1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/netdma.h> 76 #include <net/secure_seq.h> 77 #include <net/tcp_memcontrol.h> 78 #include <net/busy_poll.h> 79 80 #include <linux/inet.h> 81 #include <linux/ipv6.h> 82 #include <linux/stddef.h> 83 #include <linux/proc_fs.h> 84 #include <linux/seq_file.h> 85 86 #include <linux/crypto.h> 87 #include <linux/scatterlist.h> 88 89 int sysctl_tcp_tw_reuse __read_mostly; 90 int sysctl_tcp_low_latency __read_mostly; 91 EXPORT_SYMBOL(sysctl_tcp_low_latency); 92 93 94 #ifdef CONFIG_TCP_MD5SIG 95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 96 __be32 daddr, __be32 saddr, const struct tcphdr *th); 97 #endif 98 99 struct inet_hashinfo tcp_hashinfo; 100 EXPORT_SYMBOL(tcp_hashinfo); 101 102 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 103 { 104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 105 ip_hdr(skb)->saddr, 106 tcp_hdr(skb)->dest, 107 tcp_hdr(skb)->source); 108 } 109 110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 111 { 112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 113 struct tcp_sock *tp = tcp_sk(sk); 114 115 /* With PAWS, it is safe from the viewpoint 116 of data integrity. Even without PAWS it is safe provided sequence 117 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 118 119 Actually, the idea is close to VJ's one, only timestamp cache is 120 held not per host, but per port pair and TW bucket is used as state 121 holder. 122 123 If TW bucket has been already destroyed we fall back to VJ's scheme 124 and use initial timestamp retrieved from peer table. 125 */ 126 if (tcptw->tw_ts_recent_stamp && 127 (twp == NULL || (sysctl_tcp_tw_reuse && 128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 130 if (tp->write_seq == 0) 131 tp->write_seq = 1; 132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 134 sock_hold(sktw); 135 return 1; 136 } 137 138 return 0; 139 } 140 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 141 142 /* This will initiate an outgoing connection. */ 143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 144 { 145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 146 struct inet_sock *inet = inet_sk(sk); 147 struct tcp_sock *tp = tcp_sk(sk); 148 __be16 orig_sport, orig_dport; 149 __be32 daddr, nexthop; 150 struct flowi4 *fl4; 151 struct rtable *rt; 152 int err; 153 struct ip_options_rcu *inet_opt; 154 155 if (addr_len < sizeof(struct sockaddr_in)) 156 return -EINVAL; 157 158 if (usin->sin_family != AF_INET) 159 return -EAFNOSUPPORT; 160 161 nexthop = daddr = usin->sin_addr.s_addr; 162 inet_opt = rcu_dereference_protected(inet->inet_opt, 163 sock_owned_by_user(sk)); 164 if (inet_opt && inet_opt->opt.srr) { 165 if (!daddr) 166 return -EINVAL; 167 nexthop = inet_opt->opt.faddr; 168 } 169 170 orig_sport = inet->inet_sport; 171 orig_dport = usin->sin_port; 172 fl4 = &inet->cork.fl.u.ip4; 173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 175 IPPROTO_TCP, 176 orig_sport, orig_dport, sk, true); 177 if (IS_ERR(rt)) { 178 err = PTR_ERR(rt); 179 if (err == -ENETUNREACH) 180 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 181 return err; 182 } 183 184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 185 ip_rt_put(rt); 186 return -ENETUNREACH; 187 } 188 189 if (!inet_opt || !inet_opt->opt.srr) 190 daddr = fl4->daddr; 191 192 if (!inet->inet_saddr) 193 inet->inet_saddr = fl4->saddr; 194 inet->inet_rcv_saddr = inet->inet_saddr; 195 196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 197 /* Reset inherited state */ 198 tp->rx_opt.ts_recent = 0; 199 tp->rx_opt.ts_recent_stamp = 0; 200 if (likely(!tp->repair)) 201 tp->write_seq = 0; 202 } 203 204 if (tcp_death_row.sysctl_tw_recycle && 205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 206 tcp_fetch_timewait_stamp(sk, &rt->dst); 207 208 inet->inet_dport = usin->sin_port; 209 inet->inet_daddr = daddr; 210 211 inet_csk(sk)->icsk_ext_hdr_len = 0; 212 if (inet_opt) 213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 214 215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 216 217 /* Socket identity is still unknown (sport may be zero). 218 * However we set state to SYN-SENT and not releasing socket 219 * lock select source port, enter ourselves into the hash tables and 220 * complete initialization after this. 221 */ 222 tcp_set_state(sk, TCP_SYN_SENT); 223 err = inet_hash_connect(&tcp_death_row, sk); 224 if (err) 225 goto failure; 226 227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 228 inet->inet_sport, inet->inet_dport, sk); 229 if (IS_ERR(rt)) { 230 err = PTR_ERR(rt); 231 rt = NULL; 232 goto failure; 233 } 234 /* OK, now commit destination to socket. */ 235 sk->sk_gso_type = SKB_GSO_TCPV4; 236 sk_setup_caps(sk, &rt->dst); 237 238 if (!tp->write_seq && likely(!tp->repair)) 239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 240 inet->inet_daddr, 241 inet->inet_sport, 242 usin->sin_port); 243 244 inet->inet_id = tp->write_seq ^ jiffies; 245 246 err = tcp_connect(sk); 247 248 rt = NULL; 249 if (err) 250 goto failure; 251 252 return 0; 253 254 failure: 255 /* 256 * This unhashes the socket and releases the local port, 257 * if necessary. 258 */ 259 tcp_set_state(sk, TCP_CLOSE); 260 ip_rt_put(rt); 261 sk->sk_route_caps = 0; 262 inet->inet_dport = 0; 263 return err; 264 } 265 EXPORT_SYMBOL(tcp_v4_connect); 266 267 /* 268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 269 * It can be called through tcp_release_cb() if socket was owned by user 270 * at the time tcp_v4_err() was called to handle ICMP message. 271 */ 272 static void tcp_v4_mtu_reduced(struct sock *sk) 273 { 274 struct dst_entry *dst; 275 struct inet_sock *inet = inet_sk(sk); 276 u32 mtu = tcp_sk(sk)->mtu_info; 277 278 dst = inet_csk_update_pmtu(sk, mtu); 279 if (!dst) 280 return; 281 282 /* Something is about to be wrong... Remember soft error 283 * for the case, if this connection will not able to recover. 284 */ 285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 286 sk->sk_err_soft = EMSGSIZE; 287 288 mtu = dst_mtu(dst); 289 290 if (inet->pmtudisc != IP_PMTUDISC_DONT && 291 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 292 tcp_sync_mss(sk, mtu); 293 294 /* Resend the TCP packet because it's 295 * clear that the old packet has been 296 * dropped. This is the new "fast" path mtu 297 * discovery. 298 */ 299 tcp_simple_retransmit(sk); 300 } /* else let the usual retransmit timer handle it */ 301 } 302 303 static void do_redirect(struct sk_buff *skb, struct sock *sk) 304 { 305 struct dst_entry *dst = __sk_dst_check(sk, 0); 306 307 if (dst) 308 dst->ops->redirect(dst, sk, skb); 309 } 310 311 /* 312 * This routine is called by the ICMP module when it gets some 313 * sort of error condition. If err < 0 then the socket should 314 * be closed and the error returned to the user. If err > 0 315 * it's just the icmp type << 8 | icmp code. After adjustment 316 * header points to the first 8 bytes of the tcp header. We need 317 * to find the appropriate port. 318 * 319 * The locking strategy used here is very "optimistic". When 320 * someone else accesses the socket the ICMP is just dropped 321 * and for some paths there is no check at all. 322 * A more general error queue to queue errors for later handling 323 * is probably better. 324 * 325 */ 326 327 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 328 { 329 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 330 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 331 struct inet_connection_sock *icsk; 332 struct tcp_sock *tp; 333 struct inet_sock *inet; 334 const int type = icmp_hdr(icmp_skb)->type; 335 const int code = icmp_hdr(icmp_skb)->code; 336 struct sock *sk; 337 struct sk_buff *skb; 338 struct request_sock *req; 339 __u32 seq; 340 __u32 remaining; 341 int err; 342 struct net *net = dev_net(icmp_skb->dev); 343 344 if (icmp_skb->len < (iph->ihl << 2) + 8) { 345 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 346 return; 347 } 348 349 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest, 350 iph->saddr, th->source, inet_iif(icmp_skb)); 351 if (!sk) { 352 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 353 return; 354 } 355 if (sk->sk_state == TCP_TIME_WAIT) { 356 inet_twsk_put(inet_twsk(sk)); 357 return; 358 } 359 360 bh_lock_sock(sk); 361 /* If too many ICMPs get dropped on busy 362 * servers this needs to be solved differently. 363 * We do take care of PMTU discovery (RFC1191) special case : 364 * we can receive locally generated ICMP messages while socket is held. 365 */ 366 if (sock_owned_by_user(sk)) { 367 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 369 } 370 if (sk->sk_state == TCP_CLOSE) 371 goto out; 372 373 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 374 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 375 goto out; 376 } 377 378 icsk = inet_csk(sk); 379 tp = tcp_sk(sk); 380 req = tp->fastopen_rsk; 381 seq = ntohl(th->seq); 382 if (sk->sk_state != TCP_LISTEN && 383 !between(seq, tp->snd_una, tp->snd_nxt) && 384 (req == NULL || seq != tcp_rsk(req)->snt_isn)) { 385 /* For a Fast Open socket, allow seq to be snt_isn. */ 386 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 387 goto out; 388 } 389 390 switch (type) { 391 case ICMP_REDIRECT: 392 do_redirect(icmp_skb, sk); 393 goto out; 394 case ICMP_SOURCE_QUENCH: 395 /* Just silently ignore these. */ 396 goto out; 397 case ICMP_PARAMETERPROB: 398 err = EPROTO; 399 break; 400 case ICMP_DEST_UNREACH: 401 if (code > NR_ICMP_UNREACH) 402 goto out; 403 404 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 405 /* We are not interested in TCP_LISTEN and open_requests 406 * (SYN-ACKs send out by Linux are always <576bytes so 407 * they should go through unfragmented). 408 */ 409 if (sk->sk_state == TCP_LISTEN) 410 goto out; 411 412 tp->mtu_info = info; 413 if (!sock_owned_by_user(sk)) { 414 tcp_v4_mtu_reduced(sk); 415 } else { 416 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 417 sock_hold(sk); 418 } 419 goto out; 420 } 421 422 err = icmp_err_convert[code].errno; 423 /* check if icmp_skb allows revert of backoff 424 * (see draft-zimmermann-tcp-lcd) */ 425 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 426 break; 427 if (seq != tp->snd_una || !icsk->icsk_retransmits || 428 !icsk->icsk_backoff) 429 break; 430 431 /* XXX (TFO) - revisit the following logic for TFO */ 432 433 if (sock_owned_by_user(sk)) 434 break; 435 436 icsk->icsk_backoff--; 437 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) : 438 TCP_TIMEOUT_INIT) << icsk->icsk_backoff; 439 tcp_bound_rto(sk); 440 441 skb = tcp_write_queue_head(sk); 442 BUG_ON(!skb); 443 444 remaining = icsk->icsk_rto - min(icsk->icsk_rto, 445 tcp_time_stamp - TCP_SKB_CB(skb)->when); 446 447 if (remaining) { 448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 449 remaining, TCP_RTO_MAX); 450 } else { 451 /* RTO revert clocked out retransmission. 452 * Will retransmit now */ 453 tcp_retransmit_timer(sk); 454 } 455 456 break; 457 case ICMP_TIME_EXCEEDED: 458 err = EHOSTUNREACH; 459 break; 460 default: 461 goto out; 462 } 463 464 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather 465 * than following the TCP_SYN_RECV case and closing the socket, 466 * we ignore the ICMP error and keep trying like a fully established 467 * socket. Is this the right thing to do? 468 */ 469 if (req && req->sk == NULL) 470 goto out; 471 472 switch (sk->sk_state) { 473 struct request_sock *req, **prev; 474 case TCP_LISTEN: 475 if (sock_owned_by_user(sk)) 476 goto out; 477 478 req = inet_csk_search_req(sk, &prev, th->dest, 479 iph->daddr, iph->saddr); 480 if (!req) 481 goto out; 482 483 /* ICMPs are not backlogged, hence we cannot get 484 an established socket here. 485 */ 486 WARN_ON(req->sk); 487 488 if (seq != tcp_rsk(req)->snt_isn) { 489 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 490 goto out; 491 } 492 493 /* 494 * Still in SYN_RECV, just remove it silently. 495 * There is no good way to pass the error to the newly 496 * created socket, and POSIX does not want network 497 * errors returned from accept(). 498 */ 499 inet_csk_reqsk_queue_drop(sk, req, prev); 500 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 501 goto out; 502 503 case TCP_SYN_SENT: 504 case TCP_SYN_RECV: /* Cannot happen. 505 It can f.e. if SYNs crossed, 506 or Fast Open. 507 */ 508 if (!sock_owned_by_user(sk)) { 509 sk->sk_err = err; 510 511 sk->sk_error_report(sk); 512 513 tcp_done(sk); 514 } else { 515 sk->sk_err_soft = err; 516 } 517 goto out; 518 } 519 520 /* If we've already connected we will keep trying 521 * until we time out, or the user gives up. 522 * 523 * rfc1122 4.2.3.9 allows to consider as hard errors 524 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 525 * but it is obsoleted by pmtu discovery). 526 * 527 * Note, that in modern internet, where routing is unreliable 528 * and in each dark corner broken firewalls sit, sending random 529 * errors ordered by their masters even this two messages finally lose 530 * their original sense (even Linux sends invalid PORT_UNREACHs) 531 * 532 * Now we are in compliance with RFCs. 533 * --ANK (980905) 534 */ 535 536 inet = inet_sk(sk); 537 if (!sock_owned_by_user(sk) && inet->recverr) { 538 sk->sk_err = err; 539 sk->sk_error_report(sk); 540 } else { /* Only an error on timeout */ 541 sk->sk_err_soft = err; 542 } 543 544 out: 545 bh_unlock_sock(sk); 546 sock_put(sk); 547 } 548 549 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 550 { 551 struct tcphdr *th = tcp_hdr(skb); 552 553 if (skb->ip_summed == CHECKSUM_PARTIAL) { 554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 555 skb->csum_start = skb_transport_header(skb) - skb->head; 556 skb->csum_offset = offsetof(struct tcphdr, check); 557 } else { 558 th->check = tcp_v4_check(skb->len, saddr, daddr, 559 csum_partial(th, 560 th->doff << 2, 561 skb->csum)); 562 } 563 } 564 565 /* This routine computes an IPv4 TCP checksum. */ 566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 567 { 568 const struct inet_sock *inet = inet_sk(sk); 569 570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 571 } 572 EXPORT_SYMBOL(tcp_v4_send_check); 573 574 /* 575 * This routine will send an RST to the other tcp. 576 * 577 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 578 * for reset. 579 * Answer: if a packet caused RST, it is not for a socket 580 * existing in our system, if it is matched to a socket, 581 * it is just duplicate segment or bug in other side's TCP. 582 * So that we build reply only basing on parameters 583 * arrived with segment. 584 * Exception: precedence violation. We do not implement it in any case. 585 */ 586 587 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) 588 { 589 const struct tcphdr *th = tcp_hdr(skb); 590 struct { 591 struct tcphdr th; 592 #ifdef CONFIG_TCP_MD5SIG 593 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 594 #endif 595 } rep; 596 struct ip_reply_arg arg; 597 #ifdef CONFIG_TCP_MD5SIG 598 struct tcp_md5sig_key *key; 599 const __u8 *hash_location = NULL; 600 unsigned char newhash[16]; 601 int genhash; 602 struct sock *sk1 = NULL; 603 #endif 604 struct net *net; 605 606 /* Never send a reset in response to a reset. */ 607 if (th->rst) 608 return; 609 610 if (skb_rtable(skb)->rt_type != RTN_LOCAL) 611 return; 612 613 /* Swap the send and the receive. */ 614 memset(&rep, 0, sizeof(rep)); 615 rep.th.dest = th->source; 616 rep.th.source = th->dest; 617 rep.th.doff = sizeof(struct tcphdr) / 4; 618 rep.th.rst = 1; 619 620 if (th->ack) { 621 rep.th.seq = th->ack_seq; 622 } else { 623 rep.th.ack = 1; 624 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 625 skb->len - (th->doff << 2)); 626 } 627 628 memset(&arg, 0, sizeof(arg)); 629 arg.iov[0].iov_base = (unsigned char *)&rep; 630 arg.iov[0].iov_len = sizeof(rep.th); 631 632 #ifdef CONFIG_TCP_MD5SIG 633 hash_location = tcp_parse_md5sig_option(th); 634 if (!sk && hash_location) { 635 /* 636 * active side is lost. Try to find listening socket through 637 * source port, and then find md5 key through listening socket. 638 * we are not loose security here: 639 * Incoming packet is checked with md5 hash with finding key, 640 * no RST generated if md5 hash doesn't match. 641 */ 642 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev), 643 &tcp_hashinfo, ip_hdr(skb)->saddr, 644 th->source, ip_hdr(skb)->daddr, 645 ntohs(th->source), inet_iif(skb)); 646 /* don't send rst if it can't find key */ 647 if (!sk1) 648 return; 649 rcu_read_lock(); 650 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 651 &ip_hdr(skb)->saddr, AF_INET); 652 if (!key) 653 goto release_sk1; 654 655 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb); 656 if (genhash || memcmp(hash_location, newhash, 16) != 0) 657 goto release_sk1; 658 } else { 659 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 660 &ip_hdr(skb)->saddr, 661 AF_INET) : NULL; 662 } 663 664 if (key) { 665 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 666 (TCPOPT_NOP << 16) | 667 (TCPOPT_MD5SIG << 8) | 668 TCPOLEN_MD5SIG); 669 /* Update length and the length the header thinks exists */ 670 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 671 rep.th.doff = arg.iov[0].iov_len / 4; 672 673 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 674 key, ip_hdr(skb)->saddr, 675 ip_hdr(skb)->daddr, &rep.th); 676 } 677 #endif 678 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 679 ip_hdr(skb)->saddr, /* XXX */ 680 arg.iov[0].iov_len, IPPROTO_TCP, 0); 681 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 682 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 683 /* When socket is gone, all binding information is lost. 684 * routing might fail in this case. No choice here, if we choose to force 685 * input interface, we will misroute in case of asymmetric route. 686 */ 687 if (sk) 688 arg.bound_dev_if = sk->sk_bound_dev_if; 689 690 net = dev_net(skb_dst(skb)->dev); 691 arg.tos = ip_hdr(skb)->tos; 692 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 693 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 694 695 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 696 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 697 698 #ifdef CONFIG_TCP_MD5SIG 699 release_sk1: 700 if (sk1) { 701 rcu_read_unlock(); 702 sock_put(sk1); 703 } 704 #endif 705 } 706 707 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 708 outside socket context is ugly, certainly. What can I do? 709 */ 710 711 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 712 u32 win, u32 tsval, u32 tsecr, int oif, 713 struct tcp_md5sig_key *key, 714 int reply_flags, u8 tos) 715 { 716 const struct tcphdr *th = tcp_hdr(skb); 717 struct { 718 struct tcphdr th; 719 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 720 #ifdef CONFIG_TCP_MD5SIG 721 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 722 #endif 723 ]; 724 } rep; 725 struct ip_reply_arg arg; 726 struct net *net = dev_net(skb_dst(skb)->dev); 727 728 memset(&rep.th, 0, sizeof(struct tcphdr)); 729 memset(&arg, 0, sizeof(arg)); 730 731 arg.iov[0].iov_base = (unsigned char *)&rep; 732 arg.iov[0].iov_len = sizeof(rep.th); 733 if (tsecr) { 734 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 735 (TCPOPT_TIMESTAMP << 8) | 736 TCPOLEN_TIMESTAMP); 737 rep.opt[1] = htonl(tsval); 738 rep.opt[2] = htonl(tsecr); 739 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 740 } 741 742 /* Swap the send and the receive. */ 743 rep.th.dest = th->source; 744 rep.th.source = th->dest; 745 rep.th.doff = arg.iov[0].iov_len / 4; 746 rep.th.seq = htonl(seq); 747 rep.th.ack_seq = htonl(ack); 748 rep.th.ack = 1; 749 rep.th.window = htons(win); 750 751 #ifdef CONFIG_TCP_MD5SIG 752 if (key) { 753 int offset = (tsecr) ? 3 : 0; 754 755 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 756 (TCPOPT_NOP << 16) | 757 (TCPOPT_MD5SIG << 8) | 758 TCPOLEN_MD5SIG); 759 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 760 rep.th.doff = arg.iov[0].iov_len/4; 761 762 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 763 key, ip_hdr(skb)->saddr, 764 ip_hdr(skb)->daddr, &rep.th); 765 } 766 #endif 767 arg.flags = reply_flags; 768 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 769 ip_hdr(skb)->saddr, /* XXX */ 770 arg.iov[0].iov_len, IPPROTO_TCP, 0); 771 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 772 if (oif) 773 arg.bound_dev_if = oif; 774 arg.tos = tos; 775 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 776 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 777 778 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 779 } 780 781 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 782 { 783 struct inet_timewait_sock *tw = inet_twsk(sk); 784 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 785 786 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 787 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 788 tcp_time_stamp + tcptw->tw_ts_offset, 789 tcptw->tw_ts_recent, 790 tw->tw_bound_dev_if, 791 tcp_twsk_md5_key(tcptw), 792 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 793 tw->tw_tos 794 ); 795 796 inet_twsk_put(tw); 797 } 798 799 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb, 800 struct request_sock *req) 801 { 802 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 803 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 804 */ 805 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ? 806 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, 807 tcp_rsk(req)->rcv_nxt, req->rcv_wnd, 808 tcp_time_stamp, 809 req->ts_recent, 810 0, 811 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 812 AF_INET), 813 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 814 ip_hdr(skb)->tos); 815 } 816 817 /* 818 * Send a SYN-ACK after having received a SYN. 819 * This still operates on a request_sock only, not on a big 820 * socket. 821 */ 822 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst, 823 struct request_sock *req, 824 u16 queue_mapping, 825 bool nocache) 826 { 827 const struct inet_request_sock *ireq = inet_rsk(req); 828 struct flowi4 fl4; 829 int err = -1; 830 struct sk_buff * skb; 831 832 /* First, grab a route. */ 833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 834 return -1; 835 836 skb = tcp_make_synack(sk, dst, req, NULL); 837 838 if (skb) { 839 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr); 840 841 skb_set_queue_mapping(skb, queue_mapping); 842 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, 843 ireq->rmt_addr, 844 ireq->opt); 845 err = net_xmit_eval(err); 846 if (!tcp_rsk(req)->snt_synack && !err) 847 tcp_rsk(req)->snt_synack = tcp_time_stamp; 848 } 849 850 return err; 851 } 852 853 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req) 854 { 855 int res = tcp_v4_send_synack(sk, NULL, req, 0, false); 856 857 if (!res) 858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 859 return res; 860 } 861 862 /* 863 * IPv4 request_sock destructor. 864 */ 865 static void tcp_v4_reqsk_destructor(struct request_sock *req) 866 { 867 kfree(inet_rsk(req)->opt); 868 } 869 870 /* 871 * Return true if a syncookie should be sent 872 */ 873 bool tcp_syn_flood_action(struct sock *sk, 874 const struct sk_buff *skb, 875 const char *proto) 876 { 877 const char *msg = "Dropping request"; 878 bool want_cookie = false; 879 struct listen_sock *lopt; 880 881 882 883 #ifdef CONFIG_SYN_COOKIES 884 if (sysctl_tcp_syncookies) { 885 msg = "Sending cookies"; 886 want_cookie = true; 887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 888 } else 889 #endif 890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 891 892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 893 if (!lopt->synflood_warned) { 894 lopt->synflood_warned = 1; 895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 896 proto, ntohs(tcp_hdr(skb)->dest), msg); 897 } 898 return want_cookie; 899 } 900 EXPORT_SYMBOL(tcp_syn_flood_action); 901 902 /* 903 * Save and compile IPv4 options into the request_sock if needed. 904 */ 905 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb) 906 { 907 const struct ip_options *opt = &(IPCB(skb)->opt); 908 struct ip_options_rcu *dopt = NULL; 909 910 if (opt && opt->optlen) { 911 int opt_size = sizeof(*dopt) + opt->optlen; 912 913 dopt = kmalloc(opt_size, GFP_ATOMIC); 914 if (dopt) { 915 if (ip_options_echo(&dopt->opt, skb)) { 916 kfree(dopt); 917 dopt = NULL; 918 } 919 } 920 } 921 return dopt; 922 } 923 924 #ifdef CONFIG_TCP_MD5SIG 925 /* 926 * RFC2385 MD5 checksumming requires a mapping of 927 * IP address->MD5 Key. 928 * We need to maintain these in the sk structure. 929 */ 930 931 /* Find the Key structure for an address. */ 932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk, 933 const union tcp_md5_addr *addr, 934 int family) 935 { 936 struct tcp_sock *tp = tcp_sk(sk); 937 struct tcp_md5sig_key *key; 938 unsigned int size = sizeof(struct in_addr); 939 struct tcp_md5sig_info *md5sig; 940 941 /* caller either holds rcu_read_lock() or socket lock */ 942 md5sig = rcu_dereference_check(tp->md5sig_info, 943 sock_owned_by_user(sk) || 944 lockdep_is_held(&sk->sk_lock.slock)); 945 if (!md5sig) 946 return NULL; 947 #if IS_ENABLED(CONFIG_IPV6) 948 if (family == AF_INET6) 949 size = sizeof(struct in6_addr); 950 #endif 951 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 952 if (key->family != family) 953 continue; 954 if (!memcmp(&key->addr, addr, size)) 955 return key; 956 } 957 return NULL; 958 } 959 EXPORT_SYMBOL(tcp_md5_do_lookup); 960 961 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, 962 struct sock *addr_sk) 963 { 964 union tcp_md5_addr *addr; 965 966 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr; 967 return tcp_md5_do_lookup(sk, addr, AF_INET); 968 } 969 EXPORT_SYMBOL(tcp_v4_md5_lookup); 970 971 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk, 972 struct request_sock *req) 973 { 974 union tcp_md5_addr *addr; 975 976 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr; 977 return tcp_md5_do_lookup(sk, addr, AF_INET); 978 } 979 980 /* This can be called on a newly created socket, from other files */ 981 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 982 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 983 { 984 /* Add Key to the list */ 985 struct tcp_md5sig_key *key; 986 struct tcp_sock *tp = tcp_sk(sk); 987 struct tcp_md5sig_info *md5sig; 988 989 key = tcp_md5_do_lookup(sk, addr, family); 990 if (key) { 991 /* Pre-existing entry - just update that one. */ 992 memcpy(key->key, newkey, newkeylen); 993 key->keylen = newkeylen; 994 return 0; 995 } 996 997 md5sig = rcu_dereference_protected(tp->md5sig_info, 998 sock_owned_by_user(sk)); 999 if (!md5sig) { 1000 md5sig = kmalloc(sizeof(*md5sig), gfp); 1001 if (!md5sig) 1002 return -ENOMEM; 1003 1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1005 INIT_HLIST_HEAD(&md5sig->head); 1006 rcu_assign_pointer(tp->md5sig_info, md5sig); 1007 } 1008 1009 key = sock_kmalloc(sk, sizeof(*key), gfp); 1010 if (!key) 1011 return -ENOMEM; 1012 if (!tcp_alloc_md5sig_pool()) { 1013 sock_kfree_s(sk, key, sizeof(*key)); 1014 return -ENOMEM; 1015 } 1016 1017 memcpy(key->key, newkey, newkeylen); 1018 key->keylen = newkeylen; 1019 key->family = family; 1020 memcpy(&key->addr, addr, 1021 (family == AF_INET6) ? sizeof(struct in6_addr) : 1022 sizeof(struct in_addr)); 1023 hlist_add_head_rcu(&key->node, &md5sig->head); 1024 return 0; 1025 } 1026 EXPORT_SYMBOL(tcp_md5_do_add); 1027 1028 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 1029 { 1030 struct tcp_md5sig_key *key; 1031 1032 key = tcp_md5_do_lookup(sk, addr, family); 1033 if (!key) 1034 return -ENOENT; 1035 hlist_del_rcu(&key->node); 1036 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1037 kfree_rcu(key, rcu); 1038 return 0; 1039 } 1040 EXPORT_SYMBOL(tcp_md5_do_del); 1041 1042 static void tcp_clear_md5_list(struct sock *sk) 1043 { 1044 struct tcp_sock *tp = tcp_sk(sk); 1045 struct tcp_md5sig_key *key; 1046 struct hlist_node *n; 1047 struct tcp_md5sig_info *md5sig; 1048 1049 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1050 1051 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1052 hlist_del_rcu(&key->node); 1053 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1054 kfree_rcu(key, rcu); 1055 } 1056 } 1057 1058 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1059 int optlen) 1060 { 1061 struct tcp_md5sig cmd; 1062 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1063 1064 if (optlen < sizeof(cmd)) 1065 return -EINVAL; 1066 1067 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1068 return -EFAULT; 1069 1070 if (sin->sin_family != AF_INET) 1071 return -EINVAL; 1072 1073 if (!cmd.tcpm_key || !cmd.tcpm_keylen) 1074 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1075 AF_INET); 1076 1077 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1078 return -EINVAL; 1079 1080 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1081 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1082 GFP_KERNEL); 1083 } 1084 1085 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1086 __be32 daddr, __be32 saddr, int nbytes) 1087 { 1088 struct tcp4_pseudohdr *bp; 1089 struct scatterlist sg; 1090 1091 bp = &hp->md5_blk.ip4; 1092 1093 /* 1094 * 1. the TCP pseudo-header (in the order: source IP address, 1095 * destination IP address, zero-padded protocol number, and 1096 * segment length) 1097 */ 1098 bp->saddr = saddr; 1099 bp->daddr = daddr; 1100 bp->pad = 0; 1101 bp->protocol = IPPROTO_TCP; 1102 bp->len = cpu_to_be16(nbytes); 1103 1104 sg_init_one(&sg, bp, sizeof(*bp)); 1105 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1106 } 1107 1108 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1109 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1110 { 1111 struct tcp_md5sig_pool *hp; 1112 struct hash_desc *desc; 1113 1114 hp = tcp_get_md5sig_pool(); 1115 if (!hp) 1116 goto clear_hash_noput; 1117 desc = &hp->md5_desc; 1118 1119 if (crypto_hash_init(desc)) 1120 goto clear_hash; 1121 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1122 goto clear_hash; 1123 if (tcp_md5_hash_header(hp, th)) 1124 goto clear_hash; 1125 if (tcp_md5_hash_key(hp, key)) 1126 goto clear_hash; 1127 if (crypto_hash_final(desc, md5_hash)) 1128 goto clear_hash; 1129 1130 tcp_put_md5sig_pool(); 1131 return 0; 1132 1133 clear_hash: 1134 tcp_put_md5sig_pool(); 1135 clear_hash_noput: 1136 memset(md5_hash, 0, 16); 1137 return 1; 1138 } 1139 1140 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key, 1141 const struct sock *sk, const struct request_sock *req, 1142 const struct sk_buff *skb) 1143 { 1144 struct tcp_md5sig_pool *hp; 1145 struct hash_desc *desc; 1146 const struct tcphdr *th = tcp_hdr(skb); 1147 __be32 saddr, daddr; 1148 1149 if (sk) { 1150 saddr = inet_sk(sk)->inet_saddr; 1151 daddr = inet_sk(sk)->inet_daddr; 1152 } else if (req) { 1153 saddr = inet_rsk(req)->loc_addr; 1154 daddr = inet_rsk(req)->rmt_addr; 1155 } else { 1156 const struct iphdr *iph = ip_hdr(skb); 1157 saddr = iph->saddr; 1158 daddr = iph->daddr; 1159 } 1160 1161 hp = tcp_get_md5sig_pool(); 1162 if (!hp) 1163 goto clear_hash_noput; 1164 desc = &hp->md5_desc; 1165 1166 if (crypto_hash_init(desc)) 1167 goto clear_hash; 1168 1169 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1170 goto clear_hash; 1171 if (tcp_md5_hash_header(hp, th)) 1172 goto clear_hash; 1173 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1174 goto clear_hash; 1175 if (tcp_md5_hash_key(hp, key)) 1176 goto clear_hash; 1177 if (crypto_hash_final(desc, md5_hash)) 1178 goto clear_hash; 1179 1180 tcp_put_md5sig_pool(); 1181 return 0; 1182 1183 clear_hash: 1184 tcp_put_md5sig_pool(); 1185 clear_hash_noput: 1186 memset(md5_hash, 0, 16); 1187 return 1; 1188 } 1189 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1190 1191 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb) 1192 { 1193 /* 1194 * This gets called for each TCP segment that arrives 1195 * so we want to be efficient. 1196 * We have 3 drop cases: 1197 * o No MD5 hash and one expected. 1198 * o MD5 hash and we're not expecting one. 1199 * o MD5 hash and its wrong. 1200 */ 1201 const __u8 *hash_location = NULL; 1202 struct tcp_md5sig_key *hash_expected; 1203 const struct iphdr *iph = ip_hdr(skb); 1204 const struct tcphdr *th = tcp_hdr(skb); 1205 int genhash; 1206 unsigned char newhash[16]; 1207 1208 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1209 AF_INET); 1210 hash_location = tcp_parse_md5sig_option(th); 1211 1212 /* We've parsed the options - do we have a hash? */ 1213 if (!hash_expected && !hash_location) 1214 return false; 1215 1216 if (hash_expected && !hash_location) { 1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1218 return true; 1219 } 1220 1221 if (!hash_expected && hash_location) { 1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1223 return true; 1224 } 1225 1226 /* Okay, so this is hash_expected and hash_location - 1227 * so we need to calculate the checksum. 1228 */ 1229 genhash = tcp_v4_md5_hash_skb(newhash, 1230 hash_expected, 1231 NULL, NULL, skb); 1232 1233 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1234 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1235 &iph->saddr, ntohs(th->source), 1236 &iph->daddr, ntohs(th->dest), 1237 genhash ? " tcp_v4_calc_md5_hash failed" 1238 : ""); 1239 return true; 1240 } 1241 return false; 1242 } 1243 1244 #endif 1245 1246 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1247 .family = PF_INET, 1248 .obj_size = sizeof(struct tcp_request_sock), 1249 .rtx_syn_ack = tcp_v4_rtx_synack, 1250 .send_ack = tcp_v4_reqsk_send_ack, 1251 .destructor = tcp_v4_reqsk_destructor, 1252 .send_reset = tcp_v4_send_reset, 1253 .syn_ack_timeout = tcp_syn_ack_timeout, 1254 }; 1255 1256 #ifdef CONFIG_TCP_MD5SIG 1257 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1258 .md5_lookup = tcp_v4_reqsk_md5_lookup, 1259 .calc_md5_hash = tcp_v4_md5_hash_skb, 1260 }; 1261 #endif 1262 1263 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb, 1264 struct request_sock *req, 1265 struct tcp_fastopen_cookie *foc, 1266 struct tcp_fastopen_cookie *valid_foc) 1267 { 1268 bool skip_cookie = false; 1269 struct fastopen_queue *fastopenq; 1270 1271 if (likely(!fastopen_cookie_present(foc))) { 1272 /* See include/net/tcp.h for the meaning of these knobs */ 1273 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) || 1274 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) && 1275 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1))) 1276 skip_cookie = true; /* no cookie to validate */ 1277 else 1278 return false; 1279 } 1280 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq; 1281 /* A FO option is present; bump the counter. */ 1282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE); 1283 1284 /* Make sure the listener has enabled fastopen, and we don't 1285 * exceed the max # of pending TFO requests allowed before trying 1286 * to validating the cookie in order to avoid burning CPU cycles 1287 * unnecessarily. 1288 * 1289 * XXX (TFO) - The implication of checking the max_qlen before 1290 * processing a cookie request is that clients can't differentiate 1291 * between qlen overflow causing Fast Open to be disabled 1292 * temporarily vs a server not supporting Fast Open at all. 1293 */ 1294 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 || 1295 fastopenq == NULL || fastopenq->max_qlen == 0) 1296 return false; 1297 1298 if (fastopenq->qlen >= fastopenq->max_qlen) { 1299 struct request_sock *req1; 1300 spin_lock(&fastopenq->lock); 1301 req1 = fastopenq->rskq_rst_head; 1302 if ((req1 == NULL) || time_after(req1->expires, jiffies)) { 1303 spin_unlock(&fastopenq->lock); 1304 NET_INC_STATS_BH(sock_net(sk), 1305 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 1306 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/ 1307 foc->len = -1; 1308 return false; 1309 } 1310 fastopenq->rskq_rst_head = req1->dl_next; 1311 fastopenq->qlen--; 1312 spin_unlock(&fastopenq->lock); 1313 reqsk_free(req1); 1314 } 1315 if (skip_cookie) { 1316 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1317 return true; 1318 } 1319 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) { 1320 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) { 1321 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1322 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) || 1323 memcmp(&foc->val[0], &valid_foc->val[0], 1324 TCP_FASTOPEN_COOKIE_SIZE) != 0) 1325 return false; 1326 valid_foc->len = -1; 1327 } 1328 /* Acknowledge the data received from the peer. */ 1329 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1330 return true; 1331 } else if (foc->len == 0) { /* Client requesting a cookie */ 1332 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1333 NET_INC_STATS_BH(sock_net(sk), 1334 LINUX_MIB_TCPFASTOPENCOOKIEREQD); 1335 } else { 1336 /* Client sent a cookie with wrong size. Treat it 1337 * the same as invalid and return a valid one. 1338 */ 1339 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1340 } 1341 return false; 1342 } 1343 1344 static int tcp_v4_conn_req_fastopen(struct sock *sk, 1345 struct sk_buff *skb, 1346 struct sk_buff *skb_synack, 1347 struct request_sock *req) 1348 { 1349 struct tcp_sock *tp = tcp_sk(sk); 1350 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1351 const struct inet_request_sock *ireq = inet_rsk(req); 1352 struct sock *child; 1353 int err; 1354 1355 req->num_retrans = 0; 1356 req->num_timeout = 0; 1357 req->sk = NULL; 1358 1359 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); 1360 if (child == NULL) { 1361 NET_INC_STATS_BH(sock_net(sk), 1362 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1363 kfree_skb(skb_synack); 1364 return -1; 1365 } 1366 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr, 1367 ireq->rmt_addr, ireq->opt); 1368 err = net_xmit_eval(err); 1369 if (!err) 1370 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1371 /* XXX (TFO) - is it ok to ignore error and continue? */ 1372 1373 spin_lock(&queue->fastopenq->lock); 1374 queue->fastopenq->qlen++; 1375 spin_unlock(&queue->fastopenq->lock); 1376 1377 /* Initialize the child socket. Have to fix some values to take 1378 * into account the child is a Fast Open socket and is created 1379 * only out of the bits carried in the SYN packet. 1380 */ 1381 tp = tcp_sk(child); 1382 1383 tp->fastopen_rsk = req; 1384 /* Do a hold on the listner sk so that if the listener is being 1385 * closed, the child that has been accepted can live on and still 1386 * access listen_lock. 1387 */ 1388 sock_hold(sk); 1389 tcp_rsk(req)->listener = sk; 1390 1391 /* RFC1323: The window in SYN & SYN/ACK segments is never 1392 * scaled. So correct it appropriately. 1393 */ 1394 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 1395 1396 /* Activate the retrans timer so that SYNACK can be retransmitted. 1397 * The request socket is not added to the SYN table of the parent 1398 * because it's been added to the accept queue directly. 1399 */ 1400 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 1401 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 1402 1403 /* Add the child socket directly into the accept queue */ 1404 inet_csk_reqsk_queue_add(sk, req, child); 1405 1406 /* Now finish processing the fastopen child socket. */ 1407 inet_csk(child)->icsk_af_ops->rebuild_header(child); 1408 tcp_init_congestion_control(child); 1409 tcp_mtup_init(child); 1410 tcp_init_buffer_space(child); 1411 tcp_init_metrics(child); 1412 1413 /* Queue the data carried in the SYN packet. We need to first 1414 * bump skb's refcnt because the caller will attempt to free it. 1415 * 1416 * XXX (TFO) - we honor a zero-payload TFO request for now. 1417 * (Any reason not to?) 1418 */ 1419 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) { 1420 /* Don't queue the skb if there is no payload in SYN. 1421 * XXX (TFO) - How about SYN+FIN? 1422 */ 1423 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1424 } else { 1425 skb = skb_get(skb); 1426 skb_dst_drop(skb); 1427 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 1428 skb_set_owner_r(skb, child); 1429 __skb_queue_tail(&child->sk_receive_queue, skb); 1430 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1431 tp->syn_data_acked = 1; 1432 } 1433 sk->sk_data_ready(sk, 0); 1434 bh_unlock_sock(child); 1435 sock_put(child); 1436 WARN_ON(req->sk == NULL); 1437 return 0; 1438 } 1439 1440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1441 { 1442 struct tcp_options_received tmp_opt; 1443 struct request_sock *req; 1444 struct inet_request_sock *ireq; 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 struct dst_entry *dst = NULL; 1447 __be32 saddr = ip_hdr(skb)->saddr; 1448 __be32 daddr = ip_hdr(skb)->daddr; 1449 __u32 isn = TCP_SKB_CB(skb)->when; 1450 bool want_cookie = false; 1451 struct flowi4 fl4; 1452 struct tcp_fastopen_cookie foc = { .len = -1 }; 1453 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 1454 struct sk_buff *skb_synack; 1455 int do_fastopen; 1456 1457 /* Never answer to SYNs send to broadcast or multicast */ 1458 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1459 goto drop; 1460 1461 /* TW buckets are converted to open requests without 1462 * limitations, they conserve resources and peer is 1463 * evidently real one. 1464 */ 1465 if (inet_csk_reqsk_queue_is_full(sk) && !isn) { 1466 want_cookie = tcp_syn_flood_action(sk, skb, "TCP"); 1467 if (!want_cookie) 1468 goto drop; 1469 } 1470 1471 /* Accept backlog is full. If we have already queued enough 1472 * of warm entries in syn queue, drop request. It is better than 1473 * clogging syn queue with openreqs with exponentially increasing 1474 * timeout. 1475 */ 1476 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 1477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1478 goto drop; 1479 } 1480 1481 req = inet_reqsk_alloc(&tcp_request_sock_ops); 1482 if (!req) 1483 goto drop; 1484 1485 #ifdef CONFIG_TCP_MD5SIG 1486 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops; 1487 #endif 1488 1489 tcp_clear_options(&tmp_opt); 1490 tmp_opt.mss_clamp = TCP_MSS_DEFAULT; 1491 tmp_opt.user_mss = tp->rx_opt.user_mss; 1492 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 1493 1494 if (want_cookie && !tmp_opt.saw_tstamp) 1495 tcp_clear_options(&tmp_opt); 1496 1497 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 1498 tcp_openreq_init(req, &tmp_opt, skb); 1499 1500 ireq = inet_rsk(req); 1501 ireq->loc_addr = daddr; 1502 ireq->rmt_addr = saddr; 1503 ireq->no_srccheck = inet_sk(sk)->transparent; 1504 ireq->opt = tcp_v4_save_options(skb); 1505 1506 if (security_inet_conn_request(sk, skb, req)) 1507 goto drop_and_free; 1508 1509 if (!want_cookie || tmp_opt.tstamp_ok) 1510 TCP_ECN_create_request(req, skb, sock_net(sk)); 1511 1512 if (want_cookie) { 1513 isn = cookie_v4_init_sequence(sk, skb, &req->mss); 1514 req->cookie_ts = tmp_opt.tstamp_ok; 1515 } else if (!isn) { 1516 /* VJ's idea. We save last timestamp seen 1517 * from the destination in peer table, when entering 1518 * state TIME-WAIT, and check against it before 1519 * accepting new connection request. 1520 * 1521 * If "isn" is not zero, this request hit alive 1522 * timewait bucket, so that all the necessary checks 1523 * are made in the function processing timewait state. 1524 */ 1525 if (tmp_opt.saw_tstamp && 1526 tcp_death_row.sysctl_tw_recycle && 1527 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL && 1528 fl4.daddr == saddr) { 1529 if (!tcp_peer_is_proven(req, dst, true)) { 1530 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 1531 goto drop_and_release; 1532 } 1533 } 1534 /* Kill the following clause, if you dislike this way. */ 1535 else if (!sysctl_tcp_syncookies && 1536 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 1537 (sysctl_max_syn_backlog >> 2)) && 1538 !tcp_peer_is_proven(req, dst, false)) { 1539 /* Without syncookies last quarter of 1540 * backlog is filled with destinations, 1541 * proven to be alive. 1542 * It means that we continue to communicate 1543 * to destinations, already remembered 1544 * to the moment of synflood. 1545 */ 1546 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 1547 &saddr, ntohs(tcp_hdr(skb)->source)); 1548 goto drop_and_release; 1549 } 1550 1551 isn = tcp_v4_init_sequence(skb); 1552 } 1553 tcp_rsk(req)->snt_isn = isn; 1554 1555 if (dst == NULL) { 1556 dst = inet_csk_route_req(sk, &fl4, req); 1557 if (dst == NULL) 1558 goto drop_and_free; 1559 } 1560 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc); 1561 1562 /* We don't call tcp_v4_send_synack() directly because we need 1563 * to make sure a child socket can be created successfully before 1564 * sending back synack! 1565 * 1566 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack() 1567 * (or better yet, call tcp_send_synack() in the child context 1568 * directly, but will have to fix bunch of other code first) 1569 * after syn_recv_sock() except one will need to first fix the 1570 * latter to remove its dependency on the current implementation 1571 * of tcp_v4_send_synack()->tcp_select_initial_window(). 1572 */ 1573 skb_synack = tcp_make_synack(sk, dst, req, 1574 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL); 1575 1576 if (skb_synack) { 1577 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr); 1578 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb)); 1579 } else 1580 goto drop_and_free; 1581 1582 if (likely(!do_fastopen)) { 1583 int err; 1584 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr, 1585 ireq->rmt_addr, ireq->opt); 1586 err = net_xmit_eval(err); 1587 if (err || want_cookie) 1588 goto drop_and_free; 1589 1590 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1591 tcp_rsk(req)->listener = NULL; 1592 /* Add the request_sock to the SYN table */ 1593 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 1594 if (fastopen_cookie_present(&foc) && foc.len != 0) 1595 NET_INC_STATS_BH(sock_net(sk), 1596 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1597 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req)) 1598 goto drop_and_free; 1599 1600 return 0; 1601 1602 drop_and_release: 1603 dst_release(dst); 1604 drop_and_free: 1605 reqsk_free(req); 1606 drop: 1607 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1608 return 0; 1609 } 1610 EXPORT_SYMBOL(tcp_v4_conn_request); 1611 1612 1613 /* 1614 * The three way handshake has completed - we got a valid synack - 1615 * now create the new socket. 1616 */ 1617 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, 1618 struct request_sock *req, 1619 struct dst_entry *dst) 1620 { 1621 struct inet_request_sock *ireq; 1622 struct inet_sock *newinet; 1623 struct tcp_sock *newtp; 1624 struct sock *newsk; 1625 #ifdef CONFIG_TCP_MD5SIG 1626 struct tcp_md5sig_key *key; 1627 #endif 1628 struct ip_options_rcu *inet_opt; 1629 1630 if (sk_acceptq_is_full(sk)) 1631 goto exit_overflow; 1632 1633 newsk = tcp_create_openreq_child(sk, req, skb); 1634 if (!newsk) 1635 goto exit_nonewsk; 1636 1637 newsk->sk_gso_type = SKB_GSO_TCPV4; 1638 inet_sk_rx_dst_set(newsk, skb); 1639 1640 newtp = tcp_sk(newsk); 1641 newinet = inet_sk(newsk); 1642 ireq = inet_rsk(req); 1643 newinet->inet_daddr = ireq->rmt_addr; 1644 newinet->inet_rcv_saddr = ireq->loc_addr; 1645 newinet->inet_saddr = ireq->loc_addr; 1646 inet_opt = ireq->opt; 1647 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1648 ireq->opt = NULL; 1649 newinet->mc_index = inet_iif(skb); 1650 newinet->mc_ttl = ip_hdr(skb)->ttl; 1651 newinet->rcv_tos = ip_hdr(skb)->tos; 1652 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1653 if (inet_opt) 1654 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1655 newinet->inet_id = newtp->write_seq ^ jiffies; 1656 1657 if (!dst) { 1658 dst = inet_csk_route_child_sock(sk, newsk, req); 1659 if (!dst) 1660 goto put_and_exit; 1661 } else { 1662 /* syncookie case : see end of cookie_v4_check() */ 1663 } 1664 sk_setup_caps(newsk, dst); 1665 1666 tcp_mtup_init(newsk); 1667 tcp_sync_mss(newsk, dst_mtu(dst)); 1668 newtp->advmss = dst_metric_advmss(dst); 1669 if (tcp_sk(sk)->rx_opt.user_mss && 1670 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1671 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1672 1673 tcp_initialize_rcv_mss(newsk); 1674 tcp_synack_rtt_meas(newsk, req); 1675 newtp->total_retrans = req->num_retrans; 1676 1677 #ifdef CONFIG_TCP_MD5SIG 1678 /* Copy over the MD5 key from the original socket */ 1679 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1680 AF_INET); 1681 if (key != NULL) { 1682 /* 1683 * We're using one, so create a matching key 1684 * on the newsk structure. If we fail to get 1685 * memory, then we end up not copying the key 1686 * across. Shucks. 1687 */ 1688 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1689 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1690 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1691 } 1692 #endif 1693 1694 if (__inet_inherit_port(sk, newsk) < 0) 1695 goto put_and_exit; 1696 __inet_hash_nolisten(newsk, NULL); 1697 1698 return newsk; 1699 1700 exit_overflow: 1701 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1702 exit_nonewsk: 1703 dst_release(dst); 1704 exit: 1705 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1706 return NULL; 1707 put_and_exit: 1708 inet_csk_prepare_forced_close(newsk); 1709 tcp_done(newsk); 1710 goto exit; 1711 } 1712 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1713 1714 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) 1715 { 1716 struct tcphdr *th = tcp_hdr(skb); 1717 const struct iphdr *iph = ip_hdr(skb); 1718 struct sock *nsk; 1719 struct request_sock **prev; 1720 /* Find possible connection requests. */ 1721 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source, 1722 iph->saddr, iph->daddr); 1723 if (req) 1724 return tcp_check_req(sk, skb, req, prev, false); 1725 1726 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr, 1727 th->source, iph->daddr, th->dest, inet_iif(skb)); 1728 1729 if (nsk) { 1730 if (nsk->sk_state != TCP_TIME_WAIT) { 1731 bh_lock_sock(nsk); 1732 return nsk; 1733 } 1734 inet_twsk_put(inet_twsk(nsk)); 1735 return NULL; 1736 } 1737 1738 #ifdef CONFIG_SYN_COOKIES 1739 if (!th->syn) 1740 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); 1741 #endif 1742 return sk; 1743 } 1744 1745 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb) 1746 { 1747 const struct iphdr *iph = ip_hdr(skb); 1748 1749 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1750 if (!tcp_v4_check(skb->len, iph->saddr, 1751 iph->daddr, skb->csum)) { 1752 skb->ip_summed = CHECKSUM_UNNECESSARY; 1753 return 0; 1754 } 1755 } 1756 1757 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1758 skb->len, IPPROTO_TCP, 0); 1759 1760 if (skb->len <= 76) { 1761 return __skb_checksum_complete(skb); 1762 } 1763 return 0; 1764 } 1765 1766 1767 /* The socket must have it's spinlock held when we get 1768 * here. 1769 * 1770 * We have a potential double-lock case here, so even when 1771 * doing backlog processing we use the BH locking scheme. 1772 * This is because we cannot sleep with the original spinlock 1773 * held. 1774 */ 1775 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1776 { 1777 struct sock *rsk; 1778 #ifdef CONFIG_TCP_MD5SIG 1779 /* 1780 * We really want to reject the packet as early as possible 1781 * if: 1782 * o We're expecting an MD5'd packet and this is no MD5 tcp option 1783 * o There is an MD5 option and we're not expecting one 1784 */ 1785 if (tcp_v4_inbound_md5_hash(sk, skb)) 1786 goto discard; 1787 #endif 1788 1789 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1790 struct dst_entry *dst = sk->sk_rx_dst; 1791 1792 sock_rps_save_rxhash(sk, skb); 1793 if (dst) { 1794 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1795 dst->ops->check(dst, 0) == NULL) { 1796 dst_release(dst); 1797 sk->sk_rx_dst = NULL; 1798 } 1799 } 1800 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) { 1801 rsk = sk; 1802 goto reset; 1803 } 1804 return 0; 1805 } 1806 1807 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) 1808 goto csum_err; 1809 1810 if (sk->sk_state == TCP_LISTEN) { 1811 struct sock *nsk = tcp_v4_hnd_req(sk, skb); 1812 if (!nsk) 1813 goto discard; 1814 1815 if (nsk != sk) { 1816 sock_rps_save_rxhash(nsk, skb); 1817 if (tcp_child_process(sk, nsk, skb)) { 1818 rsk = nsk; 1819 goto reset; 1820 } 1821 return 0; 1822 } 1823 } else 1824 sock_rps_save_rxhash(sk, skb); 1825 1826 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { 1827 rsk = sk; 1828 goto reset; 1829 } 1830 return 0; 1831 1832 reset: 1833 tcp_v4_send_reset(rsk, skb); 1834 discard: 1835 kfree_skb(skb); 1836 /* Be careful here. If this function gets more complicated and 1837 * gcc suffers from register pressure on the x86, sk (in %ebx) 1838 * might be destroyed here. This current version compiles correctly, 1839 * but you have been warned. 1840 */ 1841 return 0; 1842 1843 csum_err: 1844 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 1845 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1846 goto discard; 1847 } 1848 EXPORT_SYMBOL(tcp_v4_do_rcv); 1849 1850 void tcp_v4_early_demux(struct sk_buff *skb) 1851 { 1852 const struct iphdr *iph; 1853 const struct tcphdr *th; 1854 struct sock *sk; 1855 1856 if (skb->pkt_type != PACKET_HOST) 1857 return; 1858 1859 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1860 return; 1861 1862 iph = ip_hdr(skb); 1863 th = tcp_hdr(skb); 1864 1865 if (th->doff < sizeof(struct tcphdr) / 4) 1866 return; 1867 1868 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1869 iph->saddr, th->source, 1870 iph->daddr, ntohs(th->dest), 1871 skb->skb_iif); 1872 if (sk) { 1873 skb->sk = sk; 1874 skb->destructor = sock_edemux; 1875 if (sk->sk_state != TCP_TIME_WAIT) { 1876 struct dst_entry *dst = sk->sk_rx_dst; 1877 1878 if (dst) 1879 dst = dst_check(dst, 0); 1880 if (dst && 1881 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1882 skb_dst_set_noref(skb, dst); 1883 } 1884 } 1885 } 1886 1887 /* Packet is added to VJ-style prequeue for processing in process 1888 * context, if a reader task is waiting. Apparently, this exciting 1889 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93) 1890 * failed somewhere. Latency? Burstiness? Well, at least now we will 1891 * see, why it failed. 8)8) --ANK 1892 * 1893 */ 1894 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb) 1895 { 1896 struct tcp_sock *tp = tcp_sk(sk); 1897 1898 if (sysctl_tcp_low_latency || !tp->ucopy.task) 1899 return false; 1900 1901 if (skb->len <= tcp_hdrlen(skb) && 1902 skb_queue_len(&tp->ucopy.prequeue) == 0) 1903 return false; 1904 1905 skb_dst_force(skb); 1906 __skb_queue_tail(&tp->ucopy.prequeue, skb); 1907 tp->ucopy.memory += skb->truesize; 1908 if (tp->ucopy.memory > sk->sk_rcvbuf) { 1909 struct sk_buff *skb1; 1910 1911 BUG_ON(sock_owned_by_user(sk)); 1912 1913 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) { 1914 sk_backlog_rcv(sk, skb1); 1915 NET_INC_STATS_BH(sock_net(sk), 1916 LINUX_MIB_TCPPREQUEUEDROPPED); 1917 } 1918 1919 tp->ucopy.memory = 0; 1920 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) { 1921 wake_up_interruptible_sync_poll(sk_sleep(sk), 1922 POLLIN | POLLRDNORM | POLLRDBAND); 1923 if (!inet_csk_ack_scheduled(sk)) 1924 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1925 (3 * tcp_rto_min(sk)) / 4, 1926 TCP_RTO_MAX); 1927 } 1928 return true; 1929 } 1930 EXPORT_SYMBOL(tcp_prequeue); 1931 1932 /* 1933 * From tcp_input.c 1934 */ 1935 1936 int tcp_v4_rcv(struct sk_buff *skb) 1937 { 1938 const struct iphdr *iph; 1939 const struct tcphdr *th; 1940 struct sock *sk; 1941 int ret; 1942 struct net *net = dev_net(skb->dev); 1943 1944 if (skb->pkt_type != PACKET_HOST) 1945 goto discard_it; 1946 1947 /* Count it even if it's bad */ 1948 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1949 1950 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1951 goto discard_it; 1952 1953 th = tcp_hdr(skb); 1954 1955 if (th->doff < sizeof(struct tcphdr) / 4) 1956 goto bad_packet; 1957 if (!pskb_may_pull(skb, th->doff * 4)) 1958 goto discard_it; 1959 1960 /* An explanation is required here, I think. 1961 * Packet length and doff are validated by header prediction, 1962 * provided case of th->doff==0 is eliminated. 1963 * So, we defer the checks. */ 1964 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb)) 1965 goto csum_error; 1966 1967 th = tcp_hdr(skb); 1968 iph = ip_hdr(skb); 1969 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1970 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1971 skb->len - th->doff * 4); 1972 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1973 TCP_SKB_CB(skb)->when = 0; 1974 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1975 TCP_SKB_CB(skb)->sacked = 0; 1976 1977 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 1978 if (!sk) 1979 goto no_tcp_socket; 1980 1981 process: 1982 if (sk->sk_state == TCP_TIME_WAIT) 1983 goto do_time_wait; 1984 1985 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1986 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 1987 goto discard_and_relse; 1988 } 1989 1990 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1991 goto discard_and_relse; 1992 nf_reset(skb); 1993 1994 if (sk_filter(sk, skb)) 1995 goto discard_and_relse; 1996 1997 sk_mark_napi_id(sk, skb); 1998 skb->dev = NULL; 1999 2000 bh_lock_sock_nested(sk); 2001 ret = 0; 2002 if (!sock_owned_by_user(sk)) { 2003 #ifdef CONFIG_NET_DMA 2004 struct tcp_sock *tp = tcp_sk(sk); 2005 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 2006 tp->ucopy.dma_chan = net_dma_find_channel(); 2007 if (tp->ucopy.dma_chan) 2008 ret = tcp_v4_do_rcv(sk, skb); 2009 else 2010 #endif 2011 { 2012 if (!tcp_prequeue(sk, skb)) 2013 ret = tcp_v4_do_rcv(sk, skb); 2014 } 2015 } else if (unlikely(sk_add_backlog(sk, skb, 2016 sk->sk_rcvbuf + sk->sk_sndbuf))) { 2017 bh_unlock_sock(sk); 2018 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP); 2019 goto discard_and_relse; 2020 } 2021 bh_unlock_sock(sk); 2022 2023 sock_put(sk); 2024 2025 return ret; 2026 2027 no_tcp_socket: 2028 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2029 goto discard_it; 2030 2031 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 2032 csum_error: 2033 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS); 2034 bad_packet: 2035 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 2036 } else { 2037 tcp_v4_send_reset(NULL, skb); 2038 } 2039 2040 discard_it: 2041 /* Discard frame. */ 2042 kfree_skb(skb); 2043 return 0; 2044 2045 discard_and_relse: 2046 sock_put(sk); 2047 goto discard_it; 2048 2049 do_time_wait: 2050 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2051 inet_twsk_put(inet_twsk(sk)); 2052 goto discard_it; 2053 } 2054 2055 if (skb->len < (th->doff << 2)) { 2056 inet_twsk_put(inet_twsk(sk)); 2057 goto bad_packet; 2058 } 2059 if (tcp_checksum_complete(skb)) { 2060 inet_twsk_put(inet_twsk(sk)); 2061 goto csum_error; 2062 } 2063 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2064 case TCP_TW_SYN: { 2065 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 2066 &tcp_hashinfo, 2067 iph->saddr, th->source, 2068 iph->daddr, th->dest, 2069 inet_iif(skb)); 2070 if (sk2) { 2071 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); 2072 inet_twsk_put(inet_twsk(sk)); 2073 sk = sk2; 2074 goto process; 2075 } 2076 /* Fall through to ACK */ 2077 } 2078 case TCP_TW_ACK: 2079 tcp_v4_timewait_ack(sk, skb); 2080 break; 2081 case TCP_TW_RST: 2082 goto no_tcp_socket; 2083 case TCP_TW_SUCCESS:; 2084 } 2085 goto discard_it; 2086 } 2087 2088 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2089 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2090 .twsk_unique = tcp_twsk_unique, 2091 .twsk_destructor= tcp_twsk_destructor, 2092 }; 2093 2094 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2095 { 2096 struct dst_entry *dst = skb_dst(skb); 2097 2098 dst_hold(dst); 2099 sk->sk_rx_dst = dst; 2100 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 2101 } 2102 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2103 2104 const struct inet_connection_sock_af_ops ipv4_specific = { 2105 .queue_xmit = ip_queue_xmit, 2106 .send_check = tcp_v4_send_check, 2107 .rebuild_header = inet_sk_rebuild_header, 2108 .sk_rx_dst_set = inet_sk_rx_dst_set, 2109 .conn_request = tcp_v4_conn_request, 2110 .syn_recv_sock = tcp_v4_syn_recv_sock, 2111 .net_header_len = sizeof(struct iphdr), 2112 .setsockopt = ip_setsockopt, 2113 .getsockopt = ip_getsockopt, 2114 .addr2sockaddr = inet_csk_addr2sockaddr, 2115 .sockaddr_len = sizeof(struct sockaddr_in), 2116 .bind_conflict = inet_csk_bind_conflict, 2117 #ifdef CONFIG_COMPAT 2118 .compat_setsockopt = compat_ip_setsockopt, 2119 .compat_getsockopt = compat_ip_getsockopt, 2120 #endif 2121 }; 2122 EXPORT_SYMBOL(ipv4_specific); 2123 2124 #ifdef CONFIG_TCP_MD5SIG 2125 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2126 .md5_lookup = tcp_v4_md5_lookup, 2127 .calc_md5_hash = tcp_v4_md5_hash_skb, 2128 .md5_parse = tcp_v4_parse_md5_keys, 2129 }; 2130 #endif 2131 2132 /* NOTE: A lot of things set to zero explicitly by call to 2133 * sk_alloc() so need not be done here. 2134 */ 2135 static int tcp_v4_init_sock(struct sock *sk) 2136 { 2137 struct inet_connection_sock *icsk = inet_csk(sk); 2138 2139 tcp_init_sock(sk); 2140 2141 icsk->icsk_af_ops = &ipv4_specific; 2142 2143 #ifdef CONFIG_TCP_MD5SIG 2144 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2145 #endif 2146 2147 return 0; 2148 } 2149 2150 void tcp_v4_destroy_sock(struct sock *sk) 2151 { 2152 struct tcp_sock *tp = tcp_sk(sk); 2153 2154 tcp_clear_xmit_timers(sk); 2155 2156 tcp_cleanup_congestion_control(sk); 2157 2158 /* Cleanup up the write buffer. */ 2159 tcp_write_queue_purge(sk); 2160 2161 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2162 __skb_queue_purge(&tp->out_of_order_queue); 2163 2164 #ifdef CONFIG_TCP_MD5SIG 2165 /* Clean up the MD5 key list, if any */ 2166 if (tp->md5sig_info) { 2167 tcp_clear_md5_list(sk); 2168 kfree_rcu(tp->md5sig_info, rcu); 2169 tp->md5sig_info = NULL; 2170 } 2171 #endif 2172 2173 #ifdef CONFIG_NET_DMA 2174 /* Cleans up our sk_async_wait_queue */ 2175 __skb_queue_purge(&sk->sk_async_wait_queue); 2176 #endif 2177 2178 /* Clean prequeue, it must be empty really */ 2179 __skb_queue_purge(&tp->ucopy.prequeue); 2180 2181 /* Clean up a referenced TCP bind bucket. */ 2182 if (inet_csk(sk)->icsk_bind_hash) 2183 inet_put_port(sk); 2184 2185 BUG_ON(tp->fastopen_rsk != NULL); 2186 2187 /* If socket is aborted during connect operation */ 2188 tcp_free_fastopen_req(tp); 2189 2190 sk_sockets_allocated_dec(sk); 2191 sock_release_memcg(sk); 2192 } 2193 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2194 2195 #ifdef CONFIG_PROC_FS 2196 /* Proc filesystem TCP sock list dumping. */ 2197 2198 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head) 2199 { 2200 return hlist_nulls_empty(head) ? NULL : 2201 list_entry(head->first, struct inet_timewait_sock, tw_node); 2202 } 2203 2204 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw) 2205 { 2206 return !is_a_nulls(tw->tw_node.next) ? 2207 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL; 2208 } 2209 2210 /* 2211 * Get next listener socket follow cur. If cur is NULL, get first socket 2212 * starting from bucket given in st->bucket; when st->bucket is zero the 2213 * very first socket in the hash table is returned. 2214 */ 2215 static void *listening_get_next(struct seq_file *seq, void *cur) 2216 { 2217 struct inet_connection_sock *icsk; 2218 struct hlist_nulls_node *node; 2219 struct sock *sk = cur; 2220 struct inet_listen_hashbucket *ilb; 2221 struct tcp_iter_state *st = seq->private; 2222 struct net *net = seq_file_net(seq); 2223 2224 if (!sk) { 2225 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2226 spin_lock_bh(&ilb->lock); 2227 sk = sk_nulls_head(&ilb->head); 2228 st->offset = 0; 2229 goto get_sk; 2230 } 2231 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2232 ++st->num; 2233 ++st->offset; 2234 2235 if (st->state == TCP_SEQ_STATE_OPENREQ) { 2236 struct request_sock *req = cur; 2237 2238 icsk = inet_csk(st->syn_wait_sk); 2239 req = req->dl_next; 2240 while (1) { 2241 while (req) { 2242 if (req->rsk_ops->family == st->family) { 2243 cur = req; 2244 goto out; 2245 } 2246 req = req->dl_next; 2247 } 2248 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) 2249 break; 2250 get_req: 2251 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; 2252 } 2253 sk = sk_nulls_next(st->syn_wait_sk); 2254 st->state = TCP_SEQ_STATE_LISTENING; 2255 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2256 } else { 2257 icsk = inet_csk(sk); 2258 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2259 if (reqsk_queue_len(&icsk->icsk_accept_queue)) 2260 goto start_req; 2261 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2262 sk = sk_nulls_next(sk); 2263 } 2264 get_sk: 2265 sk_nulls_for_each_from(sk, node) { 2266 if (!net_eq(sock_net(sk), net)) 2267 continue; 2268 if (sk->sk_family == st->family) { 2269 cur = sk; 2270 goto out; 2271 } 2272 icsk = inet_csk(sk); 2273 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2274 if (reqsk_queue_len(&icsk->icsk_accept_queue)) { 2275 start_req: 2276 st->uid = sock_i_uid(sk); 2277 st->syn_wait_sk = sk; 2278 st->state = TCP_SEQ_STATE_OPENREQ; 2279 st->sbucket = 0; 2280 goto get_req; 2281 } 2282 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2283 } 2284 spin_unlock_bh(&ilb->lock); 2285 st->offset = 0; 2286 if (++st->bucket < INET_LHTABLE_SIZE) { 2287 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2288 spin_lock_bh(&ilb->lock); 2289 sk = sk_nulls_head(&ilb->head); 2290 goto get_sk; 2291 } 2292 cur = NULL; 2293 out: 2294 return cur; 2295 } 2296 2297 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2298 { 2299 struct tcp_iter_state *st = seq->private; 2300 void *rc; 2301 2302 st->bucket = 0; 2303 st->offset = 0; 2304 rc = listening_get_next(seq, NULL); 2305 2306 while (rc && *pos) { 2307 rc = listening_get_next(seq, rc); 2308 --*pos; 2309 } 2310 return rc; 2311 } 2312 2313 static inline bool empty_bucket(struct tcp_iter_state *st) 2314 { 2315 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) && 2316 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain); 2317 } 2318 2319 /* 2320 * Get first established socket starting from bucket given in st->bucket. 2321 * If st->bucket is zero, the very first socket in the hash is returned. 2322 */ 2323 static void *established_get_first(struct seq_file *seq) 2324 { 2325 struct tcp_iter_state *st = seq->private; 2326 struct net *net = seq_file_net(seq); 2327 void *rc = NULL; 2328 2329 st->offset = 0; 2330 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2331 struct sock *sk; 2332 struct hlist_nulls_node *node; 2333 struct inet_timewait_sock *tw; 2334 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2335 2336 /* Lockless fast path for the common case of empty buckets */ 2337 if (empty_bucket(st)) 2338 continue; 2339 2340 spin_lock_bh(lock); 2341 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2342 if (sk->sk_family != st->family || 2343 !net_eq(sock_net(sk), net)) { 2344 continue; 2345 } 2346 rc = sk; 2347 goto out; 2348 } 2349 st->state = TCP_SEQ_STATE_TIME_WAIT; 2350 inet_twsk_for_each(tw, node, 2351 &tcp_hashinfo.ehash[st->bucket].twchain) { 2352 if (tw->tw_family != st->family || 2353 !net_eq(twsk_net(tw), net)) { 2354 continue; 2355 } 2356 rc = tw; 2357 goto out; 2358 } 2359 spin_unlock_bh(lock); 2360 st->state = TCP_SEQ_STATE_ESTABLISHED; 2361 } 2362 out: 2363 return rc; 2364 } 2365 2366 static void *established_get_next(struct seq_file *seq, void *cur) 2367 { 2368 struct sock *sk = cur; 2369 struct inet_timewait_sock *tw; 2370 struct hlist_nulls_node *node; 2371 struct tcp_iter_state *st = seq->private; 2372 struct net *net = seq_file_net(seq); 2373 2374 ++st->num; 2375 ++st->offset; 2376 2377 if (st->state == TCP_SEQ_STATE_TIME_WAIT) { 2378 tw = cur; 2379 tw = tw_next(tw); 2380 get_tw: 2381 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) { 2382 tw = tw_next(tw); 2383 } 2384 if (tw) { 2385 cur = tw; 2386 goto out; 2387 } 2388 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2389 st->state = TCP_SEQ_STATE_ESTABLISHED; 2390 2391 /* Look for next non empty bucket */ 2392 st->offset = 0; 2393 while (++st->bucket <= tcp_hashinfo.ehash_mask && 2394 empty_bucket(st)) 2395 ; 2396 if (st->bucket > tcp_hashinfo.ehash_mask) 2397 return NULL; 2398 2399 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2400 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain); 2401 } else 2402 sk = sk_nulls_next(sk); 2403 2404 sk_nulls_for_each_from(sk, node) { 2405 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2406 goto found; 2407 } 2408 2409 st->state = TCP_SEQ_STATE_TIME_WAIT; 2410 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain); 2411 goto get_tw; 2412 found: 2413 cur = sk; 2414 out: 2415 return cur; 2416 } 2417 2418 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2419 { 2420 struct tcp_iter_state *st = seq->private; 2421 void *rc; 2422 2423 st->bucket = 0; 2424 rc = established_get_first(seq); 2425 2426 while (rc && pos) { 2427 rc = established_get_next(seq, rc); 2428 --pos; 2429 } 2430 return rc; 2431 } 2432 2433 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2434 { 2435 void *rc; 2436 struct tcp_iter_state *st = seq->private; 2437 2438 st->state = TCP_SEQ_STATE_LISTENING; 2439 rc = listening_get_idx(seq, &pos); 2440 2441 if (!rc) { 2442 st->state = TCP_SEQ_STATE_ESTABLISHED; 2443 rc = established_get_idx(seq, pos); 2444 } 2445 2446 return rc; 2447 } 2448 2449 static void *tcp_seek_last_pos(struct seq_file *seq) 2450 { 2451 struct tcp_iter_state *st = seq->private; 2452 int offset = st->offset; 2453 int orig_num = st->num; 2454 void *rc = NULL; 2455 2456 switch (st->state) { 2457 case TCP_SEQ_STATE_OPENREQ: 2458 case TCP_SEQ_STATE_LISTENING: 2459 if (st->bucket >= INET_LHTABLE_SIZE) 2460 break; 2461 st->state = TCP_SEQ_STATE_LISTENING; 2462 rc = listening_get_next(seq, NULL); 2463 while (offset-- && rc) 2464 rc = listening_get_next(seq, rc); 2465 if (rc) 2466 break; 2467 st->bucket = 0; 2468 /* Fallthrough */ 2469 case TCP_SEQ_STATE_ESTABLISHED: 2470 case TCP_SEQ_STATE_TIME_WAIT: 2471 st->state = TCP_SEQ_STATE_ESTABLISHED; 2472 if (st->bucket > tcp_hashinfo.ehash_mask) 2473 break; 2474 rc = established_get_first(seq); 2475 while (offset-- && rc) 2476 rc = established_get_next(seq, rc); 2477 } 2478 2479 st->num = orig_num; 2480 2481 return rc; 2482 } 2483 2484 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2485 { 2486 struct tcp_iter_state *st = seq->private; 2487 void *rc; 2488 2489 if (*pos && *pos == st->last_pos) { 2490 rc = tcp_seek_last_pos(seq); 2491 if (rc) 2492 goto out; 2493 } 2494 2495 st->state = TCP_SEQ_STATE_LISTENING; 2496 st->num = 0; 2497 st->bucket = 0; 2498 st->offset = 0; 2499 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2500 2501 out: 2502 st->last_pos = *pos; 2503 return rc; 2504 } 2505 2506 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2507 { 2508 struct tcp_iter_state *st = seq->private; 2509 void *rc = NULL; 2510 2511 if (v == SEQ_START_TOKEN) { 2512 rc = tcp_get_idx(seq, 0); 2513 goto out; 2514 } 2515 2516 switch (st->state) { 2517 case TCP_SEQ_STATE_OPENREQ: 2518 case TCP_SEQ_STATE_LISTENING: 2519 rc = listening_get_next(seq, v); 2520 if (!rc) { 2521 st->state = TCP_SEQ_STATE_ESTABLISHED; 2522 st->bucket = 0; 2523 st->offset = 0; 2524 rc = established_get_first(seq); 2525 } 2526 break; 2527 case TCP_SEQ_STATE_ESTABLISHED: 2528 case TCP_SEQ_STATE_TIME_WAIT: 2529 rc = established_get_next(seq, v); 2530 break; 2531 } 2532 out: 2533 ++*pos; 2534 st->last_pos = *pos; 2535 return rc; 2536 } 2537 2538 static void tcp_seq_stop(struct seq_file *seq, void *v) 2539 { 2540 struct tcp_iter_state *st = seq->private; 2541 2542 switch (st->state) { 2543 case TCP_SEQ_STATE_OPENREQ: 2544 if (v) { 2545 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); 2546 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2547 } 2548 case TCP_SEQ_STATE_LISTENING: 2549 if (v != SEQ_START_TOKEN) 2550 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2551 break; 2552 case TCP_SEQ_STATE_TIME_WAIT: 2553 case TCP_SEQ_STATE_ESTABLISHED: 2554 if (v) 2555 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2556 break; 2557 } 2558 } 2559 2560 int tcp_seq_open(struct inode *inode, struct file *file) 2561 { 2562 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2563 struct tcp_iter_state *s; 2564 int err; 2565 2566 err = seq_open_net(inode, file, &afinfo->seq_ops, 2567 sizeof(struct tcp_iter_state)); 2568 if (err < 0) 2569 return err; 2570 2571 s = ((struct seq_file *)file->private_data)->private; 2572 s->family = afinfo->family; 2573 s->last_pos = 0; 2574 return 0; 2575 } 2576 EXPORT_SYMBOL(tcp_seq_open); 2577 2578 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2579 { 2580 int rc = 0; 2581 struct proc_dir_entry *p; 2582 2583 afinfo->seq_ops.start = tcp_seq_start; 2584 afinfo->seq_ops.next = tcp_seq_next; 2585 afinfo->seq_ops.stop = tcp_seq_stop; 2586 2587 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2588 afinfo->seq_fops, afinfo); 2589 if (!p) 2590 rc = -ENOMEM; 2591 return rc; 2592 } 2593 EXPORT_SYMBOL(tcp_proc_register); 2594 2595 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2596 { 2597 remove_proc_entry(afinfo->name, net->proc_net); 2598 } 2599 EXPORT_SYMBOL(tcp_proc_unregister); 2600 2601 static void get_openreq4(const struct sock *sk, const struct request_sock *req, 2602 struct seq_file *f, int i, kuid_t uid, int *len) 2603 { 2604 const struct inet_request_sock *ireq = inet_rsk(req); 2605 long delta = req->expires - jiffies; 2606 2607 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2608 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n", 2609 i, 2610 ireq->loc_addr, 2611 ntohs(inet_sk(sk)->inet_sport), 2612 ireq->rmt_addr, 2613 ntohs(ireq->rmt_port), 2614 TCP_SYN_RECV, 2615 0, 0, /* could print option size, but that is af dependent. */ 2616 1, /* timers active (only the expire timer) */ 2617 jiffies_delta_to_clock_t(delta), 2618 req->num_timeout, 2619 from_kuid_munged(seq_user_ns(f), uid), 2620 0, /* non standard timer */ 2621 0, /* open_requests have no inode */ 2622 atomic_read(&sk->sk_refcnt), 2623 req, 2624 len); 2625 } 2626 2627 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len) 2628 { 2629 int timer_active; 2630 unsigned long timer_expires; 2631 const struct tcp_sock *tp = tcp_sk(sk); 2632 const struct inet_connection_sock *icsk = inet_csk(sk); 2633 const struct inet_sock *inet = inet_sk(sk); 2634 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq; 2635 __be32 dest = inet->inet_daddr; 2636 __be32 src = inet->inet_rcv_saddr; 2637 __u16 destp = ntohs(inet->inet_dport); 2638 __u16 srcp = ntohs(inet->inet_sport); 2639 int rx_queue; 2640 2641 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2642 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2643 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2644 timer_active = 1; 2645 timer_expires = icsk->icsk_timeout; 2646 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2647 timer_active = 4; 2648 timer_expires = icsk->icsk_timeout; 2649 } else if (timer_pending(&sk->sk_timer)) { 2650 timer_active = 2; 2651 timer_expires = sk->sk_timer.expires; 2652 } else { 2653 timer_active = 0; 2654 timer_expires = jiffies; 2655 } 2656 2657 if (sk->sk_state == TCP_LISTEN) 2658 rx_queue = sk->sk_ack_backlog; 2659 else 2660 /* 2661 * because we dont lock socket, we might find a transient negative value 2662 */ 2663 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2664 2665 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2666 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n", 2667 i, src, srcp, dest, destp, sk->sk_state, 2668 tp->write_seq - tp->snd_una, 2669 rx_queue, 2670 timer_active, 2671 jiffies_delta_to_clock_t(timer_expires - jiffies), 2672 icsk->icsk_retransmits, 2673 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2674 icsk->icsk_probes_out, 2675 sock_i_ino(sk), 2676 atomic_read(&sk->sk_refcnt), sk, 2677 jiffies_to_clock_t(icsk->icsk_rto), 2678 jiffies_to_clock_t(icsk->icsk_ack.ato), 2679 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2680 tp->snd_cwnd, 2681 sk->sk_state == TCP_LISTEN ? 2682 (fastopenq ? fastopenq->max_qlen : 0) : 2683 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh), 2684 len); 2685 } 2686 2687 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2688 struct seq_file *f, int i, int *len) 2689 { 2690 __be32 dest, src; 2691 __u16 destp, srcp; 2692 long delta = tw->tw_ttd - jiffies; 2693 2694 dest = tw->tw_daddr; 2695 src = tw->tw_rcv_saddr; 2696 destp = ntohs(tw->tw_dport); 2697 srcp = ntohs(tw->tw_sport); 2698 2699 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2700 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n", 2701 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2702 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2703 atomic_read(&tw->tw_refcnt), tw, len); 2704 } 2705 2706 #define TMPSZ 150 2707 2708 static int tcp4_seq_show(struct seq_file *seq, void *v) 2709 { 2710 struct tcp_iter_state *st; 2711 int len; 2712 2713 if (v == SEQ_START_TOKEN) { 2714 seq_printf(seq, "%-*s\n", TMPSZ - 1, 2715 " sl local_address rem_address st tx_queue " 2716 "rx_queue tr tm->when retrnsmt uid timeout " 2717 "inode"); 2718 goto out; 2719 } 2720 st = seq->private; 2721 2722 switch (st->state) { 2723 case TCP_SEQ_STATE_LISTENING: 2724 case TCP_SEQ_STATE_ESTABLISHED: 2725 get_tcp4_sock(v, seq, st->num, &len); 2726 break; 2727 case TCP_SEQ_STATE_OPENREQ: 2728 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len); 2729 break; 2730 case TCP_SEQ_STATE_TIME_WAIT: 2731 get_timewait4_sock(v, seq, st->num, &len); 2732 break; 2733 } 2734 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, ""); 2735 out: 2736 return 0; 2737 } 2738 2739 static const struct file_operations tcp_afinfo_seq_fops = { 2740 .owner = THIS_MODULE, 2741 .open = tcp_seq_open, 2742 .read = seq_read, 2743 .llseek = seq_lseek, 2744 .release = seq_release_net 2745 }; 2746 2747 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2748 .name = "tcp", 2749 .family = AF_INET, 2750 .seq_fops = &tcp_afinfo_seq_fops, 2751 .seq_ops = { 2752 .show = tcp4_seq_show, 2753 }, 2754 }; 2755 2756 static int __net_init tcp4_proc_init_net(struct net *net) 2757 { 2758 return tcp_proc_register(net, &tcp4_seq_afinfo); 2759 } 2760 2761 static void __net_exit tcp4_proc_exit_net(struct net *net) 2762 { 2763 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2764 } 2765 2766 static struct pernet_operations tcp4_net_ops = { 2767 .init = tcp4_proc_init_net, 2768 .exit = tcp4_proc_exit_net, 2769 }; 2770 2771 int __init tcp4_proc_init(void) 2772 { 2773 return register_pernet_subsys(&tcp4_net_ops); 2774 } 2775 2776 void tcp4_proc_exit(void) 2777 { 2778 unregister_pernet_subsys(&tcp4_net_ops); 2779 } 2780 #endif /* CONFIG_PROC_FS */ 2781 2782 struct proto tcp_prot = { 2783 .name = "TCP", 2784 .owner = THIS_MODULE, 2785 .close = tcp_close, 2786 .connect = tcp_v4_connect, 2787 .disconnect = tcp_disconnect, 2788 .accept = inet_csk_accept, 2789 .ioctl = tcp_ioctl, 2790 .init = tcp_v4_init_sock, 2791 .destroy = tcp_v4_destroy_sock, 2792 .shutdown = tcp_shutdown, 2793 .setsockopt = tcp_setsockopt, 2794 .getsockopt = tcp_getsockopt, 2795 .recvmsg = tcp_recvmsg, 2796 .sendmsg = tcp_sendmsg, 2797 .sendpage = tcp_sendpage, 2798 .backlog_rcv = tcp_v4_do_rcv, 2799 .release_cb = tcp_release_cb, 2800 .mtu_reduced = tcp_v4_mtu_reduced, 2801 .hash = inet_hash, 2802 .unhash = inet_unhash, 2803 .get_port = inet_csk_get_port, 2804 .enter_memory_pressure = tcp_enter_memory_pressure, 2805 .sockets_allocated = &tcp_sockets_allocated, 2806 .orphan_count = &tcp_orphan_count, 2807 .memory_allocated = &tcp_memory_allocated, 2808 .memory_pressure = &tcp_memory_pressure, 2809 .sysctl_wmem = sysctl_tcp_wmem, 2810 .sysctl_rmem = sysctl_tcp_rmem, 2811 .max_header = MAX_TCP_HEADER, 2812 .obj_size = sizeof(struct tcp_sock), 2813 .slab_flags = SLAB_DESTROY_BY_RCU, 2814 .twsk_prot = &tcp_timewait_sock_ops, 2815 .rsk_prot = &tcp_request_sock_ops, 2816 .h.hashinfo = &tcp_hashinfo, 2817 .no_autobind = true, 2818 #ifdef CONFIG_COMPAT 2819 .compat_setsockopt = compat_tcp_setsockopt, 2820 .compat_getsockopt = compat_tcp_getsockopt, 2821 #endif 2822 #ifdef CONFIG_MEMCG_KMEM 2823 .init_cgroup = tcp_init_cgroup, 2824 .destroy_cgroup = tcp_destroy_cgroup, 2825 .proto_cgroup = tcp_proto_cgroup, 2826 #endif 2827 }; 2828 EXPORT_SYMBOL(tcp_prot); 2829 2830 static int __net_init tcp_sk_init(struct net *net) 2831 { 2832 net->ipv4.sysctl_tcp_ecn = 2; 2833 return 0; 2834 } 2835 2836 static void __net_exit tcp_sk_exit(struct net *net) 2837 { 2838 } 2839 2840 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2841 { 2842 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2843 } 2844 2845 static struct pernet_operations __net_initdata tcp_sk_ops = { 2846 .init = tcp_sk_init, 2847 .exit = tcp_sk_exit, 2848 .exit_batch = tcp_sk_exit_batch, 2849 }; 2850 2851 void __init tcp_v4_init(void) 2852 { 2853 inet_hashinfo_init(&tcp_hashinfo); 2854 if (register_pernet_subsys(&tcp_sk_ops)) 2855 panic("Failed to create the TCP control socket.\n"); 2856 } 2857