1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 61 #include <net/net_namespace.h> 62 #include <net/icmp.h> 63 #include <net/inet_hashtables.h> 64 #include <net/tcp.h> 65 #include <net/transp_v6.h> 66 #include <net/ipv6.h> 67 #include <net/inet_common.h> 68 #include <net/timewait_sock.h> 69 #include <net/xfrm.h> 70 #include <net/secure_seq.h> 71 #include <net/busy_poll.h> 72 73 #include <linux/inet.h> 74 #include <linux/ipv6.h> 75 #include <linux/stddef.h> 76 #include <linux/proc_fs.h> 77 #include <linux/seq_file.h> 78 #include <linux/inetdevice.h> 79 #include <linux/btf_ids.h> 80 81 #include <crypto/hash.h> 82 #include <linux/scatterlist.h> 83 84 #include <trace/events/tcp.h> 85 86 #ifdef CONFIG_TCP_MD5SIG 87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 88 __be32 daddr, __be32 saddr, const struct tcphdr *th); 89 #endif 90 91 struct inet_hashinfo tcp_hashinfo; 92 EXPORT_SYMBOL(tcp_hashinfo); 93 94 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk); 95 96 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 97 { 98 return secure_tcp_seq(ip_hdr(skb)->daddr, 99 ip_hdr(skb)->saddr, 100 tcp_hdr(skb)->dest, 101 tcp_hdr(skb)->source); 102 } 103 104 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 105 { 106 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 107 } 108 109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 110 { 111 const struct inet_timewait_sock *tw = inet_twsk(sktw); 112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 113 struct tcp_sock *tp = tcp_sk(sk); 114 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; 115 116 if (reuse == 2) { 117 /* Still does not detect *everything* that goes through 118 * lo, since we require a loopback src or dst address 119 * or direct binding to 'lo' interface. 120 */ 121 bool loopback = false; 122 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 123 loopback = true; 124 #if IS_ENABLED(CONFIG_IPV6) 125 if (tw->tw_family == AF_INET6) { 126 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 127 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || 128 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 129 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) 130 loopback = true; 131 } else 132 #endif 133 { 134 if (ipv4_is_loopback(tw->tw_daddr) || 135 ipv4_is_loopback(tw->tw_rcv_saddr)) 136 loopback = true; 137 } 138 if (!loopback) 139 reuse = 0; 140 } 141 142 /* With PAWS, it is safe from the viewpoint 143 of data integrity. Even without PAWS it is safe provided sequence 144 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 145 146 Actually, the idea is close to VJ's one, only timestamp cache is 147 held not per host, but per port pair and TW bucket is used as state 148 holder. 149 150 If TW bucket has been already destroyed we fall back to VJ's scheme 151 and use initial timestamp retrieved from peer table. 152 */ 153 if (tcptw->tw_ts_recent_stamp && 154 (!twp || (reuse && time_after32(ktime_get_seconds(), 155 tcptw->tw_ts_recent_stamp)))) { 156 /* In case of repair and re-using TIME-WAIT sockets we still 157 * want to be sure that it is safe as above but honor the 158 * sequence numbers and time stamps set as part of the repair 159 * process. 160 * 161 * Without this check re-using a TIME-WAIT socket with TCP 162 * repair would accumulate a -1 on the repair assigned 163 * sequence number. The first time it is reused the sequence 164 * is -1, the second time -2, etc. This fixes that issue 165 * without appearing to create any others. 166 */ 167 if (likely(!tp->repair)) { 168 u32 seq = tcptw->tw_snd_nxt + 65535 + 2; 169 170 if (!seq) 171 seq = 1; 172 WRITE_ONCE(tp->write_seq, seq); 173 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 174 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 175 } 176 sock_hold(sktw); 177 return 1; 178 } 179 180 return 0; 181 } 182 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 183 184 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 185 int addr_len) 186 { 187 /* This check is replicated from tcp_v4_connect() and intended to 188 * prevent BPF program called below from accessing bytes that are out 189 * of the bound specified by user in addr_len. 190 */ 191 if (addr_len < sizeof(struct sockaddr_in)) 192 return -EINVAL; 193 194 sock_owned_by_me(sk); 195 196 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 197 } 198 199 /* This will initiate an outgoing connection. */ 200 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 201 { 202 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 203 struct inet_sock *inet = inet_sk(sk); 204 struct tcp_sock *tp = tcp_sk(sk); 205 __be16 orig_sport, orig_dport; 206 __be32 daddr, nexthop; 207 struct flowi4 *fl4; 208 struct rtable *rt; 209 int err; 210 struct ip_options_rcu *inet_opt; 211 struct inet_timewait_death_row *tcp_death_row = sock_net(sk)->ipv4.tcp_death_row; 212 213 if (addr_len < sizeof(struct sockaddr_in)) 214 return -EINVAL; 215 216 if (usin->sin_family != AF_INET) 217 return -EAFNOSUPPORT; 218 219 nexthop = daddr = usin->sin_addr.s_addr; 220 inet_opt = rcu_dereference_protected(inet->inet_opt, 221 lockdep_sock_is_held(sk)); 222 if (inet_opt && inet_opt->opt.srr) { 223 if (!daddr) 224 return -EINVAL; 225 nexthop = inet_opt->opt.faddr; 226 } 227 228 orig_sport = inet->inet_sport; 229 orig_dport = usin->sin_port; 230 fl4 = &inet->cork.fl.u.ip4; 231 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 232 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, 233 orig_dport, sk); 234 if (IS_ERR(rt)) { 235 err = PTR_ERR(rt); 236 if (err == -ENETUNREACH) 237 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 238 return err; 239 } 240 241 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 242 ip_rt_put(rt); 243 return -ENETUNREACH; 244 } 245 246 if (!inet_opt || !inet_opt->opt.srr) 247 daddr = fl4->daddr; 248 249 if (!inet->inet_saddr) 250 inet->inet_saddr = fl4->saddr; 251 sk_rcv_saddr_set(sk, inet->inet_saddr); 252 253 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 254 /* Reset inherited state */ 255 tp->rx_opt.ts_recent = 0; 256 tp->rx_opt.ts_recent_stamp = 0; 257 if (likely(!tp->repair)) 258 WRITE_ONCE(tp->write_seq, 0); 259 } 260 261 inet->inet_dport = usin->sin_port; 262 sk_daddr_set(sk, daddr); 263 264 inet_csk(sk)->icsk_ext_hdr_len = 0; 265 if (inet_opt) 266 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 267 268 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 269 270 /* Socket identity is still unknown (sport may be zero). 271 * However we set state to SYN-SENT and not releasing socket 272 * lock select source port, enter ourselves into the hash tables and 273 * complete initialization after this. 274 */ 275 tcp_set_state(sk, TCP_SYN_SENT); 276 err = inet_hash_connect(tcp_death_row, sk); 277 if (err) 278 goto failure; 279 280 sk_set_txhash(sk); 281 282 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 283 inet->inet_sport, inet->inet_dport, sk); 284 if (IS_ERR(rt)) { 285 err = PTR_ERR(rt); 286 rt = NULL; 287 goto failure; 288 } 289 /* OK, now commit destination to socket. */ 290 sk->sk_gso_type = SKB_GSO_TCPV4; 291 sk_setup_caps(sk, &rt->dst); 292 rt = NULL; 293 294 if (likely(!tp->repair)) { 295 if (!tp->write_seq) 296 WRITE_ONCE(tp->write_seq, 297 secure_tcp_seq(inet->inet_saddr, 298 inet->inet_daddr, 299 inet->inet_sport, 300 usin->sin_port)); 301 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 302 inet->inet_saddr, 303 inet->inet_daddr); 304 } 305 306 inet->inet_id = prandom_u32(); 307 308 if (tcp_fastopen_defer_connect(sk, &err)) 309 return err; 310 if (err) 311 goto failure; 312 313 err = tcp_connect(sk); 314 315 if (err) 316 goto failure; 317 318 return 0; 319 320 failure: 321 /* 322 * This unhashes the socket and releases the local port, 323 * if necessary. 324 */ 325 tcp_set_state(sk, TCP_CLOSE); 326 ip_rt_put(rt); 327 sk->sk_route_caps = 0; 328 inet->inet_dport = 0; 329 return err; 330 } 331 EXPORT_SYMBOL(tcp_v4_connect); 332 333 /* 334 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 335 * It can be called through tcp_release_cb() if socket was owned by user 336 * at the time tcp_v4_err() was called to handle ICMP message. 337 */ 338 void tcp_v4_mtu_reduced(struct sock *sk) 339 { 340 struct inet_sock *inet = inet_sk(sk); 341 struct dst_entry *dst; 342 u32 mtu; 343 344 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 345 return; 346 mtu = READ_ONCE(tcp_sk(sk)->mtu_info); 347 dst = inet_csk_update_pmtu(sk, mtu); 348 if (!dst) 349 return; 350 351 /* Something is about to be wrong... Remember soft error 352 * for the case, if this connection will not able to recover. 353 */ 354 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 355 sk->sk_err_soft = EMSGSIZE; 356 357 mtu = dst_mtu(dst); 358 359 if (inet->pmtudisc != IP_PMTUDISC_DONT && 360 ip_sk_accept_pmtu(sk) && 361 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 362 tcp_sync_mss(sk, mtu); 363 364 /* Resend the TCP packet because it's 365 * clear that the old packet has been 366 * dropped. This is the new "fast" path mtu 367 * discovery. 368 */ 369 tcp_simple_retransmit(sk); 370 } /* else let the usual retransmit timer handle it */ 371 } 372 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 373 374 static void do_redirect(struct sk_buff *skb, struct sock *sk) 375 { 376 struct dst_entry *dst = __sk_dst_check(sk, 0); 377 378 if (dst) 379 dst->ops->redirect(dst, sk, skb); 380 } 381 382 383 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 384 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 385 { 386 struct request_sock *req = inet_reqsk(sk); 387 struct net *net = sock_net(sk); 388 389 /* ICMPs are not backlogged, hence we cannot get 390 * an established socket here. 391 */ 392 if (seq != tcp_rsk(req)->snt_isn) { 393 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 394 } else if (abort) { 395 /* 396 * Still in SYN_RECV, just remove it silently. 397 * There is no good way to pass the error to the newly 398 * created socket, and POSIX does not want network 399 * errors returned from accept(). 400 */ 401 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 402 tcp_listendrop(req->rsk_listener); 403 } 404 reqsk_put(req); 405 } 406 EXPORT_SYMBOL(tcp_req_err); 407 408 /* TCP-LD (RFC 6069) logic */ 409 void tcp_ld_RTO_revert(struct sock *sk, u32 seq) 410 { 411 struct inet_connection_sock *icsk = inet_csk(sk); 412 struct tcp_sock *tp = tcp_sk(sk); 413 struct sk_buff *skb; 414 s32 remaining; 415 u32 delta_us; 416 417 if (sock_owned_by_user(sk)) 418 return; 419 420 if (seq != tp->snd_una || !icsk->icsk_retransmits || 421 !icsk->icsk_backoff) 422 return; 423 424 skb = tcp_rtx_queue_head(sk); 425 if (WARN_ON_ONCE(!skb)) 426 return; 427 428 icsk->icsk_backoff--; 429 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; 430 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 431 432 tcp_mstamp_refresh(tp); 433 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 434 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); 435 436 if (remaining > 0) { 437 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 438 remaining, TCP_RTO_MAX); 439 } else { 440 /* RTO revert clocked out retransmission. 441 * Will retransmit now. 442 */ 443 tcp_retransmit_timer(sk); 444 } 445 } 446 EXPORT_SYMBOL(tcp_ld_RTO_revert); 447 448 /* 449 * This routine is called by the ICMP module when it gets some 450 * sort of error condition. If err < 0 then the socket should 451 * be closed and the error returned to the user. If err > 0 452 * it's just the icmp type << 8 | icmp code. After adjustment 453 * header points to the first 8 bytes of the tcp header. We need 454 * to find the appropriate port. 455 * 456 * The locking strategy used here is very "optimistic". When 457 * someone else accesses the socket the ICMP is just dropped 458 * and for some paths there is no check at all. 459 * A more general error queue to queue errors for later handling 460 * is probably better. 461 * 462 */ 463 464 int tcp_v4_err(struct sk_buff *skb, u32 info) 465 { 466 const struct iphdr *iph = (const struct iphdr *)skb->data; 467 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); 468 struct tcp_sock *tp; 469 struct inet_sock *inet; 470 const int type = icmp_hdr(skb)->type; 471 const int code = icmp_hdr(skb)->code; 472 struct sock *sk; 473 struct request_sock *fastopen; 474 u32 seq, snd_una; 475 int err; 476 struct net *net = dev_net(skb->dev); 477 478 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 479 th->dest, iph->saddr, ntohs(th->source), 480 inet_iif(skb), 0); 481 if (!sk) { 482 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 483 return -ENOENT; 484 } 485 if (sk->sk_state == TCP_TIME_WAIT) { 486 inet_twsk_put(inet_twsk(sk)); 487 return 0; 488 } 489 seq = ntohl(th->seq); 490 if (sk->sk_state == TCP_NEW_SYN_RECV) { 491 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 492 type == ICMP_TIME_EXCEEDED || 493 (type == ICMP_DEST_UNREACH && 494 (code == ICMP_NET_UNREACH || 495 code == ICMP_HOST_UNREACH))); 496 return 0; 497 } 498 499 bh_lock_sock(sk); 500 /* If too many ICMPs get dropped on busy 501 * servers this needs to be solved differently. 502 * We do take care of PMTU discovery (RFC1191) special case : 503 * we can receive locally generated ICMP messages while socket is held. 504 */ 505 if (sock_owned_by_user(sk)) { 506 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 507 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 508 } 509 if (sk->sk_state == TCP_CLOSE) 510 goto out; 511 512 if (static_branch_unlikely(&ip4_min_ttl)) { 513 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 514 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 515 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 516 goto out; 517 } 518 } 519 520 tp = tcp_sk(sk); 521 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 522 fastopen = rcu_dereference(tp->fastopen_rsk); 523 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 524 if (sk->sk_state != TCP_LISTEN && 525 !between(seq, snd_una, tp->snd_nxt)) { 526 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 527 goto out; 528 } 529 530 switch (type) { 531 case ICMP_REDIRECT: 532 if (!sock_owned_by_user(sk)) 533 do_redirect(skb, sk); 534 goto out; 535 case ICMP_SOURCE_QUENCH: 536 /* Just silently ignore these. */ 537 goto out; 538 case ICMP_PARAMETERPROB: 539 err = EPROTO; 540 break; 541 case ICMP_DEST_UNREACH: 542 if (code > NR_ICMP_UNREACH) 543 goto out; 544 545 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 546 /* We are not interested in TCP_LISTEN and open_requests 547 * (SYN-ACKs send out by Linux are always <576bytes so 548 * they should go through unfragmented). 549 */ 550 if (sk->sk_state == TCP_LISTEN) 551 goto out; 552 553 WRITE_ONCE(tp->mtu_info, info); 554 if (!sock_owned_by_user(sk)) { 555 tcp_v4_mtu_reduced(sk); 556 } else { 557 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 558 sock_hold(sk); 559 } 560 goto out; 561 } 562 563 err = icmp_err_convert[code].errno; 564 /* check if this ICMP message allows revert of backoff. 565 * (see RFC 6069) 566 */ 567 if (!fastopen && 568 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) 569 tcp_ld_RTO_revert(sk, seq); 570 break; 571 case ICMP_TIME_EXCEEDED: 572 err = EHOSTUNREACH; 573 break; 574 default: 575 goto out; 576 } 577 578 switch (sk->sk_state) { 579 case TCP_SYN_SENT: 580 case TCP_SYN_RECV: 581 /* Only in fast or simultaneous open. If a fast open socket is 582 * already accepted it is treated as a connected one below. 583 */ 584 if (fastopen && !fastopen->sk) 585 break; 586 587 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); 588 589 if (!sock_owned_by_user(sk)) { 590 sk->sk_err = err; 591 592 sk_error_report(sk); 593 594 tcp_done(sk); 595 } else { 596 sk->sk_err_soft = err; 597 } 598 goto out; 599 } 600 601 /* If we've already connected we will keep trying 602 * until we time out, or the user gives up. 603 * 604 * rfc1122 4.2.3.9 allows to consider as hard errors 605 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 606 * but it is obsoleted by pmtu discovery). 607 * 608 * Note, that in modern internet, where routing is unreliable 609 * and in each dark corner broken firewalls sit, sending random 610 * errors ordered by their masters even this two messages finally lose 611 * their original sense (even Linux sends invalid PORT_UNREACHs) 612 * 613 * Now we are in compliance with RFCs. 614 * --ANK (980905) 615 */ 616 617 inet = inet_sk(sk); 618 if (!sock_owned_by_user(sk) && inet->recverr) { 619 sk->sk_err = err; 620 sk_error_report(sk); 621 } else { /* Only an error on timeout */ 622 sk->sk_err_soft = err; 623 } 624 625 out: 626 bh_unlock_sock(sk); 627 sock_put(sk); 628 return 0; 629 } 630 631 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 632 { 633 struct tcphdr *th = tcp_hdr(skb); 634 635 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 636 skb->csum_start = skb_transport_header(skb) - skb->head; 637 skb->csum_offset = offsetof(struct tcphdr, check); 638 } 639 640 /* This routine computes an IPv4 TCP checksum. */ 641 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 642 { 643 const struct inet_sock *inet = inet_sk(sk); 644 645 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 646 } 647 EXPORT_SYMBOL(tcp_v4_send_check); 648 649 /* 650 * This routine will send an RST to the other tcp. 651 * 652 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 653 * for reset. 654 * Answer: if a packet caused RST, it is not for a socket 655 * existing in our system, if it is matched to a socket, 656 * it is just duplicate segment or bug in other side's TCP. 657 * So that we build reply only basing on parameters 658 * arrived with segment. 659 * Exception: precedence violation. We do not implement it in any case. 660 */ 661 662 #ifdef CONFIG_TCP_MD5SIG 663 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED 664 #else 665 #define OPTION_BYTES sizeof(__be32) 666 #endif 667 668 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 669 { 670 const struct tcphdr *th = tcp_hdr(skb); 671 struct { 672 struct tcphdr th; 673 __be32 opt[OPTION_BYTES / sizeof(__be32)]; 674 } rep; 675 struct ip_reply_arg arg; 676 #ifdef CONFIG_TCP_MD5SIG 677 struct tcp_md5sig_key *key = NULL; 678 const __u8 *hash_location = NULL; 679 unsigned char newhash[16]; 680 int genhash; 681 struct sock *sk1 = NULL; 682 #endif 683 u64 transmit_time = 0; 684 struct sock *ctl_sk; 685 struct net *net; 686 687 /* Never send a reset in response to a reset. */ 688 if (th->rst) 689 return; 690 691 /* If sk not NULL, it means we did a successful lookup and incoming 692 * route had to be correct. prequeue might have dropped our dst. 693 */ 694 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 695 return; 696 697 /* Swap the send and the receive. */ 698 memset(&rep, 0, sizeof(rep)); 699 rep.th.dest = th->source; 700 rep.th.source = th->dest; 701 rep.th.doff = sizeof(struct tcphdr) / 4; 702 rep.th.rst = 1; 703 704 if (th->ack) { 705 rep.th.seq = th->ack_seq; 706 } else { 707 rep.th.ack = 1; 708 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 709 skb->len - (th->doff << 2)); 710 } 711 712 memset(&arg, 0, sizeof(arg)); 713 arg.iov[0].iov_base = (unsigned char *)&rep; 714 arg.iov[0].iov_len = sizeof(rep.th); 715 716 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 717 #ifdef CONFIG_TCP_MD5SIG 718 rcu_read_lock(); 719 hash_location = tcp_parse_md5sig_option(th); 720 if (sk && sk_fullsock(sk)) { 721 const union tcp_md5_addr *addr; 722 int l3index; 723 724 /* sdif set, means packet ingressed via a device 725 * in an L3 domain and inet_iif is set to it. 726 */ 727 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 728 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 729 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 730 } else if (hash_location) { 731 const union tcp_md5_addr *addr; 732 int sdif = tcp_v4_sdif(skb); 733 int dif = inet_iif(skb); 734 int l3index; 735 736 /* 737 * active side is lost. Try to find listening socket through 738 * source port, and then find md5 key through listening socket. 739 * we are not loose security here: 740 * Incoming packet is checked with md5 hash with finding key, 741 * no RST generated if md5 hash doesn't match. 742 */ 743 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 744 ip_hdr(skb)->saddr, 745 th->source, ip_hdr(skb)->daddr, 746 ntohs(th->source), dif, sdif); 747 /* don't send rst if it can't find key */ 748 if (!sk1) 749 goto out; 750 751 /* sdif set, means packet ingressed via a device 752 * in an L3 domain and dif is set to it. 753 */ 754 l3index = sdif ? dif : 0; 755 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 756 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); 757 if (!key) 758 goto out; 759 760 761 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 762 if (genhash || memcmp(hash_location, newhash, 16) != 0) 763 goto out; 764 765 } 766 767 if (key) { 768 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 769 (TCPOPT_NOP << 16) | 770 (TCPOPT_MD5SIG << 8) | 771 TCPOLEN_MD5SIG); 772 /* Update length and the length the header thinks exists */ 773 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 774 rep.th.doff = arg.iov[0].iov_len / 4; 775 776 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 777 key, ip_hdr(skb)->saddr, 778 ip_hdr(skb)->daddr, &rep.th); 779 } 780 #endif 781 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */ 782 if (rep.opt[0] == 0) { 783 __be32 mrst = mptcp_reset_option(skb); 784 785 if (mrst) { 786 rep.opt[0] = mrst; 787 arg.iov[0].iov_len += sizeof(mrst); 788 rep.th.doff = arg.iov[0].iov_len / 4; 789 } 790 } 791 792 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 793 ip_hdr(skb)->saddr, /* XXX */ 794 arg.iov[0].iov_len, IPPROTO_TCP, 0); 795 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 796 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 797 798 /* When socket is gone, all binding information is lost. 799 * routing might fail in this case. No choice here, if we choose to force 800 * input interface, we will misroute in case of asymmetric route. 801 */ 802 if (sk) { 803 arg.bound_dev_if = sk->sk_bound_dev_if; 804 if (sk_fullsock(sk)) 805 trace_tcp_send_reset(sk, skb); 806 } 807 808 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 809 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 810 811 arg.tos = ip_hdr(skb)->tos; 812 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 813 local_bh_disable(); 814 ctl_sk = this_cpu_read(ipv4_tcp_sk); 815 sock_net_set(ctl_sk, net); 816 if (sk) { 817 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 818 inet_twsk(sk)->tw_mark : sk->sk_mark; 819 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 820 inet_twsk(sk)->tw_priority : sk->sk_priority; 821 transmit_time = tcp_transmit_time(sk); 822 } 823 ip_send_unicast_reply(ctl_sk, 824 skb, &TCP_SKB_CB(skb)->header.h4.opt, 825 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 826 &arg, arg.iov[0].iov_len, 827 transmit_time); 828 829 ctl_sk->sk_mark = 0; 830 sock_net_set(ctl_sk, &init_net); 831 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 832 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 833 local_bh_enable(); 834 835 #ifdef CONFIG_TCP_MD5SIG 836 out: 837 rcu_read_unlock(); 838 #endif 839 } 840 841 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 842 outside socket context is ugly, certainly. What can I do? 843 */ 844 845 static void tcp_v4_send_ack(const struct sock *sk, 846 struct sk_buff *skb, u32 seq, u32 ack, 847 u32 win, u32 tsval, u32 tsecr, int oif, 848 struct tcp_md5sig_key *key, 849 int reply_flags, u8 tos) 850 { 851 const struct tcphdr *th = tcp_hdr(skb); 852 struct { 853 struct tcphdr th; 854 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 855 #ifdef CONFIG_TCP_MD5SIG 856 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 857 #endif 858 ]; 859 } rep; 860 struct net *net = sock_net(sk); 861 struct ip_reply_arg arg; 862 struct sock *ctl_sk; 863 u64 transmit_time; 864 865 memset(&rep.th, 0, sizeof(struct tcphdr)); 866 memset(&arg, 0, sizeof(arg)); 867 868 arg.iov[0].iov_base = (unsigned char *)&rep; 869 arg.iov[0].iov_len = sizeof(rep.th); 870 if (tsecr) { 871 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 872 (TCPOPT_TIMESTAMP << 8) | 873 TCPOLEN_TIMESTAMP); 874 rep.opt[1] = htonl(tsval); 875 rep.opt[2] = htonl(tsecr); 876 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 877 } 878 879 /* Swap the send and the receive. */ 880 rep.th.dest = th->source; 881 rep.th.source = th->dest; 882 rep.th.doff = arg.iov[0].iov_len / 4; 883 rep.th.seq = htonl(seq); 884 rep.th.ack_seq = htonl(ack); 885 rep.th.ack = 1; 886 rep.th.window = htons(win); 887 888 #ifdef CONFIG_TCP_MD5SIG 889 if (key) { 890 int offset = (tsecr) ? 3 : 0; 891 892 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 893 (TCPOPT_NOP << 16) | 894 (TCPOPT_MD5SIG << 8) | 895 TCPOLEN_MD5SIG); 896 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 897 rep.th.doff = arg.iov[0].iov_len/4; 898 899 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 900 key, ip_hdr(skb)->saddr, 901 ip_hdr(skb)->daddr, &rep.th); 902 } 903 #endif 904 arg.flags = reply_flags; 905 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 906 ip_hdr(skb)->saddr, /* XXX */ 907 arg.iov[0].iov_len, IPPROTO_TCP, 0); 908 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 909 if (oif) 910 arg.bound_dev_if = oif; 911 arg.tos = tos; 912 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 913 local_bh_disable(); 914 ctl_sk = this_cpu_read(ipv4_tcp_sk); 915 sock_net_set(ctl_sk, net); 916 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 917 inet_twsk(sk)->tw_mark : sk->sk_mark; 918 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 919 inet_twsk(sk)->tw_priority : sk->sk_priority; 920 transmit_time = tcp_transmit_time(sk); 921 ip_send_unicast_reply(ctl_sk, 922 skb, &TCP_SKB_CB(skb)->header.h4.opt, 923 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 924 &arg, arg.iov[0].iov_len, 925 transmit_time); 926 927 ctl_sk->sk_mark = 0; 928 sock_net_set(ctl_sk, &init_net); 929 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 930 local_bh_enable(); 931 } 932 933 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 934 { 935 struct inet_timewait_sock *tw = inet_twsk(sk); 936 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 937 938 tcp_v4_send_ack(sk, skb, 939 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 940 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 941 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 942 tcptw->tw_ts_recent, 943 tw->tw_bound_dev_if, 944 tcp_twsk_md5_key(tcptw), 945 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 946 tw->tw_tos 947 ); 948 949 inet_twsk_put(tw); 950 } 951 952 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 953 struct request_sock *req) 954 { 955 const union tcp_md5_addr *addr; 956 int l3index; 957 958 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 959 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 960 */ 961 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 962 tcp_sk(sk)->snd_nxt; 963 964 /* RFC 7323 2.3 965 * The window field (SEG.WND) of every outgoing segment, with the 966 * exception of <SYN> segments, MUST be right-shifted by 967 * Rcv.Wind.Shift bits: 968 */ 969 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 970 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 971 tcp_v4_send_ack(sk, skb, seq, 972 tcp_rsk(req)->rcv_nxt, 973 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 974 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 975 req->ts_recent, 976 0, 977 tcp_md5_do_lookup(sk, l3index, addr, AF_INET), 978 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 979 ip_hdr(skb)->tos); 980 } 981 982 /* 983 * Send a SYN-ACK after having received a SYN. 984 * This still operates on a request_sock only, not on a big 985 * socket. 986 */ 987 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 988 struct flowi *fl, 989 struct request_sock *req, 990 struct tcp_fastopen_cookie *foc, 991 enum tcp_synack_type synack_type, 992 struct sk_buff *syn_skb) 993 { 994 const struct inet_request_sock *ireq = inet_rsk(req); 995 struct flowi4 fl4; 996 int err = -1; 997 struct sk_buff *skb; 998 u8 tos; 999 1000 /* First, grab a route. */ 1001 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 1002 return -1; 1003 1004 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); 1005 1006 if (skb) { 1007 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 1008 1009 tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ? 1010 (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | 1011 (inet_sk(sk)->tos & INET_ECN_MASK) : 1012 inet_sk(sk)->tos; 1013 1014 if (!INET_ECN_is_capable(tos) && 1015 tcp_bpf_ca_needs_ecn((struct sock *)req)) 1016 tos |= INET_ECN_ECT_0; 1017 1018 rcu_read_lock(); 1019 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 1020 ireq->ir_rmt_addr, 1021 rcu_dereference(ireq->ireq_opt), 1022 tos); 1023 rcu_read_unlock(); 1024 err = net_xmit_eval(err); 1025 } 1026 1027 return err; 1028 } 1029 1030 /* 1031 * IPv4 request_sock destructor. 1032 */ 1033 static void tcp_v4_reqsk_destructor(struct request_sock *req) 1034 { 1035 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 1036 } 1037 1038 #ifdef CONFIG_TCP_MD5SIG 1039 /* 1040 * RFC2385 MD5 checksumming requires a mapping of 1041 * IP address->MD5 Key. 1042 * We need to maintain these in the sk structure. 1043 */ 1044 1045 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed); 1046 EXPORT_SYMBOL(tcp_md5_needed); 1047 1048 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) 1049 { 1050 if (!old) 1051 return true; 1052 1053 /* l3index always overrides non-l3index */ 1054 if (old->l3index && new->l3index == 0) 1055 return false; 1056 if (old->l3index == 0 && new->l3index) 1057 return true; 1058 1059 return old->prefixlen < new->prefixlen; 1060 } 1061 1062 /* Find the Key structure for an address. */ 1063 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1064 const union tcp_md5_addr *addr, 1065 int family) 1066 { 1067 const struct tcp_sock *tp = tcp_sk(sk); 1068 struct tcp_md5sig_key *key; 1069 const struct tcp_md5sig_info *md5sig; 1070 __be32 mask; 1071 struct tcp_md5sig_key *best_match = NULL; 1072 bool match; 1073 1074 /* caller either holds rcu_read_lock() or socket lock */ 1075 md5sig = rcu_dereference_check(tp->md5sig_info, 1076 lockdep_sock_is_held(sk)); 1077 if (!md5sig) 1078 return NULL; 1079 1080 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1081 lockdep_sock_is_held(sk)) { 1082 if (key->family != family) 1083 continue; 1084 if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index) 1085 continue; 1086 if (family == AF_INET) { 1087 mask = inet_make_mask(key->prefixlen); 1088 match = (key->addr.a4.s_addr & mask) == 1089 (addr->a4.s_addr & mask); 1090 #if IS_ENABLED(CONFIG_IPV6) 1091 } else if (family == AF_INET6) { 1092 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1093 key->prefixlen); 1094 #endif 1095 } else { 1096 match = false; 1097 } 1098 1099 if (match && better_md5_match(best_match, key)) 1100 best_match = key; 1101 } 1102 return best_match; 1103 } 1104 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1105 1106 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1107 const union tcp_md5_addr *addr, 1108 int family, u8 prefixlen, 1109 int l3index, u8 flags) 1110 { 1111 const struct tcp_sock *tp = tcp_sk(sk); 1112 struct tcp_md5sig_key *key; 1113 unsigned int size = sizeof(struct in_addr); 1114 const struct tcp_md5sig_info *md5sig; 1115 1116 /* caller either holds rcu_read_lock() or socket lock */ 1117 md5sig = rcu_dereference_check(tp->md5sig_info, 1118 lockdep_sock_is_held(sk)); 1119 if (!md5sig) 1120 return NULL; 1121 #if IS_ENABLED(CONFIG_IPV6) 1122 if (family == AF_INET6) 1123 size = sizeof(struct in6_addr); 1124 #endif 1125 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1126 lockdep_sock_is_held(sk)) { 1127 if (key->family != family) 1128 continue; 1129 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX)) 1130 continue; 1131 if (key->l3index != l3index) 1132 continue; 1133 if (!memcmp(&key->addr, addr, size) && 1134 key->prefixlen == prefixlen) 1135 return key; 1136 } 1137 return NULL; 1138 } 1139 1140 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1141 const struct sock *addr_sk) 1142 { 1143 const union tcp_md5_addr *addr; 1144 int l3index; 1145 1146 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1147 addr_sk->sk_bound_dev_if); 1148 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1149 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1150 } 1151 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1152 1153 /* This can be called on a newly created socket, from other files */ 1154 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1155 int family, u8 prefixlen, int l3index, u8 flags, 1156 const u8 *newkey, u8 newkeylen, gfp_t gfp) 1157 { 1158 /* Add Key to the list */ 1159 struct tcp_md5sig_key *key; 1160 struct tcp_sock *tp = tcp_sk(sk); 1161 struct tcp_md5sig_info *md5sig; 1162 1163 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1164 if (key) { 1165 /* Pre-existing entry - just update that one. 1166 * Note that the key might be used concurrently. 1167 * data_race() is telling kcsan that we do not care of 1168 * key mismatches, since changing MD5 key on live flows 1169 * can lead to packet drops. 1170 */ 1171 data_race(memcpy(key->key, newkey, newkeylen)); 1172 1173 /* Pairs with READ_ONCE() in tcp_md5_hash_key(). 1174 * Also note that a reader could catch new key->keylen value 1175 * but old key->key[], this is the reason we use __GFP_ZERO 1176 * at sock_kmalloc() time below these lines. 1177 */ 1178 WRITE_ONCE(key->keylen, newkeylen); 1179 1180 return 0; 1181 } 1182 1183 md5sig = rcu_dereference_protected(tp->md5sig_info, 1184 lockdep_sock_is_held(sk)); 1185 if (!md5sig) { 1186 md5sig = kmalloc(sizeof(*md5sig), gfp); 1187 if (!md5sig) 1188 return -ENOMEM; 1189 1190 sk_gso_disable(sk); 1191 INIT_HLIST_HEAD(&md5sig->head); 1192 rcu_assign_pointer(tp->md5sig_info, md5sig); 1193 } 1194 1195 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); 1196 if (!key) 1197 return -ENOMEM; 1198 if (!tcp_alloc_md5sig_pool()) { 1199 sock_kfree_s(sk, key, sizeof(*key)); 1200 return -ENOMEM; 1201 } 1202 1203 memcpy(key->key, newkey, newkeylen); 1204 key->keylen = newkeylen; 1205 key->family = family; 1206 key->prefixlen = prefixlen; 1207 key->l3index = l3index; 1208 key->flags = flags; 1209 memcpy(&key->addr, addr, 1210 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) : 1211 sizeof(struct in_addr)); 1212 hlist_add_head_rcu(&key->node, &md5sig->head); 1213 return 0; 1214 } 1215 EXPORT_SYMBOL(tcp_md5_do_add); 1216 1217 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1218 u8 prefixlen, int l3index, u8 flags) 1219 { 1220 struct tcp_md5sig_key *key; 1221 1222 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1223 if (!key) 1224 return -ENOENT; 1225 hlist_del_rcu(&key->node); 1226 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1227 kfree_rcu(key, rcu); 1228 return 0; 1229 } 1230 EXPORT_SYMBOL(tcp_md5_do_del); 1231 1232 static void tcp_clear_md5_list(struct sock *sk) 1233 { 1234 struct tcp_sock *tp = tcp_sk(sk); 1235 struct tcp_md5sig_key *key; 1236 struct hlist_node *n; 1237 struct tcp_md5sig_info *md5sig; 1238 1239 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1240 1241 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1242 hlist_del_rcu(&key->node); 1243 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1244 kfree_rcu(key, rcu); 1245 } 1246 } 1247 1248 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1249 sockptr_t optval, int optlen) 1250 { 1251 struct tcp_md5sig cmd; 1252 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1253 const union tcp_md5_addr *addr; 1254 u8 prefixlen = 32; 1255 int l3index = 0; 1256 u8 flags; 1257 1258 if (optlen < sizeof(cmd)) 1259 return -EINVAL; 1260 1261 if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) 1262 return -EFAULT; 1263 1264 if (sin->sin_family != AF_INET) 1265 return -EINVAL; 1266 1267 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1268 1269 if (optname == TCP_MD5SIG_EXT && 1270 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1271 prefixlen = cmd.tcpm_prefixlen; 1272 if (prefixlen > 32) 1273 return -EINVAL; 1274 } 1275 1276 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && 1277 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { 1278 struct net_device *dev; 1279 1280 rcu_read_lock(); 1281 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); 1282 if (dev && netif_is_l3_master(dev)) 1283 l3index = dev->ifindex; 1284 1285 rcu_read_unlock(); 1286 1287 /* ok to reference set/not set outside of rcu; 1288 * right now device MUST be an L3 master 1289 */ 1290 if (!dev || !l3index) 1291 return -EINVAL; 1292 } 1293 1294 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; 1295 1296 if (!cmd.tcpm_keylen) 1297 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags); 1298 1299 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1300 return -EINVAL; 1301 1302 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, 1303 cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL); 1304 } 1305 1306 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1307 __be32 daddr, __be32 saddr, 1308 const struct tcphdr *th, int nbytes) 1309 { 1310 struct tcp4_pseudohdr *bp; 1311 struct scatterlist sg; 1312 struct tcphdr *_th; 1313 1314 bp = hp->scratch; 1315 bp->saddr = saddr; 1316 bp->daddr = daddr; 1317 bp->pad = 0; 1318 bp->protocol = IPPROTO_TCP; 1319 bp->len = cpu_to_be16(nbytes); 1320 1321 _th = (struct tcphdr *)(bp + 1); 1322 memcpy(_th, th, sizeof(*th)); 1323 _th->check = 0; 1324 1325 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1326 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1327 sizeof(*bp) + sizeof(*th)); 1328 return crypto_ahash_update(hp->md5_req); 1329 } 1330 1331 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1332 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1333 { 1334 struct tcp_md5sig_pool *hp; 1335 struct ahash_request *req; 1336 1337 hp = tcp_get_md5sig_pool(); 1338 if (!hp) 1339 goto clear_hash_noput; 1340 req = hp->md5_req; 1341 1342 if (crypto_ahash_init(req)) 1343 goto clear_hash; 1344 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1345 goto clear_hash; 1346 if (tcp_md5_hash_key(hp, key)) 1347 goto clear_hash; 1348 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1349 if (crypto_ahash_final(req)) 1350 goto clear_hash; 1351 1352 tcp_put_md5sig_pool(); 1353 return 0; 1354 1355 clear_hash: 1356 tcp_put_md5sig_pool(); 1357 clear_hash_noput: 1358 memset(md5_hash, 0, 16); 1359 return 1; 1360 } 1361 1362 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1363 const struct sock *sk, 1364 const struct sk_buff *skb) 1365 { 1366 struct tcp_md5sig_pool *hp; 1367 struct ahash_request *req; 1368 const struct tcphdr *th = tcp_hdr(skb); 1369 __be32 saddr, daddr; 1370 1371 if (sk) { /* valid for establish/request sockets */ 1372 saddr = sk->sk_rcv_saddr; 1373 daddr = sk->sk_daddr; 1374 } else { 1375 const struct iphdr *iph = ip_hdr(skb); 1376 saddr = iph->saddr; 1377 daddr = iph->daddr; 1378 } 1379 1380 hp = tcp_get_md5sig_pool(); 1381 if (!hp) 1382 goto clear_hash_noput; 1383 req = hp->md5_req; 1384 1385 if (crypto_ahash_init(req)) 1386 goto clear_hash; 1387 1388 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1389 goto clear_hash; 1390 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1391 goto clear_hash; 1392 if (tcp_md5_hash_key(hp, key)) 1393 goto clear_hash; 1394 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1395 if (crypto_ahash_final(req)) 1396 goto clear_hash; 1397 1398 tcp_put_md5sig_pool(); 1399 return 0; 1400 1401 clear_hash: 1402 tcp_put_md5sig_pool(); 1403 clear_hash_noput: 1404 memset(md5_hash, 0, 16); 1405 return 1; 1406 } 1407 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1408 1409 #endif 1410 1411 static void tcp_v4_init_req(struct request_sock *req, 1412 const struct sock *sk_listener, 1413 struct sk_buff *skb) 1414 { 1415 struct inet_request_sock *ireq = inet_rsk(req); 1416 struct net *net = sock_net(sk_listener); 1417 1418 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1419 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1420 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1421 } 1422 1423 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1424 struct sk_buff *skb, 1425 struct flowi *fl, 1426 struct request_sock *req) 1427 { 1428 tcp_v4_init_req(req, sk, skb); 1429 1430 if (security_inet_conn_request(sk, skb, req)) 1431 return NULL; 1432 1433 return inet_csk_route_req(sk, &fl->u.ip4, req); 1434 } 1435 1436 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1437 .family = PF_INET, 1438 .obj_size = sizeof(struct tcp_request_sock), 1439 .rtx_syn_ack = tcp_rtx_synack, 1440 .send_ack = tcp_v4_reqsk_send_ack, 1441 .destructor = tcp_v4_reqsk_destructor, 1442 .send_reset = tcp_v4_send_reset, 1443 .syn_ack_timeout = tcp_syn_ack_timeout, 1444 }; 1445 1446 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1447 .mss_clamp = TCP_MSS_DEFAULT, 1448 #ifdef CONFIG_TCP_MD5SIG 1449 .req_md5_lookup = tcp_v4_md5_lookup, 1450 .calc_md5_hash = tcp_v4_md5_hash_skb, 1451 #endif 1452 #ifdef CONFIG_SYN_COOKIES 1453 .cookie_init_seq = cookie_v4_init_sequence, 1454 #endif 1455 .route_req = tcp_v4_route_req, 1456 .init_seq = tcp_v4_init_seq, 1457 .init_ts_off = tcp_v4_init_ts_off, 1458 .send_synack = tcp_v4_send_synack, 1459 }; 1460 1461 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1462 { 1463 /* Never answer to SYNs send to broadcast or multicast */ 1464 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1465 goto drop; 1466 1467 return tcp_conn_request(&tcp_request_sock_ops, 1468 &tcp_request_sock_ipv4_ops, sk, skb); 1469 1470 drop: 1471 tcp_listendrop(sk); 1472 return 0; 1473 } 1474 EXPORT_SYMBOL(tcp_v4_conn_request); 1475 1476 1477 /* 1478 * The three way handshake has completed - we got a valid synack - 1479 * now create the new socket. 1480 */ 1481 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1482 struct request_sock *req, 1483 struct dst_entry *dst, 1484 struct request_sock *req_unhash, 1485 bool *own_req) 1486 { 1487 struct inet_request_sock *ireq; 1488 bool found_dup_sk = false; 1489 struct inet_sock *newinet; 1490 struct tcp_sock *newtp; 1491 struct sock *newsk; 1492 #ifdef CONFIG_TCP_MD5SIG 1493 const union tcp_md5_addr *addr; 1494 struct tcp_md5sig_key *key; 1495 int l3index; 1496 #endif 1497 struct ip_options_rcu *inet_opt; 1498 1499 if (sk_acceptq_is_full(sk)) 1500 goto exit_overflow; 1501 1502 newsk = tcp_create_openreq_child(sk, req, skb); 1503 if (!newsk) 1504 goto exit_nonewsk; 1505 1506 newsk->sk_gso_type = SKB_GSO_TCPV4; 1507 inet_sk_rx_dst_set(newsk, skb); 1508 1509 newtp = tcp_sk(newsk); 1510 newinet = inet_sk(newsk); 1511 ireq = inet_rsk(req); 1512 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1513 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1514 newsk->sk_bound_dev_if = ireq->ir_iif; 1515 newinet->inet_saddr = ireq->ir_loc_addr; 1516 inet_opt = rcu_dereference(ireq->ireq_opt); 1517 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1518 newinet->mc_index = inet_iif(skb); 1519 newinet->mc_ttl = ip_hdr(skb)->ttl; 1520 newinet->rcv_tos = ip_hdr(skb)->tos; 1521 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1522 if (inet_opt) 1523 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1524 newinet->inet_id = prandom_u32(); 1525 1526 /* Set ToS of the new socket based upon the value of incoming SYN. 1527 * ECT bits are set later in tcp_init_transfer(). 1528 */ 1529 if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) 1530 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; 1531 1532 if (!dst) { 1533 dst = inet_csk_route_child_sock(sk, newsk, req); 1534 if (!dst) 1535 goto put_and_exit; 1536 } else { 1537 /* syncookie case : see end of cookie_v4_check() */ 1538 } 1539 sk_setup_caps(newsk, dst); 1540 1541 tcp_ca_openreq_child(newsk, dst); 1542 1543 tcp_sync_mss(newsk, dst_mtu(dst)); 1544 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1545 1546 tcp_initialize_rcv_mss(newsk); 1547 1548 #ifdef CONFIG_TCP_MD5SIG 1549 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 1550 /* Copy over the MD5 key from the original socket */ 1551 addr = (union tcp_md5_addr *)&newinet->inet_daddr; 1552 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1553 if (key) { 1554 /* 1555 * We're using one, so create a matching key 1556 * on the newsk structure. If we fail to get 1557 * memory, then we end up not copying the key 1558 * across. Shucks. 1559 */ 1560 tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, key->flags, 1561 key->key, key->keylen, GFP_ATOMIC); 1562 sk_gso_disable(newsk); 1563 } 1564 #endif 1565 1566 if (__inet_inherit_port(sk, newsk) < 0) 1567 goto put_and_exit; 1568 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), 1569 &found_dup_sk); 1570 if (likely(*own_req)) { 1571 tcp_move_syn(newtp, req); 1572 ireq->ireq_opt = NULL; 1573 } else { 1574 newinet->inet_opt = NULL; 1575 1576 if (!req_unhash && found_dup_sk) { 1577 /* This code path should only be executed in the 1578 * syncookie case only 1579 */ 1580 bh_unlock_sock(newsk); 1581 sock_put(newsk); 1582 newsk = NULL; 1583 } 1584 } 1585 return newsk; 1586 1587 exit_overflow: 1588 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1589 exit_nonewsk: 1590 dst_release(dst); 1591 exit: 1592 tcp_listendrop(sk); 1593 return NULL; 1594 put_and_exit: 1595 newinet->inet_opt = NULL; 1596 inet_csk_prepare_forced_close(newsk); 1597 tcp_done(newsk); 1598 goto exit; 1599 } 1600 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1601 1602 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1603 { 1604 #ifdef CONFIG_SYN_COOKIES 1605 const struct tcphdr *th = tcp_hdr(skb); 1606 1607 if (!th->syn) 1608 sk = cookie_v4_check(sk, skb); 1609 #endif 1610 return sk; 1611 } 1612 1613 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1614 struct tcphdr *th, u32 *cookie) 1615 { 1616 u16 mss = 0; 1617 #ifdef CONFIG_SYN_COOKIES 1618 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1619 &tcp_request_sock_ipv4_ops, sk, th); 1620 if (mss) { 1621 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1622 tcp_synq_overflow(sk); 1623 } 1624 #endif 1625 return mss; 1626 } 1627 1628 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 1629 u32)); 1630 /* The socket must have it's spinlock held when we get 1631 * here, unless it is a TCP_LISTEN socket. 1632 * 1633 * We have a potential double-lock case here, so even when 1634 * doing backlog processing we use the BH locking scheme. 1635 * This is because we cannot sleep with the original spinlock 1636 * held. 1637 */ 1638 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1639 { 1640 enum skb_drop_reason reason; 1641 struct sock *rsk; 1642 1643 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1644 struct dst_entry *dst; 1645 1646 dst = rcu_dereference_protected(sk->sk_rx_dst, 1647 lockdep_sock_is_held(sk)); 1648 1649 sock_rps_save_rxhash(sk, skb); 1650 sk_mark_napi_id(sk, skb); 1651 if (dst) { 1652 if (sk->sk_rx_dst_ifindex != skb->skb_iif || 1653 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check, 1654 dst, 0)) { 1655 RCU_INIT_POINTER(sk->sk_rx_dst, NULL); 1656 dst_release(dst); 1657 } 1658 } 1659 tcp_rcv_established(sk, skb); 1660 return 0; 1661 } 1662 1663 reason = SKB_DROP_REASON_NOT_SPECIFIED; 1664 if (tcp_checksum_complete(skb)) 1665 goto csum_err; 1666 1667 if (sk->sk_state == TCP_LISTEN) { 1668 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1669 1670 if (!nsk) 1671 goto discard; 1672 if (nsk != sk) { 1673 if (tcp_child_process(sk, nsk, skb)) { 1674 rsk = nsk; 1675 goto reset; 1676 } 1677 return 0; 1678 } 1679 } else 1680 sock_rps_save_rxhash(sk, skb); 1681 1682 if (tcp_rcv_state_process(sk, skb)) { 1683 rsk = sk; 1684 goto reset; 1685 } 1686 return 0; 1687 1688 reset: 1689 tcp_v4_send_reset(rsk, skb); 1690 discard: 1691 kfree_skb_reason(skb, reason); 1692 /* Be careful here. If this function gets more complicated and 1693 * gcc suffers from register pressure on the x86, sk (in %ebx) 1694 * might be destroyed here. This current version compiles correctly, 1695 * but you have been warned. 1696 */ 1697 return 0; 1698 1699 csum_err: 1700 reason = SKB_DROP_REASON_TCP_CSUM; 1701 trace_tcp_bad_csum(skb); 1702 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1703 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1704 goto discard; 1705 } 1706 EXPORT_SYMBOL(tcp_v4_do_rcv); 1707 1708 int tcp_v4_early_demux(struct sk_buff *skb) 1709 { 1710 const struct iphdr *iph; 1711 const struct tcphdr *th; 1712 struct sock *sk; 1713 1714 if (skb->pkt_type != PACKET_HOST) 1715 return 0; 1716 1717 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1718 return 0; 1719 1720 iph = ip_hdr(skb); 1721 th = tcp_hdr(skb); 1722 1723 if (th->doff < sizeof(struct tcphdr) / 4) 1724 return 0; 1725 1726 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1727 iph->saddr, th->source, 1728 iph->daddr, ntohs(th->dest), 1729 skb->skb_iif, inet_sdif(skb)); 1730 if (sk) { 1731 skb->sk = sk; 1732 skb->destructor = sock_edemux; 1733 if (sk_fullsock(sk)) { 1734 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); 1735 1736 if (dst) 1737 dst = dst_check(dst, 0); 1738 if (dst && 1739 sk->sk_rx_dst_ifindex == skb->skb_iif) 1740 skb_dst_set_noref(skb, dst); 1741 } 1742 } 1743 return 0; 1744 } 1745 1746 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1747 enum skb_drop_reason *reason) 1748 { 1749 u32 limit, tail_gso_size, tail_gso_segs; 1750 struct skb_shared_info *shinfo; 1751 const struct tcphdr *th; 1752 struct tcphdr *thtail; 1753 struct sk_buff *tail; 1754 unsigned int hdrlen; 1755 bool fragstolen; 1756 u32 gso_segs; 1757 u32 gso_size; 1758 int delta; 1759 1760 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1761 * we can fix skb->truesize to its real value to avoid future drops. 1762 * This is valid because skb is not yet charged to the socket. 1763 * It has been noticed pure SACK packets were sometimes dropped 1764 * (if cooked by drivers without copybreak feature). 1765 */ 1766 skb_condense(skb); 1767 1768 skb_dst_drop(skb); 1769 1770 if (unlikely(tcp_checksum_complete(skb))) { 1771 bh_unlock_sock(sk); 1772 trace_tcp_bad_csum(skb); 1773 *reason = SKB_DROP_REASON_TCP_CSUM; 1774 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1775 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1776 return true; 1777 } 1778 1779 /* Attempt coalescing to last skb in backlog, even if we are 1780 * above the limits. 1781 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 1782 */ 1783 th = (const struct tcphdr *)skb->data; 1784 hdrlen = th->doff * 4; 1785 1786 tail = sk->sk_backlog.tail; 1787 if (!tail) 1788 goto no_coalesce; 1789 thtail = (struct tcphdr *)tail->data; 1790 1791 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 1792 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 1793 ((TCP_SKB_CB(tail)->tcp_flags | 1794 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 1795 !((TCP_SKB_CB(tail)->tcp_flags & 1796 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 1797 ((TCP_SKB_CB(tail)->tcp_flags ^ 1798 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 1799 #ifdef CONFIG_TLS_DEVICE 1800 tail->decrypted != skb->decrypted || 1801 #endif 1802 thtail->doff != th->doff || 1803 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 1804 goto no_coalesce; 1805 1806 __skb_pull(skb, hdrlen); 1807 1808 shinfo = skb_shinfo(skb); 1809 gso_size = shinfo->gso_size ?: skb->len; 1810 gso_segs = shinfo->gso_segs ?: 1; 1811 1812 shinfo = skb_shinfo(tail); 1813 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); 1814 tail_gso_segs = shinfo->gso_segs ?: 1; 1815 1816 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 1817 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 1818 1819 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { 1820 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 1821 thtail->window = th->window; 1822 } 1823 1824 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 1825 * thtail->fin, so that the fast path in tcp_rcv_established() 1826 * is not entered if we append a packet with a FIN. 1827 * SYN, RST, URG are not present. 1828 * ACK is set on both packets. 1829 * PSH : we do not really care in TCP stack, 1830 * at least for 'GRO' packets. 1831 */ 1832 thtail->fin |= th->fin; 1833 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1834 1835 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1836 TCP_SKB_CB(tail)->has_rxtstamp = true; 1837 tail->tstamp = skb->tstamp; 1838 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 1839 } 1840 1841 /* Not as strict as GRO. We only need to carry mss max value */ 1842 shinfo->gso_size = max(gso_size, tail_gso_size); 1843 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); 1844 1845 sk->sk_backlog.len += delta; 1846 __NET_INC_STATS(sock_net(sk), 1847 LINUX_MIB_TCPBACKLOGCOALESCE); 1848 kfree_skb_partial(skb, fragstolen); 1849 return false; 1850 } 1851 __skb_push(skb, hdrlen); 1852 1853 no_coalesce: 1854 /* Only socket owner can try to collapse/prune rx queues 1855 * to reduce memory overhead, so add a little headroom here. 1856 * Few sockets backlog are possibly concurrently non empty. 1857 */ 1858 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf) + 64*1024; 1859 1860 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1861 bh_unlock_sock(sk); 1862 *reason = SKB_DROP_REASON_SOCKET_BACKLOG; 1863 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1864 return true; 1865 } 1866 return false; 1867 } 1868 EXPORT_SYMBOL(tcp_add_backlog); 1869 1870 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1871 { 1872 struct tcphdr *th = (struct tcphdr *)skb->data; 1873 1874 return sk_filter_trim_cap(sk, skb, th->doff * 4); 1875 } 1876 EXPORT_SYMBOL(tcp_filter); 1877 1878 static void tcp_v4_restore_cb(struct sk_buff *skb) 1879 { 1880 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1881 sizeof(struct inet_skb_parm)); 1882 } 1883 1884 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1885 const struct tcphdr *th) 1886 { 1887 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1888 * barrier() makes sure compiler wont play fool^Waliasing games. 1889 */ 1890 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1891 sizeof(struct inet_skb_parm)); 1892 barrier(); 1893 1894 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1895 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1896 skb->len - th->doff * 4); 1897 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1898 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1899 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1900 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1901 TCP_SKB_CB(skb)->sacked = 0; 1902 TCP_SKB_CB(skb)->has_rxtstamp = 1903 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1904 } 1905 1906 /* 1907 * From tcp_input.c 1908 */ 1909 1910 int tcp_v4_rcv(struct sk_buff *skb) 1911 { 1912 struct net *net = dev_net(skb->dev); 1913 enum skb_drop_reason drop_reason; 1914 int sdif = inet_sdif(skb); 1915 int dif = inet_iif(skb); 1916 const struct iphdr *iph; 1917 const struct tcphdr *th; 1918 bool refcounted; 1919 struct sock *sk; 1920 int ret; 1921 1922 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 1923 if (skb->pkt_type != PACKET_HOST) 1924 goto discard_it; 1925 1926 /* Count it even if it's bad */ 1927 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1928 1929 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1930 goto discard_it; 1931 1932 th = (const struct tcphdr *)skb->data; 1933 1934 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { 1935 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 1936 goto bad_packet; 1937 } 1938 if (!pskb_may_pull(skb, th->doff * 4)) 1939 goto discard_it; 1940 1941 /* An explanation is required here, I think. 1942 * Packet length and doff are validated by header prediction, 1943 * provided case of th->doff==0 is eliminated. 1944 * So, we defer the checks. */ 1945 1946 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1947 goto csum_error; 1948 1949 th = (const struct tcphdr *)skb->data; 1950 iph = ip_hdr(skb); 1951 lookup: 1952 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1953 th->dest, sdif, &refcounted); 1954 if (!sk) 1955 goto no_tcp_socket; 1956 1957 process: 1958 if (sk->sk_state == TCP_TIME_WAIT) 1959 goto do_time_wait; 1960 1961 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1962 struct request_sock *req = inet_reqsk(sk); 1963 bool req_stolen = false; 1964 struct sock *nsk; 1965 1966 sk = req->rsk_listener; 1967 drop_reason = tcp_inbound_md5_hash(sk, skb, 1968 &iph->saddr, &iph->daddr, 1969 AF_INET, dif, sdif); 1970 if (unlikely(drop_reason)) { 1971 sk_drops_add(sk, skb); 1972 reqsk_put(req); 1973 goto discard_it; 1974 } 1975 if (tcp_checksum_complete(skb)) { 1976 reqsk_put(req); 1977 goto csum_error; 1978 } 1979 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1980 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); 1981 if (!nsk) { 1982 inet_csk_reqsk_queue_drop_and_put(sk, req); 1983 goto lookup; 1984 } 1985 sk = nsk; 1986 /* reuseport_migrate_sock() has already held one sk_refcnt 1987 * before returning. 1988 */ 1989 } else { 1990 /* We own a reference on the listener, increase it again 1991 * as we might lose it too soon. 1992 */ 1993 sock_hold(sk); 1994 } 1995 refcounted = true; 1996 nsk = NULL; 1997 if (!tcp_filter(sk, skb)) { 1998 th = (const struct tcphdr *)skb->data; 1999 iph = ip_hdr(skb); 2000 tcp_v4_fill_cb(skb, iph, th); 2001 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 2002 } else { 2003 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2004 } 2005 if (!nsk) { 2006 reqsk_put(req); 2007 if (req_stolen) { 2008 /* Another cpu got exclusive access to req 2009 * and created a full blown socket. 2010 * Try to feed this packet to this socket 2011 * instead of discarding it. 2012 */ 2013 tcp_v4_restore_cb(skb); 2014 sock_put(sk); 2015 goto lookup; 2016 } 2017 goto discard_and_relse; 2018 } 2019 if (nsk == sk) { 2020 reqsk_put(req); 2021 tcp_v4_restore_cb(skb); 2022 } else if (tcp_child_process(sk, nsk, skb)) { 2023 tcp_v4_send_reset(nsk, skb); 2024 goto discard_and_relse; 2025 } else { 2026 sock_put(sk); 2027 return 0; 2028 } 2029 } 2030 2031 if (static_branch_unlikely(&ip4_min_ttl)) { 2032 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 2033 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 2034 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 2035 goto discard_and_relse; 2036 } 2037 } 2038 2039 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2040 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2041 goto discard_and_relse; 2042 } 2043 2044 drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr, 2045 &iph->daddr, AF_INET, dif, sdif); 2046 if (drop_reason) 2047 goto discard_and_relse; 2048 2049 nf_reset_ct(skb); 2050 2051 if (tcp_filter(sk, skb)) { 2052 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2053 goto discard_and_relse; 2054 } 2055 th = (const struct tcphdr *)skb->data; 2056 iph = ip_hdr(skb); 2057 tcp_v4_fill_cb(skb, iph, th); 2058 2059 skb->dev = NULL; 2060 2061 if (sk->sk_state == TCP_LISTEN) { 2062 ret = tcp_v4_do_rcv(sk, skb); 2063 goto put_and_return; 2064 } 2065 2066 sk_incoming_cpu_update(sk); 2067 2068 bh_lock_sock_nested(sk); 2069 tcp_segs_in(tcp_sk(sk), skb); 2070 ret = 0; 2071 if (!sock_owned_by_user(sk)) { 2072 ret = tcp_v4_do_rcv(sk, skb); 2073 } else { 2074 if (tcp_add_backlog(sk, skb, &drop_reason)) 2075 goto discard_and_relse; 2076 } 2077 bh_unlock_sock(sk); 2078 2079 put_and_return: 2080 if (refcounted) 2081 sock_put(sk); 2082 2083 return ret; 2084 2085 no_tcp_socket: 2086 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2087 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2088 goto discard_it; 2089 2090 tcp_v4_fill_cb(skb, iph, th); 2091 2092 if (tcp_checksum_complete(skb)) { 2093 csum_error: 2094 drop_reason = SKB_DROP_REASON_TCP_CSUM; 2095 trace_tcp_bad_csum(skb); 2096 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 2097 bad_packet: 2098 __TCP_INC_STATS(net, TCP_MIB_INERRS); 2099 } else { 2100 tcp_v4_send_reset(NULL, skb); 2101 } 2102 2103 discard_it: 2104 SKB_DR_OR(drop_reason, NOT_SPECIFIED); 2105 /* Discard frame. */ 2106 kfree_skb_reason(skb, drop_reason); 2107 return 0; 2108 2109 discard_and_relse: 2110 sk_drops_add(sk, skb); 2111 if (refcounted) 2112 sock_put(sk); 2113 goto discard_it; 2114 2115 do_time_wait: 2116 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2117 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2118 inet_twsk_put(inet_twsk(sk)); 2119 goto discard_it; 2120 } 2121 2122 tcp_v4_fill_cb(skb, iph, th); 2123 2124 if (tcp_checksum_complete(skb)) { 2125 inet_twsk_put(inet_twsk(sk)); 2126 goto csum_error; 2127 } 2128 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2129 case TCP_TW_SYN: { 2130 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 2131 &tcp_hashinfo, skb, 2132 __tcp_hdrlen(th), 2133 iph->saddr, th->source, 2134 iph->daddr, th->dest, 2135 inet_iif(skb), 2136 sdif); 2137 if (sk2) { 2138 inet_twsk_deschedule_put(inet_twsk(sk)); 2139 sk = sk2; 2140 tcp_v4_restore_cb(skb); 2141 refcounted = false; 2142 goto process; 2143 } 2144 } 2145 /* to ACK */ 2146 fallthrough; 2147 case TCP_TW_ACK: 2148 tcp_v4_timewait_ack(sk, skb); 2149 break; 2150 case TCP_TW_RST: 2151 tcp_v4_send_reset(sk, skb); 2152 inet_twsk_deschedule_put(inet_twsk(sk)); 2153 goto discard_it; 2154 case TCP_TW_SUCCESS:; 2155 } 2156 goto discard_it; 2157 } 2158 2159 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2160 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2161 .twsk_unique = tcp_twsk_unique, 2162 .twsk_destructor= tcp_twsk_destructor, 2163 }; 2164 2165 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2166 { 2167 struct dst_entry *dst = skb_dst(skb); 2168 2169 if (dst && dst_hold_safe(dst)) { 2170 rcu_assign_pointer(sk->sk_rx_dst, dst); 2171 sk->sk_rx_dst_ifindex = skb->skb_iif; 2172 } 2173 } 2174 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2175 2176 const struct inet_connection_sock_af_ops ipv4_specific = { 2177 .queue_xmit = ip_queue_xmit, 2178 .send_check = tcp_v4_send_check, 2179 .rebuild_header = inet_sk_rebuild_header, 2180 .sk_rx_dst_set = inet_sk_rx_dst_set, 2181 .conn_request = tcp_v4_conn_request, 2182 .syn_recv_sock = tcp_v4_syn_recv_sock, 2183 .net_header_len = sizeof(struct iphdr), 2184 .setsockopt = ip_setsockopt, 2185 .getsockopt = ip_getsockopt, 2186 .addr2sockaddr = inet_csk_addr2sockaddr, 2187 .sockaddr_len = sizeof(struct sockaddr_in), 2188 .mtu_reduced = tcp_v4_mtu_reduced, 2189 }; 2190 EXPORT_SYMBOL(ipv4_specific); 2191 2192 #ifdef CONFIG_TCP_MD5SIG 2193 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2194 .md5_lookup = tcp_v4_md5_lookup, 2195 .calc_md5_hash = tcp_v4_md5_hash_skb, 2196 .md5_parse = tcp_v4_parse_md5_keys, 2197 }; 2198 #endif 2199 2200 /* NOTE: A lot of things set to zero explicitly by call to 2201 * sk_alloc() so need not be done here. 2202 */ 2203 static int tcp_v4_init_sock(struct sock *sk) 2204 { 2205 struct inet_connection_sock *icsk = inet_csk(sk); 2206 2207 tcp_init_sock(sk); 2208 2209 icsk->icsk_af_ops = &ipv4_specific; 2210 2211 #ifdef CONFIG_TCP_MD5SIG 2212 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2213 #endif 2214 2215 return 0; 2216 } 2217 2218 void tcp_v4_destroy_sock(struct sock *sk) 2219 { 2220 struct tcp_sock *tp = tcp_sk(sk); 2221 2222 trace_tcp_destroy_sock(sk); 2223 2224 tcp_clear_xmit_timers(sk); 2225 2226 tcp_cleanup_congestion_control(sk); 2227 2228 tcp_cleanup_ulp(sk); 2229 2230 /* Cleanup up the write buffer. */ 2231 tcp_write_queue_purge(sk); 2232 2233 /* Check if we want to disable active TFO */ 2234 tcp_fastopen_active_disable_ofo_check(sk); 2235 2236 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2237 skb_rbtree_purge(&tp->out_of_order_queue); 2238 2239 #ifdef CONFIG_TCP_MD5SIG 2240 /* Clean up the MD5 key list, if any */ 2241 if (tp->md5sig_info) { 2242 tcp_clear_md5_list(sk); 2243 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 2244 tp->md5sig_info = NULL; 2245 } 2246 #endif 2247 2248 /* Clean up a referenced TCP bind bucket. */ 2249 if (inet_csk(sk)->icsk_bind_hash) 2250 inet_put_port(sk); 2251 2252 BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); 2253 2254 /* If socket is aborted during connect operation */ 2255 tcp_free_fastopen_req(tp); 2256 tcp_fastopen_destroy_cipher(sk); 2257 tcp_saved_syn_free(tp); 2258 2259 sk_sockets_allocated_dec(sk); 2260 } 2261 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2262 2263 #ifdef CONFIG_PROC_FS 2264 /* Proc filesystem TCP sock list dumping. */ 2265 2266 static unsigned short seq_file_family(const struct seq_file *seq); 2267 2268 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2269 { 2270 unsigned short family = seq_file_family(seq); 2271 2272 /* AF_UNSPEC is used as a match all */ 2273 return ((family == AF_UNSPEC || family == sk->sk_family) && 2274 net_eq(sock_net(sk), seq_file_net(seq))); 2275 } 2276 2277 /* Find a non empty bucket (starting from st->bucket) 2278 * and return the first sk from it. 2279 */ 2280 static void *listening_get_first(struct seq_file *seq) 2281 { 2282 struct tcp_iter_state *st = seq->private; 2283 2284 st->offset = 0; 2285 for (; st->bucket <= tcp_hashinfo.lhash2_mask; st->bucket++) { 2286 struct inet_listen_hashbucket *ilb2; 2287 struct hlist_nulls_node *node; 2288 struct sock *sk; 2289 2290 ilb2 = &tcp_hashinfo.lhash2[st->bucket]; 2291 if (hlist_nulls_empty(&ilb2->nulls_head)) 2292 continue; 2293 2294 spin_lock(&ilb2->lock); 2295 sk_nulls_for_each(sk, node, &ilb2->nulls_head) { 2296 if (seq_sk_match(seq, sk)) 2297 return sk; 2298 } 2299 spin_unlock(&ilb2->lock); 2300 } 2301 2302 return NULL; 2303 } 2304 2305 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket). 2306 * If "cur" is the last one in the st->bucket, 2307 * call listening_get_first() to return the first sk of the next 2308 * non empty bucket. 2309 */ 2310 static void *listening_get_next(struct seq_file *seq, void *cur) 2311 { 2312 struct tcp_iter_state *st = seq->private; 2313 struct inet_listen_hashbucket *ilb2; 2314 struct hlist_nulls_node *node; 2315 struct sock *sk = cur; 2316 2317 ++st->num; 2318 ++st->offset; 2319 2320 sk = sk_nulls_next(sk); 2321 sk_nulls_for_each_from(sk, node) { 2322 if (seq_sk_match(seq, sk)) 2323 return sk; 2324 } 2325 2326 ilb2 = &tcp_hashinfo.lhash2[st->bucket]; 2327 spin_unlock(&ilb2->lock); 2328 ++st->bucket; 2329 return listening_get_first(seq); 2330 } 2331 2332 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2333 { 2334 struct tcp_iter_state *st = seq->private; 2335 void *rc; 2336 2337 st->bucket = 0; 2338 st->offset = 0; 2339 rc = listening_get_first(seq); 2340 2341 while (rc && *pos) { 2342 rc = listening_get_next(seq, rc); 2343 --*pos; 2344 } 2345 return rc; 2346 } 2347 2348 static inline bool empty_bucket(const struct tcp_iter_state *st) 2349 { 2350 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2351 } 2352 2353 /* 2354 * Get first established socket starting from bucket given in st->bucket. 2355 * If st->bucket is zero, the very first socket in the hash is returned. 2356 */ 2357 static void *established_get_first(struct seq_file *seq) 2358 { 2359 struct tcp_iter_state *st = seq->private; 2360 2361 st->offset = 0; 2362 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2363 struct sock *sk; 2364 struct hlist_nulls_node *node; 2365 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2366 2367 /* Lockless fast path for the common case of empty buckets */ 2368 if (empty_bucket(st)) 2369 continue; 2370 2371 spin_lock_bh(lock); 2372 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2373 if (seq_sk_match(seq, sk)) 2374 return sk; 2375 } 2376 spin_unlock_bh(lock); 2377 } 2378 2379 return NULL; 2380 } 2381 2382 static void *established_get_next(struct seq_file *seq, void *cur) 2383 { 2384 struct sock *sk = cur; 2385 struct hlist_nulls_node *node; 2386 struct tcp_iter_state *st = seq->private; 2387 2388 ++st->num; 2389 ++st->offset; 2390 2391 sk = sk_nulls_next(sk); 2392 2393 sk_nulls_for_each_from(sk, node) { 2394 if (seq_sk_match(seq, sk)) 2395 return sk; 2396 } 2397 2398 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2399 ++st->bucket; 2400 return established_get_first(seq); 2401 } 2402 2403 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2404 { 2405 struct tcp_iter_state *st = seq->private; 2406 void *rc; 2407 2408 st->bucket = 0; 2409 rc = established_get_first(seq); 2410 2411 while (rc && pos) { 2412 rc = established_get_next(seq, rc); 2413 --pos; 2414 } 2415 return rc; 2416 } 2417 2418 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2419 { 2420 void *rc; 2421 struct tcp_iter_state *st = seq->private; 2422 2423 st->state = TCP_SEQ_STATE_LISTENING; 2424 rc = listening_get_idx(seq, &pos); 2425 2426 if (!rc) { 2427 st->state = TCP_SEQ_STATE_ESTABLISHED; 2428 rc = established_get_idx(seq, pos); 2429 } 2430 2431 return rc; 2432 } 2433 2434 static void *tcp_seek_last_pos(struct seq_file *seq) 2435 { 2436 struct tcp_iter_state *st = seq->private; 2437 int bucket = st->bucket; 2438 int offset = st->offset; 2439 int orig_num = st->num; 2440 void *rc = NULL; 2441 2442 switch (st->state) { 2443 case TCP_SEQ_STATE_LISTENING: 2444 if (st->bucket > tcp_hashinfo.lhash2_mask) 2445 break; 2446 st->state = TCP_SEQ_STATE_LISTENING; 2447 rc = listening_get_first(seq); 2448 while (offset-- && rc && bucket == st->bucket) 2449 rc = listening_get_next(seq, rc); 2450 if (rc) 2451 break; 2452 st->bucket = 0; 2453 st->state = TCP_SEQ_STATE_ESTABLISHED; 2454 fallthrough; 2455 case TCP_SEQ_STATE_ESTABLISHED: 2456 if (st->bucket > tcp_hashinfo.ehash_mask) 2457 break; 2458 rc = established_get_first(seq); 2459 while (offset-- && rc && bucket == st->bucket) 2460 rc = established_get_next(seq, rc); 2461 } 2462 2463 st->num = orig_num; 2464 2465 return rc; 2466 } 2467 2468 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2469 { 2470 struct tcp_iter_state *st = seq->private; 2471 void *rc; 2472 2473 if (*pos && *pos == st->last_pos) { 2474 rc = tcp_seek_last_pos(seq); 2475 if (rc) 2476 goto out; 2477 } 2478 2479 st->state = TCP_SEQ_STATE_LISTENING; 2480 st->num = 0; 2481 st->bucket = 0; 2482 st->offset = 0; 2483 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2484 2485 out: 2486 st->last_pos = *pos; 2487 return rc; 2488 } 2489 EXPORT_SYMBOL(tcp_seq_start); 2490 2491 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2492 { 2493 struct tcp_iter_state *st = seq->private; 2494 void *rc = NULL; 2495 2496 if (v == SEQ_START_TOKEN) { 2497 rc = tcp_get_idx(seq, 0); 2498 goto out; 2499 } 2500 2501 switch (st->state) { 2502 case TCP_SEQ_STATE_LISTENING: 2503 rc = listening_get_next(seq, v); 2504 if (!rc) { 2505 st->state = TCP_SEQ_STATE_ESTABLISHED; 2506 st->bucket = 0; 2507 st->offset = 0; 2508 rc = established_get_first(seq); 2509 } 2510 break; 2511 case TCP_SEQ_STATE_ESTABLISHED: 2512 rc = established_get_next(seq, v); 2513 break; 2514 } 2515 out: 2516 ++*pos; 2517 st->last_pos = *pos; 2518 return rc; 2519 } 2520 EXPORT_SYMBOL(tcp_seq_next); 2521 2522 void tcp_seq_stop(struct seq_file *seq, void *v) 2523 { 2524 struct tcp_iter_state *st = seq->private; 2525 2526 switch (st->state) { 2527 case TCP_SEQ_STATE_LISTENING: 2528 if (v != SEQ_START_TOKEN) 2529 spin_unlock(&tcp_hashinfo.lhash2[st->bucket].lock); 2530 break; 2531 case TCP_SEQ_STATE_ESTABLISHED: 2532 if (v) 2533 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2534 break; 2535 } 2536 } 2537 EXPORT_SYMBOL(tcp_seq_stop); 2538 2539 static void get_openreq4(const struct request_sock *req, 2540 struct seq_file *f, int i) 2541 { 2542 const struct inet_request_sock *ireq = inet_rsk(req); 2543 long delta = req->rsk_timer.expires - jiffies; 2544 2545 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2546 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2547 i, 2548 ireq->ir_loc_addr, 2549 ireq->ir_num, 2550 ireq->ir_rmt_addr, 2551 ntohs(ireq->ir_rmt_port), 2552 TCP_SYN_RECV, 2553 0, 0, /* could print option size, but that is af dependent. */ 2554 1, /* timers active (only the expire timer) */ 2555 jiffies_delta_to_clock_t(delta), 2556 req->num_timeout, 2557 from_kuid_munged(seq_user_ns(f), 2558 sock_i_uid(req->rsk_listener)), 2559 0, /* non standard timer */ 2560 0, /* open_requests have no inode */ 2561 0, 2562 req); 2563 } 2564 2565 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2566 { 2567 int timer_active; 2568 unsigned long timer_expires; 2569 const struct tcp_sock *tp = tcp_sk(sk); 2570 const struct inet_connection_sock *icsk = inet_csk(sk); 2571 const struct inet_sock *inet = inet_sk(sk); 2572 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2573 __be32 dest = inet->inet_daddr; 2574 __be32 src = inet->inet_rcv_saddr; 2575 __u16 destp = ntohs(inet->inet_dport); 2576 __u16 srcp = ntohs(inet->inet_sport); 2577 int rx_queue; 2578 int state; 2579 2580 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2581 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2582 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2583 timer_active = 1; 2584 timer_expires = icsk->icsk_timeout; 2585 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2586 timer_active = 4; 2587 timer_expires = icsk->icsk_timeout; 2588 } else if (timer_pending(&sk->sk_timer)) { 2589 timer_active = 2; 2590 timer_expires = sk->sk_timer.expires; 2591 } else { 2592 timer_active = 0; 2593 timer_expires = jiffies; 2594 } 2595 2596 state = inet_sk_state_load(sk); 2597 if (state == TCP_LISTEN) 2598 rx_queue = READ_ONCE(sk->sk_ack_backlog); 2599 else 2600 /* Because we don't lock the socket, 2601 * we might find a transient negative value. 2602 */ 2603 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - 2604 READ_ONCE(tp->copied_seq), 0); 2605 2606 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2607 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2608 i, src, srcp, dest, destp, state, 2609 READ_ONCE(tp->write_seq) - tp->snd_una, 2610 rx_queue, 2611 timer_active, 2612 jiffies_delta_to_clock_t(timer_expires - jiffies), 2613 icsk->icsk_retransmits, 2614 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2615 icsk->icsk_probes_out, 2616 sock_i_ino(sk), 2617 refcount_read(&sk->sk_refcnt), sk, 2618 jiffies_to_clock_t(icsk->icsk_rto), 2619 jiffies_to_clock_t(icsk->icsk_ack.ato), 2620 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2621 tcp_snd_cwnd(tp), 2622 state == TCP_LISTEN ? 2623 fastopenq->max_qlen : 2624 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2625 } 2626 2627 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2628 struct seq_file *f, int i) 2629 { 2630 long delta = tw->tw_timer.expires - jiffies; 2631 __be32 dest, src; 2632 __u16 destp, srcp; 2633 2634 dest = tw->tw_daddr; 2635 src = tw->tw_rcv_saddr; 2636 destp = ntohs(tw->tw_dport); 2637 srcp = ntohs(tw->tw_sport); 2638 2639 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2640 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2641 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2642 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2643 refcount_read(&tw->tw_refcnt), tw); 2644 } 2645 2646 #define TMPSZ 150 2647 2648 static int tcp4_seq_show(struct seq_file *seq, void *v) 2649 { 2650 struct tcp_iter_state *st; 2651 struct sock *sk = v; 2652 2653 seq_setwidth(seq, TMPSZ - 1); 2654 if (v == SEQ_START_TOKEN) { 2655 seq_puts(seq, " sl local_address rem_address st tx_queue " 2656 "rx_queue tr tm->when retrnsmt uid timeout " 2657 "inode"); 2658 goto out; 2659 } 2660 st = seq->private; 2661 2662 if (sk->sk_state == TCP_TIME_WAIT) 2663 get_timewait4_sock(v, seq, st->num); 2664 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2665 get_openreq4(v, seq, st->num); 2666 else 2667 get_tcp4_sock(v, seq, st->num); 2668 out: 2669 seq_pad(seq, '\n'); 2670 return 0; 2671 } 2672 2673 #ifdef CONFIG_BPF_SYSCALL 2674 struct bpf_tcp_iter_state { 2675 struct tcp_iter_state state; 2676 unsigned int cur_sk; 2677 unsigned int end_sk; 2678 unsigned int max_sk; 2679 struct sock **batch; 2680 bool st_bucket_done; 2681 }; 2682 2683 struct bpf_iter__tcp { 2684 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2685 __bpf_md_ptr(struct sock_common *, sk_common); 2686 uid_t uid __aligned(8); 2687 }; 2688 2689 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 2690 struct sock_common *sk_common, uid_t uid) 2691 { 2692 struct bpf_iter__tcp ctx; 2693 2694 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2695 ctx.meta = meta; 2696 ctx.sk_common = sk_common; 2697 ctx.uid = uid; 2698 return bpf_iter_run_prog(prog, &ctx); 2699 } 2700 2701 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter) 2702 { 2703 while (iter->cur_sk < iter->end_sk) 2704 sock_put(iter->batch[iter->cur_sk++]); 2705 } 2706 2707 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter, 2708 unsigned int new_batch_sz) 2709 { 2710 struct sock **new_batch; 2711 2712 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 2713 GFP_USER | __GFP_NOWARN); 2714 if (!new_batch) 2715 return -ENOMEM; 2716 2717 bpf_iter_tcp_put_batch(iter); 2718 kvfree(iter->batch); 2719 iter->batch = new_batch; 2720 iter->max_sk = new_batch_sz; 2721 2722 return 0; 2723 } 2724 2725 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq, 2726 struct sock *start_sk) 2727 { 2728 struct bpf_tcp_iter_state *iter = seq->private; 2729 struct tcp_iter_state *st = &iter->state; 2730 struct hlist_nulls_node *node; 2731 unsigned int expected = 1; 2732 struct sock *sk; 2733 2734 sock_hold(start_sk); 2735 iter->batch[iter->end_sk++] = start_sk; 2736 2737 sk = sk_nulls_next(start_sk); 2738 sk_nulls_for_each_from(sk, node) { 2739 if (seq_sk_match(seq, sk)) { 2740 if (iter->end_sk < iter->max_sk) { 2741 sock_hold(sk); 2742 iter->batch[iter->end_sk++] = sk; 2743 } 2744 expected++; 2745 } 2746 } 2747 spin_unlock(&tcp_hashinfo.lhash2[st->bucket].lock); 2748 2749 return expected; 2750 } 2751 2752 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq, 2753 struct sock *start_sk) 2754 { 2755 struct bpf_tcp_iter_state *iter = seq->private; 2756 struct tcp_iter_state *st = &iter->state; 2757 struct hlist_nulls_node *node; 2758 unsigned int expected = 1; 2759 struct sock *sk; 2760 2761 sock_hold(start_sk); 2762 iter->batch[iter->end_sk++] = start_sk; 2763 2764 sk = sk_nulls_next(start_sk); 2765 sk_nulls_for_each_from(sk, node) { 2766 if (seq_sk_match(seq, sk)) { 2767 if (iter->end_sk < iter->max_sk) { 2768 sock_hold(sk); 2769 iter->batch[iter->end_sk++] = sk; 2770 } 2771 expected++; 2772 } 2773 } 2774 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2775 2776 return expected; 2777 } 2778 2779 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq) 2780 { 2781 struct bpf_tcp_iter_state *iter = seq->private; 2782 struct tcp_iter_state *st = &iter->state; 2783 unsigned int expected; 2784 bool resized = false; 2785 struct sock *sk; 2786 2787 /* The st->bucket is done. Directly advance to the next 2788 * bucket instead of having the tcp_seek_last_pos() to skip 2789 * one by one in the current bucket and eventually find out 2790 * it has to advance to the next bucket. 2791 */ 2792 if (iter->st_bucket_done) { 2793 st->offset = 0; 2794 st->bucket++; 2795 if (st->state == TCP_SEQ_STATE_LISTENING && 2796 st->bucket > tcp_hashinfo.lhash2_mask) { 2797 st->state = TCP_SEQ_STATE_ESTABLISHED; 2798 st->bucket = 0; 2799 } 2800 } 2801 2802 again: 2803 /* Get a new batch */ 2804 iter->cur_sk = 0; 2805 iter->end_sk = 0; 2806 iter->st_bucket_done = false; 2807 2808 sk = tcp_seek_last_pos(seq); 2809 if (!sk) 2810 return NULL; /* Done */ 2811 2812 if (st->state == TCP_SEQ_STATE_LISTENING) 2813 expected = bpf_iter_tcp_listening_batch(seq, sk); 2814 else 2815 expected = bpf_iter_tcp_established_batch(seq, sk); 2816 2817 if (iter->end_sk == expected) { 2818 iter->st_bucket_done = true; 2819 return sk; 2820 } 2821 2822 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) { 2823 resized = true; 2824 goto again; 2825 } 2826 2827 return sk; 2828 } 2829 2830 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos) 2831 { 2832 /* bpf iter does not support lseek, so it always 2833 * continue from where it was stop()-ped. 2834 */ 2835 if (*pos) 2836 return bpf_iter_tcp_batch(seq); 2837 2838 return SEQ_START_TOKEN; 2839 } 2840 2841 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2842 { 2843 struct bpf_tcp_iter_state *iter = seq->private; 2844 struct tcp_iter_state *st = &iter->state; 2845 struct sock *sk; 2846 2847 /* Whenever seq_next() is called, the iter->cur_sk is 2848 * done with seq_show(), so advance to the next sk in 2849 * the batch. 2850 */ 2851 if (iter->cur_sk < iter->end_sk) { 2852 /* Keeping st->num consistent in tcp_iter_state. 2853 * bpf_iter_tcp does not use st->num. 2854 * meta.seq_num is used instead. 2855 */ 2856 st->num++; 2857 /* Move st->offset to the next sk in the bucket such that 2858 * the future start() will resume at st->offset in 2859 * st->bucket. See tcp_seek_last_pos(). 2860 */ 2861 st->offset++; 2862 sock_put(iter->batch[iter->cur_sk++]); 2863 } 2864 2865 if (iter->cur_sk < iter->end_sk) 2866 sk = iter->batch[iter->cur_sk]; 2867 else 2868 sk = bpf_iter_tcp_batch(seq); 2869 2870 ++*pos; 2871 /* Keeping st->last_pos consistent in tcp_iter_state. 2872 * bpf iter does not do lseek, so st->last_pos always equals to *pos. 2873 */ 2874 st->last_pos = *pos; 2875 return sk; 2876 } 2877 2878 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) 2879 { 2880 struct bpf_iter_meta meta; 2881 struct bpf_prog *prog; 2882 struct sock *sk = v; 2883 bool slow; 2884 uid_t uid; 2885 int ret; 2886 2887 if (v == SEQ_START_TOKEN) 2888 return 0; 2889 2890 if (sk_fullsock(sk)) 2891 slow = lock_sock_fast(sk); 2892 2893 if (unlikely(sk_unhashed(sk))) { 2894 ret = SEQ_SKIP; 2895 goto unlock; 2896 } 2897 2898 if (sk->sk_state == TCP_TIME_WAIT) { 2899 uid = 0; 2900 } else if (sk->sk_state == TCP_NEW_SYN_RECV) { 2901 const struct request_sock *req = v; 2902 2903 uid = from_kuid_munged(seq_user_ns(seq), 2904 sock_i_uid(req->rsk_listener)); 2905 } else { 2906 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 2907 } 2908 2909 meta.seq = seq; 2910 prog = bpf_iter_get_info(&meta, false); 2911 ret = tcp_prog_seq_show(prog, &meta, v, uid); 2912 2913 unlock: 2914 if (sk_fullsock(sk)) 2915 unlock_sock_fast(sk, slow); 2916 return ret; 2917 2918 } 2919 2920 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) 2921 { 2922 struct bpf_tcp_iter_state *iter = seq->private; 2923 struct bpf_iter_meta meta; 2924 struct bpf_prog *prog; 2925 2926 if (!v) { 2927 meta.seq = seq; 2928 prog = bpf_iter_get_info(&meta, true); 2929 if (prog) 2930 (void)tcp_prog_seq_show(prog, &meta, v, 0); 2931 } 2932 2933 if (iter->cur_sk < iter->end_sk) { 2934 bpf_iter_tcp_put_batch(iter); 2935 iter->st_bucket_done = false; 2936 } 2937 } 2938 2939 static const struct seq_operations bpf_iter_tcp_seq_ops = { 2940 .show = bpf_iter_tcp_seq_show, 2941 .start = bpf_iter_tcp_seq_start, 2942 .next = bpf_iter_tcp_seq_next, 2943 .stop = bpf_iter_tcp_seq_stop, 2944 }; 2945 #endif 2946 static unsigned short seq_file_family(const struct seq_file *seq) 2947 { 2948 const struct tcp_seq_afinfo *afinfo; 2949 2950 #ifdef CONFIG_BPF_SYSCALL 2951 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */ 2952 if (seq->op == &bpf_iter_tcp_seq_ops) 2953 return AF_UNSPEC; 2954 #endif 2955 2956 /* Iterated from proc fs */ 2957 afinfo = pde_data(file_inode(seq->file)); 2958 return afinfo->family; 2959 } 2960 2961 static const struct seq_operations tcp4_seq_ops = { 2962 .show = tcp4_seq_show, 2963 .start = tcp_seq_start, 2964 .next = tcp_seq_next, 2965 .stop = tcp_seq_stop, 2966 }; 2967 2968 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2969 .family = AF_INET, 2970 }; 2971 2972 static int __net_init tcp4_proc_init_net(struct net *net) 2973 { 2974 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 2975 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 2976 return -ENOMEM; 2977 return 0; 2978 } 2979 2980 static void __net_exit tcp4_proc_exit_net(struct net *net) 2981 { 2982 remove_proc_entry("tcp", net->proc_net); 2983 } 2984 2985 static struct pernet_operations tcp4_net_ops = { 2986 .init = tcp4_proc_init_net, 2987 .exit = tcp4_proc_exit_net, 2988 }; 2989 2990 int __init tcp4_proc_init(void) 2991 { 2992 return register_pernet_subsys(&tcp4_net_ops); 2993 } 2994 2995 void tcp4_proc_exit(void) 2996 { 2997 unregister_pernet_subsys(&tcp4_net_ops); 2998 } 2999 #endif /* CONFIG_PROC_FS */ 3000 3001 /* @wake is one when sk_stream_write_space() calls us. 3002 * This sends EPOLLOUT only if notsent_bytes is half the limit. 3003 * This mimics the strategy used in sock_def_write_space(). 3004 */ 3005 bool tcp_stream_memory_free(const struct sock *sk, int wake) 3006 { 3007 const struct tcp_sock *tp = tcp_sk(sk); 3008 u32 notsent_bytes = READ_ONCE(tp->write_seq) - 3009 READ_ONCE(tp->snd_nxt); 3010 3011 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 3012 } 3013 EXPORT_SYMBOL(tcp_stream_memory_free); 3014 3015 struct proto tcp_prot = { 3016 .name = "TCP", 3017 .owner = THIS_MODULE, 3018 .close = tcp_close, 3019 .pre_connect = tcp_v4_pre_connect, 3020 .connect = tcp_v4_connect, 3021 .disconnect = tcp_disconnect, 3022 .accept = inet_csk_accept, 3023 .ioctl = tcp_ioctl, 3024 .init = tcp_v4_init_sock, 3025 .destroy = tcp_v4_destroy_sock, 3026 .shutdown = tcp_shutdown, 3027 .setsockopt = tcp_setsockopt, 3028 .getsockopt = tcp_getsockopt, 3029 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, 3030 .keepalive = tcp_set_keepalive, 3031 .recvmsg = tcp_recvmsg, 3032 .sendmsg = tcp_sendmsg, 3033 .sendpage = tcp_sendpage, 3034 .backlog_rcv = tcp_v4_do_rcv, 3035 .release_cb = tcp_release_cb, 3036 .hash = inet_hash, 3037 .unhash = inet_unhash, 3038 .get_port = inet_csk_get_port, 3039 .put_port = inet_put_port, 3040 #ifdef CONFIG_BPF_SYSCALL 3041 .psock_update_sk_prot = tcp_bpf_update_proto, 3042 #endif 3043 .enter_memory_pressure = tcp_enter_memory_pressure, 3044 .leave_memory_pressure = tcp_leave_memory_pressure, 3045 .stream_memory_free = tcp_stream_memory_free, 3046 .sockets_allocated = &tcp_sockets_allocated, 3047 .orphan_count = &tcp_orphan_count, 3048 .memory_allocated = &tcp_memory_allocated, 3049 .memory_pressure = &tcp_memory_pressure, 3050 .sysctl_mem = sysctl_tcp_mem, 3051 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3052 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3053 .max_header = MAX_TCP_HEADER, 3054 .obj_size = sizeof(struct tcp_sock), 3055 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3056 .twsk_prot = &tcp_timewait_sock_ops, 3057 .rsk_prot = &tcp_request_sock_ops, 3058 .h.hashinfo = &tcp_hashinfo, 3059 .no_autobind = true, 3060 .diag_destroy = tcp_abort, 3061 }; 3062 EXPORT_SYMBOL(tcp_prot); 3063 3064 static void __net_exit tcp_sk_exit(struct net *net) 3065 { 3066 struct inet_timewait_death_row *tcp_death_row = net->ipv4.tcp_death_row; 3067 3068 if (net->ipv4.tcp_congestion_control) 3069 bpf_module_put(net->ipv4.tcp_congestion_control, 3070 net->ipv4.tcp_congestion_control->owner); 3071 if (refcount_dec_and_test(&tcp_death_row->tw_refcount)) 3072 kfree(tcp_death_row); 3073 } 3074 3075 static int __net_init tcp_sk_init(struct net *net) 3076 { 3077 int cnt; 3078 3079 net->ipv4.sysctl_tcp_ecn = 2; 3080 net->ipv4.sysctl_tcp_ecn_fallback = 1; 3081 3082 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 3083 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 3084 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 3085 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 3086 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 3087 3088 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 3089 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 3090 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 3091 3092 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 3093 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 3094 net->ipv4.sysctl_tcp_syncookies = 1; 3095 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 3096 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 3097 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 3098 net->ipv4.sysctl_tcp_orphan_retries = 0; 3099 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 3100 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 3101 net->ipv4.sysctl_tcp_tw_reuse = 2; 3102 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; 3103 3104 net->ipv4.tcp_death_row = kzalloc(sizeof(struct inet_timewait_death_row), GFP_KERNEL); 3105 if (!net->ipv4.tcp_death_row) 3106 return -ENOMEM; 3107 refcount_set(&net->ipv4.tcp_death_row->tw_refcount, 1); 3108 cnt = tcp_hashinfo.ehash_mask + 1; 3109 net->ipv4.tcp_death_row->sysctl_max_tw_buckets = cnt / 2; 3110 net->ipv4.tcp_death_row->hashinfo = &tcp_hashinfo; 3111 3112 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128); 3113 net->ipv4.sysctl_tcp_sack = 1; 3114 net->ipv4.sysctl_tcp_window_scaling = 1; 3115 net->ipv4.sysctl_tcp_timestamps = 1; 3116 net->ipv4.sysctl_tcp_early_retrans = 3; 3117 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 3118 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 3119 net->ipv4.sysctl_tcp_retrans_collapse = 1; 3120 net->ipv4.sysctl_tcp_max_reordering = 300; 3121 net->ipv4.sysctl_tcp_dsack = 1; 3122 net->ipv4.sysctl_tcp_app_win = 31; 3123 net->ipv4.sysctl_tcp_adv_win_scale = 1; 3124 net->ipv4.sysctl_tcp_frto = 2; 3125 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 3126 /* This limits the percentage of the congestion window which we 3127 * will allow a single TSO frame to consume. Building TSO frames 3128 * which are too large can cause TCP streams to be bursty. 3129 */ 3130 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 3131 /* Default TSQ limit of 16 TSO segments */ 3132 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 3133 /* rfc5961 challenge ack rate limiting */ 3134 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 3135 net->ipv4.sysctl_tcp_min_tso_segs = 2; 3136 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */ 3137 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 3138 net->ipv4.sysctl_tcp_autocorking = 1; 3139 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 3140 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 3141 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 3142 if (net != &init_net) { 3143 memcpy(net->ipv4.sysctl_tcp_rmem, 3144 init_net.ipv4.sysctl_tcp_rmem, 3145 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 3146 memcpy(net->ipv4.sysctl_tcp_wmem, 3147 init_net.ipv4.sysctl_tcp_wmem, 3148 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 3149 } 3150 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 3151 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; 3152 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 3153 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 3154 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; 3155 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 3156 3157 /* Reno is always built in */ 3158 if (!net_eq(net, &init_net) && 3159 bpf_try_module_get(init_net.ipv4.tcp_congestion_control, 3160 init_net.ipv4.tcp_congestion_control->owner)) 3161 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 3162 else 3163 net->ipv4.tcp_congestion_control = &tcp_reno; 3164 3165 return 0; 3166 } 3167 3168 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 3169 { 3170 struct net *net; 3171 3172 inet_twsk_purge(&tcp_hashinfo, AF_INET); 3173 3174 list_for_each_entry(net, net_exit_list, exit_list) 3175 tcp_fastopen_ctx_destroy(net); 3176 } 3177 3178 static struct pernet_operations __net_initdata tcp_sk_ops = { 3179 .init = tcp_sk_init, 3180 .exit = tcp_sk_exit, 3181 .exit_batch = tcp_sk_exit_batch, 3182 }; 3183 3184 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3185 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, 3186 struct sock_common *sk_common, uid_t uid) 3187 3188 #define INIT_BATCH_SZ 16 3189 3190 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) 3191 { 3192 struct bpf_tcp_iter_state *iter = priv_data; 3193 int err; 3194 3195 err = bpf_iter_init_seq_net(priv_data, aux); 3196 if (err) 3197 return err; 3198 3199 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ); 3200 if (err) { 3201 bpf_iter_fini_seq_net(priv_data); 3202 return err; 3203 } 3204 3205 return 0; 3206 } 3207 3208 static void bpf_iter_fini_tcp(void *priv_data) 3209 { 3210 struct bpf_tcp_iter_state *iter = priv_data; 3211 3212 bpf_iter_fini_seq_net(priv_data); 3213 kvfree(iter->batch); 3214 } 3215 3216 static const struct bpf_iter_seq_info tcp_seq_info = { 3217 .seq_ops = &bpf_iter_tcp_seq_ops, 3218 .init_seq_private = bpf_iter_init_tcp, 3219 .fini_seq_private = bpf_iter_fini_tcp, 3220 .seq_priv_size = sizeof(struct bpf_tcp_iter_state), 3221 }; 3222 3223 static const struct bpf_func_proto * 3224 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id, 3225 const struct bpf_prog *prog) 3226 { 3227 switch (func_id) { 3228 case BPF_FUNC_setsockopt: 3229 return &bpf_sk_setsockopt_proto; 3230 case BPF_FUNC_getsockopt: 3231 return &bpf_sk_getsockopt_proto; 3232 default: 3233 return NULL; 3234 } 3235 } 3236 3237 static struct bpf_iter_reg tcp_reg_info = { 3238 .target = "tcp", 3239 .ctx_arg_info_size = 1, 3240 .ctx_arg_info = { 3241 { offsetof(struct bpf_iter__tcp, sk_common), 3242 PTR_TO_BTF_ID_OR_NULL }, 3243 }, 3244 .get_func_proto = bpf_iter_tcp_get_func_proto, 3245 .seq_info = &tcp_seq_info, 3246 }; 3247 3248 static void __init bpf_iter_register(void) 3249 { 3250 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; 3251 if (bpf_iter_reg_target(&tcp_reg_info)) 3252 pr_warn("Warning: could not register bpf iterator tcp\n"); 3253 } 3254 3255 #endif 3256 3257 void __init tcp_v4_init(void) 3258 { 3259 int cpu, res; 3260 3261 for_each_possible_cpu(cpu) { 3262 struct sock *sk; 3263 3264 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 3265 IPPROTO_TCP, &init_net); 3266 if (res) 3267 panic("Failed to create the TCP control socket.\n"); 3268 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 3269 3270 /* Please enforce IP_DF and IPID==0 for RST and 3271 * ACK sent in SYN-RECV and TIME-WAIT state. 3272 */ 3273 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 3274 3275 per_cpu(ipv4_tcp_sk, cpu) = sk; 3276 } 3277 if (register_pernet_subsys(&tcp_sk_ops)) 3278 panic("Failed to create the TCP control socket.\n"); 3279 3280 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3281 bpf_iter_register(); 3282 #endif 3283 } 3284