xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 3d40aed862874db14e1dd41fd6f12636dcfdcc3e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79 #include <linux/inetdevice.h>
80 #include <linux/btf_ids.h>
81 
82 #include <crypto/hash.h>
83 #include <linux/scatterlist.h>
84 
85 #include <trace/events/tcp.h>
86 
87 #ifdef CONFIG_TCP_MD5SIG
88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
89 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
90 #endif
91 
92 struct inet_hashinfo tcp_hashinfo;
93 EXPORT_SYMBOL(tcp_hashinfo);
94 
95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
96 
97 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
98 {
99 	return secure_tcp_seq(ip_hdr(skb)->daddr,
100 			      ip_hdr(skb)->saddr,
101 			      tcp_hdr(skb)->dest,
102 			      tcp_hdr(skb)->source);
103 }
104 
105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
106 {
107 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
108 }
109 
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 
117 	if (reuse == 2) {
118 		/* Still does not detect *everything* that goes through
119 		 * lo, since we require a loopback src or dst address
120 		 * or direct binding to 'lo' interface.
121 		 */
122 		bool loopback = false;
123 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
124 			loopback = true;
125 #if IS_ENABLED(CONFIG_IPV6)
126 		if (tw->tw_family == AF_INET6) {
127 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
129 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
130 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
131 				loopback = true;
132 		} else
133 #endif
134 		{
135 			if (ipv4_is_loopback(tw->tw_daddr) ||
136 			    ipv4_is_loopback(tw->tw_rcv_saddr))
137 				loopback = true;
138 		}
139 		if (!loopback)
140 			reuse = 0;
141 	}
142 
143 	/* With PAWS, it is safe from the viewpoint
144 	   of data integrity. Even without PAWS it is safe provided sequence
145 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
146 
147 	   Actually, the idea is close to VJ's one, only timestamp cache is
148 	   held not per host, but per port pair and TW bucket is used as state
149 	   holder.
150 
151 	   If TW bucket has been already destroyed we fall back to VJ's scheme
152 	   and use initial timestamp retrieved from peer table.
153 	 */
154 	if (tcptw->tw_ts_recent_stamp &&
155 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
156 					    tcptw->tw_ts_recent_stamp)))) {
157 		/* In case of repair and re-using TIME-WAIT sockets we still
158 		 * want to be sure that it is safe as above but honor the
159 		 * sequence numbers and time stamps set as part of the repair
160 		 * process.
161 		 *
162 		 * Without this check re-using a TIME-WAIT socket with TCP
163 		 * repair would accumulate a -1 on the repair assigned
164 		 * sequence number. The first time it is reused the sequence
165 		 * is -1, the second time -2, etc. This fixes that issue
166 		 * without appearing to create any others.
167 		 */
168 		if (likely(!tp->repair)) {
169 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
170 
171 			if (!seq)
172 				seq = 1;
173 			WRITE_ONCE(tp->write_seq, seq);
174 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
175 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
176 		}
177 		sock_hold(sktw);
178 		return 1;
179 	}
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
184 
185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
186 			      int addr_len)
187 {
188 	/* This check is replicated from tcp_v4_connect() and intended to
189 	 * prevent BPF program called below from accessing bytes that are out
190 	 * of the bound specified by user in addr_len.
191 	 */
192 	if (addr_len < sizeof(struct sockaddr_in))
193 		return -EINVAL;
194 
195 	sock_owned_by_me(sk);
196 
197 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
198 }
199 
200 /* This will initiate an outgoing connection. */
201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
202 {
203 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
204 	struct inet_timewait_death_row *tcp_death_row;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	struct ip_options_rcu *inet_opt;
208 	struct net *net = sock_net(sk);
209 	__be16 orig_sport, orig_dport;
210 	__be32 daddr, nexthop;
211 	struct flowi4 *fl4;
212 	struct rtable *rt;
213 	int err;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
235 			      orig_dport, sk);
236 	if (IS_ERR(rt)) {
237 		err = PTR_ERR(rt);
238 		if (err == -ENETUNREACH)
239 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
240 		return err;
241 	}
242 
243 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
244 		ip_rt_put(rt);
245 		return -ENETUNREACH;
246 	}
247 
248 	if (!inet_opt || !inet_opt->opt.srr)
249 		daddr = fl4->daddr;
250 
251 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252 
253 	if (!inet->inet_saddr) {
254 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
255 		if (err) {
256 			ip_rt_put(rt);
257 			return err;
258 		}
259 	} else {
260 		sk_rcv_saddr_set(sk, inet->inet_saddr);
261 	}
262 
263 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
264 		/* Reset inherited state */
265 		tp->rx_opt.ts_recent	   = 0;
266 		tp->rx_opt.ts_recent_stamp = 0;
267 		if (likely(!tp->repair))
268 			WRITE_ONCE(tp->write_seq, 0);
269 	}
270 
271 	inet->inet_dport = usin->sin_port;
272 	sk_daddr_set(sk, daddr);
273 
274 	inet_csk(sk)->icsk_ext_hdr_len = 0;
275 	if (inet_opt)
276 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
277 
278 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
279 
280 	/* Socket identity is still unknown (sport may be zero).
281 	 * However we set state to SYN-SENT and not releasing socket
282 	 * lock select source port, enter ourselves into the hash tables and
283 	 * complete initialization after this.
284 	 */
285 	tcp_set_state(sk, TCP_SYN_SENT);
286 	err = inet_hash_connect(tcp_death_row, sk);
287 	if (err)
288 		goto failure;
289 
290 	sk_set_txhash(sk);
291 
292 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
293 			       inet->inet_sport, inet->inet_dport, sk);
294 	if (IS_ERR(rt)) {
295 		err = PTR_ERR(rt);
296 		rt = NULL;
297 		goto failure;
298 	}
299 	/* OK, now commit destination to socket.  */
300 	sk->sk_gso_type = SKB_GSO_TCPV4;
301 	sk_setup_caps(sk, &rt->dst);
302 	rt = NULL;
303 
304 	if (likely(!tp->repair)) {
305 		if (!tp->write_seq)
306 			WRITE_ONCE(tp->write_seq,
307 				   secure_tcp_seq(inet->inet_saddr,
308 						  inet->inet_daddr,
309 						  inet->inet_sport,
310 						  usin->sin_port));
311 		WRITE_ONCE(tp->tsoffset,
312 			   secure_tcp_ts_off(net, inet->inet_saddr,
313 					     inet->inet_daddr));
314 	}
315 
316 	inet->inet_id = get_random_u16();
317 
318 	if (tcp_fastopen_defer_connect(sk, &err))
319 		return err;
320 	if (err)
321 		goto failure;
322 
323 	err = tcp_connect(sk);
324 
325 	if (err)
326 		goto failure;
327 
328 	return 0;
329 
330 failure:
331 	/*
332 	 * This unhashes the socket and releases the local port,
333 	 * if necessary.
334 	 */
335 	tcp_set_state(sk, TCP_CLOSE);
336 	inet_bhash2_reset_saddr(sk);
337 	ip_rt_put(rt);
338 	sk->sk_route_caps = 0;
339 	inet->inet_dport = 0;
340 	return err;
341 }
342 EXPORT_SYMBOL(tcp_v4_connect);
343 
344 /*
345  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
346  * It can be called through tcp_release_cb() if socket was owned by user
347  * at the time tcp_v4_err() was called to handle ICMP message.
348  */
349 void tcp_v4_mtu_reduced(struct sock *sk)
350 {
351 	struct inet_sock *inet = inet_sk(sk);
352 	struct dst_entry *dst;
353 	u32 mtu;
354 
355 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
356 		return;
357 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
358 	dst = inet_csk_update_pmtu(sk, mtu);
359 	if (!dst)
360 		return;
361 
362 	/* Something is about to be wrong... Remember soft error
363 	 * for the case, if this connection will not able to recover.
364 	 */
365 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
366 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
367 
368 	mtu = dst_mtu(dst);
369 
370 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
371 	    ip_sk_accept_pmtu(sk) &&
372 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
373 		tcp_sync_mss(sk, mtu);
374 
375 		/* Resend the TCP packet because it's
376 		 * clear that the old packet has been
377 		 * dropped. This is the new "fast" path mtu
378 		 * discovery.
379 		 */
380 		tcp_simple_retransmit(sk);
381 	} /* else let the usual retransmit timer handle it */
382 }
383 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
384 
385 static void do_redirect(struct sk_buff *skb, struct sock *sk)
386 {
387 	struct dst_entry *dst = __sk_dst_check(sk, 0);
388 
389 	if (dst)
390 		dst->ops->redirect(dst, sk, skb);
391 }
392 
393 
394 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
395 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
396 {
397 	struct request_sock *req = inet_reqsk(sk);
398 	struct net *net = sock_net(sk);
399 
400 	/* ICMPs are not backlogged, hence we cannot get
401 	 * an established socket here.
402 	 */
403 	if (seq != tcp_rsk(req)->snt_isn) {
404 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
405 	} else if (abort) {
406 		/*
407 		 * Still in SYN_RECV, just remove it silently.
408 		 * There is no good way to pass the error to the newly
409 		 * created socket, and POSIX does not want network
410 		 * errors returned from accept().
411 		 */
412 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
413 		tcp_listendrop(req->rsk_listener);
414 	}
415 	reqsk_put(req);
416 }
417 EXPORT_SYMBOL(tcp_req_err);
418 
419 /* TCP-LD (RFC 6069) logic */
420 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
421 {
422 	struct inet_connection_sock *icsk = inet_csk(sk);
423 	struct tcp_sock *tp = tcp_sk(sk);
424 	struct sk_buff *skb;
425 	s32 remaining;
426 	u32 delta_us;
427 
428 	if (sock_owned_by_user(sk))
429 		return;
430 
431 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
432 	    !icsk->icsk_backoff)
433 		return;
434 
435 	skb = tcp_rtx_queue_head(sk);
436 	if (WARN_ON_ONCE(!skb))
437 		return;
438 
439 	icsk->icsk_backoff--;
440 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
441 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
442 
443 	tcp_mstamp_refresh(tp);
444 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
445 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
446 
447 	if (remaining > 0) {
448 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 					  remaining, TCP_RTO_MAX);
450 	} else {
451 		/* RTO revert clocked out retransmission.
452 		 * Will retransmit now.
453 		 */
454 		tcp_retransmit_timer(sk);
455 	}
456 }
457 EXPORT_SYMBOL(tcp_ld_RTO_revert);
458 
459 /*
460  * This routine is called by the ICMP module when it gets some
461  * sort of error condition.  If err < 0 then the socket should
462  * be closed and the error returned to the user.  If err > 0
463  * it's just the icmp type << 8 | icmp code.  After adjustment
464  * header points to the first 8 bytes of the tcp header.  We need
465  * to find the appropriate port.
466  *
467  * The locking strategy used here is very "optimistic". When
468  * someone else accesses the socket the ICMP is just dropped
469  * and for some paths there is no check at all.
470  * A more general error queue to queue errors for later handling
471  * is probably better.
472  *
473  */
474 
475 int tcp_v4_err(struct sk_buff *skb, u32 info)
476 {
477 	const struct iphdr *iph = (const struct iphdr *)skb->data;
478 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
479 	struct tcp_sock *tp;
480 	struct inet_sock *inet;
481 	const int type = icmp_hdr(skb)->type;
482 	const int code = icmp_hdr(skb)->code;
483 	struct sock *sk;
484 	struct request_sock *fastopen;
485 	u32 seq, snd_una;
486 	int err;
487 	struct net *net = dev_net(skb->dev);
488 
489 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
490 				       iph->daddr, th->dest, iph->saddr,
491 				       ntohs(th->source), inet_iif(skb), 0);
492 	if (!sk) {
493 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
494 		return -ENOENT;
495 	}
496 	if (sk->sk_state == TCP_TIME_WAIT) {
497 		inet_twsk_put(inet_twsk(sk));
498 		return 0;
499 	}
500 	seq = ntohl(th->seq);
501 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
502 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
503 				     type == ICMP_TIME_EXCEEDED ||
504 				     (type == ICMP_DEST_UNREACH &&
505 				      (code == ICMP_NET_UNREACH ||
506 				       code == ICMP_HOST_UNREACH)));
507 		return 0;
508 	}
509 
510 	bh_lock_sock(sk);
511 	/* If too many ICMPs get dropped on busy
512 	 * servers this needs to be solved differently.
513 	 * We do take care of PMTU discovery (RFC1191) special case :
514 	 * we can receive locally generated ICMP messages while socket is held.
515 	 */
516 	if (sock_owned_by_user(sk)) {
517 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
518 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
519 	}
520 	if (sk->sk_state == TCP_CLOSE)
521 		goto out;
522 
523 	if (static_branch_unlikely(&ip4_min_ttl)) {
524 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
525 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
526 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
527 			goto out;
528 		}
529 	}
530 
531 	tp = tcp_sk(sk);
532 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
533 	fastopen = rcu_dereference(tp->fastopen_rsk);
534 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
535 	if (sk->sk_state != TCP_LISTEN &&
536 	    !between(seq, snd_una, tp->snd_nxt)) {
537 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
538 		goto out;
539 	}
540 
541 	switch (type) {
542 	case ICMP_REDIRECT:
543 		if (!sock_owned_by_user(sk))
544 			do_redirect(skb, sk);
545 		goto out;
546 	case ICMP_SOURCE_QUENCH:
547 		/* Just silently ignore these. */
548 		goto out;
549 	case ICMP_PARAMETERPROB:
550 		err = EPROTO;
551 		break;
552 	case ICMP_DEST_UNREACH:
553 		if (code > NR_ICMP_UNREACH)
554 			goto out;
555 
556 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
557 			/* We are not interested in TCP_LISTEN and open_requests
558 			 * (SYN-ACKs send out by Linux are always <576bytes so
559 			 * they should go through unfragmented).
560 			 */
561 			if (sk->sk_state == TCP_LISTEN)
562 				goto out;
563 
564 			WRITE_ONCE(tp->mtu_info, info);
565 			if (!sock_owned_by_user(sk)) {
566 				tcp_v4_mtu_reduced(sk);
567 			} else {
568 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
569 					sock_hold(sk);
570 			}
571 			goto out;
572 		}
573 
574 		err = icmp_err_convert[code].errno;
575 		/* check if this ICMP message allows revert of backoff.
576 		 * (see RFC 6069)
577 		 */
578 		if (!fastopen &&
579 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
580 			tcp_ld_RTO_revert(sk, seq);
581 		break;
582 	case ICMP_TIME_EXCEEDED:
583 		err = EHOSTUNREACH;
584 		break;
585 	default:
586 		goto out;
587 	}
588 
589 	switch (sk->sk_state) {
590 	case TCP_SYN_SENT:
591 	case TCP_SYN_RECV:
592 		/* Only in fast or simultaneous open. If a fast open socket is
593 		 * already accepted it is treated as a connected one below.
594 		 */
595 		if (fastopen && !fastopen->sk)
596 			break;
597 
598 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
599 
600 		if (!sock_owned_by_user(sk)) {
601 			WRITE_ONCE(sk->sk_err, err);
602 
603 			sk_error_report(sk);
604 
605 			tcp_done(sk);
606 		} else {
607 			WRITE_ONCE(sk->sk_err_soft, err);
608 		}
609 		goto out;
610 	}
611 
612 	/* If we've already connected we will keep trying
613 	 * until we time out, or the user gives up.
614 	 *
615 	 * rfc1122 4.2.3.9 allows to consider as hard errors
616 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
617 	 * but it is obsoleted by pmtu discovery).
618 	 *
619 	 * Note, that in modern internet, where routing is unreliable
620 	 * and in each dark corner broken firewalls sit, sending random
621 	 * errors ordered by their masters even this two messages finally lose
622 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
623 	 *
624 	 * Now we are in compliance with RFCs.
625 	 *							--ANK (980905)
626 	 */
627 
628 	inet = inet_sk(sk);
629 	if (!sock_owned_by_user(sk) && inet->recverr) {
630 		WRITE_ONCE(sk->sk_err, err);
631 		sk_error_report(sk);
632 	} else	{ /* Only an error on timeout */
633 		WRITE_ONCE(sk->sk_err_soft, err);
634 	}
635 
636 out:
637 	bh_unlock_sock(sk);
638 	sock_put(sk);
639 	return 0;
640 }
641 
642 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
643 {
644 	struct tcphdr *th = tcp_hdr(skb);
645 
646 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
647 	skb->csum_start = skb_transport_header(skb) - skb->head;
648 	skb->csum_offset = offsetof(struct tcphdr, check);
649 }
650 
651 /* This routine computes an IPv4 TCP checksum. */
652 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
653 {
654 	const struct inet_sock *inet = inet_sk(sk);
655 
656 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
657 }
658 EXPORT_SYMBOL(tcp_v4_send_check);
659 
660 /*
661  *	This routine will send an RST to the other tcp.
662  *
663  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
664  *		      for reset.
665  *	Answer: if a packet caused RST, it is not for a socket
666  *		existing in our system, if it is matched to a socket,
667  *		it is just duplicate segment or bug in other side's TCP.
668  *		So that we build reply only basing on parameters
669  *		arrived with segment.
670  *	Exception: precedence violation. We do not implement it in any case.
671  */
672 
673 #ifdef CONFIG_TCP_MD5SIG
674 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
675 #else
676 #define OPTION_BYTES sizeof(__be32)
677 #endif
678 
679 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
680 {
681 	const struct tcphdr *th = tcp_hdr(skb);
682 	struct {
683 		struct tcphdr th;
684 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
685 	} rep;
686 	struct ip_reply_arg arg;
687 #ifdef CONFIG_TCP_MD5SIG
688 	struct tcp_md5sig_key *key = NULL;
689 	const __u8 *hash_location = NULL;
690 	unsigned char newhash[16];
691 	int genhash;
692 	struct sock *sk1 = NULL;
693 #endif
694 	u64 transmit_time = 0;
695 	struct sock *ctl_sk;
696 	struct net *net;
697 	u32 txhash = 0;
698 
699 	/* Never send a reset in response to a reset. */
700 	if (th->rst)
701 		return;
702 
703 	/* If sk not NULL, it means we did a successful lookup and incoming
704 	 * route had to be correct. prequeue might have dropped our dst.
705 	 */
706 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
707 		return;
708 
709 	/* Swap the send and the receive. */
710 	memset(&rep, 0, sizeof(rep));
711 	rep.th.dest   = th->source;
712 	rep.th.source = th->dest;
713 	rep.th.doff   = sizeof(struct tcphdr) / 4;
714 	rep.th.rst    = 1;
715 
716 	if (th->ack) {
717 		rep.th.seq = th->ack_seq;
718 	} else {
719 		rep.th.ack = 1;
720 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
721 				       skb->len - (th->doff << 2));
722 	}
723 
724 	memset(&arg, 0, sizeof(arg));
725 	arg.iov[0].iov_base = (unsigned char *)&rep;
726 	arg.iov[0].iov_len  = sizeof(rep.th);
727 
728 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
729 #ifdef CONFIG_TCP_MD5SIG
730 	rcu_read_lock();
731 	hash_location = tcp_parse_md5sig_option(th);
732 	if (sk && sk_fullsock(sk)) {
733 		const union tcp_md5_addr *addr;
734 		int l3index;
735 
736 		/* sdif set, means packet ingressed via a device
737 		 * in an L3 domain and inet_iif is set to it.
738 		 */
739 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
740 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
741 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
742 	} else if (hash_location) {
743 		const union tcp_md5_addr *addr;
744 		int sdif = tcp_v4_sdif(skb);
745 		int dif = inet_iif(skb);
746 		int l3index;
747 
748 		/*
749 		 * active side is lost. Try to find listening socket through
750 		 * source port, and then find md5 key through listening socket.
751 		 * we are not loose security here:
752 		 * Incoming packet is checked with md5 hash with finding key,
753 		 * no RST generated if md5 hash doesn't match.
754 		 */
755 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
756 					     NULL, 0, ip_hdr(skb)->saddr,
757 					     th->source, ip_hdr(skb)->daddr,
758 					     ntohs(th->source), dif, sdif);
759 		/* don't send rst if it can't find key */
760 		if (!sk1)
761 			goto out;
762 
763 		/* sdif set, means packet ingressed via a device
764 		 * in an L3 domain and dif is set to it.
765 		 */
766 		l3index = sdif ? dif : 0;
767 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
768 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
769 		if (!key)
770 			goto out;
771 
772 
773 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
774 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
775 			goto out;
776 
777 	}
778 
779 	if (key) {
780 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
781 				   (TCPOPT_NOP << 16) |
782 				   (TCPOPT_MD5SIG << 8) |
783 				   TCPOLEN_MD5SIG);
784 		/* Update length and the length the header thinks exists */
785 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
786 		rep.th.doff = arg.iov[0].iov_len / 4;
787 
788 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
789 				     key, ip_hdr(skb)->saddr,
790 				     ip_hdr(skb)->daddr, &rep.th);
791 	}
792 #endif
793 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
794 	if (rep.opt[0] == 0) {
795 		__be32 mrst = mptcp_reset_option(skb);
796 
797 		if (mrst) {
798 			rep.opt[0] = mrst;
799 			arg.iov[0].iov_len += sizeof(mrst);
800 			rep.th.doff = arg.iov[0].iov_len / 4;
801 		}
802 	}
803 
804 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
805 				      ip_hdr(skb)->saddr, /* XXX */
806 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
807 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
808 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
809 
810 	/* When socket is gone, all binding information is lost.
811 	 * routing might fail in this case. No choice here, if we choose to force
812 	 * input interface, we will misroute in case of asymmetric route.
813 	 */
814 	if (sk) {
815 		arg.bound_dev_if = sk->sk_bound_dev_if;
816 		if (sk_fullsock(sk))
817 			trace_tcp_send_reset(sk, skb);
818 	}
819 
820 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
821 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
822 
823 	arg.tos = ip_hdr(skb)->tos;
824 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
825 	local_bh_disable();
826 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
827 	sock_net_set(ctl_sk, net);
828 	if (sk) {
829 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
830 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
831 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
832 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
833 		transmit_time = tcp_transmit_time(sk);
834 		xfrm_sk_clone_policy(ctl_sk, sk);
835 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
836 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
837 	} else {
838 		ctl_sk->sk_mark = 0;
839 		ctl_sk->sk_priority = 0;
840 	}
841 	ip_send_unicast_reply(ctl_sk,
842 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
843 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
844 			      &arg, arg.iov[0].iov_len,
845 			      transmit_time, txhash);
846 
847 	xfrm_sk_free_policy(ctl_sk);
848 	sock_net_set(ctl_sk, &init_net);
849 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
850 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
851 	local_bh_enable();
852 
853 #ifdef CONFIG_TCP_MD5SIG
854 out:
855 	rcu_read_unlock();
856 #endif
857 }
858 
859 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
860    outside socket context is ugly, certainly. What can I do?
861  */
862 
863 static void tcp_v4_send_ack(const struct sock *sk,
864 			    struct sk_buff *skb, u32 seq, u32 ack,
865 			    u32 win, u32 tsval, u32 tsecr, int oif,
866 			    struct tcp_md5sig_key *key,
867 			    int reply_flags, u8 tos, u32 txhash)
868 {
869 	const struct tcphdr *th = tcp_hdr(skb);
870 	struct {
871 		struct tcphdr th;
872 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
873 #ifdef CONFIG_TCP_MD5SIG
874 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
875 #endif
876 			];
877 	} rep;
878 	struct net *net = sock_net(sk);
879 	struct ip_reply_arg arg;
880 	struct sock *ctl_sk;
881 	u64 transmit_time;
882 
883 	memset(&rep.th, 0, sizeof(struct tcphdr));
884 	memset(&arg, 0, sizeof(arg));
885 
886 	arg.iov[0].iov_base = (unsigned char *)&rep;
887 	arg.iov[0].iov_len  = sizeof(rep.th);
888 	if (tsecr) {
889 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
890 				   (TCPOPT_TIMESTAMP << 8) |
891 				   TCPOLEN_TIMESTAMP);
892 		rep.opt[1] = htonl(tsval);
893 		rep.opt[2] = htonl(tsecr);
894 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
895 	}
896 
897 	/* Swap the send and the receive. */
898 	rep.th.dest    = th->source;
899 	rep.th.source  = th->dest;
900 	rep.th.doff    = arg.iov[0].iov_len / 4;
901 	rep.th.seq     = htonl(seq);
902 	rep.th.ack_seq = htonl(ack);
903 	rep.th.ack     = 1;
904 	rep.th.window  = htons(win);
905 
906 #ifdef CONFIG_TCP_MD5SIG
907 	if (key) {
908 		int offset = (tsecr) ? 3 : 0;
909 
910 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
911 					  (TCPOPT_NOP << 16) |
912 					  (TCPOPT_MD5SIG << 8) |
913 					  TCPOLEN_MD5SIG);
914 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
915 		rep.th.doff = arg.iov[0].iov_len/4;
916 
917 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
918 				    key, ip_hdr(skb)->saddr,
919 				    ip_hdr(skb)->daddr, &rep.th);
920 	}
921 #endif
922 	arg.flags = reply_flags;
923 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
924 				      ip_hdr(skb)->saddr, /* XXX */
925 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
926 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
927 	if (oif)
928 		arg.bound_dev_if = oif;
929 	arg.tos = tos;
930 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
931 	local_bh_disable();
932 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
933 	sock_net_set(ctl_sk, net);
934 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
935 			   inet_twsk(sk)->tw_mark : sk->sk_mark;
936 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
937 			   inet_twsk(sk)->tw_priority : sk->sk_priority;
938 	transmit_time = tcp_transmit_time(sk);
939 	ip_send_unicast_reply(ctl_sk,
940 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
941 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
942 			      &arg, arg.iov[0].iov_len,
943 			      transmit_time, txhash);
944 
945 	sock_net_set(ctl_sk, &init_net);
946 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
947 	local_bh_enable();
948 }
949 
950 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
951 {
952 	struct inet_timewait_sock *tw = inet_twsk(sk);
953 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
954 
955 	tcp_v4_send_ack(sk, skb,
956 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
957 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
958 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
959 			tcptw->tw_ts_recent,
960 			tw->tw_bound_dev_if,
961 			tcp_twsk_md5_key(tcptw),
962 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
963 			tw->tw_tos,
964 			tw->tw_txhash
965 			);
966 
967 	inet_twsk_put(tw);
968 }
969 
970 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
971 				  struct request_sock *req)
972 {
973 	const union tcp_md5_addr *addr;
974 	int l3index;
975 
976 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
977 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
978 	 */
979 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
980 					     tcp_sk(sk)->snd_nxt;
981 
982 	/* RFC 7323 2.3
983 	 * The window field (SEG.WND) of every outgoing segment, with the
984 	 * exception of <SYN> segments, MUST be right-shifted by
985 	 * Rcv.Wind.Shift bits:
986 	 */
987 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
988 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
989 	tcp_v4_send_ack(sk, skb, seq,
990 			tcp_rsk(req)->rcv_nxt,
991 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
992 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
993 			READ_ONCE(req->ts_recent),
994 			0,
995 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
996 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
997 			ip_hdr(skb)->tos,
998 			READ_ONCE(tcp_rsk(req)->txhash));
999 }
1000 
1001 /*
1002  *	Send a SYN-ACK after having received a SYN.
1003  *	This still operates on a request_sock only, not on a big
1004  *	socket.
1005  */
1006 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1007 			      struct flowi *fl,
1008 			      struct request_sock *req,
1009 			      struct tcp_fastopen_cookie *foc,
1010 			      enum tcp_synack_type synack_type,
1011 			      struct sk_buff *syn_skb)
1012 {
1013 	const struct inet_request_sock *ireq = inet_rsk(req);
1014 	struct flowi4 fl4;
1015 	int err = -1;
1016 	struct sk_buff *skb;
1017 	u8 tos;
1018 
1019 	/* First, grab a route. */
1020 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1021 		return -1;
1022 
1023 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1024 
1025 	if (skb) {
1026 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1027 
1028 		tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1029 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1030 				(inet_sk(sk)->tos & INET_ECN_MASK) :
1031 				inet_sk(sk)->tos;
1032 
1033 		if (!INET_ECN_is_capable(tos) &&
1034 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1035 			tos |= INET_ECN_ECT_0;
1036 
1037 		rcu_read_lock();
1038 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1039 					    ireq->ir_rmt_addr,
1040 					    rcu_dereference(ireq->ireq_opt),
1041 					    tos);
1042 		rcu_read_unlock();
1043 		err = net_xmit_eval(err);
1044 	}
1045 
1046 	return err;
1047 }
1048 
1049 /*
1050  *	IPv4 request_sock destructor.
1051  */
1052 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1053 {
1054 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1055 }
1056 
1057 #ifdef CONFIG_TCP_MD5SIG
1058 /*
1059  * RFC2385 MD5 checksumming requires a mapping of
1060  * IP address->MD5 Key.
1061  * We need to maintain these in the sk structure.
1062  */
1063 
1064 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1065 EXPORT_SYMBOL(tcp_md5_needed);
1066 
1067 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1068 {
1069 	if (!old)
1070 		return true;
1071 
1072 	/* l3index always overrides non-l3index */
1073 	if (old->l3index && new->l3index == 0)
1074 		return false;
1075 	if (old->l3index == 0 && new->l3index)
1076 		return true;
1077 
1078 	return old->prefixlen < new->prefixlen;
1079 }
1080 
1081 /* Find the Key structure for an address.  */
1082 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1083 					   const union tcp_md5_addr *addr,
1084 					   int family)
1085 {
1086 	const struct tcp_sock *tp = tcp_sk(sk);
1087 	struct tcp_md5sig_key *key;
1088 	const struct tcp_md5sig_info *md5sig;
1089 	__be32 mask;
1090 	struct tcp_md5sig_key *best_match = NULL;
1091 	bool match;
1092 
1093 	/* caller either holds rcu_read_lock() or socket lock */
1094 	md5sig = rcu_dereference_check(tp->md5sig_info,
1095 				       lockdep_sock_is_held(sk));
1096 	if (!md5sig)
1097 		return NULL;
1098 
1099 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1100 				 lockdep_sock_is_held(sk)) {
1101 		if (key->family != family)
1102 			continue;
1103 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1104 			continue;
1105 		if (family == AF_INET) {
1106 			mask = inet_make_mask(key->prefixlen);
1107 			match = (key->addr.a4.s_addr & mask) ==
1108 				(addr->a4.s_addr & mask);
1109 #if IS_ENABLED(CONFIG_IPV6)
1110 		} else if (family == AF_INET6) {
1111 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1112 						  key->prefixlen);
1113 #endif
1114 		} else {
1115 			match = false;
1116 		}
1117 
1118 		if (match && better_md5_match(best_match, key))
1119 			best_match = key;
1120 	}
1121 	return best_match;
1122 }
1123 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1124 
1125 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1126 						      const union tcp_md5_addr *addr,
1127 						      int family, u8 prefixlen,
1128 						      int l3index, u8 flags)
1129 {
1130 	const struct tcp_sock *tp = tcp_sk(sk);
1131 	struct tcp_md5sig_key *key;
1132 	unsigned int size = sizeof(struct in_addr);
1133 	const struct tcp_md5sig_info *md5sig;
1134 
1135 	/* caller either holds rcu_read_lock() or socket lock */
1136 	md5sig = rcu_dereference_check(tp->md5sig_info,
1137 				       lockdep_sock_is_held(sk));
1138 	if (!md5sig)
1139 		return NULL;
1140 #if IS_ENABLED(CONFIG_IPV6)
1141 	if (family == AF_INET6)
1142 		size = sizeof(struct in6_addr);
1143 #endif
1144 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1145 				 lockdep_sock_is_held(sk)) {
1146 		if (key->family != family)
1147 			continue;
1148 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1149 			continue;
1150 		if (key->l3index != l3index)
1151 			continue;
1152 		if (!memcmp(&key->addr, addr, size) &&
1153 		    key->prefixlen == prefixlen)
1154 			return key;
1155 	}
1156 	return NULL;
1157 }
1158 
1159 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1160 					 const struct sock *addr_sk)
1161 {
1162 	const union tcp_md5_addr *addr;
1163 	int l3index;
1164 
1165 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1166 						 addr_sk->sk_bound_dev_if);
1167 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1168 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1169 }
1170 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1171 
1172 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1173 {
1174 	struct tcp_sock *tp = tcp_sk(sk);
1175 	struct tcp_md5sig_info *md5sig;
1176 
1177 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1178 	if (!md5sig)
1179 		return -ENOMEM;
1180 
1181 	sk_gso_disable(sk);
1182 	INIT_HLIST_HEAD(&md5sig->head);
1183 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1184 	return 0;
1185 }
1186 
1187 /* This can be called on a newly created socket, from other files */
1188 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1189 			    int family, u8 prefixlen, int l3index, u8 flags,
1190 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1191 {
1192 	/* Add Key to the list */
1193 	struct tcp_md5sig_key *key;
1194 	struct tcp_sock *tp = tcp_sk(sk);
1195 	struct tcp_md5sig_info *md5sig;
1196 
1197 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1198 	if (key) {
1199 		/* Pre-existing entry - just update that one.
1200 		 * Note that the key might be used concurrently.
1201 		 * data_race() is telling kcsan that we do not care of
1202 		 * key mismatches, since changing MD5 key on live flows
1203 		 * can lead to packet drops.
1204 		 */
1205 		data_race(memcpy(key->key, newkey, newkeylen));
1206 
1207 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1208 		 * Also note that a reader could catch new key->keylen value
1209 		 * but old key->key[], this is the reason we use __GFP_ZERO
1210 		 * at sock_kmalloc() time below these lines.
1211 		 */
1212 		WRITE_ONCE(key->keylen, newkeylen);
1213 
1214 		return 0;
1215 	}
1216 
1217 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1218 					   lockdep_sock_is_held(sk));
1219 
1220 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1221 	if (!key)
1222 		return -ENOMEM;
1223 	if (!tcp_alloc_md5sig_pool()) {
1224 		sock_kfree_s(sk, key, sizeof(*key));
1225 		return -ENOMEM;
1226 	}
1227 
1228 	memcpy(key->key, newkey, newkeylen);
1229 	key->keylen = newkeylen;
1230 	key->family = family;
1231 	key->prefixlen = prefixlen;
1232 	key->l3index = l3index;
1233 	key->flags = flags;
1234 	memcpy(&key->addr, addr,
1235 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1236 								 sizeof(struct in_addr));
1237 	hlist_add_head_rcu(&key->node, &md5sig->head);
1238 	return 0;
1239 }
1240 
1241 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1242 		   int family, u8 prefixlen, int l3index, u8 flags,
1243 		   const u8 *newkey, u8 newkeylen)
1244 {
1245 	struct tcp_sock *tp = tcp_sk(sk);
1246 
1247 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1248 		if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1249 			return -ENOMEM;
1250 
1251 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1252 			struct tcp_md5sig_info *md5sig;
1253 
1254 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1255 			rcu_assign_pointer(tp->md5sig_info, NULL);
1256 			kfree_rcu(md5sig, rcu);
1257 			return -EUSERS;
1258 		}
1259 	}
1260 
1261 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1262 				newkey, newkeylen, GFP_KERNEL);
1263 }
1264 EXPORT_SYMBOL(tcp_md5_do_add);
1265 
1266 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1267 		     int family, u8 prefixlen, int l3index,
1268 		     struct tcp_md5sig_key *key)
1269 {
1270 	struct tcp_sock *tp = tcp_sk(sk);
1271 
1272 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1273 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1274 			return -ENOMEM;
1275 
1276 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1277 			struct tcp_md5sig_info *md5sig;
1278 
1279 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1280 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1281 			rcu_assign_pointer(tp->md5sig_info, NULL);
1282 			kfree_rcu(md5sig, rcu);
1283 			return -EUSERS;
1284 		}
1285 	}
1286 
1287 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1288 				key->flags, key->key, key->keylen,
1289 				sk_gfp_mask(sk, GFP_ATOMIC));
1290 }
1291 EXPORT_SYMBOL(tcp_md5_key_copy);
1292 
1293 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1294 		   u8 prefixlen, int l3index, u8 flags)
1295 {
1296 	struct tcp_md5sig_key *key;
1297 
1298 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1299 	if (!key)
1300 		return -ENOENT;
1301 	hlist_del_rcu(&key->node);
1302 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1303 	kfree_rcu(key, rcu);
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(tcp_md5_do_del);
1307 
1308 static void tcp_clear_md5_list(struct sock *sk)
1309 {
1310 	struct tcp_sock *tp = tcp_sk(sk);
1311 	struct tcp_md5sig_key *key;
1312 	struct hlist_node *n;
1313 	struct tcp_md5sig_info *md5sig;
1314 
1315 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1316 
1317 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1318 		hlist_del_rcu(&key->node);
1319 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1320 		kfree_rcu(key, rcu);
1321 	}
1322 }
1323 
1324 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1325 				 sockptr_t optval, int optlen)
1326 {
1327 	struct tcp_md5sig cmd;
1328 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1329 	const union tcp_md5_addr *addr;
1330 	u8 prefixlen = 32;
1331 	int l3index = 0;
1332 	u8 flags;
1333 
1334 	if (optlen < sizeof(cmd))
1335 		return -EINVAL;
1336 
1337 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1338 		return -EFAULT;
1339 
1340 	if (sin->sin_family != AF_INET)
1341 		return -EINVAL;
1342 
1343 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1344 
1345 	if (optname == TCP_MD5SIG_EXT &&
1346 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1347 		prefixlen = cmd.tcpm_prefixlen;
1348 		if (prefixlen > 32)
1349 			return -EINVAL;
1350 	}
1351 
1352 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1353 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1354 		struct net_device *dev;
1355 
1356 		rcu_read_lock();
1357 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1358 		if (dev && netif_is_l3_master(dev))
1359 			l3index = dev->ifindex;
1360 
1361 		rcu_read_unlock();
1362 
1363 		/* ok to reference set/not set outside of rcu;
1364 		 * right now device MUST be an L3 master
1365 		 */
1366 		if (!dev || !l3index)
1367 			return -EINVAL;
1368 	}
1369 
1370 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1371 
1372 	if (!cmd.tcpm_keylen)
1373 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1374 
1375 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1376 		return -EINVAL;
1377 
1378 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1379 			      cmd.tcpm_key, cmd.tcpm_keylen);
1380 }
1381 
1382 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1383 				   __be32 daddr, __be32 saddr,
1384 				   const struct tcphdr *th, int nbytes)
1385 {
1386 	struct tcp4_pseudohdr *bp;
1387 	struct scatterlist sg;
1388 	struct tcphdr *_th;
1389 
1390 	bp = hp->scratch;
1391 	bp->saddr = saddr;
1392 	bp->daddr = daddr;
1393 	bp->pad = 0;
1394 	bp->protocol = IPPROTO_TCP;
1395 	bp->len = cpu_to_be16(nbytes);
1396 
1397 	_th = (struct tcphdr *)(bp + 1);
1398 	memcpy(_th, th, sizeof(*th));
1399 	_th->check = 0;
1400 
1401 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1402 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1403 				sizeof(*bp) + sizeof(*th));
1404 	return crypto_ahash_update(hp->md5_req);
1405 }
1406 
1407 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1408 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1409 {
1410 	struct tcp_md5sig_pool *hp;
1411 	struct ahash_request *req;
1412 
1413 	hp = tcp_get_md5sig_pool();
1414 	if (!hp)
1415 		goto clear_hash_noput;
1416 	req = hp->md5_req;
1417 
1418 	if (crypto_ahash_init(req))
1419 		goto clear_hash;
1420 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1421 		goto clear_hash;
1422 	if (tcp_md5_hash_key(hp, key))
1423 		goto clear_hash;
1424 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1425 	if (crypto_ahash_final(req))
1426 		goto clear_hash;
1427 
1428 	tcp_put_md5sig_pool();
1429 	return 0;
1430 
1431 clear_hash:
1432 	tcp_put_md5sig_pool();
1433 clear_hash_noput:
1434 	memset(md5_hash, 0, 16);
1435 	return 1;
1436 }
1437 
1438 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1439 			const struct sock *sk,
1440 			const struct sk_buff *skb)
1441 {
1442 	struct tcp_md5sig_pool *hp;
1443 	struct ahash_request *req;
1444 	const struct tcphdr *th = tcp_hdr(skb);
1445 	__be32 saddr, daddr;
1446 
1447 	if (sk) { /* valid for establish/request sockets */
1448 		saddr = sk->sk_rcv_saddr;
1449 		daddr = sk->sk_daddr;
1450 	} else {
1451 		const struct iphdr *iph = ip_hdr(skb);
1452 		saddr = iph->saddr;
1453 		daddr = iph->daddr;
1454 	}
1455 
1456 	hp = tcp_get_md5sig_pool();
1457 	if (!hp)
1458 		goto clear_hash_noput;
1459 	req = hp->md5_req;
1460 
1461 	if (crypto_ahash_init(req))
1462 		goto clear_hash;
1463 
1464 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1465 		goto clear_hash;
1466 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1467 		goto clear_hash;
1468 	if (tcp_md5_hash_key(hp, key))
1469 		goto clear_hash;
1470 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1471 	if (crypto_ahash_final(req))
1472 		goto clear_hash;
1473 
1474 	tcp_put_md5sig_pool();
1475 	return 0;
1476 
1477 clear_hash:
1478 	tcp_put_md5sig_pool();
1479 clear_hash_noput:
1480 	memset(md5_hash, 0, 16);
1481 	return 1;
1482 }
1483 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1484 
1485 #endif
1486 
1487 static void tcp_v4_init_req(struct request_sock *req,
1488 			    const struct sock *sk_listener,
1489 			    struct sk_buff *skb)
1490 {
1491 	struct inet_request_sock *ireq = inet_rsk(req);
1492 	struct net *net = sock_net(sk_listener);
1493 
1494 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1495 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1496 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1497 }
1498 
1499 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1500 					  struct sk_buff *skb,
1501 					  struct flowi *fl,
1502 					  struct request_sock *req)
1503 {
1504 	tcp_v4_init_req(req, sk, skb);
1505 
1506 	if (security_inet_conn_request(sk, skb, req))
1507 		return NULL;
1508 
1509 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1510 }
1511 
1512 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1513 	.family		=	PF_INET,
1514 	.obj_size	=	sizeof(struct tcp_request_sock),
1515 	.rtx_syn_ack	=	tcp_rtx_synack,
1516 	.send_ack	=	tcp_v4_reqsk_send_ack,
1517 	.destructor	=	tcp_v4_reqsk_destructor,
1518 	.send_reset	=	tcp_v4_send_reset,
1519 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1520 };
1521 
1522 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1523 	.mss_clamp	=	TCP_MSS_DEFAULT,
1524 #ifdef CONFIG_TCP_MD5SIG
1525 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1526 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1527 #endif
1528 #ifdef CONFIG_SYN_COOKIES
1529 	.cookie_init_seq =	cookie_v4_init_sequence,
1530 #endif
1531 	.route_req	=	tcp_v4_route_req,
1532 	.init_seq	=	tcp_v4_init_seq,
1533 	.init_ts_off	=	tcp_v4_init_ts_off,
1534 	.send_synack	=	tcp_v4_send_synack,
1535 };
1536 
1537 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1538 {
1539 	/* Never answer to SYNs send to broadcast or multicast */
1540 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1541 		goto drop;
1542 
1543 	return tcp_conn_request(&tcp_request_sock_ops,
1544 				&tcp_request_sock_ipv4_ops, sk, skb);
1545 
1546 drop:
1547 	tcp_listendrop(sk);
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL(tcp_v4_conn_request);
1551 
1552 
1553 /*
1554  * The three way handshake has completed - we got a valid synack -
1555  * now create the new socket.
1556  */
1557 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1558 				  struct request_sock *req,
1559 				  struct dst_entry *dst,
1560 				  struct request_sock *req_unhash,
1561 				  bool *own_req)
1562 {
1563 	struct inet_request_sock *ireq;
1564 	bool found_dup_sk = false;
1565 	struct inet_sock *newinet;
1566 	struct tcp_sock *newtp;
1567 	struct sock *newsk;
1568 #ifdef CONFIG_TCP_MD5SIG
1569 	const union tcp_md5_addr *addr;
1570 	struct tcp_md5sig_key *key;
1571 	int l3index;
1572 #endif
1573 	struct ip_options_rcu *inet_opt;
1574 
1575 	if (sk_acceptq_is_full(sk))
1576 		goto exit_overflow;
1577 
1578 	newsk = tcp_create_openreq_child(sk, req, skb);
1579 	if (!newsk)
1580 		goto exit_nonewsk;
1581 
1582 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1583 	inet_sk_rx_dst_set(newsk, skb);
1584 
1585 	newtp		      = tcp_sk(newsk);
1586 	newinet		      = inet_sk(newsk);
1587 	ireq		      = inet_rsk(req);
1588 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1589 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1590 	newsk->sk_bound_dev_if = ireq->ir_iif;
1591 	newinet->inet_saddr   = ireq->ir_loc_addr;
1592 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1593 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1594 	newinet->mc_index     = inet_iif(skb);
1595 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1596 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1597 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1598 	if (inet_opt)
1599 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1600 	newinet->inet_id = get_random_u16();
1601 
1602 	/* Set ToS of the new socket based upon the value of incoming SYN.
1603 	 * ECT bits are set later in tcp_init_transfer().
1604 	 */
1605 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1606 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1607 
1608 	if (!dst) {
1609 		dst = inet_csk_route_child_sock(sk, newsk, req);
1610 		if (!dst)
1611 			goto put_and_exit;
1612 	} else {
1613 		/* syncookie case : see end of cookie_v4_check() */
1614 	}
1615 	sk_setup_caps(newsk, dst);
1616 
1617 	tcp_ca_openreq_child(newsk, dst);
1618 
1619 	tcp_sync_mss(newsk, dst_mtu(dst));
1620 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1621 
1622 	tcp_initialize_rcv_mss(newsk);
1623 
1624 #ifdef CONFIG_TCP_MD5SIG
1625 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1626 	/* Copy over the MD5 key from the original socket */
1627 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1628 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1629 	if (key) {
1630 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1631 			goto put_and_exit;
1632 		sk_gso_disable(newsk);
1633 	}
1634 #endif
1635 
1636 	if (__inet_inherit_port(sk, newsk) < 0)
1637 		goto put_and_exit;
1638 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1639 				       &found_dup_sk);
1640 	if (likely(*own_req)) {
1641 		tcp_move_syn(newtp, req);
1642 		ireq->ireq_opt = NULL;
1643 	} else {
1644 		newinet->inet_opt = NULL;
1645 
1646 		if (!req_unhash && found_dup_sk) {
1647 			/* This code path should only be executed in the
1648 			 * syncookie case only
1649 			 */
1650 			bh_unlock_sock(newsk);
1651 			sock_put(newsk);
1652 			newsk = NULL;
1653 		}
1654 	}
1655 	return newsk;
1656 
1657 exit_overflow:
1658 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1659 exit_nonewsk:
1660 	dst_release(dst);
1661 exit:
1662 	tcp_listendrop(sk);
1663 	return NULL;
1664 put_and_exit:
1665 	newinet->inet_opt = NULL;
1666 	inet_csk_prepare_forced_close(newsk);
1667 	tcp_done(newsk);
1668 	goto exit;
1669 }
1670 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1671 
1672 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1673 {
1674 #ifdef CONFIG_SYN_COOKIES
1675 	const struct tcphdr *th = tcp_hdr(skb);
1676 
1677 	if (!th->syn)
1678 		sk = cookie_v4_check(sk, skb);
1679 #endif
1680 	return sk;
1681 }
1682 
1683 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1684 			 struct tcphdr *th, u32 *cookie)
1685 {
1686 	u16 mss = 0;
1687 #ifdef CONFIG_SYN_COOKIES
1688 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1689 				    &tcp_request_sock_ipv4_ops, sk, th);
1690 	if (mss) {
1691 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1692 		tcp_synq_overflow(sk);
1693 	}
1694 #endif
1695 	return mss;
1696 }
1697 
1698 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1699 							   u32));
1700 /* The socket must have it's spinlock held when we get
1701  * here, unless it is a TCP_LISTEN socket.
1702  *
1703  * We have a potential double-lock case here, so even when
1704  * doing backlog processing we use the BH locking scheme.
1705  * This is because we cannot sleep with the original spinlock
1706  * held.
1707  */
1708 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1709 {
1710 	enum skb_drop_reason reason;
1711 	struct sock *rsk;
1712 
1713 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1714 		struct dst_entry *dst;
1715 
1716 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1717 						lockdep_sock_is_held(sk));
1718 
1719 		sock_rps_save_rxhash(sk, skb);
1720 		sk_mark_napi_id(sk, skb);
1721 		if (dst) {
1722 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1723 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1724 					     dst, 0)) {
1725 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1726 				dst_release(dst);
1727 			}
1728 		}
1729 		tcp_rcv_established(sk, skb);
1730 		return 0;
1731 	}
1732 
1733 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1734 	if (tcp_checksum_complete(skb))
1735 		goto csum_err;
1736 
1737 	if (sk->sk_state == TCP_LISTEN) {
1738 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1739 
1740 		if (!nsk)
1741 			goto discard;
1742 		if (nsk != sk) {
1743 			if (tcp_child_process(sk, nsk, skb)) {
1744 				rsk = nsk;
1745 				goto reset;
1746 			}
1747 			return 0;
1748 		}
1749 	} else
1750 		sock_rps_save_rxhash(sk, skb);
1751 
1752 	if (tcp_rcv_state_process(sk, skb)) {
1753 		rsk = sk;
1754 		goto reset;
1755 	}
1756 	return 0;
1757 
1758 reset:
1759 	tcp_v4_send_reset(rsk, skb);
1760 discard:
1761 	kfree_skb_reason(skb, reason);
1762 	/* Be careful here. If this function gets more complicated and
1763 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1764 	 * might be destroyed here. This current version compiles correctly,
1765 	 * but you have been warned.
1766 	 */
1767 	return 0;
1768 
1769 csum_err:
1770 	reason = SKB_DROP_REASON_TCP_CSUM;
1771 	trace_tcp_bad_csum(skb);
1772 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1773 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1774 	goto discard;
1775 }
1776 EXPORT_SYMBOL(tcp_v4_do_rcv);
1777 
1778 int tcp_v4_early_demux(struct sk_buff *skb)
1779 {
1780 	struct net *net = dev_net(skb->dev);
1781 	const struct iphdr *iph;
1782 	const struct tcphdr *th;
1783 	struct sock *sk;
1784 
1785 	if (skb->pkt_type != PACKET_HOST)
1786 		return 0;
1787 
1788 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1789 		return 0;
1790 
1791 	iph = ip_hdr(skb);
1792 	th = tcp_hdr(skb);
1793 
1794 	if (th->doff < sizeof(struct tcphdr) / 4)
1795 		return 0;
1796 
1797 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1798 				       iph->saddr, th->source,
1799 				       iph->daddr, ntohs(th->dest),
1800 				       skb->skb_iif, inet_sdif(skb));
1801 	if (sk) {
1802 		skb->sk = sk;
1803 		skb->destructor = sock_edemux;
1804 		if (sk_fullsock(sk)) {
1805 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1806 
1807 			if (dst)
1808 				dst = dst_check(dst, 0);
1809 			if (dst &&
1810 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1811 				skb_dst_set_noref(skb, dst);
1812 		}
1813 	}
1814 	return 0;
1815 }
1816 
1817 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1818 		     enum skb_drop_reason *reason)
1819 {
1820 	u32 limit, tail_gso_size, tail_gso_segs;
1821 	struct skb_shared_info *shinfo;
1822 	const struct tcphdr *th;
1823 	struct tcphdr *thtail;
1824 	struct sk_buff *tail;
1825 	unsigned int hdrlen;
1826 	bool fragstolen;
1827 	u32 gso_segs;
1828 	u32 gso_size;
1829 	int delta;
1830 
1831 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1832 	 * we can fix skb->truesize to its real value to avoid future drops.
1833 	 * This is valid because skb is not yet charged to the socket.
1834 	 * It has been noticed pure SACK packets were sometimes dropped
1835 	 * (if cooked by drivers without copybreak feature).
1836 	 */
1837 	skb_condense(skb);
1838 
1839 	skb_dst_drop(skb);
1840 
1841 	if (unlikely(tcp_checksum_complete(skb))) {
1842 		bh_unlock_sock(sk);
1843 		trace_tcp_bad_csum(skb);
1844 		*reason = SKB_DROP_REASON_TCP_CSUM;
1845 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1846 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1847 		return true;
1848 	}
1849 
1850 	/* Attempt coalescing to last skb in backlog, even if we are
1851 	 * above the limits.
1852 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1853 	 */
1854 	th = (const struct tcphdr *)skb->data;
1855 	hdrlen = th->doff * 4;
1856 
1857 	tail = sk->sk_backlog.tail;
1858 	if (!tail)
1859 		goto no_coalesce;
1860 	thtail = (struct tcphdr *)tail->data;
1861 
1862 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1863 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1864 	    ((TCP_SKB_CB(tail)->tcp_flags |
1865 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1866 	    !((TCP_SKB_CB(tail)->tcp_flags &
1867 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1868 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1869 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1870 #ifdef CONFIG_TLS_DEVICE
1871 	    tail->decrypted != skb->decrypted ||
1872 #endif
1873 	    thtail->doff != th->doff ||
1874 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1875 		goto no_coalesce;
1876 
1877 	__skb_pull(skb, hdrlen);
1878 
1879 	shinfo = skb_shinfo(skb);
1880 	gso_size = shinfo->gso_size ?: skb->len;
1881 	gso_segs = shinfo->gso_segs ?: 1;
1882 
1883 	shinfo = skb_shinfo(tail);
1884 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1885 	tail_gso_segs = shinfo->gso_segs ?: 1;
1886 
1887 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1888 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1889 
1890 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1891 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1892 			thtail->window = th->window;
1893 		}
1894 
1895 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1896 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1897 		 * is not entered if we append a packet with a FIN.
1898 		 * SYN, RST, URG are not present.
1899 		 * ACK is set on both packets.
1900 		 * PSH : we do not really care in TCP stack,
1901 		 *       at least for 'GRO' packets.
1902 		 */
1903 		thtail->fin |= th->fin;
1904 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1905 
1906 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1907 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1908 			tail->tstamp = skb->tstamp;
1909 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1910 		}
1911 
1912 		/* Not as strict as GRO. We only need to carry mss max value */
1913 		shinfo->gso_size = max(gso_size, tail_gso_size);
1914 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1915 
1916 		sk->sk_backlog.len += delta;
1917 		__NET_INC_STATS(sock_net(sk),
1918 				LINUX_MIB_TCPBACKLOGCOALESCE);
1919 		kfree_skb_partial(skb, fragstolen);
1920 		return false;
1921 	}
1922 	__skb_push(skb, hdrlen);
1923 
1924 no_coalesce:
1925 	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1926 
1927 	/* Only socket owner can try to collapse/prune rx queues
1928 	 * to reduce memory overhead, so add a little headroom here.
1929 	 * Few sockets backlog are possibly concurrently non empty.
1930 	 */
1931 	limit += 64 * 1024;
1932 
1933 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1934 		bh_unlock_sock(sk);
1935 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1936 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1937 		return true;
1938 	}
1939 	return false;
1940 }
1941 EXPORT_SYMBOL(tcp_add_backlog);
1942 
1943 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1944 {
1945 	struct tcphdr *th = (struct tcphdr *)skb->data;
1946 
1947 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1948 }
1949 EXPORT_SYMBOL(tcp_filter);
1950 
1951 static void tcp_v4_restore_cb(struct sk_buff *skb)
1952 {
1953 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1954 		sizeof(struct inet_skb_parm));
1955 }
1956 
1957 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1958 			   const struct tcphdr *th)
1959 {
1960 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1961 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1962 	 */
1963 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1964 		sizeof(struct inet_skb_parm));
1965 	barrier();
1966 
1967 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1968 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1969 				    skb->len - th->doff * 4);
1970 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1971 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1972 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1973 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974 	TCP_SKB_CB(skb)->sacked	 = 0;
1975 	TCP_SKB_CB(skb)->has_rxtstamp =
1976 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1977 }
1978 
1979 /*
1980  *	From tcp_input.c
1981  */
1982 
1983 int tcp_v4_rcv(struct sk_buff *skb)
1984 {
1985 	struct net *net = dev_net(skb->dev);
1986 	enum skb_drop_reason drop_reason;
1987 	int sdif = inet_sdif(skb);
1988 	int dif = inet_iif(skb);
1989 	const struct iphdr *iph;
1990 	const struct tcphdr *th;
1991 	bool refcounted;
1992 	struct sock *sk;
1993 	int ret;
1994 
1995 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1996 	if (skb->pkt_type != PACKET_HOST)
1997 		goto discard_it;
1998 
1999 	/* Count it even if it's bad */
2000 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2001 
2002 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2003 		goto discard_it;
2004 
2005 	th = (const struct tcphdr *)skb->data;
2006 
2007 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2008 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2009 		goto bad_packet;
2010 	}
2011 	if (!pskb_may_pull(skb, th->doff * 4))
2012 		goto discard_it;
2013 
2014 	/* An explanation is required here, I think.
2015 	 * Packet length and doff are validated by header prediction,
2016 	 * provided case of th->doff==0 is eliminated.
2017 	 * So, we defer the checks. */
2018 
2019 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2020 		goto csum_error;
2021 
2022 	th = (const struct tcphdr *)skb->data;
2023 	iph = ip_hdr(skb);
2024 lookup:
2025 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2026 			       skb, __tcp_hdrlen(th), th->source,
2027 			       th->dest, sdif, &refcounted);
2028 	if (!sk)
2029 		goto no_tcp_socket;
2030 
2031 process:
2032 	if (sk->sk_state == TCP_TIME_WAIT)
2033 		goto do_time_wait;
2034 
2035 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2036 		struct request_sock *req = inet_reqsk(sk);
2037 		bool req_stolen = false;
2038 		struct sock *nsk;
2039 
2040 		sk = req->rsk_listener;
2041 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2042 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2043 		else
2044 			drop_reason = tcp_inbound_md5_hash(sk, skb,
2045 						   &iph->saddr, &iph->daddr,
2046 						   AF_INET, dif, sdif);
2047 		if (unlikely(drop_reason)) {
2048 			sk_drops_add(sk, skb);
2049 			reqsk_put(req);
2050 			goto discard_it;
2051 		}
2052 		if (tcp_checksum_complete(skb)) {
2053 			reqsk_put(req);
2054 			goto csum_error;
2055 		}
2056 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2057 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2058 			if (!nsk) {
2059 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2060 				goto lookup;
2061 			}
2062 			sk = nsk;
2063 			/* reuseport_migrate_sock() has already held one sk_refcnt
2064 			 * before returning.
2065 			 */
2066 		} else {
2067 			/* We own a reference on the listener, increase it again
2068 			 * as we might lose it too soon.
2069 			 */
2070 			sock_hold(sk);
2071 		}
2072 		refcounted = true;
2073 		nsk = NULL;
2074 		if (!tcp_filter(sk, skb)) {
2075 			th = (const struct tcphdr *)skb->data;
2076 			iph = ip_hdr(skb);
2077 			tcp_v4_fill_cb(skb, iph, th);
2078 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2079 		} else {
2080 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2081 		}
2082 		if (!nsk) {
2083 			reqsk_put(req);
2084 			if (req_stolen) {
2085 				/* Another cpu got exclusive access to req
2086 				 * and created a full blown socket.
2087 				 * Try to feed this packet to this socket
2088 				 * instead of discarding it.
2089 				 */
2090 				tcp_v4_restore_cb(skb);
2091 				sock_put(sk);
2092 				goto lookup;
2093 			}
2094 			goto discard_and_relse;
2095 		}
2096 		nf_reset_ct(skb);
2097 		if (nsk == sk) {
2098 			reqsk_put(req);
2099 			tcp_v4_restore_cb(skb);
2100 		} else if (tcp_child_process(sk, nsk, skb)) {
2101 			tcp_v4_send_reset(nsk, skb);
2102 			goto discard_and_relse;
2103 		} else {
2104 			sock_put(sk);
2105 			return 0;
2106 		}
2107 	}
2108 
2109 	if (static_branch_unlikely(&ip4_min_ttl)) {
2110 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2111 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2112 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2113 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2114 			goto discard_and_relse;
2115 		}
2116 	}
2117 
2118 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2119 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2120 		goto discard_and_relse;
2121 	}
2122 
2123 	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2124 					   &iph->daddr, AF_INET, dif, sdif);
2125 	if (drop_reason)
2126 		goto discard_and_relse;
2127 
2128 	nf_reset_ct(skb);
2129 
2130 	if (tcp_filter(sk, skb)) {
2131 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2132 		goto discard_and_relse;
2133 	}
2134 	th = (const struct tcphdr *)skb->data;
2135 	iph = ip_hdr(skb);
2136 	tcp_v4_fill_cb(skb, iph, th);
2137 
2138 	skb->dev = NULL;
2139 
2140 	if (sk->sk_state == TCP_LISTEN) {
2141 		ret = tcp_v4_do_rcv(sk, skb);
2142 		goto put_and_return;
2143 	}
2144 
2145 	sk_incoming_cpu_update(sk);
2146 
2147 	bh_lock_sock_nested(sk);
2148 	tcp_segs_in(tcp_sk(sk), skb);
2149 	ret = 0;
2150 	if (!sock_owned_by_user(sk)) {
2151 		ret = tcp_v4_do_rcv(sk, skb);
2152 	} else {
2153 		if (tcp_add_backlog(sk, skb, &drop_reason))
2154 			goto discard_and_relse;
2155 	}
2156 	bh_unlock_sock(sk);
2157 
2158 put_and_return:
2159 	if (refcounted)
2160 		sock_put(sk);
2161 
2162 	return ret;
2163 
2164 no_tcp_socket:
2165 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2166 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2167 		goto discard_it;
2168 
2169 	tcp_v4_fill_cb(skb, iph, th);
2170 
2171 	if (tcp_checksum_complete(skb)) {
2172 csum_error:
2173 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2174 		trace_tcp_bad_csum(skb);
2175 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2176 bad_packet:
2177 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2178 	} else {
2179 		tcp_v4_send_reset(NULL, skb);
2180 	}
2181 
2182 discard_it:
2183 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2184 	/* Discard frame. */
2185 	kfree_skb_reason(skb, drop_reason);
2186 	return 0;
2187 
2188 discard_and_relse:
2189 	sk_drops_add(sk, skb);
2190 	if (refcounted)
2191 		sock_put(sk);
2192 	goto discard_it;
2193 
2194 do_time_wait:
2195 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2196 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2197 		inet_twsk_put(inet_twsk(sk));
2198 		goto discard_it;
2199 	}
2200 
2201 	tcp_v4_fill_cb(skb, iph, th);
2202 
2203 	if (tcp_checksum_complete(skb)) {
2204 		inet_twsk_put(inet_twsk(sk));
2205 		goto csum_error;
2206 	}
2207 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2208 	case TCP_TW_SYN: {
2209 		struct sock *sk2 = inet_lookup_listener(net,
2210 							net->ipv4.tcp_death_row.hashinfo,
2211 							skb, __tcp_hdrlen(th),
2212 							iph->saddr, th->source,
2213 							iph->daddr, th->dest,
2214 							inet_iif(skb),
2215 							sdif);
2216 		if (sk2) {
2217 			inet_twsk_deschedule_put(inet_twsk(sk));
2218 			sk = sk2;
2219 			tcp_v4_restore_cb(skb);
2220 			refcounted = false;
2221 			goto process;
2222 		}
2223 	}
2224 		/* to ACK */
2225 		fallthrough;
2226 	case TCP_TW_ACK:
2227 		tcp_v4_timewait_ack(sk, skb);
2228 		break;
2229 	case TCP_TW_RST:
2230 		tcp_v4_send_reset(sk, skb);
2231 		inet_twsk_deschedule_put(inet_twsk(sk));
2232 		goto discard_it;
2233 	case TCP_TW_SUCCESS:;
2234 	}
2235 	goto discard_it;
2236 }
2237 
2238 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2239 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2240 	.twsk_unique	= tcp_twsk_unique,
2241 	.twsk_destructor= tcp_twsk_destructor,
2242 };
2243 
2244 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2245 {
2246 	struct dst_entry *dst = skb_dst(skb);
2247 
2248 	if (dst && dst_hold_safe(dst)) {
2249 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2250 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2251 	}
2252 }
2253 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2254 
2255 const struct inet_connection_sock_af_ops ipv4_specific = {
2256 	.queue_xmit	   = ip_queue_xmit,
2257 	.send_check	   = tcp_v4_send_check,
2258 	.rebuild_header	   = inet_sk_rebuild_header,
2259 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2260 	.conn_request	   = tcp_v4_conn_request,
2261 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2262 	.net_header_len	   = sizeof(struct iphdr),
2263 	.setsockopt	   = ip_setsockopt,
2264 	.getsockopt	   = ip_getsockopt,
2265 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2266 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2267 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2268 };
2269 EXPORT_SYMBOL(ipv4_specific);
2270 
2271 #ifdef CONFIG_TCP_MD5SIG
2272 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2273 	.md5_lookup		= tcp_v4_md5_lookup,
2274 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2275 	.md5_parse		= tcp_v4_parse_md5_keys,
2276 };
2277 #endif
2278 
2279 /* NOTE: A lot of things set to zero explicitly by call to
2280  *       sk_alloc() so need not be done here.
2281  */
2282 static int tcp_v4_init_sock(struct sock *sk)
2283 {
2284 	struct inet_connection_sock *icsk = inet_csk(sk);
2285 
2286 	tcp_init_sock(sk);
2287 
2288 	icsk->icsk_af_ops = &ipv4_specific;
2289 
2290 #ifdef CONFIG_TCP_MD5SIG
2291 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2292 #endif
2293 
2294 	return 0;
2295 }
2296 
2297 void tcp_v4_destroy_sock(struct sock *sk)
2298 {
2299 	struct tcp_sock *tp = tcp_sk(sk);
2300 
2301 	trace_tcp_destroy_sock(sk);
2302 
2303 	tcp_clear_xmit_timers(sk);
2304 
2305 	tcp_cleanup_congestion_control(sk);
2306 
2307 	tcp_cleanup_ulp(sk);
2308 
2309 	/* Cleanup up the write buffer. */
2310 	tcp_write_queue_purge(sk);
2311 
2312 	/* Check if we want to disable active TFO */
2313 	tcp_fastopen_active_disable_ofo_check(sk);
2314 
2315 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2316 	skb_rbtree_purge(&tp->out_of_order_queue);
2317 
2318 #ifdef CONFIG_TCP_MD5SIG
2319 	/* Clean up the MD5 key list, if any */
2320 	if (tp->md5sig_info) {
2321 		tcp_clear_md5_list(sk);
2322 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2323 		tp->md5sig_info = NULL;
2324 		static_branch_slow_dec_deferred(&tcp_md5_needed);
2325 	}
2326 #endif
2327 
2328 	/* Clean up a referenced TCP bind bucket. */
2329 	if (inet_csk(sk)->icsk_bind_hash)
2330 		inet_put_port(sk);
2331 
2332 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2333 
2334 	/* If socket is aborted during connect operation */
2335 	tcp_free_fastopen_req(tp);
2336 	tcp_fastopen_destroy_cipher(sk);
2337 	tcp_saved_syn_free(tp);
2338 
2339 	sk_sockets_allocated_dec(sk);
2340 }
2341 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2342 
2343 #ifdef CONFIG_PROC_FS
2344 /* Proc filesystem TCP sock list dumping. */
2345 
2346 static unsigned short seq_file_family(const struct seq_file *seq);
2347 
2348 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2349 {
2350 	unsigned short family = seq_file_family(seq);
2351 
2352 	/* AF_UNSPEC is used as a match all */
2353 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2354 		net_eq(sock_net(sk), seq_file_net(seq)));
2355 }
2356 
2357 /* Find a non empty bucket (starting from st->bucket)
2358  * and return the first sk from it.
2359  */
2360 static void *listening_get_first(struct seq_file *seq)
2361 {
2362 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2363 	struct tcp_iter_state *st = seq->private;
2364 
2365 	st->offset = 0;
2366 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2367 		struct inet_listen_hashbucket *ilb2;
2368 		struct hlist_nulls_node *node;
2369 		struct sock *sk;
2370 
2371 		ilb2 = &hinfo->lhash2[st->bucket];
2372 		if (hlist_nulls_empty(&ilb2->nulls_head))
2373 			continue;
2374 
2375 		spin_lock(&ilb2->lock);
2376 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2377 			if (seq_sk_match(seq, sk))
2378 				return sk;
2379 		}
2380 		spin_unlock(&ilb2->lock);
2381 	}
2382 
2383 	return NULL;
2384 }
2385 
2386 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2387  * If "cur" is the last one in the st->bucket,
2388  * call listening_get_first() to return the first sk of the next
2389  * non empty bucket.
2390  */
2391 static void *listening_get_next(struct seq_file *seq, void *cur)
2392 {
2393 	struct tcp_iter_state *st = seq->private;
2394 	struct inet_listen_hashbucket *ilb2;
2395 	struct hlist_nulls_node *node;
2396 	struct inet_hashinfo *hinfo;
2397 	struct sock *sk = cur;
2398 
2399 	++st->num;
2400 	++st->offset;
2401 
2402 	sk = sk_nulls_next(sk);
2403 	sk_nulls_for_each_from(sk, node) {
2404 		if (seq_sk_match(seq, sk))
2405 			return sk;
2406 	}
2407 
2408 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2409 	ilb2 = &hinfo->lhash2[st->bucket];
2410 	spin_unlock(&ilb2->lock);
2411 	++st->bucket;
2412 	return listening_get_first(seq);
2413 }
2414 
2415 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2416 {
2417 	struct tcp_iter_state *st = seq->private;
2418 	void *rc;
2419 
2420 	st->bucket = 0;
2421 	st->offset = 0;
2422 	rc = listening_get_first(seq);
2423 
2424 	while (rc && *pos) {
2425 		rc = listening_get_next(seq, rc);
2426 		--*pos;
2427 	}
2428 	return rc;
2429 }
2430 
2431 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2432 				const struct tcp_iter_state *st)
2433 {
2434 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2435 }
2436 
2437 /*
2438  * Get first established socket starting from bucket given in st->bucket.
2439  * If st->bucket is zero, the very first socket in the hash is returned.
2440  */
2441 static void *established_get_first(struct seq_file *seq)
2442 {
2443 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2444 	struct tcp_iter_state *st = seq->private;
2445 
2446 	st->offset = 0;
2447 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2448 		struct sock *sk;
2449 		struct hlist_nulls_node *node;
2450 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2451 
2452 		cond_resched();
2453 
2454 		/* Lockless fast path for the common case of empty buckets */
2455 		if (empty_bucket(hinfo, st))
2456 			continue;
2457 
2458 		spin_lock_bh(lock);
2459 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2460 			if (seq_sk_match(seq, sk))
2461 				return sk;
2462 		}
2463 		spin_unlock_bh(lock);
2464 	}
2465 
2466 	return NULL;
2467 }
2468 
2469 static void *established_get_next(struct seq_file *seq, void *cur)
2470 {
2471 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2472 	struct tcp_iter_state *st = seq->private;
2473 	struct hlist_nulls_node *node;
2474 	struct sock *sk = cur;
2475 
2476 	++st->num;
2477 	++st->offset;
2478 
2479 	sk = sk_nulls_next(sk);
2480 
2481 	sk_nulls_for_each_from(sk, node) {
2482 		if (seq_sk_match(seq, sk))
2483 			return sk;
2484 	}
2485 
2486 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2487 	++st->bucket;
2488 	return established_get_first(seq);
2489 }
2490 
2491 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2492 {
2493 	struct tcp_iter_state *st = seq->private;
2494 	void *rc;
2495 
2496 	st->bucket = 0;
2497 	rc = established_get_first(seq);
2498 
2499 	while (rc && pos) {
2500 		rc = established_get_next(seq, rc);
2501 		--pos;
2502 	}
2503 	return rc;
2504 }
2505 
2506 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2507 {
2508 	void *rc;
2509 	struct tcp_iter_state *st = seq->private;
2510 
2511 	st->state = TCP_SEQ_STATE_LISTENING;
2512 	rc	  = listening_get_idx(seq, &pos);
2513 
2514 	if (!rc) {
2515 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2516 		rc	  = established_get_idx(seq, pos);
2517 	}
2518 
2519 	return rc;
2520 }
2521 
2522 static void *tcp_seek_last_pos(struct seq_file *seq)
2523 {
2524 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2525 	struct tcp_iter_state *st = seq->private;
2526 	int bucket = st->bucket;
2527 	int offset = st->offset;
2528 	int orig_num = st->num;
2529 	void *rc = NULL;
2530 
2531 	switch (st->state) {
2532 	case TCP_SEQ_STATE_LISTENING:
2533 		if (st->bucket > hinfo->lhash2_mask)
2534 			break;
2535 		rc = listening_get_first(seq);
2536 		while (offset-- && rc && bucket == st->bucket)
2537 			rc = listening_get_next(seq, rc);
2538 		if (rc)
2539 			break;
2540 		st->bucket = 0;
2541 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2542 		fallthrough;
2543 	case TCP_SEQ_STATE_ESTABLISHED:
2544 		if (st->bucket > hinfo->ehash_mask)
2545 			break;
2546 		rc = established_get_first(seq);
2547 		while (offset-- && rc && bucket == st->bucket)
2548 			rc = established_get_next(seq, rc);
2549 	}
2550 
2551 	st->num = orig_num;
2552 
2553 	return rc;
2554 }
2555 
2556 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2557 {
2558 	struct tcp_iter_state *st = seq->private;
2559 	void *rc;
2560 
2561 	if (*pos && *pos == st->last_pos) {
2562 		rc = tcp_seek_last_pos(seq);
2563 		if (rc)
2564 			goto out;
2565 	}
2566 
2567 	st->state = TCP_SEQ_STATE_LISTENING;
2568 	st->num = 0;
2569 	st->bucket = 0;
2570 	st->offset = 0;
2571 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2572 
2573 out:
2574 	st->last_pos = *pos;
2575 	return rc;
2576 }
2577 EXPORT_SYMBOL(tcp_seq_start);
2578 
2579 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2580 {
2581 	struct tcp_iter_state *st = seq->private;
2582 	void *rc = NULL;
2583 
2584 	if (v == SEQ_START_TOKEN) {
2585 		rc = tcp_get_idx(seq, 0);
2586 		goto out;
2587 	}
2588 
2589 	switch (st->state) {
2590 	case TCP_SEQ_STATE_LISTENING:
2591 		rc = listening_get_next(seq, v);
2592 		if (!rc) {
2593 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2594 			st->bucket = 0;
2595 			st->offset = 0;
2596 			rc	  = established_get_first(seq);
2597 		}
2598 		break;
2599 	case TCP_SEQ_STATE_ESTABLISHED:
2600 		rc = established_get_next(seq, v);
2601 		break;
2602 	}
2603 out:
2604 	++*pos;
2605 	st->last_pos = *pos;
2606 	return rc;
2607 }
2608 EXPORT_SYMBOL(tcp_seq_next);
2609 
2610 void tcp_seq_stop(struct seq_file *seq, void *v)
2611 {
2612 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2613 	struct tcp_iter_state *st = seq->private;
2614 
2615 	switch (st->state) {
2616 	case TCP_SEQ_STATE_LISTENING:
2617 		if (v != SEQ_START_TOKEN)
2618 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2619 		break;
2620 	case TCP_SEQ_STATE_ESTABLISHED:
2621 		if (v)
2622 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2623 		break;
2624 	}
2625 }
2626 EXPORT_SYMBOL(tcp_seq_stop);
2627 
2628 static void get_openreq4(const struct request_sock *req,
2629 			 struct seq_file *f, int i)
2630 {
2631 	const struct inet_request_sock *ireq = inet_rsk(req);
2632 	long delta = req->rsk_timer.expires - jiffies;
2633 
2634 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2635 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2636 		i,
2637 		ireq->ir_loc_addr,
2638 		ireq->ir_num,
2639 		ireq->ir_rmt_addr,
2640 		ntohs(ireq->ir_rmt_port),
2641 		TCP_SYN_RECV,
2642 		0, 0, /* could print option size, but that is af dependent. */
2643 		1,    /* timers active (only the expire timer) */
2644 		jiffies_delta_to_clock_t(delta),
2645 		req->num_timeout,
2646 		from_kuid_munged(seq_user_ns(f),
2647 				 sock_i_uid(req->rsk_listener)),
2648 		0,  /* non standard timer */
2649 		0, /* open_requests have no inode */
2650 		0,
2651 		req);
2652 }
2653 
2654 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2655 {
2656 	int timer_active;
2657 	unsigned long timer_expires;
2658 	const struct tcp_sock *tp = tcp_sk(sk);
2659 	const struct inet_connection_sock *icsk = inet_csk(sk);
2660 	const struct inet_sock *inet = inet_sk(sk);
2661 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2662 	__be32 dest = inet->inet_daddr;
2663 	__be32 src = inet->inet_rcv_saddr;
2664 	__u16 destp = ntohs(inet->inet_dport);
2665 	__u16 srcp = ntohs(inet->inet_sport);
2666 	int rx_queue;
2667 	int state;
2668 
2669 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2670 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2671 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2672 		timer_active	= 1;
2673 		timer_expires	= icsk->icsk_timeout;
2674 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2675 		timer_active	= 4;
2676 		timer_expires	= icsk->icsk_timeout;
2677 	} else if (timer_pending(&sk->sk_timer)) {
2678 		timer_active	= 2;
2679 		timer_expires	= sk->sk_timer.expires;
2680 	} else {
2681 		timer_active	= 0;
2682 		timer_expires = jiffies;
2683 	}
2684 
2685 	state = inet_sk_state_load(sk);
2686 	if (state == TCP_LISTEN)
2687 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2688 	else
2689 		/* Because we don't lock the socket,
2690 		 * we might find a transient negative value.
2691 		 */
2692 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2693 				      READ_ONCE(tp->copied_seq), 0);
2694 
2695 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2696 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2697 		i, src, srcp, dest, destp, state,
2698 		READ_ONCE(tp->write_seq) - tp->snd_una,
2699 		rx_queue,
2700 		timer_active,
2701 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2702 		icsk->icsk_retransmits,
2703 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2704 		icsk->icsk_probes_out,
2705 		sock_i_ino(sk),
2706 		refcount_read(&sk->sk_refcnt), sk,
2707 		jiffies_to_clock_t(icsk->icsk_rto),
2708 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2709 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2710 		tcp_snd_cwnd(tp),
2711 		state == TCP_LISTEN ?
2712 		    fastopenq->max_qlen :
2713 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2714 }
2715 
2716 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2717 			       struct seq_file *f, int i)
2718 {
2719 	long delta = tw->tw_timer.expires - jiffies;
2720 	__be32 dest, src;
2721 	__u16 destp, srcp;
2722 
2723 	dest  = tw->tw_daddr;
2724 	src   = tw->tw_rcv_saddr;
2725 	destp = ntohs(tw->tw_dport);
2726 	srcp  = ntohs(tw->tw_sport);
2727 
2728 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2729 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2730 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2731 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2732 		refcount_read(&tw->tw_refcnt), tw);
2733 }
2734 
2735 #define TMPSZ 150
2736 
2737 static int tcp4_seq_show(struct seq_file *seq, void *v)
2738 {
2739 	struct tcp_iter_state *st;
2740 	struct sock *sk = v;
2741 
2742 	seq_setwidth(seq, TMPSZ - 1);
2743 	if (v == SEQ_START_TOKEN) {
2744 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2745 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2746 			   "inode");
2747 		goto out;
2748 	}
2749 	st = seq->private;
2750 
2751 	if (sk->sk_state == TCP_TIME_WAIT)
2752 		get_timewait4_sock(v, seq, st->num);
2753 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2754 		get_openreq4(v, seq, st->num);
2755 	else
2756 		get_tcp4_sock(v, seq, st->num);
2757 out:
2758 	seq_pad(seq, '\n');
2759 	return 0;
2760 }
2761 
2762 #ifdef CONFIG_BPF_SYSCALL
2763 struct bpf_tcp_iter_state {
2764 	struct tcp_iter_state state;
2765 	unsigned int cur_sk;
2766 	unsigned int end_sk;
2767 	unsigned int max_sk;
2768 	struct sock **batch;
2769 	bool st_bucket_done;
2770 };
2771 
2772 struct bpf_iter__tcp {
2773 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2774 	__bpf_md_ptr(struct sock_common *, sk_common);
2775 	uid_t uid __aligned(8);
2776 };
2777 
2778 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2779 			     struct sock_common *sk_common, uid_t uid)
2780 {
2781 	struct bpf_iter__tcp ctx;
2782 
2783 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2784 	ctx.meta = meta;
2785 	ctx.sk_common = sk_common;
2786 	ctx.uid = uid;
2787 	return bpf_iter_run_prog(prog, &ctx);
2788 }
2789 
2790 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2791 {
2792 	while (iter->cur_sk < iter->end_sk)
2793 		sock_gen_put(iter->batch[iter->cur_sk++]);
2794 }
2795 
2796 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2797 				      unsigned int new_batch_sz)
2798 {
2799 	struct sock **new_batch;
2800 
2801 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2802 			     GFP_USER | __GFP_NOWARN);
2803 	if (!new_batch)
2804 		return -ENOMEM;
2805 
2806 	bpf_iter_tcp_put_batch(iter);
2807 	kvfree(iter->batch);
2808 	iter->batch = new_batch;
2809 	iter->max_sk = new_batch_sz;
2810 
2811 	return 0;
2812 }
2813 
2814 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2815 						 struct sock *start_sk)
2816 {
2817 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2818 	struct bpf_tcp_iter_state *iter = seq->private;
2819 	struct tcp_iter_state *st = &iter->state;
2820 	struct hlist_nulls_node *node;
2821 	unsigned int expected = 1;
2822 	struct sock *sk;
2823 
2824 	sock_hold(start_sk);
2825 	iter->batch[iter->end_sk++] = start_sk;
2826 
2827 	sk = sk_nulls_next(start_sk);
2828 	sk_nulls_for_each_from(sk, node) {
2829 		if (seq_sk_match(seq, sk)) {
2830 			if (iter->end_sk < iter->max_sk) {
2831 				sock_hold(sk);
2832 				iter->batch[iter->end_sk++] = sk;
2833 			}
2834 			expected++;
2835 		}
2836 	}
2837 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2838 
2839 	return expected;
2840 }
2841 
2842 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2843 						   struct sock *start_sk)
2844 {
2845 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2846 	struct bpf_tcp_iter_state *iter = seq->private;
2847 	struct tcp_iter_state *st = &iter->state;
2848 	struct hlist_nulls_node *node;
2849 	unsigned int expected = 1;
2850 	struct sock *sk;
2851 
2852 	sock_hold(start_sk);
2853 	iter->batch[iter->end_sk++] = start_sk;
2854 
2855 	sk = sk_nulls_next(start_sk);
2856 	sk_nulls_for_each_from(sk, node) {
2857 		if (seq_sk_match(seq, sk)) {
2858 			if (iter->end_sk < iter->max_sk) {
2859 				sock_hold(sk);
2860 				iter->batch[iter->end_sk++] = sk;
2861 			}
2862 			expected++;
2863 		}
2864 	}
2865 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2866 
2867 	return expected;
2868 }
2869 
2870 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2871 {
2872 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2873 	struct bpf_tcp_iter_state *iter = seq->private;
2874 	struct tcp_iter_state *st = &iter->state;
2875 	unsigned int expected;
2876 	bool resized = false;
2877 	struct sock *sk;
2878 
2879 	/* The st->bucket is done.  Directly advance to the next
2880 	 * bucket instead of having the tcp_seek_last_pos() to skip
2881 	 * one by one in the current bucket and eventually find out
2882 	 * it has to advance to the next bucket.
2883 	 */
2884 	if (iter->st_bucket_done) {
2885 		st->offset = 0;
2886 		st->bucket++;
2887 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2888 		    st->bucket > hinfo->lhash2_mask) {
2889 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2890 			st->bucket = 0;
2891 		}
2892 	}
2893 
2894 again:
2895 	/* Get a new batch */
2896 	iter->cur_sk = 0;
2897 	iter->end_sk = 0;
2898 	iter->st_bucket_done = false;
2899 
2900 	sk = tcp_seek_last_pos(seq);
2901 	if (!sk)
2902 		return NULL; /* Done */
2903 
2904 	if (st->state == TCP_SEQ_STATE_LISTENING)
2905 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2906 	else
2907 		expected = bpf_iter_tcp_established_batch(seq, sk);
2908 
2909 	if (iter->end_sk == expected) {
2910 		iter->st_bucket_done = true;
2911 		return sk;
2912 	}
2913 
2914 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2915 		resized = true;
2916 		goto again;
2917 	}
2918 
2919 	return sk;
2920 }
2921 
2922 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2923 {
2924 	/* bpf iter does not support lseek, so it always
2925 	 * continue from where it was stop()-ped.
2926 	 */
2927 	if (*pos)
2928 		return bpf_iter_tcp_batch(seq);
2929 
2930 	return SEQ_START_TOKEN;
2931 }
2932 
2933 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2934 {
2935 	struct bpf_tcp_iter_state *iter = seq->private;
2936 	struct tcp_iter_state *st = &iter->state;
2937 	struct sock *sk;
2938 
2939 	/* Whenever seq_next() is called, the iter->cur_sk is
2940 	 * done with seq_show(), so advance to the next sk in
2941 	 * the batch.
2942 	 */
2943 	if (iter->cur_sk < iter->end_sk) {
2944 		/* Keeping st->num consistent in tcp_iter_state.
2945 		 * bpf_iter_tcp does not use st->num.
2946 		 * meta.seq_num is used instead.
2947 		 */
2948 		st->num++;
2949 		/* Move st->offset to the next sk in the bucket such that
2950 		 * the future start() will resume at st->offset in
2951 		 * st->bucket.  See tcp_seek_last_pos().
2952 		 */
2953 		st->offset++;
2954 		sock_gen_put(iter->batch[iter->cur_sk++]);
2955 	}
2956 
2957 	if (iter->cur_sk < iter->end_sk)
2958 		sk = iter->batch[iter->cur_sk];
2959 	else
2960 		sk = bpf_iter_tcp_batch(seq);
2961 
2962 	++*pos;
2963 	/* Keeping st->last_pos consistent in tcp_iter_state.
2964 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2965 	 */
2966 	st->last_pos = *pos;
2967 	return sk;
2968 }
2969 
2970 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2971 {
2972 	struct bpf_iter_meta meta;
2973 	struct bpf_prog *prog;
2974 	struct sock *sk = v;
2975 	uid_t uid;
2976 	int ret;
2977 
2978 	if (v == SEQ_START_TOKEN)
2979 		return 0;
2980 
2981 	if (sk_fullsock(sk))
2982 		lock_sock(sk);
2983 
2984 	if (unlikely(sk_unhashed(sk))) {
2985 		ret = SEQ_SKIP;
2986 		goto unlock;
2987 	}
2988 
2989 	if (sk->sk_state == TCP_TIME_WAIT) {
2990 		uid = 0;
2991 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2992 		const struct request_sock *req = v;
2993 
2994 		uid = from_kuid_munged(seq_user_ns(seq),
2995 				       sock_i_uid(req->rsk_listener));
2996 	} else {
2997 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2998 	}
2999 
3000 	meta.seq = seq;
3001 	prog = bpf_iter_get_info(&meta, false);
3002 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3003 
3004 unlock:
3005 	if (sk_fullsock(sk))
3006 		release_sock(sk);
3007 	return ret;
3008 
3009 }
3010 
3011 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3012 {
3013 	struct bpf_tcp_iter_state *iter = seq->private;
3014 	struct bpf_iter_meta meta;
3015 	struct bpf_prog *prog;
3016 
3017 	if (!v) {
3018 		meta.seq = seq;
3019 		prog = bpf_iter_get_info(&meta, true);
3020 		if (prog)
3021 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3022 	}
3023 
3024 	if (iter->cur_sk < iter->end_sk) {
3025 		bpf_iter_tcp_put_batch(iter);
3026 		iter->st_bucket_done = false;
3027 	}
3028 }
3029 
3030 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3031 	.show		= bpf_iter_tcp_seq_show,
3032 	.start		= bpf_iter_tcp_seq_start,
3033 	.next		= bpf_iter_tcp_seq_next,
3034 	.stop		= bpf_iter_tcp_seq_stop,
3035 };
3036 #endif
3037 static unsigned short seq_file_family(const struct seq_file *seq)
3038 {
3039 	const struct tcp_seq_afinfo *afinfo;
3040 
3041 #ifdef CONFIG_BPF_SYSCALL
3042 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3043 	if (seq->op == &bpf_iter_tcp_seq_ops)
3044 		return AF_UNSPEC;
3045 #endif
3046 
3047 	/* Iterated from proc fs */
3048 	afinfo = pde_data(file_inode(seq->file));
3049 	return afinfo->family;
3050 }
3051 
3052 static const struct seq_operations tcp4_seq_ops = {
3053 	.show		= tcp4_seq_show,
3054 	.start		= tcp_seq_start,
3055 	.next		= tcp_seq_next,
3056 	.stop		= tcp_seq_stop,
3057 };
3058 
3059 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3060 	.family		= AF_INET,
3061 };
3062 
3063 static int __net_init tcp4_proc_init_net(struct net *net)
3064 {
3065 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3066 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3067 		return -ENOMEM;
3068 	return 0;
3069 }
3070 
3071 static void __net_exit tcp4_proc_exit_net(struct net *net)
3072 {
3073 	remove_proc_entry("tcp", net->proc_net);
3074 }
3075 
3076 static struct pernet_operations tcp4_net_ops = {
3077 	.init = tcp4_proc_init_net,
3078 	.exit = tcp4_proc_exit_net,
3079 };
3080 
3081 int __init tcp4_proc_init(void)
3082 {
3083 	return register_pernet_subsys(&tcp4_net_ops);
3084 }
3085 
3086 void tcp4_proc_exit(void)
3087 {
3088 	unregister_pernet_subsys(&tcp4_net_ops);
3089 }
3090 #endif /* CONFIG_PROC_FS */
3091 
3092 /* @wake is one when sk_stream_write_space() calls us.
3093  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3094  * This mimics the strategy used in sock_def_write_space().
3095  */
3096 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3097 {
3098 	const struct tcp_sock *tp = tcp_sk(sk);
3099 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3100 			    READ_ONCE(tp->snd_nxt);
3101 
3102 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3103 }
3104 EXPORT_SYMBOL(tcp_stream_memory_free);
3105 
3106 struct proto tcp_prot = {
3107 	.name			= "TCP",
3108 	.owner			= THIS_MODULE,
3109 	.close			= tcp_close,
3110 	.pre_connect		= tcp_v4_pre_connect,
3111 	.connect		= tcp_v4_connect,
3112 	.disconnect		= tcp_disconnect,
3113 	.accept			= inet_csk_accept,
3114 	.ioctl			= tcp_ioctl,
3115 	.init			= tcp_v4_init_sock,
3116 	.destroy		= tcp_v4_destroy_sock,
3117 	.shutdown		= tcp_shutdown,
3118 	.setsockopt		= tcp_setsockopt,
3119 	.getsockopt		= tcp_getsockopt,
3120 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3121 	.keepalive		= tcp_set_keepalive,
3122 	.recvmsg		= tcp_recvmsg,
3123 	.sendmsg		= tcp_sendmsg,
3124 	.splice_eof		= tcp_splice_eof,
3125 	.backlog_rcv		= tcp_v4_do_rcv,
3126 	.release_cb		= tcp_release_cb,
3127 	.hash			= inet_hash,
3128 	.unhash			= inet_unhash,
3129 	.get_port		= inet_csk_get_port,
3130 	.put_port		= inet_put_port,
3131 #ifdef CONFIG_BPF_SYSCALL
3132 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3133 #endif
3134 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3135 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3136 	.stream_memory_free	= tcp_stream_memory_free,
3137 	.sockets_allocated	= &tcp_sockets_allocated,
3138 	.orphan_count		= &tcp_orphan_count,
3139 
3140 	.memory_allocated	= &tcp_memory_allocated,
3141 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3142 
3143 	.memory_pressure	= &tcp_memory_pressure,
3144 	.sysctl_mem		= sysctl_tcp_mem,
3145 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3146 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3147 	.max_header		= MAX_TCP_HEADER,
3148 	.obj_size		= sizeof(struct tcp_sock),
3149 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3150 	.twsk_prot		= &tcp_timewait_sock_ops,
3151 	.rsk_prot		= &tcp_request_sock_ops,
3152 	.h.hashinfo		= NULL,
3153 	.no_autobind		= true,
3154 	.diag_destroy		= tcp_abort,
3155 };
3156 EXPORT_SYMBOL(tcp_prot);
3157 
3158 static void __net_exit tcp_sk_exit(struct net *net)
3159 {
3160 	if (net->ipv4.tcp_congestion_control)
3161 		bpf_module_put(net->ipv4.tcp_congestion_control,
3162 			       net->ipv4.tcp_congestion_control->owner);
3163 }
3164 
3165 static void __net_init tcp_set_hashinfo(struct net *net)
3166 {
3167 	struct inet_hashinfo *hinfo;
3168 	unsigned int ehash_entries;
3169 	struct net *old_net;
3170 
3171 	if (net_eq(net, &init_net))
3172 		goto fallback;
3173 
3174 	old_net = current->nsproxy->net_ns;
3175 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3176 	if (!ehash_entries)
3177 		goto fallback;
3178 
3179 	ehash_entries = roundup_pow_of_two(ehash_entries);
3180 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3181 	if (!hinfo) {
3182 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3183 			"for a netns, fallback to the global one\n",
3184 			ehash_entries);
3185 fallback:
3186 		hinfo = &tcp_hashinfo;
3187 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3188 	}
3189 
3190 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3191 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3192 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3193 }
3194 
3195 static int __net_init tcp_sk_init(struct net *net)
3196 {
3197 	net->ipv4.sysctl_tcp_ecn = 2;
3198 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3199 
3200 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3201 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3202 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3203 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3204 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3205 
3206 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3207 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3208 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3209 
3210 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3211 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3212 	net->ipv4.sysctl_tcp_syncookies = 1;
3213 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3214 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3215 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3216 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3217 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3218 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3219 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3220 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3221 
3222 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3223 	tcp_set_hashinfo(net);
3224 
3225 	net->ipv4.sysctl_tcp_sack = 1;
3226 	net->ipv4.sysctl_tcp_window_scaling = 1;
3227 	net->ipv4.sysctl_tcp_timestamps = 1;
3228 	net->ipv4.sysctl_tcp_early_retrans = 3;
3229 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3230 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3231 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3232 	net->ipv4.sysctl_tcp_max_reordering = 300;
3233 	net->ipv4.sysctl_tcp_dsack = 1;
3234 	net->ipv4.sysctl_tcp_app_win = 31;
3235 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3236 	net->ipv4.sysctl_tcp_frto = 2;
3237 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3238 	/* This limits the percentage of the congestion window which we
3239 	 * will allow a single TSO frame to consume.  Building TSO frames
3240 	 * which are too large can cause TCP streams to be bursty.
3241 	 */
3242 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3243 	/* Default TSQ limit of 16 TSO segments */
3244 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3245 
3246 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3247 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3248 
3249 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3250 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3251 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3252 	net->ipv4.sysctl_tcp_autocorking = 1;
3253 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3254 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3255 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3256 	if (net != &init_net) {
3257 		memcpy(net->ipv4.sysctl_tcp_rmem,
3258 		       init_net.ipv4.sysctl_tcp_rmem,
3259 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3260 		memcpy(net->ipv4.sysctl_tcp_wmem,
3261 		       init_net.ipv4.sysctl_tcp_wmem,
3262 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3263 	}
3264 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3265 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3266 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3267 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3268 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3269 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3270 
3271 	/* Set default values for PLB */
3272 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3273 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3274 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3275 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3276 	/* Default congestion threshold for PLB to mark a round is 50% */
3277 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3278 
3279 	/* Reno is always built in */
3280 	if (!net_eq(net, &init_net) &&
3281 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3282 			       init_net.ipv4.tcp_congestion_control->owner))
3283 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3284 	else
3285 		net->ipv4.tcp_congestion_control = &tcp_reno;
3286 
3287 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3288 	net->ipv4.sysctl_tcp_shrink_window = 0;
3289 
3290 	return 0;
3291 }
3292 
3293 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3294 {
3295 	struct net *net;
3296 
3297 	tcp_twsk_purge(net_exit_list, AF_INET);
3298 
3299 	list_for_each_entry(net, net_exit_list, exit_list) {
3300 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3301 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3302 		tcp_fastopen_ctx_destroy(net);
3303 	}
3304 }
3305 
3306 static struct pernet_operations __net_initdata tcp_sk_ops = {
3307        .init	   = tcp_sk_init,
3308        .exit	   = tcp_sk_exit,
3309        .exit_batch = tcp_sk_exit_batch,
3310 };
3311 
3312 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3313 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3314 		     struct sock_common *sk_common, uid_t uid)
3315 
3316 #define INIT_BATCH_SZ 16
3317 
3318 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3319 {
3320 	struct bpf_tcp_iter_state *iter = priv_data;
3321 	int err;
3322 
3323 	err = bpf_iter_init_seq_net(priv_data, aux);
3324 	if (err)
3325 		return err;
3326 
3327 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3328 	if (err) {
3329 		bpf_iter_fini_seq_net(priv_data);
3330 		return err;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 static void bpf_iter_fini_tcp(void *priv_data)
3337 {
3338 	struct bpf_tcp_iter_state *iter = priv_data;
3339 
3340 	bpf_iter_fini_seq_net(priv_data);
3341 	kvfree(iter->batch);
3342 }
3343 
3344 static const struct bpf_iter_seq_info tcp_seq_info = {
3345 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3346 	.init_seq_private	= bpf_iter_init_tcp,
3347 	.fini_seq_private	= bpf_iter_fini_tcp,
3348 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3349 };
3350 
3351 static const struct bpf_func_proto *
3352 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3353 			    const struct bpf_prog *prog)
3354 {
3355 	switch (func_id) {
3356 	case BPF_FUNC_setsockopt:
3357 		return &bpf_sk_setsockopt_proto;
3358 	case BPF_FUNC_getsockopt:
3359 		return &bpf_sk_getsockopt_proto;
3360 	default:
3361 		return NULL;
3362 	}
3363 }
3364 
3365 static struct bpf_iter_reg tcp_reg_info = {
3366 	.target			= "tcp",
3367 	.ctx_arg_info_size	= 1,
3368 	.ctx_arg_info		= {
3369 		{ offsetof(struct bpf_iter__tcp, sk_common),
3370 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3371 	},
3372 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3373 	.seq_info		= &tcp_seq_info,
3374 };
3375 
3376 static void __init bpf_iter_register(void)
3377 {
3378 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3379 	if (bpf_iter_reg_target(&tcp_reg_info))
3380 		pr_warn("Warning: could not register bpf iterator tcp\n");
3381 }
3382 
3383 #endif
3384 
3385 void __init tcp_v4_init(void)
3386 {
3387 	int cpu, res;
3388 
3389 	for_each_possible_cpu(cpu) {
3390 		struct sock *sk;
3391 
3392 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3393 					   IPPROTO_TCP, &init_net);
3394 		if (res)
3395 			panic("Failed to create the TCP control socket.\n");
3396 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3397 
3398 		/* Please enforce IP_DF and IPID==0 for RST and
3399 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3400 		 */
3401 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3402 
3403 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3404 	}
3405 	if (register_pernet_subsys(&tcp_sk_ops))
3406 		panic("Failed to create the TCP control socket.\n");
3407 
3408 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3409 	bpf_iter_register();
3410 #endif
3411 }
3412