xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 6a613ac6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
78 
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84 
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87 
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91 
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96 
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99 
100 static  __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 					  ip_hdr(skb)->saddr,
104 					  tcp_hdr(skb)->dest,
105 					  tcp_hdr(skb)->source);
106 }
107 
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 	struct tcp_sock *tp = tcp_sk(sk);
112 
113 	/* With PAWS, it is safe from the viewpoint
114 	   of data integrity. Even without PAWS it is safe provided sequence
115 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116 
117 	   Actually, the idea is close to VJ's one, only timestamp cache is
118 	   held not per host, but per port pair and TW bucket is used as state
119 	   holder.
120 
121 	   If TW bucket has been already destroyed we fall back to VJ's scheme
122 	   and use initial timestamp retrieved from peer table.
123 	 */
124 	if (tcptw->tw_ts_recent_stamp &&
125 	    (!twp || (sysctl_tcp_tw_reuse &&
126 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 		if (tp->write_seq == 0)
129 			tp->write_seq = 1;
130 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
131 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 		sock_hold(sktw);
133 		return 1;
134 	}
135 
136 	return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139 
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 	struct inet_sock *inet = inet_sk(sk);
145 	struct tcp_sock *tp = tcp_sk(sk);
146 	__be16 orig_sport, orig_dport;
147 	__be32 daddr, nexthop;
148 	struct flowi4 *fl4;
149 	struct rtable *rt;
150 	int err;
151 	struct ip_options_rcu *inet_opt;
152 
153 	if (addr_len < sizeof(struct sockaddr_in))
154 		return -EINVAL;
155 
156 	if (usin->sin_family != AF_INET)
157 		return -EAFNOSUPPORT;
158 
159 	nexthop = daddr = usin->sin_addr.s_addr;
160 	inet_opt = rcu_dereference_protected(inet->inet_opt,
161 					     sock_owned_by_user(sk));
162 	if (inet_opt && inet_opt->opt.srr) {
163 		if (!daddr)
164 			return -EINVAL;
165 		nexthop = inet_opt->opt.faddr;
166 	}
167 
168 	orig_sport = inet->inet_sport;
169 	orig_dport = usin->sin_port;
170 	fl4 = &inet->cork.fl.u.ip4;
171 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 			      IPPROTO_TCP,
174 			      orig_sport, orig_dport, sk);
175 	if (IS_ERR(rt)) {
176 		err = PTR_ERR(rt);
177 		if (err == -ENETUNREACH)
178 			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 		return err;
180 	}
181 
182 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 		ip_rt_put(rt);
184 		return -ENETUNREACH;
185 	}
186 
187 	if (!inet_opt || !inet_opt->opt.srr)
188 		daddr = fl4->daddr;
189 
190 	if (!inet->inet_saddr)
191 		inet->inet_saddr = fl4->saddr;
192 	sk_rcv_saddr_set(sk, inet->inet_saddr);
193 
194 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 		/* Reset inherited state */
196 		tp->rx_opt.ts_recent	   = 0;
197 		tp->rx_opt.ts_recent_stamp = 0;
198 		if (likely(!tp->repair))
199 			tp->write_seq	   = 0;
200 	}
201 
202 	if (tcp_death_row.sysctl_tw_recycle &&
203 	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
204 		tcp_fetch_timewait_stamp(sk, &rt->dst);
205 
206 	inet->inet_dport = usin->sin_port;
207 	sk_daddr_set(sk, daddr);
208 
209 	inet_csk(sk)->icsk_ext_hdr_len = 0;
210 	if (inet_opt)
211 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212 
213 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214 
215 	/* Socket identity is still unknown (sport may be zero).
216 	 * However we set state to SYN-SENT and not releasing socket
217 	 * lock select source port, enter ourselves into the hash tables and
218 	 * complete initialization after this.
219 	 */
220 	tcp_set_state(sk, TCP_SYN_SENT);
221 	err = inet_hash_connect(&tcp_death_row, sk);
222 	if (err)
223 		goto failure;
224 
225 	sk_set_txhash(sk);
226 
227 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 			       inet->inet_sport, inet->inet_dport, sk);
229 	if (IS_ERR(rt)) {
230 		err = PTR_ERR(rt);
231 		rt = NULL;
232 		goto failure;
233 	}
234 	/* OK, now commit destination to socket.  */
235 	sk->sk_gso_type = SKB_GSO_TCPV4;
236 	sk_setup_caps(sk, &rt->dst);
237 
238 	if (!tp->write_seq && likely(!tp->repair))
239 		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 							   inet->inet_daddr,
241 							   inet->inet_sport,
242 							   usin->sin_port);
243 
244 	inet->inet_id = tp->write_seq ^ jiffies;
245 
246 	err = tcp_connect(sk);
247 
248 	rt = NULL;
249 	if (err)
250 		goto failure;
251 
252 	return 0;
253 
254 failure:
255 	/*
256 	 * This unhashes the socket and releases the local port,
257 	 * if necessary.
258 	 */
259 	tcp_set_state(sk, TCP_CLOSE);
260 	ip_rt_put(rt);
261 	sk->sk_route_caps = 0;
262 	inet->inet_dport = 0;
263 	return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266 
267 /*
268  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269  * It can be called through tcp_release_cb() if socket was owned by user
270  * at the time tcp_v4_err() was called to handle ICMP message.
271  */
272 void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 	struct dst_entry *dst;
275 	struct inet_sock *inet = inet_sk(sk);
276 	u32 mtu = tcp_sk(sk)->mtu_info;
277 
278 	dst = inet_csk_update_pmtu(sk, mtu);
279 	if (!dst)
280 		return;
281 
282 	/* Something is about to be wrong... Remember soft error
283 	 * for the case, if this connection will not able to recover.
284 	 */
285 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 		sk->sk_err_soft = EMSGSIZE;
287 
288 	mtu = dst_mtu(dst);
289 
290 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 	    ip_sk_accept_pmtu(sk) &&
292 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 		tcp_sync_mss(sk, mtu);
294 
295 		/* Resend the TCP packet because it's
296 		 * clear that the old packet has been
297 		 * dropped. This is the new "fast" path mtu
298 		 * discovery.
299 		 */
300 		tcp_simple_retransmit(sk);
301 	} /* else let the usual retransmit timer handle it */
302 }
303 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
304 
305 static void do_redirect(struct sk_buff *skb, struct sock *sk)
306 {
307 	struct dst_entry *dst = __sk_dst_check(sk, 0);
308 
309 	if (dst)
310 		dst->ops->redirect(dst, sk, skb);
311 }
312 
313 
314 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
315 void tcp_req_err(struct sock *sk, u32 seq)
316 {
317 	struct request_sock *req = inet_reqsk(sk);
318 	struct net *net = sock_net(sk);
319 
320 	/* ICMPs are not backlogged, hence we cannot get
321 	 * an established socket here.
322 	 */
323 	WARN_ON(req->sk);
324 
325 	if (seq != tcp_rsk(req)->snt_isn) {
326 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
327 	} else {
328 		/*
329 		 * Still in SYN_RECV, just remove it silently.
330 		 * There is no good way to pass the error to the newly
331 		 * created socket, and POSIX does not want network
332 		 * errors returned from accept().
333 		 */
334 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
335 		NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
336 	}
337 	reqsk_put(req);
338 }
339 EXPORT_SYMBOL(tcp_req_err);
340 
341 /*
342  * This routine is called by the ICMP module when it gets some
343  * sort of error condition.  If err < 0 then the socket should
344  * be closed and the error returned to the user.  If err > 0
345  * it's just the icmp type << 8 | icmp code.  After adjustment
346  * header points to the first 8 bytes of the tcp header.  We need
347  * to find the appropriate port.
348  *
349  * The locking strategy used here is very "optimistic". When
350  * someone else accesses the socket the ICMP is just dropped
351  * and for some paths there is no check at all.
352  * A more general error queue to queue errors for later handling
353  * is probably better.
354  *
355  */
356 
357 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
358 {
359 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
360 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
361 	struct inet_connection_sock *icsk;
362 	struct tcp_sock *tp;
363 	struct inet_sock *inet;
364 	const int type = icmp_hdr(icmp_skb)->type;
365 	const int code = icmp_hdr(icmp_skb)->code;
366 	struct sock *sk;
367 	struct sk_buff *skb;
368 	struct request_sock *fastopen;
369 	__u32 seq, snd_una;
370 	__u32 remaining;
371 	int err;
372 	struct net *net = dev_net(icmp_skb->dev);
373 
374 	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
375 				       th->dest, iph->saddr, ntohs(th->source),
376 				       inet_iif(icmp_skb));
377 	if (!sk) {
378 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 		return;
380 	}
381 	if (sk->sk_state == TCP_TIME_WAIT) {
382 		inet_twsk_put(inet_twsk(sk));
383 		return;
384 	}
385 	seq = ntohl(th->seq);
386 	if (sk->sk_state == TCP_NEW_SYN_RECV)
387 		return tcp_req_err(sk, seq);
388 
389 	bh_lock_sock(sk);
390 	/* If too many ICMPs get dropped on busy
391 	 * servers this needs to be solved differently.
392 	 * We do take care of PMTU discovery (RFC1191) special case :
393 	 * we can receive locally generated ICMP messages while socket is held.
394 	 */
395 	if (sock_owned_by_user(sk)) {
396 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
397 			NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
398 	}
399 	if (sk->sk_state == TCP_CLOSE)
400 		goto out;
401 
402 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
403 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
404 		goto out;
405 	}
406 
407 	icsk = inet_csk(sk);
408 	tp = tcp_sk(sk);
409 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
410 	fastopen = tp->fastopen_rsk;
411 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
412 	if (sk->sk_state != TCP_LISTEN &&
413 	    !between(seq, snd_una, tp->snd_nxt)) {
414 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
415 		goto out;
416 	}
417 
418 	switch (type) {
419 	case ICMP_REDIRECT:
420 		do_redirect(icmp_skb, sk);
421 		goto out;
422 	case ICMP_SOURCE_QUENCH:
423 		/* Just silently ignore these. */
424 		goto out;
425 	case ICMP_PARAMETERPROB:
426 		err = EPROTO;
427 		break;
428 	case ICMP_DEST_UNREACH:
429 		if (code > NR_ICMP_UNREACH)
430 			goto out;
431 
432 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
433 			/* We are not interested in TCP_LISTEN and open_requests
434 			 * (SYN-ACKs send out by Linux are always <576bytes so
435 			 * they should go through unfragmented).
436 			 */
437 			if (sk->sk_state == TCP_LISTEN)
438 				goto out;
439 
440 			tp->mtu_info = info;
441 			if (!sock_owned_by_user(sk)) {
442 				tcp_v4_mtu_reduced(sk);
443 			} else {
444 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
445 					sock_hold(sk);
446 			}
447 			goto out;
448 		}
449 
450 		err = icmp_err_convert[code].errno;
451 		/* check if icmp_skb allows revert of backoff
452 		 * (see draft-zimmermann-tcp-lcd) */
453 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
454 			break;
455 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
456 		    !icsk->icsk_backoff || fastopen)
457 			break;
458 
459 		if (sock_owned_by_user(sk))
460 			break;
461 
462 		icsk->icsk_backoff--;
463 		icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
464 					       TCP_TIMEOUT_INIT;
465 		icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
466 
467 		skb = tcp_write_queue_head(sk);
468 		BUG_ON(!skb);
469 
470 		remaining = icsk->icsk_rto -
471 			    min(icsk->icsk_rto,
472 				tcp_time_stamp - tcp_skb_timestamp(skb));
473 
474 		if (remaining) {
475 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
476 						  remaining, TCP_RTO_MAX);
477 		} else {
478 			/* RTO revert clocked out retransmission.
479 			 * Will retransmit now */
480 			tcp_retransmit_timer(sk);
481 		}
482 
483 		break;
484 	case ICMP_TIME_EXCEEDED:
485 		err = EHOSTUNREACH;
486 		break;
487 	default:
488 		goto out;
489 	}
490 
491 	switch (sk->sk_state) {
492 	case TCP_SYN_SENT:
493 	case TCP_SYN_RECV:
494 		/* Only in fast or simultaneous open. If a fast open socket is
495 		 * is already accepted it is treated as a connected one below.
496 		 */
497 		if (fastopen && !fastopen->sk)
498 			break;
499 
500 		if (!sock_owned_by_user(sk)) {
501 			sk->sk_err = err;
502 
503 			sk->sk_error_report(sk);
504 
505 			tcp_done(sk);
506 		} else {
507 			sk->sk_err_soft = err;
508 		}
509 		goto out;
510 	}
511 
512 	/* If we've already connected we will keep trying
513 	 * until we time out, or the user gives up.
514 	 *
515 	 * rfc1122 4.2.3.9 allows to consider as hard errors
516 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
517 	 * but it is obsoleted by pmtu discovery).
518 	 *
519 	 * Note, that in modern internet, where routing is unreliable
520 	 * and in each dark corner broken firewalls sit, sending random
521 	 * errors ordered by their masters even this two messages finally lose
522 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
523 	 *
524 	 * Now we are in compliance with RFCs.
525 	 *							--ANK (980905)
526 	 */
527 
528 	inet = inet_sk(sk);
529 	if (!sock_owned_by_user(sk) && inet->recverr) {
530 		sk->sk_err = err;
531 		sk->sk_error_report(sk);
532 	} else	{ /* Only an error on timeout */
533 		sk->sk_err_soft = err;
534 	}
535 
536 out:
537 	bh_unlock_sock(sk);
538 	sock_put(sk);
539 }
540 
541 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
542 {
543 	struct tcphdr *th = tcp_hdr(skb);
544 
545 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
546 		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
547 		skb->csum_start = skb_transport_header(skb) - skb->head;
548 		skb->csum_offset = offsetof(struct tcphdr, check);
549 	} else {
550 		th->check = tcp_v4_check(skb->len, saddr, daddr,
551 					 csum_partial(th,
552 						      th->doff << 2,
553 						      skb->csum));
554 	}
555 }
556 
557 /* This routine computes an IPv4 TCP checksum. */
558 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
559 {
560 	const struct inet_sock *inet = inet_sk(sk);
561 
562 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
563 }
564 EXPORT_SYMBOL(tcp_v4_send_check);
565 
566 /*
567  *	This routine will send an RST to the other tcp.
568  *
569  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
570  *		      for reset.
571  *	Answer: if a packet caused RST, it is not for a socket
572  *		existing in our system, if it is matched to a socket,
573  *		it is just duplicate segment or bug in other side's TCP.
574  *		So that we build reply only basing on parameters
575  *		arrived with segment.
576  *	Exception: precedence violation. We do not implement it in any case.
577  */
578 
579 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
580 {
581 	const struct tcphdr *th = tcp_hdr(skb);
582 	struct {
583 		struct tcphdr th;
584 #ifdef CONFIG_TCP_MD5SIG
585 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
586 #endif
587 	} rep;
588 	struct ip_reply_arg arg;
589 #ifdef CONFIG_TCP_MD5SIG
590 	struct tcp_md5sig_key *key;
591 	const __u8 *hash_location = NULL;
592 	unsigned char newhash[16];
593 	int genhash;
594 	struct sock *sk1 = NULL;
595 #endif
596 	struct net *net;
597 
598 	/* Never send a reset in response to a reset. */
599 	if (th->rst)
600 		return;
601 
602 	/* If sk not NULL, it means we did a successful lookup and incoming
603 	 * route had to be correct. prequeue might have dropped our dst.
604 	 */
605 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
606 		return;
607 
608 	/* Swap the send and the receive. */
609 	memset(&rep, 0, sizeof(rep));
610 	rep.th.dest   = th->source;
611 	rep.th.source = th->dest;
612 	rep.th.doff   = sizeof(struct tcphdr) / 4;
613 	rep.th.rst    = 1;
614 
615 	if (th->ack) {
616 		rep.th.seq = th->ack_seq;
617 	} else {
618 		rep.th.ack = 1;
619 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
620 				       skb->len - (th->doff << 2));
621 	}
622 
623 	memset(&arg, 0, sizeof(arg));
624 	arg.iov[0].iov_base = (unsigned char *)&rep;
625 	arg.iov[0].iov_len  = sizeof(rep.th);
626 
627 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
628 #ifdef CONFIG_TCP_MD5SIG
629 	hash_location = tcp_parse_md5sig_option(th);
630 	if (!sk && hash_location) {
631 		/*
632 		 * active side is lost. Try to find listening socket through
633 		 * source port, and then find md5 key through listening socket.
634 		 * we are not loose security here:
635 		 * Incoming packet is checked with md5 hash with finding key,
636 		 * no RST generated if md5 hash doesn't match.
637 		 */
638 		sk1 = __inet_lookup_listener(net,
639 					     &tcp_hashinfo, ip_hdr(skb)->saddr,
640 					     th->source, ip_hdr(skb)->daddr,
641 					     ntohs(th->source), inet_iif(skb));
642 		/* don't send rst if it can't find key */
643 		if (!sk1)
644 			return;
645 		rcu_read_lock();
646 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
647 					&ip_hdr(skb)->saddr, AF_INET);
648 		if (!key)
649 			goto release_sk1;
650 
651 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
652 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
653 			goto release_sk1;
654 	} else {
655 		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
656 					     &ip_hdr(skb)->saddr,
657 					     AF_INET) : NULL;
658 	}
659 
660 	if (key) {
661 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
662 				   (TCPOPT_NOP << 16) |
663 				   (TCPOPT_MD5SIG << 8) |
664 				   TCPOLEN_MD5SIG);
665 		/* Update length and the length the header thinks exists */
666 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
667 		rep.th.doff = arg.iov[0].iov_len / 4;
668 
669 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
670 				     key, ip_hdr(skb)->saddr,
671 				     ip_hdr(skb)->daddr, &rep.th);
672 	}
673 #endif
674 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
675 				      ip_hdr(skb)->saddr, /* XXX */
676 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
677 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
678 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
679 	/* When socket is gone, all binding information is lost.
680 	 * routing might fail in this case. No choice here, if we choose to force
681 	 * input interface, we will misroute in case of asymmetric route.
682 	 */
683 	if (sk)
684 		arg.bound_dev_if = sk->sk_bound_dev_if;
685 
686 	arg.tos = ip_hdr(skb)->tos;
687 	ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
688 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
689 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
690 			      &arg, arg.iov[0].iov_len);
691 
692 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
693 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
694 
695 #ifdef CONFIG_TCP_MD5SIG
696 release_sk1:
697 	if (sk1) {
698 		rcu_read_unlock();
699 		sock_put(sk1);
700 	}
701 #endif
702 }
703 
704 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
705    outside socket context is ugly, certainly. What can I do?
706  */
707 
708 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
709 			    u32 win, u32 tsval, u32 tsecr, int oif,
710 			    struct tcp_md5sig_key *key,
711 			    int reply_flags, u8 tos)
712 {
713 	const struct tcphdr *th = tcp_hdr(skb);
714 	struct {
715 		struct tcphdr th;
716 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
717 #ifdef CONFIG_TCP_MD5SIG
718 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
719 #endif
720 			];
721 	} rep;
722 	struct ip_reply_arg arg;
723 	struct net *net = dev_net(skb_dst(skb)->dev);
724 
725 	memset(&rep.th, 0, sizeof(struct tcphdr));
726 	memset(&arg, 0, sizeof(arg));
727 
728 	arg.iov[0].iov_base = (unsigned char *)&rep;
729 	arg.iov[0].iov_len  = sizeof(rep.th);
730 	if (tsecr) {
731 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
732 				   (TCPOPT_TIMESTAMP << 8) |
733 				   TCPOLEN_TIMESTAMP);
734 		rep.opt[1] = htonl(tsval);
735 		rep.opt[2] = htonl(tsecr);
736 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
737 	}
738 
739 	/* Swap the send and the receive. */
740 	rep.th.dest    = th->source;
741 	rep.th.source  = th->dest;
742 	rep.th.doff    = arg.iov[0].iov_len / 4;
743 	rep.th.seq     = htonl(seq);
744 	rep.th.ack_seq = htonl(ack);
745 	rep.th.ack     = 1;
746 	rep.th.window  = htons(win);
747 
748 #ifdef CONFIG_TCP_MD5SIG
749 	if (key) {
750 		int offset = (tsecr) ? 3 : 0;
751 
752 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
753 					  (TCPOPT_NOP << 16) |
754 					  (TCPOPT_MD5SIG << 8) |
755 					  TCPOLEN_MD5SIG);
756 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
757 		rep.th.doff = arg.iov[0].iov_len/4;
758 
759 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
760 				    key, ip_hdr(skb)->saddr,
761 				    ip_hdr(skb)->daddr, &rep.th);
762 	}
763 #endif
764 	arg.flags = reply_flags;
765 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
766 				      ip_hdr(skb)->saddr, /* XXX */
767 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
768 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
769 	if (oif)
770 		arg.bound_dev_if = oif;
771 	arg.tos = tos;
772 	ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
773 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
774 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
775 			      &arg, arg.iov[0].iov_len);
776 
777 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
778 }
779 
780 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
781 {
782 	struct inet_timewait_sock *tw = inet_twsk(sk);
783 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
784 
785 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
786 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
787 			tcp_time_stamp + tcptw->tw_ts_offset,
788 			tcptw->tw_ts_recent,
789 			tw->tw_bound_dev_if,
790 			tcp_twsk_md5_key(tcptw),
791 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
792 			tw->tw_tos
793 			);
794 
795 	inet_twsk_put(tw);
796 }
797 
798 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
799 				  struct request_sock *req)
800 {
801 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
802 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
803 	 */
804 	tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
805 			tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
806 			tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
807 			tcp_time_stamp,
808 			req->ts_recent,
809 			0,
810 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
811 					  AF_INET),
812 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
813 			ip_hdr(skb)->tos);
814 }
815 
816 /*
817  *	Send a SYN-ACK after having received a SYN.
818  *	This still operates on a request_sock only, not on a big
819  *	socket.
820  */
821 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
822 			      struct flowi *fl,
823 			      struct request_sock *req,
824 			      struct tcp_fastopen_cookie *foc,
825 				  bool attach_req)
826 {
827 	const struct inet_request_sock *ireq = inet_rsk(req);
828 	struct flowi4 fl4;
829 	int err = -1;
830 	struct sk_buff *skb;
831 
832 	/* First, grab a route. */
833 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834 		return -1;
835 
836 	skb = tcp_make_synack(sk, dst, req, foc, attach_req);
837 
838 	if (skb) {
839 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
840 
841 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
842 					    ireq->ir_rmt_addr,
843 					    ireq->opt);
844 		err = net_xmit_eval(err);
845 	}
846 
847 	return err;
848 }
849 
850 /*
851  *	IPv4 request_sock destructor.
852  */
853 static void tcp_v4_reqsk_destructor(struct request_sock *req)
854 {
855 	kfree(inet_rsk(req)->opt);
856 }
857 
858 
859 #ifdef CONFIG_TCP_MD5SIG
860 /*
861  * RFC2385 MD5 checksumming requires a mapping of
862  * IP address->MD5 Key.
863  * We need to maintain these in the sk structure.
864  */
865 
866 /* Find the Key structure for an address.  */
867 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
868 					 const union tcp_md5_addr *addr,
869 					 int family)
870 {
871 	const struct tcp_sock *tp = tcp_sk(sk);
872 	struct tcp_md5sig_key *key;
873 	unsigned int size = sizeof(struct in_addr);
874 	const struct tcp_md5sig_info *md5sig;
875 
876 	/* caller either holds rcu_read_lock() or socket lock */
877 	md5sig = rcu_dereference_check(tp->md5sig_info,
878 				       sock_owned_by_user(sk) ||
879 				       lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
880 	if (!md5sig)
881 		return NULL;
882 #if IS_ENABLED(CONFIG_IPV6)
883 	if (family == AF_INET6)
884 		size = sizeof(struct in6_addr);
885 #endif
886 	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
887 		if (key->family != family)
888 			continue;
889 		if (!memcmp(&key->addr, addr, size))
890 			return key;
891 	}
892 	return NULL;
893 }
894 EXPORT_SYMBOL(tcp_md5_do_lookup);
895 
896 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
897 					 const struct sock *addr_sk)
898 {
899 	const union tcp_md5_addr *addr;
900 
901 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
902 	return tcp_md5_do_lookup(sk, addr, AF_INET);
903 }
904 EXPORT_SYMBOL(tcp_v4_md5_lookup);
905 
906 /* This can be called on a newly created socket, from other files */
907 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
908 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
909 {
910 	/* Add Key to the list */
911 	struct tcp_md5sig_key *key;
912 	struct tcp_sock *tp = tcp_sk(sk);
913 	struct tcp_md5sig_info *md5sig;
914 
915 	key = tcp_md5_do_lookup(sk, addr, family);
916 	if (key) {
917 		/* Pre-existing entry - just update that one. */
918 		memcpy(key->key, newkey, newkeylen);
919 		key->keylen = newkeylen;
920 		return 0;
921 	}
922 
923 	md5sig = rcu_dereference_protected(tp->md5sig_info,
924 					   sock_owned_by_user(sk) ||
925 					   lockdep_is_held(&sk->sk_lock.slock));
926 	if (!md5sig) {
927 		md5sig = kmalloc(sizeof(*md5sig), gfp);
928 		if (!md5sig)
929 			return -ENOMEM;
930 
931 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
932 		INIT_HLIST_HEAD(&md5sig->head);
933 		rcu_assign_pointer(tp->md5sig_info, md5sig);
934 	}
935 
936 	key = sock_kmalloc(sk, sizeof(*key), gfp);
937 	if (!key)
938 		return -ENOMEM;
939 	if (!tcp_alloc_md5sig_pool()) {
940 		sock_kfree_s(sk, key, sizeof(*key));
941 		return -ENOMEM;
942 	}
943 
944 	memcpy(key->key, newkey, newkeylen);
945 	key->keylen = newkeylen;
946 	key->family = family;
947 	memcpy(&key->addr, addr,
948 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
949 				      sizeof(struct in_addr));
950 	hlist_add_head_rcu(&key->node, &md5sig->head);
951 	return 0;
952 }
953 EXPORT_SYMBOL(tcp_md5_do_add);
954 
955 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
956 {
957 	struct tcp_md5sig_key *key;
958 
959 	key = tcp_md5_do_lookup(sk, addr, family);
960 	if (!key)
961 		return -ENOENT;
962 	hlist_del_rcu(&key->node);
963 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
964 	kfree_rcu(key, rcu);
965 	return 0;
966 }
967 EXPORT_SYMBOL(tcp_md5_do_del);
968 
969 static void tcp_clear_md5_list(struct sock *sk)
970 {
971 	struct tcp_sock *tp = tcp_sk(sk);
972 	struct tcp_md5sig_key *key;
973 	struct hlist_node *n;
974 	struct tcp_md5sig_info *md5sig;
975 
976 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
977 
978 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
979 		hlist_del_rcu(&key->node);
980 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
981 		kfree_rcu(key, rcu);
982 	}
983 }
984 
985 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
986 				 int optlen)
987 {
988 	struct tcp_md5sig cmd;
989 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
990 
991 	if (optlen < sizeof(cmd))
992 		return -EINVAL;
993 
994 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
995 		return -EFAULT;
996 
997 	if (sin->sin_family != AF_INET)
998 		return -EINVAL;
999 
1000 	if (!cmd.tcpm_keylen)
1001 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1002 				      AF_INET);
1003 
1004 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1005 		return -EINVAL;
1006 
1007 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1008 			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1009 			      GFP_KERNEL);
1010 }
1011 
1012 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1013 					__be32 daddr, __be32 saddr, int nbytes)
1014 {
1015 	struct tcp4_pseudohdr *bp;
1016 	struct scatterlist sg;
1017 
1018 	bp = &hp->md5_blk.ip4;
1019 
1020 	/*
1021 	 * 1. the TCP pseudo-header (in the order: source IP address,
1022 	 * destination IP address, zero-padded protocol number, and
1023 	 * segment length)
1024 	 */
1025 	bp->saddr = saddr;
1026 	bp->daddr = daddr;
1027 	bp->pad = 0;
1028 	bp->protocol = IPPROTO_TCP;
1029 	bp->len = cpu_to_be16(nbytes);
1030 
1031 	sg_init_one(&sg, bp, sizeof(*bp));
1032 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1033 }
1034 
1035 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1036 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1037 {
1038 	struct tcp_md5sig_pool *hp;
1039 	struct hash_desc *desc;
1040 
1041 	hp = tcp_get_md5sig_pool();
1042 	if (!hp)
1043 		goto clear_hash_noput;
1044 	desc = &hp->md5_desc;
1045 
1046 	if (crypto_hash_init(desc))
1047 		goto clear_hash;
1048 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1049 		goto clear_hash;
1050 	if (tcp_md5_hash_header(hp, th))
1051 		goto clear_hash;
1052 	if (tcp_md5_hash_key(hp, key))
1053 		goto clear_hash;
1054 	if (crypto_hash_final(desc, md5_hash))
1055 		goto clear_hash;
1056 
1057 	tcp_put_md5sig_pool();
1058 	return 0;
1059 
1060 clear_hash:
1061 	tcp_put_md5sig_pool();
1062 clear_hash_noput:
1063 	memset(md5_hash, 0, 16);
1064 	return 1;
1065 }
1066 
1067 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1068 			const struct sock *sk,
1069 			const struct sk_buff *skb)
1070 {
1071 	struct tcp_md5sig_pool *hp;
1072 	struct hash_desc *desc;
1073 	const struct tcphdr *th = tcp_hdr(skb);
1074 	__be32 saddr, daddr;
1075 
1076 	if (sk) { /* valid for establish/request sockets */
1077 		saddr = sk->sk_rcv_saddr;
1078 		daddr = sk->sk_daddr;
1079 	} else {
1080 		const struct iphdr *iph = ip_hdr(skb);
1081 		saddr = iph->saddr;
1082 		daddr = iph->daddr;
1083 	}
1084 
1085 	hp = tcp_get_md5sig_pool();
1086 	if (!hp)
1087 		goto clear_hash_noput;
1088 	desc = &hp->md5_desc;
1089 
1090 	if (crypto_hash_init(desc))
1091 		goto clear_hash;
1092 
1093 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1094 		goto clear_hash;
1095 	if (tcp_md5_hash_header(hp, th))
1096 		goto clear_hash;
1097 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1098 		goto clear_hash;
1099 	if (tcp_md5_hash_key(hp, key))
1100 		goto clear_hash;
1101 	if (crypto_hash_final(desc, md5_hash))
1102 		goto clear_hash;
1103 
1104 	tcp_put_md5sig_pool();
1105 	return 0;
1106 
1107 clear_hash:
1108 	tcp_put_md5sig_pool();
1109 clear_hash_noput:
1110 	memset(md5_hash, 0, 16);
1111 	return 1;
1112 }
1113 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1114 
1115 #endif
1116 
1117 /* Called with rcu_read_lock() */
1118 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1119 				    const struct sk_buff *skb)
1120 {
1121 #ifdef CONFIG_TCP_MD5SIG
1122 	/*
1123 	 * This gets called for each TCP segment that arrives
1124 	 * so we want to be efficient.
1125 	 * We have 3 drop cases:
1126 	 * o No MD5 hash and one expected.
1127 	 * o MD5 hash and we're not expecting one.
1128 	 * o MD5 hash and its wrong.
1129 	 */
1130 	const __u8 *hash_location = NULL;
1131 	struct tcp_md5sig_key *hash_expected;
1132 	const struct iphdr *iph = ip_hdr(skb);
1133 	const struct tcphdr *th = tcp_hdr(skb);
1134 	int genhash;
1135 	unsigned char newhash[16];
1136 
1137 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1138 					  AF_INET);
1139 	hash_location = tcp_parse_md5sig_option(th);
1140 
1141 	/* We've parsed the options - do we have a hash? */
1142 	if (!hash_expected && !hash_location)
1143 		return false;
1144 
1145 	if (hash_expected && !hash_location) {
1146 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1147 		return true;
1148 	}
1149 
1150 	if (!hash_expected && hash_location) {
1151 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1152 		return true;
1153 	}
1154 
1155 	/* Okay, so this is hash_expected and hash_location -
1156 	 * so we need to calculate the checksum.
1157 	 */
1158 	genhash = tcp_v4_md5_hash_skb(newhash,
1159 				      hash_expected,
1160 				      NULL, skb);
1161 
1162 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1163 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1164 				     &iph->saddr, ntohs(th->source),
1165 				     &iph->daddr, ntohs(th->dest),
1166 				     genhash ? " tcp_v4_calc_md5_hash failed"
1167 				     : "");
1168 		return true;
1169 	}
1170 	return false;
1171 #endif
1172 	return false;
1173 }
1174 
1175 static void tcp_v4_init_req(struct request_sock *req,
1176 			    const struct sock *sk_listener,
1177 			    struct sk_buff *skb)
1178 {
1179 	struct inet_request_sock *ireq = inet_rsk(req);
1180 
1181 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1182 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1183 	ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1184 	ireq->opt = tcp_v4_save_options(skb);
1185 }
1186 
1187 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1188 					  struct flowi *fl,
1189 					  const struct request_sock *req,
1190 					  bool *strict)
1191 {
1192 	struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1193 
1194 	if (strict) {
1195 		if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1196 			*strict = true;
1197 		else
1198 			*strict = false;
1199 	}
1200 
1201 	return dst;
1202 }
1203 
1204 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1205 	.family		=	PF_INET,
1206 	.obj_size	=	sizeof(struct tcp_request_sock),
1207 	.rtx_syn_ack	=	tcp_rtx_synack,
1208 	.send_ack	=	tcp_v4_reqsk_send_ack,
1209 	.destructor	=	tcp_v4_reqsk_destructor,
1210 	.send_reset	=	tcp_v4_send_reset,
1211 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1212 };
1213 
1214 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1215 	.mss_clamp	=	TCP_MSS_DEFAULT,
1216 #ifdef CONFIG_TCP_MD5SIG
1217 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1218 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1219 #endif
1220 	.init_req	=	tcp_v4_init_req,
1221 #ifdef CONFIG_SYN_COOKIES
1222 	.cookie_init_seq =	cookie_v4_init_sequence,
1223 #endif
1224 	.route_req	=	tcp_v4_route_req,
1225 	.init_seq	=	tcp_v4_init_sequence,
1226 	.send_synack	=	tcp_v4_send_synack,
1227 };
1228 
1229 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1230 {
1231 	/* Never answer to SYNs send to broadcast or multicast */
1232 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1233 		goto drop;
1234 
1235 	return tcp_conn_request(&tcp_request_sock_ops,
1236 				&tcp_request_sock_ipv4_ops, sk, skb);
1237 
1238 drop:
1239 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL(tcp_v4_conn_request);
1243 
1244 
1245 /*
1246  * The three way handshake has completed - we got a valid synack -
1247  * now create the new socket.
1248  */
1249 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1250 				  struct request_sock *req,
1251 				  struct dst_entry *dst,
1252 				  struct request_sock *req_unhash,
1253 				  bool *own_req)
1254 {
1255 	struct inet_request_sock *ireq;
1256 	struct inet_sock *newinet;
1257 	struct tcp_sock *newtp;
1258 	struct sock *newsk;
1259 #ifdef CONFIG_TCP_MD5SIG
1260 	struct tcp_md5sig_key *key;
1261 #endif
1262 	struct ip_options_rcu *inet_opt;
1263 
1264 	if (sk_acceptq_is_full(sk))
1265 		goto exit_overflow;
1266 
1267 	newsk = tcp_create_openreq_child(sk, req, skb);
1268 	if (!newsk)
1269 		goto exit_nonewsk;
1270 
1271 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1272 	inet_sk_rx_dst_set(newsk, skb);
1273 
1274 	newtp		      = tcp_sk(newsk);
1275 	newinet		      = inet_sk(newsk);
1276 	ireq		      = inet_rsk(req);
1277 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1278 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1279 	newinet->inet_saddr	      = ireq->ir_loc_addr;
1280 	inet_opt	      = ireq->opt;
1281 	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1282 	ireq->opt	      = NULL;
1283 	newinet->mc_index     = inet_iif(skb);
1284 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1285 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1286 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1287 	if (inet_opt)
1288 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1289 	newinet->inet_id = newtp->write_seq ^ jiffies;
1290 
1291 	if (!dst) {
1292 		dst = inet_csk_route_child_sock(sk, newsk, req);
1293 		if (!dst)
1294 			goto put_and_exit;
1295 	} else {
1296 		/* syncookie case : see end of cookie_v4_check() */
1297 	}
1298 	sk_setup_caps(newsk, dst);
1299 
1300 	tcp_ca_openreq_child(newsk, dst);
1301 
1302 	tcp_sync_mss(newsk, dst_mtu(dst));
1303 	newtp->advmss = dst_metric_advmss(dst);
1304 	if (tcp_sk(sk)->rx_opt.user_mss &&
1305 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1306 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1307 
1308 	tcp_initialize_rcv_mss(newsk);
1309 
1310 #ifdef CONFIG_TCP_MD5SIG
1311 	/* Copy over the MD5 key from the original socket */
1312 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1313 				AF_INET);
1314 	if (key) {
1315 		/*
1316 		 * We're using one, so create a matching key
1317 		 * on the newsk structure. If we fail to get
1318 		 * memory, then we end up not copying the key
1319 		 * across. Shucks.
1320 		 */
1321 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1322 			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1323 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1324 	}
1325 #endif
1326 
1327 	if (__inet_inherit_port(sk, newsk) < 0)
1328 		goto put_and_exit;
1329 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1330 	if (*own_req)
1331 		tcp_move_syn(newtp, req);
1332 
1333 	return newsk;
1334 
1335 exit_overflow:
1336 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1337 exit_nonewsk:
1338 	dst_release(dst);
1339 exit:
1340 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1341 	return NULL;
1342 put_and_exit:
1343 	inet_csk_prepare_forced_close(newsk);
1344 	tcp_done(newsk);
1345 	goto exit;
1346 }
1347 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1348 
1349 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1350 {
1351 #ifdef CONFIG_SYN_COOKIES
1352 	const struct tcphdr *th = tcp_hdr(skb);
1353 
1354 	if (!th->syn)
1355 		sk = cookie_v4_check(sk, skb);
1356 #endif
1357 	return sk;
1358 }
1359 
1360 /* The socket must have it's spinlock held when we get
1361  * here, unless it is a TCP_LISTEN socket.
1362  *
1363  * We have a potential double-lock case here, so even when
1364  * doing backlog processing we use the BH locking scheme.
1365  * This is because we cannot sleep with the original spinlock
1366  * held.
1367  */
1368 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1369 {
1370 	struct sock *rsk;
1371 
1372 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1373 		struct dst_entry *dst = sk->sk_rx_dst;
1374 
1375 		sock_rps_save_rxhash(sk, skb);
1376 		sk_mark_napi_id(sk, skb);
1377 		if (dst) {
1378 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1379 			    !dst->ops->check(dst, 0)) {
1380 				dst_release(dst);
1381 				sk->sk_rx_dst = NULL;
1382 			}
1383 		}
1384 		tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1385 		return 0;
1386 	}
1387 
1388 	if (tcp_checksum_complete(skb))
1389 		goto csum_err;
1390 
1391 	if (sk->sk_state == TCP_LISTEN) {
1392 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1393 
1394 		if (!nsk)
1395 			goto discard;
1396 		if (nsk != sk) {
1397 			sock_rps_save_rxhash(nsk, skb);
1398 			sk_mark_napi_id(nsk, skb);
1399 			if (tcp_child_process(sk, nsk, skb)) {
1400 				rsk = nsk;
1401 				goto reset;
1402 			}
1403 			return 0;
1404 		}
1405 	} else
1406 		sock_rps_save_rxhash(sk, skb);
1407 
1408 	if (tcp_rcv_state_process(sk, skb)) {
1409 		rsk = sk;
1410 		goto reset;
1411 	}
1412 	return 0;
1413 
1414 reset:
1415 	tcp_v4_send_reset(rsk, skb);
1416 discard:
1417 	kfree_skb(skb);
1418 	/* Be careful here. If this function gets more complicated and
1419 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1420 	 * might be destroyed here. This current version compiles correctly,
1421 	 * but you have been warned.
1422 	 */
1423 	return 0;
1424 
1425 csum_err:
1426 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1427 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1428 	goto discard;
1429 }
1430 EXPORT_SYMBOL(tcp_v4_do_rcv);
1431 
1432 void tcp_v4_early_demux(struct sk_buff *skb)
1433 {
1434 	const struct iphdr *iph;
1435 	const struct tcphdr *th;
1436 	struct sock *sk;
1437 
1438 	if (skb->pkt_type != PACKET_HOST)
1439 		return;
1440 
1441 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1442 		return;
1443 
1444 	iph = ip_hdr(skb);
1445 	th = tcp_hdr(skb);
1446 
1447 	if (th->doff < sizeof(struct tcphdr) / 4)
1448 		return;
1449 
1450 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1451 				       iph->saddr, th->source,
1452 				       iph->daddr, ntohs(th->dest),
1453 				       skb->skb_iif);
1454 	if (sk) {
1455 		skb->sk = sk;
1456 		skb->destructor = sock_edemux;
1457 		if (sk_fullsock(sk)) {
1458 			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1459 
1460 			if (dst)
1461 				dst = dst_check(dst, 0);
1462 			if (dst &&
1463 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1464 				skb_dst_set_noref(skb, dst);
1465 		}
1466 	}
1467 }
1468 
1469 /* Packet is added to VJ-style prequeue for processing in process
1470  * context, if a reader task is waiting. Apparently, this exciting
1471  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1472  * failed somewhere. Latency? Burstiness? Well, at least now we will
1473  * see, why it failed. 8)8)				  --ANK
1474  *
1475  */
1476 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1477 {
1478 	struct tcp_sock *tp = tcp_sk(sk);
1479 
1480 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
1481 		return false;
1482 
1483 	if (skb->len <= tcp_hdrlen(skb) &&
1484 	    skb_queue_len(&tp->ucopy.prequeue) == 0)
1485 		return false;
1486 
1487 	/* Before escaping RCU protected region, we need to take care of skb
1488 	 * dst. Prequeue is only enabled for established sockets.
1489 	 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1490 	 * Instead of doing full sk_rx_dst validity here, let's perform
1491 	 * an optimistic check.
1492 	 */
1493 	if (likely(sk->sk_rx_dst))
1494 		skb_dst_drop(skb);
1495 	else
1496 		skb_dst_force(skb);
1497 
1498 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1499 	tp->ucopy.memory += skb->truesize;
1500 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1501 		struct sk_buff *skb1;
1502 
1503 		BUG_ON(sock_owned_by_user(sk));
1504 
1505 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1506 			sk_backlog_rcv(sk, skb1);
1507 			NET_INC_STATS_BH(sock_net(sk),
1508 					 LINUX_MIB_TCPPREQUEUEDROPPED);
1509 		}
1510 
1511 		tp->ucopy.memory = 0;
1512 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1513 		wake_up_interruptible_sync_poll(sk_sleep(sk),
1514 					   POLLIN | POLLRDNORM | POLLRDBAND);
1515 		if (!inet_csk_ack_scheduled(sk))
1516 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1517 						  (3 * tcp_rto_min(sk)) / 4,
1518 						  TCP_RTO_MAX);
1519 	}
1520 	return true;
1521 }
1522 EXPORT_SYMBOL(tcp_prequeue);
1523 
1524 /*
1525  *	From tcp_input.c
1526  */
1527 
1528 int tcp_v4_rcv(struct sk_buff *skb)
1529 {
1530 	const struct iphdr *iph;
1531 	const struct tcphdr *th;
1532 	struct sock *sk;
1533 	int ret;
1534 	struct net *net = dev_net(skb->dev);
1535 
1536 	if (skb->pkt_type != PACKET_HOST)
1537 		goto discard_it;
1538 
1539 	/* Count it even if it's bad */
1540 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1541 
1542 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1543 		goto discard_it;
1544 
1545 	th = tcp_hdr(skb);
1546 
1547 	if (th->doff < sizeof(struct tcphdr) / 4)
1548 		goto bad_packet;
1549 	if (!pskb_may_pull(skb, th->doff * 4))
1550 		goto discard_it;
1551 
1552 	/* An explanation is required here, I think.
1553 	 * Packet length and doff are validated by header prediction,
1554 	 * provided case of th->doff==0 is eliminated.
1555 	 * So, we defer the checks. */
1556 
1557 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1558 		goto csum_error;
1559 
1560 	th = tcp_hdr(skb);
1561 	iph = ip_hdr(skb);
1562 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1563 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1564 	 */
1565 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1566 		sizeof(struct inet_skb_parm));
1567 	barrier();
1568 
1569 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1570 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1571 				    skb->len - th->doff * 4);
1572 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1573 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1574 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1575 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1576 	TCP_SKB_CB(skb)->sacked	 = 0;
1577 
1578 lookup:
1579 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1580 	if (!sk)
1581 		goto no_tcp_socket;
1582 
1583 process:
1584 	if (sk->sk_state == TCP_TIME_WAIT)
1585 		goto do_time_wait;
1586 
1587 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1588 		struct request_sock *req = inet_reqsk(sk);
1589 		struct sock *nsk = NULL;
1590 
1591 		sk = req->rsk_listener;
1592 		if (tcp_v4_inbound_md5_hash(sk, skb))
1593 			goto discard_and_relse;
1594 		if (likely(sk->sk_state == TCP_LISTEN)) {
1595 			nsk = tcp_check_req(sk, skb, req, false);
1596 		} else {
1597 			inet_csk_reqsk_queue_drop_and_put(sk, req);
1598 			goto lookup;
1599 		}
1600 		if (!nsk) {
1601 			reqsk_put(req);
1602 			goto discard_it;
1603 		}
1604 		if (nsk == sk) {
1605 			sock_hold(sk);
1606 			reqsk_put(req);
1607 		} else if (tcp_child_process(sk, nsk, skb)) {
1608 			tcp_v4_send_reset(nsk, skb);
1609 			goto discard_it;
1610 		} else {
1611 			return 0;
1612 		}
1613 	}
1614 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1615 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1616 		goto discard_and_relse;
1617 	}
1618 
1619 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1620 		goto discard_and_relse;
1621 
1622 	if (tcp_v4_inbound_md5_hash(sk, skb))
1623 		goto discard_and_relse;
1624 
1625 	nf_reset(skb);
1626 
1627 	if (sk_filter(sk, skb))
1628 		goto discard_and_relse;
1629 
1630 	skb->dev = NULL;
1631 
1632 	if (sk->sk_state == TCP_LISTEN) {
1633 		ret = tcp_v4_do_rcv(sk, skb);
1634 		goto put_and_return;
1635 	}
1636 
1637 	sk_incoming_cpu_update(sk);
1638 
1639 	bh_lock_sock_nested(sk);
1640 	tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1641 	ret = 0;
1642 	if (!sock_owned_by_user(sk)) {
1643 		if (!tcp_prequeue(sk, skb))
1644 			ret = tcp_v4_do_rcv(sk, skb);
1645 	} else if (unlikely(sk_add_backlog(sk, skb,
1646 					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
1647 		bh_unlock_sock(sk);
1648 		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1649 		goto discard_and_relse;
1650 	}
1651 	bh_unlock_sock(sk);
1652 
1653 put_and_return:
1654 	sock_put(sk);
1655 
1656 	return ret;
1657 
1658 no_tcp_socket:
1659 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1660 		goto discard_it;
1661 
1662 	if (tcp_checksum_complete(skb)) {
1663 csum_error:
1664 		TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1665 bad_packet:
1666 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1667 	} else {
1668 		tcp_v4_send_reset(NULL, skb);
1669 	}
1670 
1671 discard_it:
1672 	/* Discard frame. */
1673 	kfree_skb(skb);
1674 	return 0;
1675 
1676 discard_and_relse:
1677 	sock_put(sk);
1678 	goto discard_it;
1679 
1680 do_time_wait:
1681 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1682 		inet_twsk_put(inet_twsk(sk));
1683 		goto discard_it;
1684 	}
1685 
1686 	if (tcp_checksum_complete(skb)) {
1687 		inet_twsk_put(inet_twsk(sk));
1688 		goto csum_error;
1689 	}
1690 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1691 	case TCP_TW_SYN: {
1692 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1693 							&tcp_hashinfo,
1694 							iph->saddr, th->source,
1695 							iph->daddr, th->dest,
1696 							inet_iif(skb));
1697 		if (sk2) {
1698 			inet_twsk_deschedule_put(inet_twsk(sk));
1699 			sk = sk2;
1700 			goto process;
1701 		}
1702 		/* Fall through to ACK */
1703 	}
1704 	case TCP_TW_ACK:
1705 		tcp_v4_timewait_ack(sk, skb);
1706 		break;
1707 	case TCP_TW_RST:
1708 		goto no_tcp_socket;
1709 	case TCP_TW_SUCCESS:;
1710 	}
1711 	goto discard_it;
1712 }
1713 
1714 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1715 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1716 	.twsk_unique	= tcp_twsk_unique,
1717 	.twsk_destructor= tcp_twsk_destructor,
1718 };
1719 
1720 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1721 {
1722 	struct dst_entry *dst = skb_dst(skb);
1723 
1724 	if (dst) {
1725 		dst_hold(dst);
1726 		sk->sk_rx_dst = dst;
1727 		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1728 	}
1729 }
1730 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1731 
1732 const struct inet_connection_sock_af_ops ipv4_specific = {
1733 	.queue_xmit	   = ip_queue_xmit,
1734 	.send_check	   = tcp_v4_send_check,
1735 	.rebuild_header	   = inet_sk_rebuild_header,
1736 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
1737 	.conn_request	   = tcp_v4_conn_request,
1738 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1739 	.net_header_len	   = sizeof(struct iphdr),
1740 	.setsockopt	   = ip_setsockopt,
1741 	.getsockopt	   = ip_getsockopt,
1742 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1743 	.sockaddr_len	   = sizeof(struct sockaddr_in),
1744 	.bind_conflict	   = inet_csk_bind_conflict,
1745 #ifdef CONFIG_COMPAT
1746 	.compat_setsockopt = compat_ip_setsockopt,
1747 	.compat_getsockopt = compat_ip_getsockopt,
1748 #endif
1749 	.mtu_reduced	   = tcp_v4_mtu_reduced,
1750 };
1751 EXPORT_SYMBOL(ipv4_specific);
1752 
1753 #ifdef CONFIG_TCP_MD5SIG
1754 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1755 	.md5_lookup		= tcp_v4_md5_lookup,
1756 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1757 	.md5_parse		= tcp_v4_parse_md5_keys,
1758 };
1759 #endif
1760 
1761 /* NOTE: A lot of things set to zero explicitly by call to
1762  *       sk_alloc() so need not be done here.
1763  */
1764 static int tcp_v4_init_sock(struct sock *sk)
1765 {
1766 	struct inet_connection_sock *icsk = inet_csk(sk);
1767 
1768 	tcp_init_sock(sk);
1769 
1770 	icsk->icsk_af_ops = &ipv4_specific;
1771 
1772 #ifdef CONFIG_TCP_MD5SIG
1773 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1774 #endif
1775 
1776 	return 0;
1777 }
1778 
1779 void tcp_v4_destroy_sock(struct sock *sk)
1780 {
1781 	struct tcp_sock *tp = tcp_sk(sk);
1782 
1783 	tcp_clear_xmit_timers(sk);
1784 
1785 	tcp_cleanup_congestion_control(sk);
1786 
1787 	/* Cleanup up the write buffer. */
1788 	tcp_write_queue_purge(sk);
1789 
1790 	/* Cleans up our, hopefully empty, out_of_order_queue. */
1791 	__skb_queue_purge(&tp->out_of_order_queue);
1792 
1793 #ifdef CONFIG_TCP_MD5SIG
1794 	/* Clean up the MD5 key list, if any */
1795 	if (tp->md5sig_info) {
1796 		tcp_clear_md5_list(sk);
1797 		kfree_rcu(tp->md5sig_info, rcu);
1798 		tp->md5sig_info = NULL;
1799 	}
1800 #endif
1801 
1802 	/* Clean prequeue, it must be empty really */
1803 	__skb_queue_purge(&tp->ucopy.prequeue);
1804 
1805 	/* Clean up a referenced TCP bind bucket. */
1806 	if (inet_csk(sk)->icsk_bind_hash)
1807 		inet_put_port(sk);
1808 
1809 	BUG_ON(tp->fastopen_rsk);
1810 
1811 	/* If socket is aborted during connect operation */
1812 	tcp_free_fastopen_req(tp);
1813 	tcp_saved_syn_free(tp);
1814 
1815 	sk_sockets_allocated_dec(sk);
1816 	sock_release_memcg(sk);
1817 }
1818 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1819 
1820 #ifdef CONFIG_PROC_FS
1821 /* Proc filesystem TCP sock list dumping. */
1822 
1823 /*
1824  * Get next listener socket follow cur.  If cur is NULL, get first socket
1825  * starting from bucket given in st->bucket; when st->bucket is zero the
1826  * very first socket in the hash table is returned.
1827  */
1828 static void *listening_get_next(struct seq_file *seq, void *cur)
1829 {
1830 	struct inet_connection_sock *icsk;
1831 	struct hlist_nulls_node *node;
1832 	struct sock *sk = cur;
1833 	struct inet_listen_hashbucket *ilb;
1834 	struct tcp_iter_state *st = seq->private;
1835 	struct net *net = seq_file_net(seq);
1836 
1837 	if (!sk) {
1838 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1839 		spin_lock_bh(&ilb->lock);
1840 		sk = sk_nulls_head(&ilb->head);
1841 		st->offset = 0;
1842 		goto get_sk;
1843 	}
1844 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1845 	++st->num;
1846 	++st->offset;
1847 
1848 	sk = sk_nulls_next(sk);
1849 get_sk:
1850 	sk_nulls_for_each_from(sk, node) {
1851 		if (!net_eq(sock_net(sk), net))
1852 			continue;
1853 		if (sk->sk_family == st->family) {
1854 			cur = sk;
1855 			goto out;
1856 		}
1857 		icsk = inet_csk(sk);
1858 	}
1859 	spin_unlock_bh(&ilb->lock);
1860 	st->offset = 0;
1861 	if (++st->bucket < INET_LHTABLE_SIZE) {
1862 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1863 		spin_lock_bh(&ilb->lock);
1864 		sk = sk_nulls_head(&ilb->head);
1865 		goto get_sk;
1866 	}
1867 	cur = NULL;
1868 out:
1869 	return cur;
1870 }
1871 
1872 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1873 {
1874 	struct tcp_iter_state *st = seq->private;
1875 	void *rc;
1876 
1877 	st->bucket = 0;
1878 	st->offset = 0;
1879 	rc = listening_get_next(seq, NULL);
1880 
1881 	while (rc && *pos) {
1882 		rc = listening_get_next(seq, rc);
1883 		--*pos;
1884 	}
1885 	return rc;
1886 }
1887 
1888 static inline bool empty_bucket(const struct tcp_iter_state *st)
1889 {
1890 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1891 }
1892 
1893 /*
1894  * Get first established socket starting from bucket given in st->bucket.
1895  * If st->bucket is zero, the very first socket in the hash is returned.
1896  */
1897 static void *established_get_first(struct seq_file *seq)
1898 {
1899 	struct tcp_iter_state *st = seq->private;
1900 	struct net *net = seq_file_net(seq);
1901 	void *rc = NULL;
1902 
1903 	st->offset = 0;
1904 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1905 		struct sock *sk;
1906 		struct hlist_nulls_node *node;
1907 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1908 
1909 		/* Lockless fast path for the common case of empty buckets */
1910 		if (empty_bucket(st))
1911 			continue;
1912 
1913 		spin_lock_bh(lock);
1914 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1915 			if (sk->sk_family != st->family ||
1916 			    !net_eq(sock_net(sk), net)) {
1917 				continue;
1918 			}
1919 			rc = sk;
1920 			goto out;
1921 		}
1922 		spin_unlock_bh(lock);
1923 	}
1924 out:
1925 	return rc;
1926 }
1927 
1928 static void *established_get_next(struct seq_file *seq, void *cur)
1929 {
1930 	struct sock *sk = cur;
1931 	struct hlist_nulls_node *node;
1932 	struct tcp_iter_state *st = seq->private;
1933 	struct net *net = seq_file_net(seq);
1934 
1935 	++st->num;
1936 	++st->offset;
1937 
1938 	sk = sk_nulls_next(sk);
1939 
1940 	sk_nulls_for_each_from(sk, node) {
1941 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1942 			return sk;
1943 	}
1944 
1945 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1946 	++st->bucket;
1947 	return established_get_first(seq);
1948 }
1949 
1950 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1951 {
1952 	struct tcp_iter_state *st = seq->private;
1953 	void *rc;
1954 
1955 	st->bucket = 0;
1956 	rc = established_get_first(seq);
1957 
1958 	while (rc && pos) {
1959 		rc = established_get_next(seq, rc);
1960 		--pos;
1961 	}
1962 	return rc;
1963 }
1964 
1965 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1966 {
1967 	void *rc;
1968 	struct tcp_iter_state *st = seq->private;
1969 
1970 	st->state = TCP_SEQ_STATE_LISTENING;
1971 	rc	  = listening_get_idx(seq, &pos);
1972 
1973 	if (!rc) {
1974 		st->state = TCP_SEQ_STATE_ESTABLISHED;
1975 		rc	  = established_get_idx(seq, pos);
1976 	}
1977 
1978 	return rc;
1979 }
1980 
1981 static void *tcp_seek_last_pos(struct seq_file *seq)
1982 {
1983 	struct tcp_iter_state *st = seq->private;
1984 	int offset = st->offset;
1985 	int orig_num = st->num;
1986 	void *rc = NULL;
1987 
1988 	switch (st->state) {
1989 	case TCP_SEQ_STATE_LISTENING:
1990 		if (st->bucket >= INET_LHTABLE_SIZE)
1991 			break;
1992 		st->state = TCP_SEQ_STATE_LISTENING;
1993 		rc = listening_get_next(seq, NULL);
1994 		while (offset-- && rc)
1995 			rc = listening_get_next(seq, rc);
1996 		if (rc)
1997 			break;
1998 		st->bucket = 0;
1999 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2000 		/* Fallthrough */
2001 	case TCP_SEQ_STATE_ESTABLISHED:
2002 		if (st->bucket > tcp_hashinfo.ehash_mask)
2003 			break;
2004 		rc = established_get_first(seq);
2005 		while (offset-- && rc)
2006 			rc = established_get_next(seq, rc);
2007 	}
2008 
2009 	st->num = orig_num;
2010 
2011 	return rc;
2012 }
2013 
2014 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2015 {
2016 	struct tcp_iter_state *st = seq->private;
2017 	void *rc;
2018 
2019 	if (*pos && *pos == st->last_pos) {
2020 		rc = tcp_seek_last_pos(seq);
2021 		if (rc)
2022 			goto out;
2023 	}
2024 
2025 	st->state = TCP_SEQ_STATE_LISTENING;
2026 	st->num = 0;
2027 	st->bucket = 0;
2028 	st->offset = 0;
2029 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2030 
2031 out:
2032 	st->last_pos = *pos;
2033 	return rc;
2034 }
2035 
2036 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2037 {
2038 	struct tcp_iter_state *st = seq->private;
2039 	void *rc = NULL;
2040 
2041 	if (v == SEQ_START_TOKEN) {
2042 		rc = tcp_get_idx(seq, 0);
2043 		goto out;
2044 	}
2045 
2046 	switch (st->state) {
2047 	case TCP_SEQ_STATE_LISTENING:
2048 		rc = listening_get_next(seq, v);
2049 		if (!rc) {
2050 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2051 			st->bucket = 0;
2052 			st->offset = 0;
2053 			rc	  = established_get_first(seq);
2054 		}
2055 		break;
2056 	case TCP_SEQ_STATE_ESTABLISHED:
2057 		rc = established_get_next(seq, v);
2058 		break;
2059 	}
2060 out:
2061 	++*pos;
2062 	st->last_pos = *pos;
2063 	return rc;
2064 }
2065 
2066 static void tcp_seq_stop(struct seq_file *seq, void *v)
2067 {
2068 	struct tcp_iter_state *st = seq->private;
2069 
2070 	switch (st->state) {
2071 	case TCP_SEQ_STATE_LISTENING:
2072 		if (v != SEQ_START_TOKEN)
2073 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2074 		break;
2075 	case TCP_SEQ_STATE_ESTABLISHED:
2076 		if (v)
2077 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2078 		break;
2079 	}
2080 }
2081 
2082 int tcp_seq_open(struct inode *inode, struct file *file)
2083 {
2084 	struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2085 	struct tcp_iter_state *s;
2086 	int err;
2087 
2088 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2089 			  sizeof(struct tcp_iter_state));
2090 	if (err < 0)
2091 		return err;
2092 
2093 	s = ((struct seq_file *)file->private_data)->private;
2094 	s->family		= afinfo->family;
2095 	s->last_pos		= 0;
2096 	return 0;
2097 }
2098 EXPORT_SYMBOL(tcp_seq_open);
2099 
2100 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2101 {
2102 	int rc = 0;
2103 	struct proc_dir_entry *p;
2104 
2105 	afinfo->seq_ops.start		= tcp_seq_start;
2106 	afinfo->seq_ops.next		= tcp_seq_next;
2107 	afinfo->seq_ops.stop		= tcp_seq_stop;
2108 
2109 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2110 			     afinfo->seq_fops, afinfo);
2111 	if (!p)
2112 		rc = -ENOMEM;
2113 	return rc;
2114 }
2115 EXPORT_SYMBOL(tcp_proc_register);
2116 
2117 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2118 {
2119 	remove_proc_entry(afinfo->name, net->proc_net);
2120 }
2121 EXPORT_SYMBOL(tcp_proc_unregister);
2122 
2123 static void get_openreq4(const struct request_sock *req,
2124 			 struct seq_file *f, int i)
2125 {
2126 	const struct inet_request_sock *ireq = inet_rsk(req);
2127 	long delta = req->rsk_timer.expires - jiffies;
2128 
2129 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2130 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2131 		i,
2132 		ireq->ir_loc_addr,
2133 		ireq->ir_num,
2134 		ireq->ir_rmt_addr,
2135 		ntohs(ireq->ir_rmt_port),
2136 		TCP_SYN_RECV,
2137 		0, 0, /* could print option size, but that is af dependent. */
2138 		1,    /* timers active (only the expire timer) */
2139 		jiffies_delta_to_clock_t(delta),
2140 		req->num_timeout,
2141 		from_kuid_munged(seq_user_ns(f),
2142 				 sock_i_uid(req->rsk_listener)),
2143 		0,  /* non standard timer */
2144 		0, /* open_requests have no inode */
2145 		0,
2146 		req);
2147 }
2148 
2149 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2150 {
2151 	int timer_active;
2152 	unsigned long timer_expires;
2153 	const struct tcp_sock *tp = tcp_sk(sk);
2154 	const struct inet_connection_sock *icsk = inet_csk(sk);
2155 	const struct inet_sock *inet = inet_sk(sk);
2156 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2157 	__be32 dest = inet->inet_daddr;
2158 	__be32 src = inet->inet_rcv_saddr;
2159 	__u16 destp = ntohs(inet->inet_dport);
2160 	__u16 srcp = ntohs(inet->inet_sport);
2161 	int rx_queue;
2162 	int state;
2163 
2164 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2165 	    icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2166 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2167 		timer_active	= 1;
2168 		timer_expires	= icsk->icsk_timeout;
2169 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2170 		timer_active	= 4;
2171 		timer_expires	= icsk->icsk_timeout;
2172 	} else if (timer_pending(&sk->sk_timer)) {
2173 		timer_active	= 2;
2174 		timer_expires	= sk->sk_timer.expires;
2175 	} else {
2176 		timer_active	= 0;
2177 		timer_expires = jiffies;
2178 	}
2179 
2180 	state = sk_state_load(sk);
2181 	if (state == TCP_LISTEN)
2182 		rx_queue = sk->sk_ack_backlog;
2183 	else
2184 		/* Because we don't lock the socket,
2185 		 * we might find a transient negative value.
2186 		 */
2187 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2188 
2189 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2190 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2191 		i, src, srcp, dest, destp, state,
2192 		tp->write_seq - tp->snd_una,
2193 		rx_queue,
2194 		timer_active,
2195 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2196 		icsk->icsk_retransmits,
2197 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2198 		icsk->icsk_probes_out,
2199 		sock_i_ino(sk),
2200 		atomic_read(&sk->sk_refcnt), sk,
2201 		jiffies_to_clock_t(icsk->icsk_rto),
2202 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2203 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2204 		tp->snd_cwnd,
2205 		state == TCP_LISTEN ?
2206 		    fastopenq->max_qlen :
2207 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2208 }
2209 
2210 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2211 			       struct seq_file *f, int i)
2212 {
2213 	long delta = tw->tw_timer.expires - jiffies;
2214 	__be32 dest, src;
2215 	__u16 destp, srcp;
2216 
2217 	dest  = tw->tw_daddr;
2218 	src   = tw->tw_rcv_saddr;
2219 	destp = ntohs(tw->tw_dport);
2220 	srcp  = ntohs(tw->tw_sport);
2221 
2222 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2223 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2224 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2225 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2226 		atomic_read(&tw->tw_refcnt), tw);
2227 }
2228 
2229 #define TMPSZ 150
2230 
2231 static int tcp4_seq_show(struct seq_file *seq, void *v)
2232 {
2233 	struct tcp_iter_state *st;
2234 	struct sock *sk = v;
2235 
2236 	seq_setwidth(seq, TMPSZ - 1);
2237 	if (v == SEQ_START_TOKEN) {
2238 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2239 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2240 			   "inode");
2241 		goto out;
2242 	}
2243 	st = seq->private;
2244 
2245 	if (sk->sk_state == TCP_TIME_WAIT)
2246 		get_timewait4_sock(v, seq, st->num);
2247 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2248 		get_openreq4(v, seq, st->num);
2249 	else
2250 		get_tcp4_sock(v, seq, st->num);
2251 out:
2252 	seq_pad(seq, '\n');
2253 	return 0;
2254 }
2255 
2256 static const struct file_operations tcp_afinfo_seq_fops = {
2257 	.owner   = THIS_MODULE,
2258 	.open    = tcp_seq_open,
2259 	.read    = seq_read,
2260 	.llseek  = seq_lseek,
2261 	.release = seq_release_net
2262 };
2263 
2264 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2265 	.name		= "tcp",
2266 	.family		= AF_INET,
2267 	.seq_fops	= &tcp_afinfo_seq_fops,
2268 	.seq_ops	= {
2269 		.show		= tcp4_seq_show,
2270 	},
2271 };
2272 
2273 static int __net_init tcp4_proc_init_net(struct net *net)
2274 {
2275 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2276 }
2277 
2278 static void __net_exit tcp4_proc_exit_net(struct net *net)
2279 {
2280 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2281 }
2282 
2283 static struct pernet_operations tcp4_net_ops = {
2284 	.init = tcp4_proc_init_net,
2285 	.exit = tcp4_proc_exit_net,
2286 };
2287 
2288 int __init tcp4_proc_init(void)
2289 {
2290 	return register_pernet_subsys(&tcp4_net_ops);
2291 }
2292 
2293 void tcp4_proc_exit(void)
2294 {
2295 	unregister_pernet_subsys(&tcp4_net_ops);
2296 }
2297 #endif /* CONFIG_PROC_FS */
2298 
2299 struct proto tcp_prot = {
2300 	.name			= "TCP",
2301 	.owner			= THIS_MODULE,
2302 	.close			= tcp_close,
2303 	.connect		= tcp_v4_connect,
2304 	.disconnect		= tcp_disconnect,
2305 	.accept			= inet_csk_accept,
2306 	.ioctl			= tcp_ioctl,
2307 	.init			= tcp_v4_init_sock,
2308 	.destroy		= tcp_v4_destroy_sock,
2309 	.shutdown		= tcp_shutdown,
2310 	.setsockopt		= tcp_setsockopt,
2311 	.getsockopt		= tcp_getsockopt,
2312 	.recvmsg		= tcp_recvmsg,
2313 	.sendmsg		= tcp_sendmsg,
2314 	.sendpage		= tcp_sendpage,
2315 	.backlog_rcv		= tcp_v4_do_rcv,
2316 	.release_cb		= tcp_release_cb,
2317 	.hash			= inet_hash,
2318 	.unhash			= inet_unhash,
2319 	.get_port		= inet_csk_get_port,
2320 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2321 	.stream_memory_free	= tcp_stream_memory_free,
2322 	.sockets_allocated	= &tcp_sockets_allocated,
2323 	.orphan_count		= &tcp_orphan_count,
2324 	.memory_allocated	= &tcp_memory_allocated,
2325 	.memory_pressure	= &tcp_memory_pressure,
2326 	.sysctl_mem		= sysctl_tcp_mem,
2327 	.sysctl_wmem		= sysctl_tcp_wmem,
2328 	.sysctl_rmem		= sysctl_tcp_rmem,
2329 	.max_header		= MAX_TCP_HEADER,
2330 	.obj_size		= sizeof(struct tcp_sock),
2331 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2332 	.twsk_prot		= &tcp_timewait_sock_ops,
2333 	.rsk_prot		= &tcp_request_sock_ops,
2334 	.h.hashinfo		= &tcp_hashinfo,
2335 	.no_autobind		= true,
2336 #ifdef CONFIG_COMPAT
2337 	.compat_setsockopt	= compat_tcp_setsockopt,
2338 	.compat_getsockopt	= compat_tcp_getsockopt,
2339 #endif
2340 #ifdef CONFIG_MEMCG_KMEM
2341 	.init_cgroup		= tcp_init_cgroup,
2342 	.destroy_cgroup		= tcp_destroy_cgroup,
2343 	.proto_cgroup		= tcp_proto_cgroup,
2344 #endif
2345 };
2346 EXPORT_SYMBOL(tcp_prot);
2347 
2348 static void __net_exit tcp_sk_exit(struct net *net)
2349 {
2350 	int cpu;
2351 
2352 	for_each_possible_cpu(cpu)
2353 		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2354 	free_percpu(net->ipv4.tcp_sk);
2355 }
2356 
2357 static int __net_init tcp_sk_init(struct net *net)
2358 {
2359 	int res, cpu;
2360 
2361 	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2362 	if (!net->ipv4.tcp_sk)
2363 		return -ENOMEM;
2364 
2365 	for_each_possible_cpu(cpu) {
2366 		struct sock *sk;
2367 
2368 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2369 					   IPPROTO_TCP, net);
2370 		if (res)
2371 			goto fail;
2372 		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2373 	}
2374 
2375 	net->ipv4.sysctl_tcp_ecn = 2;
2376 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2377 
2378 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2379 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2380 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2381 
2382 	return 0;
2383 fail:
2384 	tcp_sk_exit(net);
2385 
2386 	return res;
2387 }
2388 
2389 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2390 {
2391 	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2392 }
2393 
2394 static struct pernet_operations __net_initdata tcp_sk_ops = {
2395        .init	   = tcp_sk_init,
2396        .exit	   = tcp_sk_exit,
2397        .exit_batch = tcp_sk_exit_batch,
2398 };
2399 
2400 void __init tcp_v4_init(void)
2401 {
2402 	inet_hashinfo_init(&tcp_hashinfo);
2403 	if (register_pernet_subsys(&tcp_sk_ops))
2404 		panic("Failed to create the TCP control socket.\n");
2405 }
2406