611 	.twsk_prot		= &tcp_timewait_sock_ops,
2612 	.rsk_prot		= &tcp_request_sock_ops,
2613 	.h.hashinfo		= &tcp_hashinfo,
2614 	.no_autobind		= true,
2615 #ifdef CONFIG_COMPAT
2616 	.compat_setsockopt	= compat_tcp_setsockopt,
2617 	.compat_getsockopt	= compat_tcp_getsockopt,
2618 #endif
2619 };
2620 EXPORT_SYMBOL(tcp_prot);
2621 
2622 
2623 static int __net_init tcp_sk_init(struct net *net)
2624 {
2625 	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2626 				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2627 }
2628 
2629 static void __net_exit tcp_sk_exit(struct net *net)
2630 {
2631 	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2632 }
2633 
2634 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2635 {
2636 	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2637 }
2638 
2639 static struct pernet_operations __net_initdata tcp_sk_ops = {
2640        .init	   = tcp_sk_init,
2641        .exit	   = tcp_sk_exit,
2642        .exit_batch = tcp_sk_exit_batch,
2643 };
2644 
2645 void __init tcp_v4_init(void)
2646 {
2647 	inet_hashinfo_init(&tcp_hashinfo);
2648 	if (register_pernet_subsys(&tcp_sk_ops))
2649 		panic("Failed to create the TCP control socket.\n");
2650 }
2651