xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 3bf50923)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 
64 #include <net/net_namespace.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
74 
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80 
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
83 
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
86 
87 
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 						   __be32 addr);
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
92 			       __be32 daddr, __be32 saddr, struct tcphdr *th);
93 #else
94 static inline
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
96 {
97 	return NULL;
98 }
99 #endif
100 
101 struct inet_hashinfo tcp_hashinfo;
102 
103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
104 {
105 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
106 					  ip_hdr(skb)->saddr,
107 					  tcp_hdr(skb)->dest,
108 					  tcp_hdr(skb)->source);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 	struct tcp_sock *tp = tcp_sk(sk);
115 
116 	/* With PAWS, it is safe from the viewpoint
117 	   of data integrity. Even without PAWS it is safe provided sequence
118 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119 
120 	   Actually, the idea is close to VJ's one, only timestamp cache is
121 	   held not per host, but per port pair and TW bucket is used as state
122 	   holder.
123 
124 	   If TW bucket has been already destroyed we fall back to VJ's scheme
125 	   and use initial timestamp retrieved from peer table.
126 	 */
127 	if (tcptw->tw_ts_recent_stamp &&
128 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
129 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 		if (tp->write_seq == 0)
132 			tp->write_seq = 1;
133 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
134 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 		sock_hold(sktw);
136 		return 1;
137 	}
138 
139 	return 0;
140 }
141 
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
143 
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct tcp_sock *tp = tcp_sk(sk);
149 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 	struct rtable *rt;
151 	__be32 daddr, nexthop;
152 	int tmp;
153 	int err;
154 
155 	if (addr_len < sizeof(struct sockaddr_in))
156 		return -EINVAL;
157 
158 	if (usin->sin_family != AF_INET)
159 		return -EAFNOSUPPORT;
160 
161 	nexthop = daddr = usin->sin_addr.s_addr;
162 	if (inet->opt && inet->opt->srr) {
163 		if (!daddr)
164 			return -EINVAL;
165 		nexthop = inet->opt->faddr;
166 	}
167 
168 	tmp = ip_route_connect(&rt, nexthop, inet->saddr,
169 			       RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
170 			       IPPROTO_TCP,
171 			       inet->sport, usin->sin_port, sk, 1);
172 	if (tmp < 0) {
173 		if (tmp == -ENETUNREACH)
174 			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
175 		return tmp;
176 	}
177 
178 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
179 		ip_rt_put(rt);
180 		return -ENETUNREACH;
181 	}
182 
183 	if (!inet->opt || !inet->opt->srr)
184 		daddr = rt->rt_dst;
185 
186 	if (!inet->saddr)
187 		inet->saddr = rt->rt_src;
188 	inet->rcv_saddr = inet->saddr;
189 
190 	if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
191 		/* Reset inherited state */
192 		tp->rx_opt.ts_recent	   = 0;
193 		tp->rx_opt.ts_recent_stamp = 0;
194 		tp->write_seq		   = 0;
195 	}
196 
197 	if (tcp_death_row.sysctl_tw_recycle &&
198 	    !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
199 		struct inet_peer *peer = rt_get_peer(rt);
200 		/*
201 		 * VJ's idea. We save last timestamp seen from
202 		 * the destination in peer table, when entering state
203 		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 		 * when trying new connection.
205 		 */
206 		if (peer != NULL &&
207 		    peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
208 			tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
209 			tp->rx_opt.ts_recent = peer->tcp_ts;
210 		}
211 	}
212 
213 	inet->dport = usin->sin_port;
214 	inet->daddr = daddr;
215 
216 	inet_csk(sk)->icsk_ext_hdr_len = 0;
217 	if (inet->opt)
218 		inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
219 
220 	tp->rx_opt.mss_clamp = 536;
221 
222 	/* Socket identity is still unknown (sport may be zero).
223 	 * However we set state to SYN-SENT and not releasing socket
224 	 * lock select source port, enter ourselves into the hash tables and
225 	 * complete initialization after this.
226 	 */
227 	tcp_set_state(sk, TCP_SYN_SENT);
228 	err = inet_hash_connect(&tcp_death_row, sk);
229 	if (err)
230 		goto failure;
231 
232 	err = ip_route_newports(&rt, IPPROTO_TCP,
233 				inet->sport, inet->dport, sk);
234 	if (err)
235 		goto failure;
236 
237 	/* OK, now commit destination to socket.  */
238 	sk->sk_gso_type = SKB_GSO_TCPV4;
239 	sk_setup_caps(sk, &rt->u.dst);
240 
241 	if (!tp->write_seq)
242 		tp->write_seq = secure_tcp_sequence_number(inet->saddr,
243 							   inet->daddr,
244 							   inet->sport,
245 							   usin->sin_port);
246 
247 	inet->id = tp->write_seq ^ jiffies;
248 
249 	err = tcp_connect(sk);
250 	rt = NULL;
251 	if (err)
252 		goto failure;
253 
254 	return 0;
255 
256 failure:
257 	/*
258 	 * This unhashes the socket and releases the local port,
259 	 * if necessary.
260 	 */
261 	tcp_set_state(sk, TCP_CLOSE);
262 	ip_rt_put(rt);
263 	sk->sk_route_caps = 0;
264 	inet->dport = 0;
265 	return err;
266 }
267 
268 /*
269  * This routine does path mtu discovery as defined in RFC1191.
270  */
271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
272 {
273 	struct dst_entry *dst;
274 	struct inet_sock *inet = inet_sk(sk);
275 
276 	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 	 * send out by Linux are always <576bytes so they should go through
278 	 * unfragmented).
279 	 */
280 	if (sk->sk_state == TCP_LISTEN)
281 		return;
282 
283 	/* We don't check in the destentry if pmtu discovery is forbidden
284 	 * on this route. We just assume that no packet_to_big packets
285 	 * are send back when pmtu discovery is not active.
286 	 * There is a small race when the user changes this flag in the
287 	 * route, but I think that's acceptable.
288 	 */
289 	if ((dst = __sk_dst_check(sk, 0)) == NULL)
290 		return;
291 
292 	dst->ops->update_pmtu(dst, mtu);
293 
294 	/* Something is about to be wrong... Remember soft error
295 	 * for the case, if this connection will not able to recover.
296 	 */
297 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 		sk->sk_err_soft = EMSGSIZE;
299 
300 	mtu = dst_mtu(dst);
301 
302 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
304 		tcp_sync_mss(sk, mtu);
305 
306 		/* Resend the TCP packet because it's
307 		 * clear that the old packet has been
308 		 * dropped. This is the new "fast" path mtu
309 		 * discovery.
310 		 */
311 		tcp_simple_retransmit(sk);
312 	} /* else let the usual retransmit timer handle it */
313 }
314 
315 /*
316  * This routine is called by the ICMP module when it gets some
317  * sort of error condition.  If err < 0 then the socket should
318  * be closed and the error returned to the user.  If err > 0
319  * it's just the icmp type << 8 | icmp code.  After adjustment
320  * header points to the first 8 bytes of the tcp header.  We need
321  * to find the appropriate port.
322  *
323  * The locking strategy used here is very "optimistic". When
324  * someone else accesses the socket the ICMP is just dropped
325  * and for some paths there is no check at all.
326  * A more general error queue to queue errors for later handling
327  * is probably better.
328  *
329  */
330 
331 void tcp_v4_err(struct sk_buff *skb, u32 info)
332 {
333 	struct iphdr *iph = (struct iphdr *)skb->data;
334 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
335 	struct tcp_sock *tp;
336 	struct inet_sock *inet;
337 	const int type = icmp_hdr(skb)->type;
338 	const int code = icmp_hdr(skb)->code;
339 	struct sock *sk;
340 	__u32 seq;
341 	int err;
342 	struct net *net = dev_net(skb->dev);
343 
344 	if (skb->len < (iph->ihl << 2) + 8) {
345 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
346 		return;
347 	}
348 
349 	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
350 			iph->saddr, th->source, inet_iif(skb));
351 	if (!sk) {
352 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353 		return;
354 	}
355 	if (sk->sk_state == TCP_TIME_WAIT) {
356 		inet_twsk_put(inet_twsk(sk));
357 		return;
358 	}
359 
360 	bh_lock_sock(sk);
361 	/* If too many ICMPs get dropped on busy
362 	 * servers this needs to be solved differently.
363 	 */
364 	if (sock_owned_by_user(sk))
365 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
366 
367 	if (sk->sk_state == TCP_CLOSE)
368 		goto out;
369 
370 	tp = tcp_sk(sk);
371 	seq = ntohl(th->seq);
372 	if (sk->sk_state != TCP_LISTEN &&
373 	    !between(seq, tp->snd_una, tp->snd_nxt)) {
374 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
375 		goto out;
376 	}
377 
378 	switch (type) {
379 	case ICMP_SOURCE_QUENCH:
380 		/* Just silently ignore these. */
381 		goto out;
382 	case ICMP_PARAMETERPROB:
383 		err = EPROTO;
384 		break;
385 	case ICMP_DEST_UNREACH:
386 		if (code > NR_ICMP_UNREACH)
387 			goto out;
388 
389 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
390 			if (!sock_owned_by_user(sk))
391 				do_pmtu_discovery(sk, iph, info);
392 			goto out;
393 		}
394 
395 		err = icmp_err_convert[code].errno;
396 		break;
397 	case ICMP_TIME_EXCEEDED:
398 		err = EHOSTUNREACH;
399 		break;
400 	default:
401 		goto out;
402 	}
403 
404 	switch (sk->sk_state) {
405 		struct request_sock *req, **prev;
406 	case TCP_LISTEN:
407 		if (sock_owned_by_user(sk))
408 			goto out;
409 
410 		req = inet_csk_search_req(sk, &prev, th->dest,
411 					  iph->daddr, iph->saddr);
412 		if (!req)
413 			goto out;
414 
415 		/* ICMPs are not backlogged, hence we cannot get
416 		   an established socket here.
417 		 */
418 		WARN_ON(req->sk);
419 
420 		if (seq != tcp_rsk(req)->snt_isn) {
421 			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
422 			goto out;
423 		}
424 
425 		/*
426 		 * Still in SYN_RECV, just remove it silently.
427 		 * There is no good way to pass the error to the newly
428 		 * created socket, and POSIX does not want network
429 		 * errors returned from accept().
430 		 */
431 		inet_csk_reqsk_queue_drop(sk, req, prev);
432 		goto out;
433 
434 	case TCP_SYN_SENT:
435 	case TCP_SYN_RECV:  /* Cannot happen.
436 			       It can f.e. if SYNs crossed.
437 			     */
438 		if (!sock_owned_by_user(sk)) {
439 			sk->sk_err = err;
440 
441 			sk->sk_error_report(sk);
442 
443 			tcp_done(sk);
444 		} else {
445 			sk->sk_err_soft = err;
446 		}
447 		goto out;
448 	}
449 
450 	/* If we've already connected we will keep trying
451 	 * until we time out, or the user gives up.
452 	 *
453 	 * rfc1122 4.2.3.9 allows to consider as hard errors
454 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
455 	 * but it is obsoleted by pmtu discovery).
456 	 *
457 	 * Note, that in modern internet, where routing is unreliable
458 	 * and in each dark corner broken firewalls sit, sending random
459 	 * errors ordered by their masters even this two messages finally lose
460 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
461 	 *
462 	 * Now we are in compliance with RFCs.
463 	 *							--ANK (980905)
464 	 */
465 
466 	inet = inet_sk(sk);
467 	if (!sock_owned_by_user(sk) && inet->recverr) {
468 		sk->sk_err = err;
469 		sk->sk_error_report(sk);
470 	} else	{ /* Only an error on timeout */
471 		sk->sk_err_soft = err;
472 	}
473 
474 out:
475 	bh_unlock_sock(sk);
476 	sock_put(sk);
477 }
478 
479 /* This routine computes an IPv4 TCP checksum. */
480 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
481 {
482 	struct inet_sock *inet = inet_sk(sk);
483 	struct tcphdr *th = tcp_hdr(skb);
484 
485 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
486 		th->check = ~tcp_v4_check(len, inet->saddr,
487 					  inet->daddr, 0);
488 		skb->csum_start = skb_transport_header(skb) - skb->head;
489 		skb->csum_offset = offsetof(struct tcphdr, check);
490 	} else {
491 		th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
492 					 csum_partial(th,
493 						      th->doff << 2,
494 						      skb->csum));
495 	}
496 }
497 
498 int tcp_v4_gso_send_check(struct sk_buff *skb)
499 {
500 	const struct iphdr *iph;
501 	struct tcphdr *th;
502 
503 	if (!pskb_may_pull(skb, sizeof(*th)))
504 		return -EINVAL;
505 
506 	iph = ip_hdr(skb);
507 	th = tcp_hdr(skb);
508 
509 	th->check = 0;
510 	th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
511 	skb->csum_start = skb_transport_header(skb) - skb->head;
512 	skb->csum_offset = offsetof(struct tcphdr, check);
513 	skb->ip_summed = CHECKSUM_PARTIAL;
514 	return 0;
515 }
516 
517 /*
518  *	This routine will send an RST to the other tcp.
519  *
520  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
521  *		      for reset.
522  *	Answer: if a packet caused RST, it is not for a socket
523  *		existing in our system, if it is matched to a socket,
524  *		it is just duplicate segment or bug in other side's TCP.
525  *		So that we build reply only basing on parameters
526  *		arrived with segment.
527  *	Exception: precedence violation. We do not implement it in any case.
528  */
529 
530 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
531 {
532 	struct tcphdr *th = tcp_hdr(skb);
533 	struct {
534 		struct tcphdr th;
535 #ifdef CONFIG_TCP_MD5SIG
536 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
537 #endif
538 	} rep;
539 	struct ip_reply_arg arg;
540 #ifdef CONFIG_TCP_MD5SIG
541 	struct tcp_md5sig_key *key;
542 #endif
543 	struct net *net;
544 
545 	/* Never send a reset in response to a reset. */
546 	if (th->rst)
547 		return;
548 
549 	if (skb->rtable->rt_type != RTN_LOCAL)
550 		return;
551 
552 	/* Swap the send and the receive. */
553 	memset(&rep, 0, sizeof(rep));
554 	rep.th.dest   = th->source;
555 	rep.th.source = th->dest;
556 	rep.th.doff   = sizeof(struct tcphdr) / 4;
557 	rep.th.rst    = 1;
558 
559 	if (th->ack) {
560 		rep.th.seq = th->ack_seq;
561 	} else {
562 		rep.th.ack = 1;
563 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
564 				       skb->len - (th->doff << 2));
565 	}
566 
567 	memset(&arg, 0, sizeof(arg));
568 	arg.iov[0].iov_base = (unsigned char *)&rep;
569 	arg.iov[0].iov_len  = sizeof(rep.th);
570 
571 #ifdef CONFIG_TCP_MD5SIG
572 	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
573 	if (key) {
574 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
575 				   (TCPOPT_NOP << 16) |
576 				   (TCPOPT_MD5SIG << 8) |
577 				   TCPOLEN_MD5SIG);
578 		/* Update length and the length the header thinks exists */
579 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
580 		rep.th.doff = arg.iov[0].iov_len / 4;
581 
582 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
583 				     key, ip_hdr(skb)->saddr,
584 				     ip_hdr(skb)->daddr, &rep.th);
585 	}
586 #endif
587 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
588 				      ip_hdr(skb)->saddr, /* XXX */
589 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
590 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
591 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
592 
593 	net = dev_net(skb->dst->dev);
594 	ip_send_reply(net->ipv4.tcp_sock, skb,
595 		      &arg, arg.iov[0].iov_len);
596 
597 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
598 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
599 }
600 
601 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
602    outside socket context is ugly, certainly. What can I do?
603  */
604 
605 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
606 			    u32 win, u32 ts, int oif,
607 			    struct tcp_md5sig_key *key,
608 			    int reply_flags)
609 {
610 	struct tcphdr *th = tcp_hdr(skb);
611 	struct {
612 		struct tcphdr th;
613 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
614 #ifdef CONFIG_TCP_MD5SIG
615 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
616 #endif
617 			];
618 	} rep;
619 	struct ip_reply_arg arg;
620 	struct net *net = dev_net(skb->dst->dev);
621 
622 	memset(&rep.th, 0, sizeof(struct tcphdr));
623 	memset(&arg, 0, sizeof(arg));
624 
625 	arg.iov[0].iov_base = (unsigned char *)&rep;
626 	arg.iov[0].iov_len  = sizeof(rep.th);
627 	if (ts) {
628 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
629 				   (TCPOPT_TIMESTAMP << 8) |
630 				   TCPOLEN_TIMESTAMP);
631 		rep.opt[1] = htonl(tcp_time_stamp);
632 		rep.opt[2] = htonl(ts);
633 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
634 	}
635 
636 	/* Swap the send and the receive. */
637 	rep.th.dest    = th->source;
638 	rep.th.source  = th->dest;
639 	rep.th.doff    = arg.iov[0].iov_len / 4;
640 	rep.th.seq     = htonl(seq);
641 	rep.th.ack_seq = htonl(ack);
642 	rep.th.ack     = 1;
643 	rep.th.window  = htons(win);
644 
645 #ifdef CONFIG_TCP_MD5SIG
646 	if (key) {
647 		int offset = (ts) ? 3 : 0;
648 
649 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
650 					  (TCPOPT_NOP << 16) |
651 					  (TCPOPT_MD5SIG << 8) |
652 					  TCPOLEN_MD5SIG);
653 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
654 		rep.th.doff = arg.iov[0].iov_len/4;
655 
656 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
657 				    key, ip_hdr(skb)->saddr,
658 				    ip_hdr(skb)->daddr, &rep.th);
659 	}
660 #endif
661 	arg.flags = reply_flags;
662 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
663 				      ip_hdr(skb)->saddr, /* XXX */
664 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
665 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
666 	if (oif)
667 		arg.bound_dev_if = oif;
668 
669 	ip_send_reply(net->ipv4.tcp_sock, skb,
670 		      &arg, arg.iov[0].iov_len);
671 
672 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
673 }
674 
675 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
676 {
677 	struct inet_timewait_sock *tw = inet_twsk(sk);
678 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
679 
680 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
681 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
682 			tcptw->tw_ts_recent,
683 			tw->tw_bound_dev_if,
684 			tcp_twsk_md5_key(tcptw),
685 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
686 			);
687 
688 	inet_twsk_put(tw);
689 }
690 
691 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
692 				  struct request_sock *req)
693 {
694 	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
695 			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
696 			req->ts_recent,
697 			0,
698 			tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
699 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
700 }
701 
702 /*
703  *	Send a SYN-ACK after having received a SYN.
704  *	This still operates on a request_sock only, not on a big
705  *	socket.
706  */
707 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
708 				struct dst_entry *dst)
709 {
710 	const struct inet_request_sock *ireq = inet_rsk(req);
711 	int err = -1;
712 	struct sk_buff * skb;
713 
714 	/* First, grab a route. */
715 	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
716 		return -1;
717 
718 	skb = tcp_make_synack(sk, dst, req);
719 
720 	if (skb) {
721 		struct tcphdr *th = tcp_hdr(skb);
722 
723 		th->check = tcp_v4_check(skb->len,
724 					 ireq->loc_addr,
725 					 ireq->rmt_addr,
726 					 csum_partial(th, skb->len,
727 						      skb->csum));
728 
729 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
730 					    ireq->rmt_addr,
731 					    ireq->opt);
732 		err = net_xmit_eval(err);
733 	}
734 
735 	dst_release(dst);
736 	return err;
737 }
738 
739 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
740 {
741 	return __tcp_v4_send_synack(sk, req, NULL);
742 }
743 
744 /*
745  *	IPv4 request_sock destructor.
746  */
747 static void tcp_v4_reqsk_destructor(struct request_sock *req)
748 {
749 	kfree(inet_rsk(req)->opt);
750 }
751 
752 #ifdef CONFIG_SYN_COOKIES
753 static void syn_flood_warning(struct sk_buff *skb)
754 {
755 	static unsigned long warntime;
756 
757 	if (time_after(jiffies, (warntime + HZ * 60))) {
758 		warntime = jiffies;
759 		printk(KERN_INFO
760 		       "possible SYN flooding on port %d. Sending cookies.\n",
761 		       ntohs(tcp_hdr(skb)->dest));
762 	}
763 }
764 #endif
765 
766 /*
767  * Save and compile IPv4 options into the request_sock if needed.
768  */
769 static struct ip_options *tcp_v4_save_options(struct sock *sk,
770 					      struct sk_buff *skb)
771 {
772 	struct ip_options *opt = &(IPCB(skb)->opt);
773 	struct ip_options *dopt = NULL;
774 
775 	if (opt && opt->optlen) {
776 		int opt_size = optlength(opt);
777 		dopt = kmalloc(opt_size, GFP_ATOMIC);
778 		if (dopt) {
779 			if (ip_options_echo(dopt, skb)) {
780 				kfree(dopt);
781 				dopt = NULL;
782 			}
783 		}
784 	}
785 	return dopt;
786 }
787 
788 #ifdef CONFIG_TCP_MD5SIG
789 /*
790  * RFC2385 MD5 checksumming requires a mapping of
791  * IP address->MD5 Key.
792  * We need to maintain these in the sk structure.
793  */
794 
795 /* Find the Key structure for an address.  */
796 static struct tcp_md5sig_key *
797 			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
798 {
799 	struct tcp_sock *tp = tcp_sk(sk);
800 	int i;
801 
802 	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
803 		return NULL;
804 	for (i = 0; i < tp->md5sig_info->entries4; i++) {
805 		if (tp->md5sig_info->keys4[i].addr == addr)
806 			return &tp->md5sig_info->keys4[i].base;
807 	}
808 	return NULL;
809 }
810 
811 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
812 					 struct sock *addr_sk)
813 {
814 	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
815 }
816 
817 EXPORT_SYMBOL(tcp_v4_md5_lookup);
818 
819 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
820 						      struct request_sock *req)
821 {
822 	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
823 }
824 
825 /* This can be called on a newly created socket, from other files */
826 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
827 		      u8 *newkey, u8 newkeylen)
828 {
829 	/* Add Key to the list */
830 	struct tcp_md5sig_key *key;
831 	struct tcp_sock *tp = tcp_sk(sk);
832 	struct tcp4_md5sig_key *keys;
833 
834 	key = tcp_v4_md5_do_lookup(sk, addr);
835 	if (key) {
836 		/* Pre-existing entry - just update that one. */
837 		kfree(key->key);
838 		key->key = newkey;
839 		key->keylen = newkeylen;
840 	} else {
841 		struct tcp_md5sig_info *md5sig;
842 
843 		if (!tp->md5sig_info) {
844 			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
845 						  GFP_ATOMIC);
846 			if (!tp->md5sig_info) {
847 				kfree(newkey);
848 				return -ENOMEM;
849 			}
850 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
851 		}
852 		if (tcp_alloc_md5sig_pool() == NULL) {
853 			kfree(newkey);
854 			return -ENOMEM;
855 		}
856 		md5sig = tp->md5sig_info;
857 
858 		if (md5sig->alloced4 == md5sig->entries4) {
859 			keys = kmalloc((sizeof(*keys) *
860 					(md5sig->entries4 + 1)), GFP_ATOMIC);
861 			if (!keys) {
862 				kfree(newkey);
863 				tcp_free_md5sig_pool();
864 				return -ENOMEM;
865 			}
866 
867 			if (md5sig->entries4)
868 				memcpy(keys, md5sig->keys4,
869 				       sizeof(*keys) * md5sig->entries4);
870 
871 			/* Free old key list, and reference new one */
872 			kfree(md5sig->keys4);
873 			md5sig->keys4 = keys;
874 			md5sig->alloced4++;
875 		}
876 		md5sig->entries4++;
877 		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
878 		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
879 		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
880 	}
881 	return 0;
882 }
883 
884 EXPORT_SYMBOL(tcp_v4_md5_do_add);
885 
886 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
887 			       u8 *newkey, u8 newkeylen)
888 {
889 	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
890 				 newkey, newkeylen);
891 }
892 
893 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
894 {
895 	struct tcp_sock *tp = tcp_sk(sk);
896 	int i;
897 
898 	for (i = 0; i < tp->md5sig_info->entries4; i++) {
899 		if (tp->md5sig_info->keys4[i].addr == addr) {
900 			/* Free the key */
901 			kfree(tp->md5sig_info->keys4[i].base.key);
902 			tp->md5sig_info->entries4--;
903 
904 			if (tp->md5sig_info->entries4 == 0) {
905 				kfree(tp->md5sig_info->keys4);
906 				tp->md5sig_info->keys4 = NULL;
907 				tp->md5sig_info->alloced4 = 0;
908 			} else if (tp->md5sig_info->entries4 != i) {
909 				/* Need to do some manipulation */
910 				memmove(&tp->md5sig_info->keys4[i],
911 					&tp->md5sig_info->keys4[i+1],
912 					(tp->md5sig_info->entries4 - i) *
913 					 sizeof(struct tcp4_md5sig_key));
914 			}
915 			tcp_free_md5sig_pool();
916 			return 0;
917 		}
918 	}
919 	return -ENOENT;
920 }
921 
922 EXPORT_SYMBOL(tcp_v4_md5_do_del);
923 
924 static void tcp_v4_clear_md5_list(struct sock *sk)
925 {
926 	struct tcp_sock *tp = tcp_sk(sk);
927 
928 	/* Free each key, then the set of key keys,
929 	 * the crypto element, and then decrement our
930 	 * hold on the last resort crypto.
931 	 */
932 	if (tp->md5sig_info->entries4) {
933 		int i;
934 		for (i = 0; i < tp->md5sig_info->entries4; i++)
935 			kfree(tp->md5sig_info->keys4[i].base.key);
936 		tp->md5sig_info->entries4 = 0;
937 		tcp_free_md5sig_pool();
938 	}
939 	if (tp->md5sig_info->keys4) {
940 		kfree(tp->md5sig_info->keys4);
941 		tp->md5sig_info->keys4 = NULL;
942 		tp->md5sig_info->alloced4  = 0;
943 	}
944 }
945 
946 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
947 				 int optlen)
948 {
949 	struct tcp_md5sig cmd;
950 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
951 	u8 *newkey;
952 
953 	if (optlen < sizeof(cmd))
954 		return -EINVAL;
955 
956 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
957 		return -EFAULT;
958 
959 	if (sin->sin_family != AF_INET)
960 		return -EINVAL;
961 
962 	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
963 		if (!tcp_sk(sk)->md5sig_info)
964 			return -ENOENT;
965 		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
966 	}
967 
968 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
969 		return -EINVAL;
970 
971 	if (!tcp_sk(sk)->md5sig_info) {
972 		struct tcp_sock *tp = tcp_sk(sk);
973 		struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
974 
975 		if (!p)
976 			return -EINVAL;
977 
978 		tp->md5sig_info = p;
979 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
980 	}
981 
982 	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
983 	if (!newkey)
984 		return -ENOMEM;
985 	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
986 				 newkey, cmd.tcpm_keylen);
987 }
988 
989 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
990 					__be32 daddr, __be32 saddr, int nbytes)
991 {
992 	struct tcp4_pseudohdr *bp;
993 	struct scatterlist sg;
994 
995 	bp = &hp->md5_blk.ip4;
996 
997 	/*
998 	 * 1. the TCP pseudo-header (in the order: source IP address,
999 	 * destination IP address, zero-padded protocol number, and
1000 	 * segment length)
1001 	 */
1002 	bp->saddr = saddr;
1003 	bp->daddr = daddr;
1004 	bp->pad = 0;
1005 	bp->protocol = IPPROTO_TCP;
1006 	bp->len = cpu_to_be16(nbytes);
1007 
1008 	sg_init_one(&sg, bp, sizeof(*bp));
1009 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1010 }
1011 
1012 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1013 			       __be32 daddr, __be32 saddr, struct tcphdr *th)
1014 {
1015 	struct tcp_md5sig_pool *hp;
1016 	struct hash_desc *desc;
1017 
1018 	hp = tcp_get_md5sig_pool();
1019 	if (!hp)
1020 		goto clear_hash_noput;
1021 	desc = &hp->md5_desc;
1022 
1023 	if (crypto_hash_init(desc))
1024 		goto clear_hash;
1025 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1026 		goto clear_hash;
1027 	if (tcp_md5_hash_header(hp, th))
1028 		goto clear_hash;
1029 	if (tcp_md5_hash_key(hp, key))
1030 		goto clear_hash;
1031 	if (crypto_hash_final(desc, md5_hash))
1032 		goto clear_hash;
1033 
1034 	tcp_put_md5sig_pool();
1035 	return 0;
1036 
1037 clear_hash:
1038 	tcp_put_md5sig_pool();
1039 clear_hash_noput:
1040 	memset(md5_hash, 0, 16);
1041 	return 1;
1042 }
1043 
1044 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1045 			struct sock *sk, struct request_sock *req,
1046 			struct sk_buff *skb)
1047 {
1048 	struct tcp_md5sig_pool *hp;
1049 	struct hash_desc *desc;
1050 	struct tcphdr *th = tcp_hdr(skb);
1051 	__be32 saddr, daddr;
1052 
1053 	if (sk) {
1054 		saddr = inet_sk(sk)->saddr;
1055 		daddr = inet_sk(sk)->daddr;
1056 	} else if (req) {
1057 		saddr = inet_rsk(req)->loc_addr;
1058 		daddr = inet_rsk(req)->rmt_addr;
1059 	} else {
1060 		const struct iphdr *iph = ip_hdr(skb);
1061 		saddr = iph->saddr;
1062 		daddr = iph->daddr;
1063 	}
1064 
1065 	hp = tcp_get_md5sig_pool();
1066 	if (!hp)
1067 		goto clear_hash_noput;
1068 	desc = &hp->md5_desc;
1069 
1070 	if (crypto_hash_init(desc))
1071 		goto clear_hash;
1072 
1073 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1074 		goto clear_hash;
1075 	if (tcp_md5_hash_header(hp, th))
1076 		goto clear_hash;
1077 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1078 		goto clear_hash;
1079 	if (tcp_md5_hash_key(hp, key))
1080 		goto clear_hash;
1081 	if (crypto_hash_final(desc, md5_hash))
1082 		goto clear_hash;
1083 
1084 	tcp_put_md5sig_pool();
1085 	return 0;
1086 
1087 clear_hash:
1088 	tcp_put_md5sig_pool();
1089 clear_hash_noput:
1090 	memset(md5_hash, 0, 16);
1091 	return 1;
1092 }
1093 
1094 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1095 
1096 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1097 {
1098 	/*
1099 	 * This gets called for each TCP segment that arrives
1100 	 * so we want to be efficient.
1101 	 * We have 3 drop cases:
1102 	 * o No MD5 hash and one expected.
1103 	 * o MD5 hash and we're not expecting one.
1104 	 * o MD5 hash and its wrong.
1105 	 */
1106 	__u8 *hash_location = NULL;
1107 	struct tcp_md5sig_key *hash_expected;
1108 	const struct iphdr *iph = ip_hdr(skb);
1109 	struct tcphdr *th = tcp_hdr(skb);
1110 	int genhash;
1111 	unsigned char newhash[16];
1112 
1113 	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1114 	hash_location = tcp_parse_md5sig_option(th);
1115 
1116 	/* We've parsed the options - do we have a hash? */
1117 	if (!hash_expected && !hash_location)
1118 		return 0;
1119 
1120 	if (hash_expected && !hash_location) {
1121 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1122 		return 1;
1123 	}
1124 
1125 	if (!hash_expected && hash_location) {
1126 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1127 		return 1;
1128 	}
1129 
1130 	/* Okay, so this is hash_expected and hash_location -
1131 	 * so we need to calculate the checksum.
1132 	 */
1133 	genhash = tcp_v4_md5_hash_skb(newhash,
1134 				      hash_expected,
1135 				      NULL, NULL, skb);
1136 
1137 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1138 		if (net_ratelimit()) {
1139 			printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1140 			       &iph->saddr, ntohs(th->source),
1141 			       &iph->daddr, ntohs(th->dest),
1142 			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1143 		}
1144 		return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 #endif
1150 
1151 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1152 	.family		=	PF_INET,
1153 	.obj_size	=	sizeof(struct tcp_request_sock),
1154 	.rtx_syn_ack	=	tcp_v4_send_synack,
1155 	.send_ack	=	tcp_v4_reqsk_send_ack,
1156 	.destructor	=	tcp_v4_reqsk_destructor,
1157 	.send_reset	=	tcp_v4_send_reset,
1158 };
1159 
1160 #ifdef CONFIG_TCP_MD5SIG
1161 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1162 	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1163 };
1164 #endif
1165 
1166 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1167 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1168 	.twsk_unique	= tcp_twsk_unique,
1169 	.twsk_destructor= tcp_twsk_destructor,
1170 };
1171 
1172 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1173 {
1174 	struct inet_request_sock *ireq;
1175 	struct tcp_options_received tmp_opt;
1176 	struct request_sock *req;
1177 	__be32 saddr = ip_hdr(skb)->saddr;
1178 	__be32 daddr = ip_hdr(skb)->daddr;
1179 	__u32 isn = TCP_SKB_CB(skb)->when;
1180 	struct dst_entry *dst = NULL;
1181 #ifdef CONFIG_SYN_COOKIES
1182 	int want_cookie = 0;
1183 #else
1184 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1185 #endif
1186 
1187 	/* Never answer to SYNs send to broadcast or multicast */
1188 	if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1189 		goto drop;
1190 
1191 	/* TW buckets are converted to open requests without
1192 	 * limitations, they conserve resources and peer is
1193 	 * evidently real one.
1194 	 */
1195 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1196 #ifdef CONFIG_SYN_COOKIES
1197 		if (sysctl_tcp_syncookies) {
1198 			want_cookie = 1;
1199 		} else
1200 #endif
1201 		goto drop;
1202 	}
1203 
1204 	/* Accept backlog is full. If we have already queued enough
1205 	 * of warm entries in syn queue, drop request. It is better than
1206 	 * clogging syn queue with openreqs with exponentially increasing
1207 	 * timeout.
1208 	 */
1209 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1210 		goto drop;
1211 
1212 	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1213 	if (!req)
1214 		goto drop;
1215 
1216 #ifdef CONFIG_TCP_MD5SIG
1217 	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1218 #endif
1219 
1220 	tcp_clear_options(&tmp_opt);
1221 	tmp_opt.mss_clamp = 536;
1222 	tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
1223 
1224 	tcp_parse_options(skb, &tmp_opt, 0);
1225 
1226 	if (want_cookie && !tmp_opt.saw_tstamp)
1227 		tcp_clear_options(&tmp_opt);
1228 
1229 	if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1230 		/* Some OSes (unknown ones, but I see them on web server, which
1231 		 * contains information interesting only for windows'
1232 		 * users) do not send their stamp in SYN. It is easy case.
1233 		 * We simply do not advertise TS support.
1234 		 */
1235 		tmp_opt.saw_tstamp = 0;
1236 		tmp_opt.tstamp_ok  = 0;
1237 	}
1238 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1239 
1240 	tcp_openreq_init(req, &tmp_opt, skb);
1241 
1242 	if (security_inet_conn_request(sk, skb, req))
1243 		goto drop_and_free;
1244 
1245 	ireq = inet_rsk(req);
1246 	ireq->loc_addr = daddr;
1247 	ireq->rmt_addr = saddr;
1248 	ireq->no_srccheck = inet_sk(sk)->transparent;
1249 	ireq->opt = tcp_v4_save_options(sk, skb);
1250 	if (!want_cookie)
1251 		TCP_ECN_create_request(req, tcp_hdr(skb));
1252 
1253 	if (want_cookie) {
1254 #ifdef CONFIG_SYN_COOKIES
1255 		syn_flood_warning(skb);
1256 		req->cookie_ts = tmp_opt.tstamp_ok;
1257 #endif
1258 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1259 	} else if (!isn) {
1260 		struct inet_peer *peer = NULL;
1261 
1262 		/* VJ's idea. We save last timestamp seen
1263 		 * from the destination in peer table, when entering
1264 		 * state TIME-WAIT, and check against it before
1265 		 * accepting new connection request.
1266 		 *
1267 		 * If "isn" is not zero, this request hit alive
1268 		 * timewait bucket, so that all the necessary checks
1269 		 * are made in the function processing timewait state.
1270 		 */
1271 		if (tmp_opt.saw_tstamp &&
1272 		    tcp_death_row.sysctl_tw_recycle &&
1273 		    (dst = inet_csk_route_req(sk, req)) != NULL &&
1274 		    (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1275 		    peer->v4daddr == saddr) {
1276 			if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1277 			    (s32)(peer->tcp_ts - req->ts_recent) >
1278 							TCP_PAWS_WINDOW) {
1279 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1280 				goto drop_and_release;
1281 			}
1282 		}
1283 		/* Kill the following clause, if you dislike this way. */
1284 		else if (!sysctl_tcp_syncookies &&
1285 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1286 			  (sysctl_max_syn_backlog >> 2)) &&
1287 			 (!peer || !peer->tcp_ts_stamp) &&
1288 			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1289 			/* Without syncookies last quarter of
1290 			 * backlog is filled with destinations,
1291 			 * proven to be alive.
1292 			 * It means that we continue to communicate
1293 			 * to destinations, already remembered
1294 			 * to the moment of synflood.
1295 			 */
1296 			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1297 				       &saddr, ntohs(tcp_hdr(skb)->source));
1298 			goto drop_and_release;
1299 		}
1300 
1301 		isn = tcp_v4_init_sequence(skb);
1302 	}
1303 	tcp_rsk(req)->snt_isn = isn;
1304 
1305 	if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1306 		goto drop_and_free;
1307 
1308 	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1309 	return 0;
1310 
1311 drop_and_release:
1312 	dst_release(dst);
1313 drop_and_free:
1314 	reqsk_free(req);
1315 drop:
1316 	return 0;
1317 }
1318 
1319 
1320 /*
1321  * The three way handshake has completed - we got a valid synack -
1322  * now create the new socket.
1323  */
1324 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1325 				  struct request_sock *req,
1326 				  struct dst_entry *dst)
1327 {
1328 	struct inet_request_sock *ireq;
1329 	struct inet_sock *newinet;
1330 	struct tcp_sock *newtp;
1331 	struct sock *newsk;
1332 #ifdef CONFIG_TCP_MD5SIG
1333 	struct tcp_md5sig_key *key;
1334 #endif
1335 
1336 	if (sk_acceptq_is_full(sk))
1337 		goto exit_overflow;
1338 
1339 	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1340 		goto exit;
1341 
1342 	newsk = tcp_create_openreq_child(sk, req, skb);
1343 	if (!newsk)
1344 		goto exit;
1345 
1346 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1347 	sk_setup_caps(newsk, dst);
1348 
1349 	newtp		      = tcp_sk(newsk);
1350 	newinet		      = inet_sk(newsk);
1351 	ireq		      = inet_rsk(req);
1352 	newinet->daddr	      = ireq->rmt_addr;
1353 	newinet->rcv_saddr    = ireq->loc_addr;
1354 	newinet->saddr	      = ireq->loc_addr;
1355 	newinet->opt	      = ireq->opt;
1356 	ireq->opt	      = NULL;
1357 	newinet->mc_index     = inet_iif(skb);
1358 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1359 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1360 	if (newinet->opt)
1361 		inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1362 	newinet->id = newtp->write_seq ^ jiffies;
1363 
1364 	tcp_mtup_init(newsk);
1365 	tcp_sync_mss(newsk, dst_mtu(dst));
1366 	newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1367 	if (tcp_sk(sk)->rx_opt.user_mss &&
1368 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1369 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1370 
1371 	tcp_initialize_rcv_mss(newsk);
1372 
1373 #ifdef CONFIG_TCP_MD5SIG
1374 	/* Copy over the MD5 key from the original socket */
1375 	if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1376 		/*
1377 		 * We're using one, so create a matching key
1378 		 * on the newsk structure. If we fail to get
1379 		 * memory, then we end up not copying the key
1380 		 * across. Shucks.
1381 		 */
1382 		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1383 		if (newkey != NULL)
1384 			tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1385 					  newkey, key->keylen);
1386 		newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1387 	}
1388 #endif
1389 
1390 	__inet_hash_nolisten(newsk);
1391 	__inet_inherit_port(sk, newsk);
1392 
1393 	return newsk;
1394 
1395 exit_overflow:
1396 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1397 exit:
1398 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1399 	dst_release(dst);
1400 	return NULL;
1401 }
1402 
1403 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1404 {
1405 	struct tcphdr *th = tcp_hdr(skb);
1406 	const struct iphdr *iph = ip_hdr(skb);
1407 	struct sock *nsk;
1408 	struct request_sock **prev;
1409 	/* Find possible connection requests. */
1410 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1411 						       iph->saddr, iph->daddr);
1412 	if (req)
1413 		return tcp_check_req(sk, skb, req, prev);
1414 
1415 	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1416 			th->source, iph->daddr, th->dest, inet_iif(skb));
1417 
1418 	if (nsk) {
1419 		if (nsk->sk_state != TCP_TIME_WAIT) {
1420 			bh_lock_sock(nsk);
1421 			return nsk;
1422 		}
1423 		inet_twsk_put(inet_twsk(nsk));
1424 		return NULL;
1425 	}
1426 
1427 #ifdef CONFIG_SYN_COOKIES
1428 	if (!th->rst && !th->syn && th->ack)
1429 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1430 #endif
1431 	return sk;
1432 }
1433 
1434 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1435 {
1436 	const struct iphdr *iph = ip_hdr(skb);
1437 
1438 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1439 		if (!tcp_v4_check(skb->len, iph->saddr,
1440 				  iph->daddr, skb->csum)) {
1441 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1442 			return 0;
1443 		}
1444 	}
1445 
1446 	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1447 				       skb->len, IPPROTO_TCP, 0);
1448 
1449 	if (skb->len <= 76) {
1450 		return __skb_checksum_complete(skb);
1451 	}
1452 	return 0;
1453 }
1454 
1455 
1456 /* The socket must have it's spinlock held when we get
1457  * here.
1458  *
1459  * We have a potential double-lock case here, so even when
1460  * doing backlog processing we use the BH locking scheme.
1461  * This is because we cannot sleep with the original spinlock
1462  * held.
1463  */
1464 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1465 {
1466 	struct sock *rsk;
1467 #ifdef CONFIG_TCP_MD5SIG
1468 	/*
1469 	 * We really want to reject the packet as early as possible
1470 	 * if:
1471 	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1472 	 *  o There is an MD5 option and we're not expecting one
1473 	 */
1474 	if (tcp_v4_inbound_md5_hash(sk, skb))
1475 		goto discard;
1476 #endif
1477 
1478 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1479 		TCP_CHECK_TIMER(sk);
1480 		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1481 			rsk = sk;
1482 			goto reset;
1483 		}
1484 		TCP_CHECK_TIMER(sk);
1485 		return 0;
1486 	}
1487 
1488 	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1489 		goto csum_err;
1490 
1491 	if (sk->sk_state == TCP_LISTEN) {
1492 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1493 		if (!nsk)
1494 			goto discard;
1495 
1496 		if (nsk != sk) {
1497 			if (tcp_child_process(sk, nsk, skb)) {
1498 				rsk = nsk;
1499 				goto reset;
1500 			}
1501 			return 0;
1502 		}
1503 	}
1504 
1505 	TCP_CHECK_TIMER(sk);
1506 	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1507 		rsk = sk;
1508 		goto reset;
1509 	}
1510 	TCP_CHECK_TIMER(sk);
1511 	return 0;
1512 
1513 reset:
1514 	tcp_v4_send_reset(rsk, skb);
1515 discard:
1516 	kfree_skb(skb);
1517 	/* Be careful here. If this function gets more complicated and
1518 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1519 	 * might be destroyed here. This current version compiles correctly,
1520 	 * but you have been warned.
1521 	 */
1522 	return 0;
1523 
1524 csum_err:
1525 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1526 	goto discard;
1527 }
1528 
1529 /*
1530  *	From tcp_input.c
1531  */
1532 
1533 int tcp_v4_rcv(struct sk_buff *skb)
1534 {
1535 	const struct iphdr *iph;
1536 	struct tcphdr *th;
1537 	struct sock *sk;
1538 	int ret;
1539 	struct net *net = dev_net(skb->dev);
1540 
1541 	if (skb->pkt_type != PACKET_HOST)
1542 		goto discard_it;
1543 
1544 	/* Count it even if it's bad */
1545 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1546 
1547 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1548 		goto discard_it;
1549 
1550 	th = tcp_hdr(skb);
1551 
1552 	if (th->doff < sizeof(struct tcphdr) / 4)
1553 		goto bad_packet;
1554 	if (!pskb_may_pull(skb, th->doff * 4))
1555 		goto discard_it;
1556 
1557 	/* An explanation is required here, I think.
1558 	 * Packet length and doff are validated by header prediction,
1559 	 * provided case of th->doff==0 is eliminated.
1560 	 * So, we defer the checks. */
1561 	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1562 		goto bad_packet;
1563 
1564 	th = tcp_hdr(skb);
1565 	iph = ip_hdr(skb);
1566 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1567 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1568 				    skb->len - th->doff * 4);
1569 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1570 	TCP_SKB_CB(skb)->when	 = 0;
1571 	TCP_SKB_CB(skb)->flags	 = iph->tos;
1572 	TCP_SKB_CB(skb)->sacked	 = 0;
1573 
1574 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1575 	if (!sk)
1576 		goto no_tcp_socket;
1577 
1578 process:
1579 	if (sk->sk_state == TCP_TIME_WAIT)
1580 		goto do_time_wait;
1581 
1582 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1583 		goto discard_and_relse;
1584 	nf_reset(skb);
1585 
1586 	if (sk_filter(sk, skb))
1587 		goto discard_and_relse;
1588 
1589 	skb->dev = NULL;
1590 
1591 	bh_lock_sock_nested(sk);
1592 	ret = 0;
1593 	if (!sock_owned_by_user(sk)) {
1594 #ifdef CONFIG_NET_DMA
1595 		struct tcp_sock *tp = tcp_sk(sk);
1596 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1597 			tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1598 		if (tp->ucopy.dma_chan)
1599 			ret = tcp_v4_do_rcv(sk, skb);
1600 		else
1601 #endif
1602 		{
1603 			if (!tcp_prequeue(sk, skb))
1604 			ret = tcp_v4_do_rcv(sk, skb);
1605 		}
1606 	} else
1607 		sk_add_backlog(sk, skb);
1608 	bh_unlock_sock(sk);
1609 
1610 	sock_put(sk);
1611 
1612 	return ret;
1613 
1614 no_tcp_socket:
1615 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1616 		goto discard_it;
1617 
1618 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1619 bad_packet:
1620 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1621 	} else {
1622 		tcp_v4_send_reset(NULL, skb);
1623 	}
1624 
1625 discard_it:
1626 	/* Discard frame. */
1627 	kfree_skb(skb);
1628 	return 0;
1629 
1630 discard_and_relse:
1631 	sock_put(sk);
1632 	goto discard_it;
1633 
1634 do_time_wait:
1635 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1636 		inet_twsk_put(inet_twsk(sk));
1637 		goto discard_it;
1638 	}
1639 
1640 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1641 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1642 		inet_twsk_put(inet_twsk(sk));
1643 		goto discard_it;
1644 	}
1645 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1646 	case TCP_TW_SYN: {
1647 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1648 							&tcp_hashinfo,
1649 							iph->daddr, th->dest,
1650 							inet_iif(skb));
1651 		if (sk2) {
1652 			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1653 			inet_twsk_put(inet_twsk(sk));
1654 			sk = sk2;
1655 			goto process;
1656 		}
1657 		/* Fall through to ACK */
1658 	}
1659 	case TCP_TW_ACK:
1660 		tcp_v4_timewait_ack(sk, skb);
1661 		break;
1662 	case TCP_TW_RST:
1663 		goto no_tcp_socket;
1664 	case TCP_TW_SUCCESS:;
1665 	}
1666 	goto discard_it;
1667 }
1668 
1669 /* VJ's idea. Save last timestamp seen from this destination
1670  * and hold it at least for normal timewait interval to use for duplicate
1671  * segment detection in subsequent connections, before they enter synchronized
1672  * state.
1673  */
1674 
1675 int tcp_v4_remember_stamp(struct sock *sk)
1676 {
1677 	struct inet_sock *inet = inet_sk(sk);
1678 	struct tcp_sock *tp = tcp_sk(sk);
1679 	struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1680 	struct inet_peer *peer = NULL;
1681 	int release_it = 0;
1682 
1683 	if (!rt || rt->rt_dst != inet->daddr) {
1684 		peer = inet_getpeer(inet->daddr, 1);
1685 		release_it = 1;
1686 	} else {
1687 		if (!rt->peer)
1688 			rt_bind_peer(rt, 1);
1689 		peer = rt->peer;
1690 	}
1691 
1692 	if (peer) {
1693 		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1694 		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1695 		     peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1696 			peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1697 			peer->tcp_ts = tp->rx_opt.ts_recent;
1698 		}
1699 		if (release_it)
1700 			inet_putpeer(peer);
1701 		return 1;
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1708 {
1709 	struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1710 
1711 	if (peer) {
1712 		const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1713 
1714 		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1715 		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1716 		     peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1717 			peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1718 			peer->tcp_ts	   = tcptw->tw_ts_recent;
1719 		}
1720 		inet_putpeer(peer);
1721 		return 1;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 struct inet_connection_sock_af_ops ipv4_specific = {
1728 	.queue_xmit	   = ip_queue_xmit,
1729 	.send_check	   = tcp_v4_send_check,
1730 	.rebuild_header	   = inet_sk_rebuild_header,
1731 	.conn_request	   = tcp_v4_conn_request,
1732 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1733 	.remember_stamp	   = tcp_v4_remember_stamp,
1734 	.net_header_len	   = sizeof(struct iphdr),
1735 	.setsockopt	   = ip_setsockopt,
1736 	.getsockopt	   = ip_getsockopt,
1737 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1738 	.sockaddr_len	   = sizeof(struct sockaddr_in),
1739 	.bind_conflict	   = inet_csk_bind_conflict,
1740 #ifdef CONFIG_COMPAT
1741 	.compat_setsockopt = compat_ip_setsockopt,
1742 	.compat_getsockopt = compat_ip_getsockopt,
1743 #endif
1744 };
1745 
1746 #ifdef CONFIG_TCP_MD5SIG
1747 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1748 	.md5_lookup		= tcp_v4_md5_lookup,
1749 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1750 	.md5_add		= tcp_v4_md5_add_func,
1751 	.md5_parse		= tcp_v4_parse_md5_keys,
1752 };
1753 #endif
1754 
1755 /* NOTE: A lot of things set to zero explicitly by call to
1756  *       sk_alloc() so need not be done here.
1757  */
1758 static int tcp_v4_init_sock(struct sock *sk)
1759 {
1760 	struct inet_connection_sock *icsk = inet_csk(sk);
1761 	struct tcp_sock *tp = tcp_sk(sk);
1762 
1763 	skb_queue_head_init(&tp->out_of_order_queue);
1764 	tcp_init_xmit_timers(sk);
1765 	tcp_prequeue_init(tp);
1766 
1767 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1768 	tp->mdev = TCP_TIMEOUT_INIT;
1769 
1770 	/* So many TCP implementations out there (incorrectly) count the
1771 	 * initial SYN frame in their delayed-ACK and congestion control
1772 	 * algorithms that we must have the following bandaid to talk
1773 	 * efficiently to them.  -DaveM
1774 	 */
1775 	tp->snd_cwnd = 2;
1776 
1777 	/* See draft-stevens-tcpca-spec-01 for discussion of the
1778 	 * initialization of these values.
1779 	 */
1780 	tp->snd_ssthresh = 0x7fffffff;	/* Infinity */
1781 	tp->snd_cwnd_clamp = ~0;
1782 	tp->mss_cache = 536;
1783 
1784 	tp->reordering = sysctl_tcp_reordering;
1785 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1786 
1787 	sk->sk_state = TCP_CLOSE;
1788 
1789 	sk->sk_write_space = sk_stream_write_space;
1790 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1791 
1792 	icsk->icsk_af_ops = &ipv4_specific;
1793 	icsk->icsk_sync_mss = tcp_sync_mss;
1794 #ifdef CONFIG_TCP_MD5SIG
1795 	tp->af_specific = &tcp_sock_ipv4_specific;
1796 #endif
1797 
1798 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1799 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1800 
1801 	local_bh_disable();
1802 	percpu_counter_inc(&tcp_sockets_allocated);
1803 	local_bh_enable();
1804 
1805 	return 0;
1806 }
1807 
1808 void tcp_v4_destroy_sock(struct sock *sk)
1809 {
1810 	struct tcp_sock *tp = tcp_sk(sk);
1811 
1812 	tcp_clear_xmit_timers(sk);
1813 
1814 	tcp_cleanup_congestion_control(sk);
1815 
1816 	/* Cleanup up the write buffer. */
1817 	tcp_write_queue_purge(sk);
1818 
1819 	/* Cleans up our, hopefully empty, out_of_order_queue. */
1820 	__skb_queue_purge(&tp->out_of_order_queue);
1821 
1822 #ifdef CONFIG_TCP_MD5SIG
1823 	/* Clean up the MD5 key list, if any */
1824 	if (tp->md5sig_info) {
1825 		tcp_v4_clear_md5_list(sk);
1826 		kfree(tp->md5sig_info);
1827 		tp->md5sig_info = NULL;
1828 	}
1829 #endif
1830 
1831 #ifdef CONFIG_NET_DMA
1832 	/* Cleans up our sk_async_wait_queue */
1833 	__skb_queue_purge(&sk->sk_async_wait_queue);
1834 #endif
1835 
1836 	/* Clean prequeue, it must be empty really */
1837 	__skb_queue_purge(&tp->ucopy.prequeue);
1838 
1839 	/* Clean up a referenced TCP bind bucket. */
1840 	if (inet_csk(sk)->icsk_bind_hash)
1841 		inet_put_port(sk);
1842 
1843 	/*
1844 	 * If sendmsg cached page exists, toss it.
1845 	 */
1846 	if (sk->sk_sndmsg_page) {
1847 		__free_page(sk->sk_sndmsg_page);
1848 		sk->sk_sndmsg_page = NULL;
1849 	}
1850 
1851 	percpu_counter_dec(&tcp_sockets_allocated);
1852 }
1853 
1854 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1855 
1856 #ifdef CONFIG_PROC_FS
1857 /* Proc filesystem TCP sock list dumping. */
1858 
1859 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1860 {
1861 	return hlist_nulls_empty(head) ? NULL :
1862 		list_entry(head->first, struct inet_timewait_sock, tw_node);
1863 }
1864 
1865 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1866 {
1867 	return !is_a_nulls(tw->tw_node.next) ?
1868 		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1869 }
1870 
1871 static void *listening_get_next(struct seq_file *seq, void *cur)
1872 {
1873 	struct inet_connection_sock *icsk;
1874 	struct hlist_nulls_node *node;
1875 	struct sock *sk = cur;
1876 	struct inet_listen_hashbucket *ilb;
1877 	struct tcp_iter_state *st = seq->private;
1878 	struct net *net = seq_file_net(seq);
1879 
1880 	if (!sk) {
1881 		st->bucket = 0;
1882 		ilb = &tcp_hashinfo.listening_hash[0];
1883 		spin_lock_bh(&ilb->lock);
1884 		sk = sk_nulls_head(&ilb->head);
1885 		goto get_sk;
1886 	}
1887 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1888 	++st->num;
1889 
1890 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
1891 		struct request_sock *req = cur;
1892 
1893 		icsk = inet_csk(st->syn_wait_sk);
1894 		req = req->dl_next;
1895 		while (1) {
1896 			while (req) {
1897 				if (req->rsk_ops->family == st->family) {
1898 					cur = req;
1899 					goto out;
1900 				}
1901 				req = req->dl_next;
1902 			}
1903 			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1904 				break;
1905 get_req:
1906 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1907 		}
1908 		sk	  = sk_next(st->syn_wait_sk);
1909 		st->state = TCP_SEQ_STATE_LISTENING;
1910 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1911 	} else {
1912 		icsk = inet_csk(sk);
1913 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1914 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
1915 			goto start_req;
1916 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1917 		sk = sk_next(sk);
1918 	}
1919 get_sk:
1920 	sk_nulls_for_each_from(sk, node) {
1921 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1922 			cur = sk;
1923 			goto out;
1924 		}
1925 		icsk = inet_csk(sk);
1926 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1927 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1928 start_req:
1929 			st->uid		= sock_i_uid(sk);
1930 			st->syn_wait_sk = sk;
1931 			st->state	= TCP_SEQ_STATE_OPENREQ;
1932 			st->sbucket	= 0;
1933 			goto get_req;
1934 		}
1935 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1936 	}
1937 	spin_unlock_bh(&ilb->lock);
1938 	if (++st->bucket < INET_LHTABLE_SIZE) {
1939 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1940 		spin_lock_bh(&ilb->lock);
1941 		sk = sk_nulls_head(&ilb->head);
1942 		goto get_sk;
1943 	}
1944 	cur = NULL;
1945 out:
1946 	return cur;
1947 }
1948 
1949 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1950 {
1951 	void *rc = listening_get_next(seq, NULL);
1952 
1953 	while (rc && *pos) {
1954 		rc = listening_get_next(seq, rc);
1955 		--*pos;
1956 	}
1957 	return rc;
1958 }
1959 
1960 static inline int empty_bucket(struct tcp_iter_state *st)
1961 {
1962 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
1963 		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
1964 }
1965 
1966 static void *established_get_first(struct seq_file *seq)
1967 {
1968 	struct tcp_iter_state *st = seq->private;
1969 	struct net *net = seq_file_net(seq);
1970 	void *rc = NULL;
1971 
1972 	for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1973 		struct sock *sk;
1974 		struct hlist_nulls_node *node;
1975 		struct inet_timewait_sock *tw;
1976 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1977 
1978 		/* Lockless fast path for the common case of empty buckets */
1979 		if (empty_bucket(st))
1980 			continue;
1981 
1982 		spin_lock_bh(lock);
1983 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1984 			if (sk->sk_family != st->family ||
1985 			    !net_eq(sock_net(sk), net)) {
1986 				continue;
1987 			}
1988 			rc = sk;
1989 			goto out;
1990 		}
1991 		st->state = TCP_SEQ_STATE_TIME_WAIT;
1992 		inet_twsk_for_each(tw, node,
1993 				   &tcp_hashinfo.ehash[st->bucket].twchain) {
1994 			if (tw->tw_family != st->family ||
1995 			    !net_eq(twsk_net(tw), net)) {
1996 				continue;
1997 			}
1998 			rc = tw;
1999 			goto out;
2000 		}
2001 		spin_unlock_bh(lock);
2002 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2003 	}
2004 out:
2005 	return rc;
2006 }
2007 
2008 static void *established_get_next(struct seq_file *seq, void *cur)
2009 {
2010 	struct sock *sk = cur;
2011 	struct inet_timewait_sock *tw;
2012 	struct hlist_nulls_node *node;
2013 	struct tcp_iter_state *st = seq->private;
2014 	struct net *net = seq_file_net(seq);
2015 
2016 	++st->num;
2017 
2018 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2019 		tw = cur;
2020 		tw = tw_next(tw);
2021 get_tw:
2022 		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2023 			tw = tw_next(tw);
2024 		}
2025 		if (tw) {
2026 			cur = tw;
2027 			goto out;
2028 		}
2029 		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2030 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2031 
2032 		/* Look for next non empty bucket */
2033 		while (++st->bucket < tcp_hashinfo.ehash_size &&
2034 				empty_bucket(st))
2035 			;
2036 		if (st->bucket >= tcp_hashinfo.ehash_size)
2037 			return NULL;
2038 
2039 		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2040 		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2041 	} else
2042 		sk = sk_nulls_next(sk);
2043 
2044 	sk_nulls_for_each_from(sk, node) {
2045 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2046 			goto found;
2047 	}
2048 
2049 	st->state = TCP_SEQ_STATE_TIME_WAIT;
2050 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2051 	goto get_tw;
2052 found:
2053 	cur = sk;
2054 out:
2055 	return cur;
2056 }
2057 
2058 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2059 {
2060 	void *rc = established_get_first(seq);
2061 
2062 	while (rc && pos) {
2063 		rc = established_get_next(seq, rc);
2064 		--pos;
2065 	}
2066 	return rc;
2067 }
2068 
2069 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2070 {
2071 	void *rc;
2072 	struct tcp_iter_state *st = seq->private;
2073 
2074 	st->state = TCP_SEQ_STATE_LISTENING;
2075 	rc	  = listening_get_idx(seq, &pos);
2076 
2077 	if (!rc) {
2078 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2079 		rc	  = established_get_idx(seq, pos);
2080 	}
2081 
2082 	return rc;
2083 }
2084 
2085 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2086 {
2087 	struct tcp_iter_state *st = seq->private;
2088 	st->state = TCP_SEQ_STATE_LISTENING;
2089 	st->num = 0;
2090 	return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2091 }
2092 
2093 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2094 {
2095 	void *rc = NULL;
2096 	struct tcp_iter_state *st;
2097 
2098 	if (v == SEQ_START_TOKEN) {
2099 		rc = tcp_get_idx(seq, 0);
2100 		goto out;
2101 	}
2102 	st = seq->private;
2103 
2104 	switch (st->state) {
2105 	case TCP_SEQ_STATE_OPENREQ:
2106 	case TCP_SEQ_STATE_LISTENING:
2107 		rc = listening_get_next(seq, v);
2108 		if (!rc) {
2109 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2110 			rc	  = established_get_first(seq);
2111 		}
2112 		break;
2113 	case TCP_SEQ_STATE_ESTABLISHED:
2114 	case TCP_SEQ_STATE_TIME_WAIT:
2115 		rc = established_get_next(seq, v);
2116 		break;
2117 	}
2118 out:
2119 	++*pos;
2120 	return rc;
2121 }
2122 
2123 static void tcp_seq_stop(struct seq_file *seq, void *v)
2124 {
2125 	struct tcp_iter_state *st = seq->private;
2126 
2127 	switch (st->state) {
2128 	case TCP_SEQ_STATE_OPENREQ:
2129 		if (v) {
2130 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2131 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2132 		}
2133 	case TCP_SEQ_STATE_LISTENING:
2134 		if (v != SEQ_START_TOKEN)
2135 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2136 		break;
2137 	case TCP_SEQ_STATE_TIME_WAIT:
2138 	case TCP_SEQ_STATE_ESTABLISHED:
2139 		if (v)
2140 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2141 		break;
2142 	}
2143 }
2144 
2145 static int tcp_seq_open(struct inode *inode, struct file *file)
2146 {
2147 	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2148 	struct tcp_iter_state *s;
2149 	int err;
2150 
2151 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2152 			  sizeof(struct tcp_iter_state));
2153 	if (err < 0)
2154 		return err;
2155 
2156 	s = ((struct seq_file *)file->private_data)->private;
2157 	s->family		= afinfo->family;
2158 	return 0;
2159 }
2160 
2161 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2162 {
2163 	int rc = 0;
2164 	struct proc_dir_entry *p;
2165 
2166 	afinfo->seq_fops.open		= tcp_seq_open;
2167 	afinfo->seq_fops.read		= seq_read;
2168 	afinfo->seq_fops.llseek		= seq_lseek;
2169 	afinfo->seq_fops.release	= seq_release_net;
2170 
2171 	afinfo->seq_ops.start		= tcp_seq_start;
2172 	afinfo->seq_ops.next		= tcp_seq_next;
2173 	afinfo->seq_ops.stop		= tcp_seq_stop;
2174 
2175 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2176 			     &afinfo->seq_fops, afinfo);
2177 	if (!p)
2178 		rc = -ENOMEM;
2179 	return rc;
2180 }
2181 
2182 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2183 {
2184 	proc_net_remove(net, afinfo->name);
2185 }
2186 
2187 static void get_openreq4(struct sock *sk, struct request_sock *req,
2188 			 struct seq_file *f, int i, int uid, int *len)
2189 {
2190 	const struct inet_request_sock *ireq = inet_rsk(req);
2191 	int ttd = req->expires - jiffies;
2192 
2193 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2194 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2195 		i,
2196 		ireq->loc_addr,
2197 		ntohs(inet_sk(sk)->sport),
2198 		ireq->rmt_addr,
2199 		ntohs(ireq->rmt_port),
2200 		TCP_SYN_RECV,
2201 		0, 0, /* could print option size, but that is af dependent. */
2202 		1,    /* timers active (only the expire timer) */
2203 		jiffies_to_clock_t(ttd),
2204 		req->retrans,
2205 		uid,
2206 		0,  /* non standard timer */
2207 		0, /* open_requests have no inode */
2208 		atomic_read(&sk->sk_refcnt),
2209 		req,
2210 		len);
2211 }
2212 
2213 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2214 {
2215 	int timer_active;
2216 	unsigned long timer_expires;
2217 	struct tcp_sock *tp = tcp_sk(sk);
2218 	const struct inet_connection_sock *icsk = inet_csk(sk);
2219 	struct inet_sock *inet = inet_sk(sk);
2220 	__be32 dest = inet->daddr;
2221 	__be32 src = inet->rcv_saddr;
2222 	__u16 destp = ntohs(inet->dport);
2223 	__u16 srcp = ntohs(inet->sport);
2224 
2225 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2226 		timer_active	= 1;
2227 		timer_expires	= icsk->icsk_timeout;
2228 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2229 		timer_active	= 4;
2230 		timer_expires	= icsk->icsk_timeout;
2231 	} else if (timer_pending(&sk->sk_timer)) {
2232 		timer_active	= 2;
2233 		timer_expires	= sk->sk_timer.expires;
2234 	} else {
2235 		timer_active	= 0;
2236 		timer_expires = jiffies;
2237 	}
2238 
2239 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2240 			"%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2241 		i, src, srcp, dest, destp, sk->sk_state,
2242 		tp->write_seq - tp->snd_una,
2243 		sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2244 					     (tp->rcv_nxt - tp->copied_seq),
2245 		timer_active,
2246 		jiffies_to_clock_t(timer_expires - jiffies),
2247 		icsk->icsk_retransmits,
2248 		sock_i_uid(sk),
2249 		icsk->icsk_probes_out,
2250 		sock_i_ino(sk),
2251 		atomic_read(&sk->sk_refcnt), sk,
2252 		jiffies_to_clock_t(icsk->icsk_rto),
2253 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2254 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2255 		tp->snd_cwnd,
2256 		tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2257 		len);
2258 }
2259 
2260 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2261 			       struct seq_file *f, int i, int *len)
2262 {
2263 	__be32 dest, src;
2264 	__u16 destp, srcp;
2265 	int ttd = tw->tw_ttd - jiffies;
2266 
2267 	if (ttd < 0)
2268 		ttd = 0;
2269 
2270 	dest  = tw->tw_daddr;
2271 	src   = tw->tw_rcv_saddr;
2272 	destp = ntohs(tw->tw_dport);
2273 	srcp  = ntohs(tw->tw_sport);
2274 
2275 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2276 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2277 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2278 		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2279 		atomic_read(&tw->tw_refcnt), tw, len);
2280 }
2281 
2282 #define TMPSZ 150
2283 
2284 static int tcp4_seq_show(struct seq_file *seq, void *v)
2285 {
2286 	struct tcp_iter_state *st;
2287 	int len;
2288 
2289 	if (v == SEQ_START_TOKEN) {
2290 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2291 			   "  sl  local_address rem_address   st tx_queue "
2292 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2293 			   "inode");
2294 		goto out;
2295 	}
2296 	st = seq->private;
2297 
2298 	switch (st->state) {
2299 	case TCP_SEQ_STATE_LISTENING:
2300 	case TCP_SEQ_STATE_ESTABLISHED:
2301 		get_tcp4_sock(v, seq, st->num, &len);
2302 		break;
2303 	case TCP_SEQ_STATE_OPENREQ:
2304 		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2305 		break;
2306 	case TCP_SEQ_STATE_TIME_WAIT:
2307 		get_timewait4_sock(v, seq, st->num, &len);
2308 		break;
2309 	}
2310 	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2311 out:
2312 	return 0;
2313 }
2314 
2315 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2316 	.name		= "tcp",
2317 	.family		= AF_INET,
2318 	.seq_fops	= {
2319 		.owner		= THIS_MODULE,
2320 	},
2321 	.seq_ops	= {
2322 		.show		= tcp4_seq_show,
2323 	},
2324 };
2325 
2326 static int tcp4_proc_init_net(struct net *net)
2327 {
2328 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2329 }
2330 
2331 static void tcp4_proc_exit_net(struct net *net)
2332 {
2333 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2334 }
2335 
2336 static struct pernet_operations tcp4_net_ops = {
2337 	.init = tcp4_proc_init_net,
2338 	.exit = tcp4_proc_exit_net,
2339 };
2340 
2341 int __init tcp4_proc_init(void)
2342 {
2343 	return register_pernet_subsys(&tcp4_net_ops);
2344 }
2345 
2346 void tcp4_proc_exit(void)
2347 {
2348 	unregister_pernet_subsys(&tcp4_net_ops);
2349 }
2350 #endif /* CONFIG_PROC_FS */
2351 
2352 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2353 {
2354 	struct iphdr *iph = ip_hdr(skb);
2355 
2356 	switch (skb->ip_summed) {
2357 	case CHECKSUM_COMPLETE:
2358 		if (!tcp_v4_check(skb->len, iph->saddr, iph->daddr,
2359 				  skb->csum)) {
2360 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2361 			break;
2362 		}
2363 
2364 		/* fall through */
2365 	case CHECKSUM_NONE:
2366 		NAPI_GRO_CB(skb)->flush = 1;
2367 		return NULL;
2368 	}
2369 
2370 	return tcp_gro_receive(head, skb);
2371 }
2372 EXPORT_SYMBOL(tcp4_gro_receive);
2373 
2374 int tcp4_gro_complete(struct sk_buff *skb)
2375 {
2376 	struct iphdr *iph = ip_hdr(skb);
2377 	struct tcphdr *th = tcp_hdr(skb);
2378 
2379 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2380 				  iph->saddr, iph->daddr, 0);
2381 	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2382 
2383 	return tcp_gro_complete(skb);
2384 }
2385 EXPORT_SYMBOL(tcp4_gro_complete);
2386 
2387 struct proto tcp_prot = {
2388 	.name			= "TCP",
2389 	.owner			= THIS_MODULE,
2390 	.close			= tcp_close,
2391 	.connect		= tcp_v4_connect,
2392 	.disconnect		= tcp_disconnect,
2393 	.accept			= inet_csk_accept,
2394 	.ioctl			= tcp_ioctl,
2395 	.init			= tcp_v4_init_sock,
2396 	.destroy		= tcp_v4_destroy_sock,
2397 	.shutdown		= tcp_shutdown,
2398 	.setsockopt		= tcp_setsockopt,
2399 	.getsockopt		= tcp_getsockopt,
2400 	.recvmsg		= tcp_recvmsg,
2401 	.backlog_rcv		= tcp_v4_do_rcv,
2402 	.hash			= inet_hash,
2403 	.unhash			= inet_unhash,
2404 	.get_port		= inet_csk_get_port,
2405 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2406 	.sockets_allocated	= &tcp_sockets_allocated,
2407 	.orphan_count		= &tcp_orphan_count,
2408 	.memory_allocated	= &tcp_memory_allocated,
2409 	.memory_pressure	= &tcp_memory_pressure,
2410 	.sysctl_mem		= sysctl_tcp_mem,
2411 	.sysctl_wmem		= sysctl_tcp_wmem,
2412 	.sysctl_rmem		= sysctl_tcp_rmem,
2413 	.max_header		= MAX_TCP_HEADER,
2414 	.obj_size		= sizeof(struct tcp_sock),
2415 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2416 	.twsk_prot		= &tcp_timewait_sock_ops,
2417 	.rsk_prot		= &tcp_request_sock_ops,
2418 	.h.hashinfo		= &tcp_hashinfo,
2419 #ifdef CONFIG_COMPAT
2420 	.compat_setsockopt	= compat_tcp_setsockopt,
2421 	.compat_getsockopt	= compat_tcp_getsockopt,
2422 #endif
2423 };
2424 
2425 
2426 static int __net_init tcp_sk_init(struct net *net)
2427 {
2428 	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2429 				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2430 }
2431 
2432 static void __net_exit tcp_sk_exit(struct net *net)
2433 {
2434 	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2435 	inet_twsk_purge(net, &tcp_hashinfo, &tcp_death_row, AF_INET);
2436 }
2437 
2438 static struct pernet_operations __net_initdata tcp_sk_ops = {
2439        .init = tcp_sk_init,
2440        .exit = tcp_sk_exit,
2441 };
2442 
2443 void __init tcp_v4_init(void)
2444 {
2445 	inet_hashinfo_init(&tcp_hashinfo);
2446 	if (register_pernet_subsys(&tcp_sk_ops))
2447 		panic("Failed to create the TCP control socket.\n");
2448 }
2449 
2450 EXPORT_SYMBOL(ipv4_specific);
2451 EXPORT_SYMBOL(tcp_hashinfo);
2452 EXPORT_SYMBOL(tcp_prot);
2453 EXPORT_SYMBOL(tcp_v4_conn_request);
2454 EXPORT_SYMBOL(tcp_v4_connect);
2455 EXPORT_SYMBOL(tcp_v4_do_rcv);
2456 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2457 EXPORT_SYMBOL(tcp_v4_send_check);
2458 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2459 
2460 #ifdef CONFIG_PROC_FS
2461 EXPORT_SYMBOL(tcp_proc_register);
2462 EXPORT_SYMBOL(tcp_proc_unregister);
2463 #endif
2464 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2465 
2466