xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 27ab1c1c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 
61 #include <net/net_namespace.h>
62 #include <net/icmp.h>
63 #include <net/inet_hashtables.h>
64 #include <net/tcp.h>
65 #include <net/transp_v6.h>
66 #include <net/ipv6.h>
67 #include <net/inet_common.h>
68 #include <net/timewait_sock.h>
69 #include <net/xfrm.h>
70 #include <net/secure_seq.h>
71 #include <net/busy_poll.h>
72 
73 #include <linux/inet.h>
74 #include <linux/ipv6.h>
75 #include <linux/stddef.h>
76 #include <linux/proc_fs.h>
77 #include <linux/seq_file.h>
78 #include <linux/inetdevice.h>
79 #include <linux/btf_ids.h>
80 
81 #include <crypto/hash.h>
82 #include <linux/scatterlist.h>
83 
84 #include <trace/events/tcp.h>
85 
86 #ifdef CONFIG_TCP_MD5SIG
87 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
88 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
89 #endif
90 
91 struct inet_hashinfo tcp_hashinfo;
92 EXPORT_SYMBOL(tcp_hashinfo);
93 
94 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
95 {
96 	return secure_tcp_seq(ip_hdr(skb)->daddr,
97 			      ip_hdr(skb)->saddr,
98 			      tcp_hdr(skb)->dest,
99 			      tcp_hdr(skb)->source);
100 }
101 
102 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
103 {
104 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
105 }
106 
107 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108 {
109 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
110 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 	struct tcp_sock *tp = tcp_sk(sk);
112 	int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse;
113 
114 	if (reuse == 2) {
115 		/* Still does not detect *everything* that goes through
116 		 * lo, since we require a loopback src or dst address
117 		 * or direct binding to 'lo' interface.
118 		 */
119 		bool loopback = false;
120 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
121 			loopback = true;
122 #if IS_ENABLED(CONFIG_IPV6)
123 		if (tw->tw_family == AF_INET6) {
124 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
125 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
126 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
127 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
128 				loopback = true;
129 		} else
130 #endif
131 		{
132 			if (ipv4_is_loopback(tw->tw_daddr) ||
133 			    ipv4_is_loopback(tw->tw_rcv_saddr))
134 				loopback = true;
135 		}
136 		if (!loopback)
137 			reuse = 0;
138 	}
139 
140 	/* With PAWS, it is safe from the viewpoint
141 	   of data integrity. Even without PAWS it is safe provided sequence
142 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143 
144 	   Actually, the idea is close to VJ's one, only timestamp cache is
145 	   held not per host, but per port pair and TW bucket is used as state
146 	   holder.
147 
148 	   If TW bucket has been already destroyed we fall back to VJ's scheme
149 	   and use initial timestamp retrieved from peer table.
150 	 */
151 	if (tcptw->tw_ts_recent_stamp &&
152 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
153 					    tcptw->tw_ts_recent_stamp)))) {
154 		/* In case of repair and re-using TIME-WAIT sockets we still
155 		 * want to be sure that it is safe as above but honor the
156 		 * sequence numbers and time stamps set as part of the repair
157 		 * process.
158 		 *
159 		 * Without this check re-using a TIME-WAIT socket with TCP
160 		 * repair would accumulate a -1 on the repair assigned
161 		 * sequence number. The first time it is reused the sequence
162 		 * is -1, the second time -2, etc. This fixes that issue
163 		 * without appearing to create any others.
164 		 */
165 		if (likely(!tp->repair)) {
166 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
167 
168 			if (!seq)
169 				seq = 1;
170 			WRITE_ONCE(tp->write_seq, seq);
171 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
172 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
173 		}
174 		sock_hold(sktw);
175 		return 1;
176 	}
177 
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
181 
182 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
183 			      int addr_len)
184 {
185 	/* This check is replicated from tcp_v4_connect() and intended to
186 	 * prevent BPF program called below from accessing bytes that are out
187 	 * of the bound specified by user in addr_len.
188 	 */
189 	if (addr_len < sizeof(struct sockaddr_in))
190 		return -EINVAL;
191 
192 	sock_owned_by_me(sk);
193 
194 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
195 }
196 
197 /* This will initiate an outgoing connection. */
198 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
199 {
200 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
201 	struct inet_sock *inet = inet_sk(sk);
202 	struct tcp_sock *tp = tcp_sk(sk);
203 	__be16 orig_sport, orig_dport;
204 	__be32 daddr, nexthop;
205 	struct flowi4 *fl4;
206 	struct rtable *rt;
207 	int err;
208 	struct ip_options_rcu *inet_opt;
209 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
210 
211 	if (addr_len < sizeof(struct sockaddr_in))
212 		return -EINVAL;
213 
214 	if (usin->sin_family != AF_INET)
215 		return -EAFNOSUPPORT;
216 
217 	nexthop = daddr = usin->sin_addr.s_addr;
218 	inet_opt = rcu_dereference_protected(inet->inet_opt,
219 					     lockdep_sock_is_held(sk));
220 	if (inet_opt && inet_opt->opt.srr) {
221 		if (!daddr)
222 			return -EINVAL;
223 		nexthop = inet_opt->opt.faddr;
224 	}
225 
226 	orig_sport = inet->inet_sport;
227 	orig_dport = usin->sin_port;
228 	fl4 = &inet->cork.fl.u.ip4;
229 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
230 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
231 			      IPPROTO_TCP,
232 			      orig_sport, orig_dport, sk);
233 	if (IS_ERR(rt)) {
234 		err = PTR_ERR(rt);
235 		if (err == -ENETUNREACH)
236 			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
237 		return err;
238 	}
239 
240 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
241 		ip_rt_put(rt);
242 		return -ENETUNREACH;
243 	}
244 
245 	if (!inet_opt || !inet_opt->opt.srr)
246 		daddr = fl4->daddr;
247 
248 	if (!inet->inet_saddr)
249 		inet->inet_saddr = fl4->saddr;
250 	sk_rcv_saddr_set(sk, inet->inet_saddr);
251 
252 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
253 		/* Reset inherited state */
254 		tp->rx_opt.ts_recent	   = 0;
255 		tp->rx_opt.ts_recent_stamp = 0;
256 		if (likely(!tp->repair))
257 			WRITE_ONCE(tp->write_seq, 0);
258 	}
259 
260 	inet->inet_dport = usin->sin_port;
261 	sk_daddr_set(sk, daddr);
262 
263 	inet_csk(sk)->icsk_ext_hdr_len = 0;
264 	if (inet_opt)
265 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
266 
267 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
268 
269 	/* Socket identity is still unknown (sport may be zero).
270 	 * However we set state to SYN-SENT and not releasing socket
271 	 * lock select source port, enter ourselves into the hash tables and
272 	 * complete initialization after this.
273 	 */
274 	tcp_set_state(sk, TCP_SYN_SENT);
275 	err = inet_hash_connect(tcp_death_row, sk);
276 	if (err)
277 		goto failure;
278 
279 	sk_set_txhash(sk);
280 
281 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
282 			       inet->inet_sport, inet->inet_dport, sk);
283 	if (IS_ERR(rt)) {
284 		err = PTR_ERR(rt);
285 		rt = NULL;
286 		goto failure;
287 	}
288 	/* OK, now commit destination to socket.  */
289 	sk->sk_gso_type = SKB_GSO_TCPV4;
290 	sk_setup_caps(sk, &rt->dst);
291 	rt = NULL;
292 
293 	if (likely(!tp->repair)) {
294 		if (!tp->write_seq)
295 			WRITE_ONCE(tp->write_seq,
296 				   secure_tcp_seq(inet->inet_saddr,
297 						  inet->inet_daddr,
298 						  inet->inet_sport,
299 						  usin->sin_port));
300 		tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
301 						 inet->inet_saddr,
302 						 inet->inet_daddr);
303 	}
304 
305 	inet->inet_id = prandom_u32();
306 
307 	if (tcp_fastopen_defer_connect(sk, &err))
308 		return err;
309 	if (err)
310 		goto failure;
311 
312 	err = tcp_connect(sk);
313 
314 	if (err)
315 		goto failure;
316 
317 	return 0;
318 
319 failure:
320 	/*
321 	 * This unhashes the socket and releases the local port,
322 	 * if necessary.
323 	 */
324 	tcp_set_state(sk, TCP_CLOSE);
325 	ip_rt_put(rt);
326 	sk->sk_route_caps = 0;
327 	inet->inet_dport = 0;
328 	return err;
329 }
330 EXPORT_SYMBOL(tcp_v4_connect);
331 
332 /*
333  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
334  * It can be called through tcp_release_cb() if socket was owned by user
335  * at the time tcp_v4_err() was called to handle ICMP message.
336  */
337 void tcp_v4_mtu_reduced(struct sock *sk)
338 {
339 	struct inet_sock *inet = inet_sk(sk);
340 	struct dst_entry *dst;
341 	u32 mtu;
342 
343 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
344 		return;
345 	mtu = tcp_sk(sk)->mtu_info;
346 	dst = inet_csk_update_pmtu(sk, mtu);
347 	if (!dst)
348 		return;
349 
350 	/* Something is about to be wrong... Remember soft error
351 	 * for the case, if this connection will not able to recover.
352 	 */
353 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
354 		sk->sk_err_soft = EMSGSIZE;
355 
356 	mtu = dst_mtu(dst);
357 
358 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
359 	    ip_sk_accept_pmtu(sk) &&
360 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
361 		tcp_sync_mss(sk, mtu);
362 
363 		/* Resend the TCP packet because it's
364 		 * clear that the old packet has been
365 		 * dropped. This is the new "fast" path mtu
366 		 * discovery.
367 		 */
368 		tcp_simple_retransmit(sk);
369 	} /* else let the usual retransmit timer handle it */
370 }
371 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
372 
373 static void do_redirect(struct sk_buff *skb, struct sock *sk)
374 {
375 	struct dst_entry *dst = __sk_dst_check(sk, 0);
376 
377 	if (dst)
378 		dst->ops->redirect(dst, sk, skb);
379 }
380 
381 
382 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
383 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
384 {
385 	struct request_sock *req = inet_reqsk(sk);
386 	struct net *net = sock_net(sk);
387 
388 	/* ICMPs are not backlogged, hence we cannot get
389 	 * an established socket here.
390 	 */
391 	if (seq != tcp_rsk(req)->snt_isn) {
392 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 	} else if (abort) {
394 		/*
395 		 * Still in SYN_RECV, just remove it silently.
396 		 * There is no good way to pass the error to the newly
397 		 * created socket, and POSIX does not want network
398 		 * errors returned from accept().
399 		 */
400 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
401 		tcp_listendrop(req->rsk_listener);
402 	}
403 	reqsk_put(req);
404 }
405 EXPORT_SYMBOL(tcp_req_err);
406 
407 /* TCP-LD (RFC 6069) logic */
408 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
409 {
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 	struct tcp_sock *tp = tcp_sk(sk);
412 	struct sk_buff *skb;
413 	s32 remaining;
414 	u32 delta_us;
415 
416 	if (sock_owned_by_user(sk))
417 		return;
418 
419 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
420 	    !icsk->icsk_backoff)
421 		return;
422 
423 	skb = tcp_rtx_queue_head(sk);
424 	if (WARN_ON_ONCE(!skb))
425 		return;
426 
427 	icsk->icsk_backoff--;
428 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
429 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
430 
431 	tcp_mstamp_refresh(tp);
432 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
433 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
434 
435 	if (remaining > 0) {
436 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
437 					  remaining, TCP_RTO_MAX);
438 	} else {
439 		/* RTO revert clocked out retransmission.
440 		 * Will retransmit now.
441 		 */
442 		tcp_retransmit_timer(sk);
443 	}
444 }
445 EXPORT_SYMBOL(tcp_ld_RTO_revert);
446 
447 /*
448  * This routine is called by the ICMP module when it gets some
449  * sort of error condition.  If err < 0 then the socket should
450  * be closed and the error returned to the user.  If err > 0
451  * it's just the icmp type << 8 | icmp code.  After adjustment
452  * header points to the first 8 bytes of the tcp header.  We need
453  * to find the appropriate port.
454  *
455  * The locking strategy used here is very "optimistic". When
456  * someone else accesses the socket the ICMP is just dropped
457  * and for some paths there is no check at all.
458  * A more general error queue to queue errors for later handling
459  * is probably better.
460  *
461  */
462 
463 int tcp_v4_err(struct sk_buff *skb, u32 info)
464 {
465 	const struct iphdr *iph = (const struct iphdr *)skb->data;
466 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
467 	struct tcp_sock *tp;
468 	struct inet_sock *inet;
469 	const int type = icmp_hdr(skb)->type;
470 	const int code = icmp_hdr(skb)->code;
471 	struct sock *sk;
472 	struct request_sock *fastopen;
473 	u32 seq, snd_una;
474 	int err;
475 	struct net *net = dev_net(skb->dev);
476 
477 	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
478 				       th->dest, iph->saddr, ntohs(th->source),
479 				       inet_iif(skb), 0);
480 	if (!sk) {
481 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
482 		return -ENOENT;
483 	}
484 	if (sk->sk_state == TCP_TIME_WAIT) {
485 		inet_twsk_put(inet_twsk(sk));
486 		return 0;
487 	}
488 	seq = ntohl(th->seq);
489 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
490 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
491 				     type == ICMP_TIME_EXCEEDED ||
492 				     (type == ICMP_DEST_UNREACH &&
493 				      (code == ICMP_NET_UNREACH ||
494 				       code == ICMP_HOST_UNREACH)));
495 		return 0;
496 	}
497 
498 	bh_lock_sock(sk);
499 	/* If too many ICMPs get dropped on busy
500 	 * servers this needs to be solved differently.
501 	 * We do take care of PMTU discovery (RFC1191) special case :
502 	 * we can receive locally generated ICMP messages while socket is held.
503 	 */
504 	if (sock_owned_by_user(sk)) {
505 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
506 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
507 	}
508 	if (sk->sk_state == TCP_CLOSE)
509 		goto out;
510 
511 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
512 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
513 		goto out;
514 	}
515 
516 	tp = tcp_sk(sk);
517 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
518 	fastopen = rcu_dereference(tp->fastopen_rsk);
519 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
520 	if (sk->sk_state != TCP_LISTEN &&
521 	    !between(seq, snd_una, tp->snd_nxt)) {
522 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
523 		goto out;
524 	}
525 
526 	switch (type) {
527 	case ICMP_REDIRECT:
528 		if (!sock_owned_by_user(sk))
529 			do_redirect(skb, sk);
530 		goto out;
531 	case ICMP_SOURCE_QUENCH:
532 		/* Just silently ignore these. */
533 		goto out;
534 	case ICMP_PARAMETERPROB:
535 		err = EPROTO;
536 		break;
537 	case ICMP_DEST_UNREACH:
538 		if (code > NR_ICMP_UNREACH)
539 			goto out;
540 
541 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
542 			/* We are not interested in TCP_LISTEN and open_requests
543 			 * (SYN-ACKs send out by Linux are always <576bytes so
544 			 * they should go through unfragmented).
545 			 */
546 			if (sk->sk_state == TCP_LISTEN)
547 				goto out;
548 
549 			tp->mtu_info = info;
550 			if (!sock_owned_by_user(sk)) {
551 				tcp_v4_mtu_reduced(sk);
552 			} else {
553 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
554 					sock_hold(sk);
555 			}
556 			goto out;
557 		}
558 
559 		err = icmp_err_convert[code].errno;
560 		/* check if this ICMP message allows revert of backoff.
561 		 * (see RFC 6069)
562 		 */
563 		if (!fastopen &&
564 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
565 			tcp_ld_RTO_revert(sk, seq);
566 		break;
567 	case ICMP_TIME_EXCEEDED:
568 		err = EHOSTUNREACH;
569 		break;
570 	default:
571 		goto out;
572 	}
573 
574 	switch (sk->sk_state) {
575 	case TCP_SYN_SENT:
576 	case TCP_SYN_RECV:
577 		/* Only in fast or simultaneous open. If a fast open socket is
578 		 * already accepted it is treated as a connected one below.
579 		 */
580 		if (fastopen && !fastopen->sk)
581 			break;
582 
583 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
584 
585 		if (!sock_owned_by_user(sk)) {
586 			sk->sk_err = err;
587 
588 			sk->sk_error_report(sk);
589 
590 			tcp_done(sk);
591 		} else {
592 			sk->sk_err_soft = err;
593 		}
594 		goto out;
595 	}
596 
597 	/* If we've already connected we will keep trying
598 	 * until we time out, or the user gives up.
599 	 *
600 	 * rfc1122 4.2.3.9 allows to consider as hard errors
601 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
602 	 * but it is obsoleted by pmtu discovery).
603 	 *
604 	 * Note, that in modern internet, where routing is unreliable
605 	 * and in each dark corner broken firewalls sit, sending random
606 	 * errors ordered by their masters even this two messages finally lose
607 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
608 	 *
609 	 * Now we are in compliance with RFCs.
610 	 *							--ANK (980905)
611 	 */
612 
613 	inet = inet_sk(sk);
614 	if (!sock_owned_by_user(sk) && inet->recverr) {
615 		sk->sk_err = err;
616 		sk->sk_error_report(sk);
617 	} else	{ /* Only an error on timeout */
618 		sk->sk_err_soft = err;
619 	}
620 
621 out:
622 	bh_unlock_sock(sk);
623 	sock_put(sk);
624 	return 0;
625 }
626 
627 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
628 {
629 	struct tcphdr *th = tcp_hdr(skb);
630 
631 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
632 	skb->csum_start = skb_transport_header(skb) - skb->head;
633 	skb->csum_offset = offsetof(struct tcphdr, check);
634 }
635 
636 /* This routine computes an IPv4 TCP checksum. */
637 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
638 {
639 	const struct inet_sock *inet = inet_sk(sk);
640 
641 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
642 }
643 EXPORT_SYMBOL(tcp_v4_send_check);
644 
645 /*
646  *	This routine will send an RST to the other tcp.
647  *
648  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
649  *		      for reset.
650  *	Answer: if a packet caused RST, it is not for a socket
651  *		existing in our system, if it is matched to a socket,
652  *		it is just duplicate segment or bug in other side's TCP.
653  *		So that we build reply only basing on parameters
654  *		arrived with segment.
655  *	Exception: precedence violation. We do not implement it in any case.
656  */
657 
658 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
659 {
660 	const struct tcphdr *th = tcp_hdr(skb);
661 	struct {
662 		struct tcphdr th;
663 #ifdef CONFIG_TCP_MD5SIG
664 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
665 #endif
666 	} rep;
667 	struct ip_reply_arg arg;
668 #ifdef CONFIG_TCP_MD5SIG
669 	struct tcp_md5sig_key *key = NULL;
670 	const __u8 *hash_location = NULL;
671 	unsigned char newhash[16];
672 	int genhash;
673 	struct sock *sk1 = NULL;
674 #endif
675 	u64 transmit_time = 0;
676 	struct sock *ctl_sk;
677 	struct net *net;
678 
679 	/* Never send a reset in response to a reset. */
680 	if (th->rst)
681 		return;
682 
683 	/* If sk not NULL, it means we did a successful lookup and incoming
684 	 * route had to be correct. prequeue might have dropped our dst.
685 	 */
686 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
687 		return;
688 
689 	/* Swap the send and the receive. */
690 	memset(&rep, 0, sizeof(rep));
691 	rep.th.dest   = th->source;
692 	rep.th.source = th->dest;
693 	rep.th.doff   = sizeof(struct tcphdr) / 4;
694 	rep.th.rst    = 1;
695 
696 	if (th->ack) {
697 		rep.th.seq = th->ack_seq;
698 	} else {
699 		rep.th.ack = 1;
700 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
701 				       skb->len - (th->doff << 2));
702 	}
703 
704 	memset(&arg, 0, sizeof(arg));
705 	arg.iov[0].iov_base = (unsigned char *)&rep;
706 	arg.iov[0].iov_len  = sizeof(rep.th);
707 
708 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
709 #ifdef CONFIG_TCP_MD5SIG
710 	rcu_read_lock();
711 	hash_location = tcp_parse_md5sig_option(th);
712 	if (sk && sk_fullsock(sk)) {
713 		const union tcp_md5_addr *addr;
714 		int l3index;
715 
716 		/* sdif set, means packet ingressed via a device
717 		 * in an L3 domain and inet_iif is set to it.
718 		 */
719 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
720 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
721 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
722 	} else if (hash_location) {
723 		const union tcp_md5_addr *addr;
724 		int sdif = tcp_v4_sdif(skb);
725 		int dif = inet_iif(skb);
726 		int l3index;
727 
728 		/*
729 		 * active side is lost. Try to find listening socket through
730 		 * source port, and then find md5 key through listening socket.
731 		 * we are not loose security here:
732 		 * Incoming packet is checked with md5 hash with finding key,
733 		 * no RST generated if md5 hash doesn't match.
734 		 */
735 		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
736 					     ip_hdr(skb)->saddr,
737 					     th->source, ip_hdr(skb)->daddr,
738 					     ntohs(th->source), dif, sdif);
739 		/* don't send rst if it can't find key */
740 		if (!sk1)
741 			goto out;
742 
743 		/* sdif set, means packet ingressed via a device
744 		 * in an L3 domain and dif is set to it.
745 		 */
746 		l3index = sdif ? dif : 0;
747 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
748 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
749 		if (!key)
750 			goto out;
751 
752 
753 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
754 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
755 			goto out;
756 
757 	}
758 
759 	if (key) {
760 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
761 				   (TCPOPT_NOP << 16) |
762 				   (TCPOPT_MD5SIG << 8) |
763 				   TCPOLEN_MD5SIG);
764 		/* Update length and the length the header thinks exists */
765 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
766 		rep.th.doff = arg.iov[0].iov_len / 4;
767 
768 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
769 				     key, ip_hdr(skb)->saddr,
770 				     ip_hdr(skb)->daddr, &rep.th);
771 	}
772 #endif
773 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
774 				      ip_hdr(skb)->saddr, /* XXX */
775 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
776 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
777 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
778 
779 	/* When socket is gone, all binding information is lost.
780 	 * routing might fail in this case. No choice here, if we choose to force
781 	 * input interface, we will misroute in case of asymmetric route.
782 	 */
783 	if (sk) {
784 		arg.bound_dev_if = sk->sk_bound_dev_if;
785 		if (sk_fullsock(sk))
786 			trace_tcp_send_reset(sk, skb);
787 	}
788 
789 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
790 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
791 
792 	arg.tos = ip_hdr(skb)->tos;
793 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
794 	local_bh_disable();
795 	ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
796 	if (sk) {
797 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
798 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
799 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
800 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
801 		transmit_time = tcp_transmit_time(sk);
802 	}
803 	ip_send_unicast_reply(ctl_sk,
804 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
805 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
806 			      &arg, arg.iov[0].iov_len,
807 			      transmit_time);
808 
809 	ctl_sk->sk_mark = 0;
810 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
811 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
812 	local_bh_enable();
813 
814 #ifdef CONFIG_TCP_MD5SIG
815 out:
816 	rcu_read_unlock();
817 #endif
818 }
819 
820 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
821    outside socket context is ugly, certainly. What can I do?
822  */
823 
824 static void tcp_v4_send_ack(const struct sock *sk,
825 			    struct sk_buff *skb, u32 seq, u32 ack,
826 			    u32 win, u32 tsval, u32 tsecr, int oif,
827 			    struct tcp_md5sig_key *key,
828 			    int reply_flags, u8 tos)
829 {
830 	const struct tcphdr *th = tcp_hdr(skb);
831 	struct {
832 		struct tcphdr th;
833 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
834 #ifdef CONFIG_TCP_MD5SIG
835 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
836 #endif
837 			];
838 	} rep;
839 	struct net *net = sock_net(sk);
840 	struct ip_reply_arg arg;
841 	struct sock *ctl_sk;
842 	u64 transmit_time;
843 
844 	memset(&rep.th, 0, sizeof(struct tcphdr));
845 	memset(&arg, 0, sizeof(arg));
846 
847 	arg.iov[0].iov_base = (unsigned char *)&rep;
848 	arg.iov[0].iov_len  = sizeof(rep.th);
849 	if (tsecr) {
850 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
851 				   (TCPOPT_TIMESTAMP << 8) |
852 				   TCPOLEN_TIMESTAMP);
853 		rep.opt[1] = htonl(tsval);
854 		rep.opt[2] = htonl(tsecr);
855 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
856 	}
857 
858 	/* Swap the send and the receive. */
859 	rep.th.dest    = th->source;
860 	rep.th.source  = th->dest;
861 	rep.th.doff    = arg.iov[0].iov_len / 4;
862 	rep.th.seq     = htonl(seq);
863 	rep.th.ack_seq = htonl(ack);
864 	rep.th.ack     = 1;
865 	rep.th.window  = htons(win);
866 
867 #ifdef CONFIG_TCP_MD5SIG
868 	if (key) {
869 		int offset = (tsecr) ? 3 : 0;
870 
871 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
872 					  (TCPOPT_NOP << 16) |
873 					  (TCPOPT_MD5SIG << 8) |
874 					  TCPOLEN_MD5SIG);
875 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
876 		rep.th.doff = arg.iov[0].iov_len/4;
877 
878 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
879 				    key, ip_hdr(skb)->saddr,
880 				    ip_hdr(skb)->daddr, &rep.th);
881 	}
882 #endif
883 	arg.flags = reply_flags;
884 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
885 				      ip_hdr(skb)->saddr, /* XXX */
886 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
887 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
888 	if (oif)
889 		arg.bound_dev_if = oif;
890 	arg.tos = tos;
891 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
892 	local_bh_disable();
893 	ctl_sk = this_cpu_read(*net->ipv4.tcp_sk);
894 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
895 			   inet_twsk(sk)->tw_mark : sk->sk_mark;
896 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
897 			   inet_twsk(sk)->tw_priority : sk->sk_priority;
898 	transmit_time = tcp_transmit_time(sk);
899 	ip_send_unicast_reply(ctl_sk,
900 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
901 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
902 			      &arg, arg.iov[0].iov_len,
903 			      transmit_time);
904 
905 	ctl_sk->sk_mark = 0;
906 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
907 	local_bh_enable();
908 }
909 
910 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
911 {
912 	struct inet_timewait_sock *tw = inet_twsk(sk);
913 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
914 
915 	tcp_v4_send_ack(sk, skb,
916 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
917 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
918 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
919 			tcptw->tw_ts_recent,
920 			tw->tw_bound_dev_if,
921 			tcp_twsk_md5_key(tcptw),
922 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
923 			tw->tw_tos
924 			);
925 
926 	inet_twsk_put(tw);
927 }
928 
929 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
930 				  struct request_sock *req)
931 {
932 	const union tcp_md5_addr *addr;
933 	int l3index;
934 
935 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
936 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
937 	 */
938 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
939 					     tcp_sk(sk)->snd_nxt;
940 
941 	/* RFC 7323 2.3
942 	 * The window field (SEG.WND) of every outgoing segment, with the
943 	 * exception of <SYN> segments, MUST be right-shifted by
944 	 * Rcv.Wind.Shift bits:
945 	 */
946 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
947 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
948 	tcp_v4_send_ack(sk, skb, seq,
949 			tcp_rsk(req)->rcv_nxt,
950 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
951 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
952 			req->ts_recent,
953 			0,
954 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
955 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
956 			ip_hdr(skb)->tos);
957 }
958 
959 /*
960  *	Send a SYN-ACK after having received a SYN.
961  *	This still operates on a request_sock only, not on a big
962  *	socket.
963  */
964 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
965 			      struct flowi *fl,
966 			      struct request_sock *req,
967 			      struct tcp_fastopen_cookie *foc,
968 			      enum tcp_synack_type synack_type,
969 			      struct sk_buff *syn_skb)
970 {
971 	const struct inet_request_sock *ireq = inet_rsk(req);
972 	struct flowi4 fl4;
973 	int err = -1;
974 	struct sk_buff *skb;
975 	u8 tos;
976 
977 	/* First, grab a route. */
978 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
979 		return -1;
980 
981 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
982 
983 	if (skb) {
984 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
985 
986 		tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ?
987 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
988 				(inet_sk(sk)->tos & INET_ECN_MASK) :
989 				inet_sk(sk)->tos;
990 
991 		if (!INET_ECN_is_capable(tos) &&
992 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
993 			tos |= INET_ECN_ECT_0;
994 
995 		rcu_read_lock();
996 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
997 					    ireq->ir_rmt_addr,
998 					    rcu_dereference(ireq->ireq_opt),
999 					    tos);
1000 		rcu_read_unlock();
1001 		err = net_xmit_eval(err);
1002 	}
1003 
1004 	return err;
1005 }
1006 
1007 /*
1008  *	IPv4 request_sock destructor.
1009  */
1010 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1011 {
1012 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1013 }
1014 
1015 #ifdef CONFIG_TCP_MD5SIG
1016 /*
1017  * RFC2385 MD5 checksumming requires a mapping of
1018  * IP address->MD5 Key.
1019  * We need to maintain these in the sk structure.
1020  */
1021 
1022 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
1023 EXPORT_SYMBOL(tcp_md5_needed);
1024 
1025 /* Find the Key structure for an address.  */
1026 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1027 					   const union tcp_md5_addr *addr,
1028 					   int family)
1029 {
1030 	const struct tcp_sock *tp = tcp_sk(sk);
1031 	struct tcp_md5sig_key *key;
1032 	const struct tcp_md5sig_info *md5sig;
1033 	__be32 mask;
1034 	struct tcp_md5sig_key *best_match = NULL;
1035 	bool match;
1036 
1037 	/* caller either holds rcu_read_lock() or socket lock */
1038 	md5sig = rcu_dereference_check(tp->md5sig_info,
1039 				       lockdep_sock_is_held(sk));
1040 	if (!md5sig)
1041 		return NULL;
1042 
1043 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1044 				 lockdep_sock_is_held(sk)) {
1045 		if (key->family != family)
1046 			continue;
1047 		if (key->l3index && key->l3index != l3index)
1048 			continue;
1049 		if (family == AF_INET) {
1050 			mask = inet_make_mask(key->prefixlen);
1051 			match = (key->addr.a4.s_addr & mask) ==
1052 				(addr->a4.s_addr & mask);
1053 #if IS_ENABLED(CONFIG_IPV6)
1054 		} else if (family == AF_INET6) {
1055 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1056 						  key->prefixlen);
1057 #endif
1058 		} else {
1059 			match = false;
1060 		}
1061 
1062 		if (match && (!best_match ||
1063 			      key->prefixlen > best_match->prefixlen))
1064 			best_match = key;
1065 	}
1066 	return best_match;
1067 }
1068 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1069 
1070 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1071 						      const union tcp_md5_addr *addr,
1072 						      int family, u8 prefixlen,
1073 						      int l3index)
1074 {
1075 	const struct tcp_sock *tp = tcp_sk(sk);
1076 	struct tcp_md5sig_key *key;
1077 	unsigned int size = sizeof(struct in_addr);
1078 	const struct tcp_md5sig_info *md5sig;
1079 
1080 	/* caller either holds rcu_read_lock() or socket lock */
1081 	md5sig = rcu_dereference_check(tp->md5sig_info,
1082 				       lockdep_sock_is_held(sk));
1083 	if (!md5sig)
1084 		return NULL;
1085 #if IS_ENABLED(CONFIG_IPV6)
1086 	if (family == AF_INET6)
1087 		size = sizeof(struct in6_addr);
1088 #endif
1089 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1090 				 lockdep_sock_is_held(sk)) {
1091 		if (key->family != family)
1092 			continue;
1093 		if (key->l3index && key->l3index != l3index)
1094 			continue;
1095 		if (!memcmp(&key->addr, addr, size) &&
1096 		    key->prefixlen == prefixlen)
1097 			return key;
1098 	}
1099 	return NULL;
1100 }
1101 
1102 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1103 					 const struct sock *addr_sk)
1104 {
1105 	const union tcp_md5_addr *addr;
1106 	int l3index;
1107 
1108 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1109 						 addr_sk->sk_bound_dev_if);
1110 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1111 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1112 }
1113 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1114 
1115 /* This can be called on a newly created socket, from other files */
1116 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1117 		   int family, u8 prefixlen, int l3index,
1118 		   const u8 *newkey, u8 newkeylen, gfp_t gfp)
1119 {
1120 	/* Add Key to the list */
1121 	struct tcp_md5sig_key *key;
1122 	struct tcp_sock *tp = tcp_sk(sk);
1123 	struct tcp_md5sig_info *md5sig;
1124 
1125 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1126 	if (key) {
1127 		/* Pre-existing entry - just update that one.
1128 		 * Note that the key might be used concurrently.
1129 		 * data_race() is telling kcsan that we do not care of
1130 		 * key mismatches, since changing MD5 key on live flows
1131 		 * can lead to packet drops.
1132 		 */
1133 		data_race(memcpy(key->key, newkey, newkeylen));
1134 
1135 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1136 		 * Also note that a reader could catch new key->keylen value
1137 		 * but old key->key[], this is the reason we use __GFP_ZERO
1138 		 * at sock_kmalloc() time below these lines.
1139 		 */
1140 		WRITE_ONCE(key->keylen, newkeylen);
1141 
1142 		return 0;
1143 	}
1144 
1145 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1146 					   lockdep_sock_is_held(sk));
1147 	if (!md5sig) {
1148 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1149 		if (!md5sig)
1150 			return -ENOMEM;
1151 
1152 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1153 		INIT_HLIST_HEAD(&md5sig->head);
1154 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1155 	}
1156 
1157 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1158 	if (!key)
1159 		return -ENOMEM;
1160 	if (!tcp_alloc_md5sig_pool()) {
1161 		sock_kfree_s(sk, key, sizeof(*key));
1162 		return -ENOMEM;
1163 	}
1164 
1165 	memcpy(key->key, newkey, newkeylen);
1166 	key->keylen = newkeylen;
1167 	key->family = family;
1168 	key->prefixlen = prefixlen;
1169 	key->l3index = l3index;
1170 	memcpy(&key->addr, addr,
1171 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1172 				      sizeof(struct in_addr));
1173 	hlist_add_head_rcu(&key->node, &md5sig->head);
1174 	return 0;
1175 }
1176 EXPORT_SYMBOL(tcp_md5_do_add);
1177 
1178 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1179 		   u8 prefixlen, int l3index)
1180 {
1181 	struct tcp_md5sig_key *key;
1182 
1183 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index);
1184 	if (!key)
1185 		return -ENOENT;
1186 	hlist_del_rcu(&key->node);
1187 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1188 	kfree_rcu(key, rcu);
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL(tcp_md5_do_del);
1192 
1193 static void tcp_clear_md5_list(struct sock *sk)
1194 {
1195 	struct tcp_sock *tp = tcp_sk(sk);
1196 	struct tcp_md5sig_key *key;
1197 	struct hlist_node *n;
1198 	struct tcp_md5sig_info *md5sig;
1199 
1200 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1201 
1202 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1203 		hlist_del_rcu(&key->node);
1204 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1205 		kfree_rcu(key, rcu);
1206 	}
1207 }
1208 
1209 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1210 				 sockptr_t optval, int optlen)
1211 {
1212 	struct tcp_md5sig cmd;
1213 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1214 	const union tcp_md5_addr *addr;
1215 	u8 prefixlen = 32;
1216 	int l3index = 0;
1217 
1218 	if (optlen < sizeof(cmd))
1219 		return -EINVAL;
1220 
1221 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1222 		return -EFAULT;
1223 
1224 	if (sin->sin_family != AF_INET)
1225 		return -EINVAL;
1226 
1227 	if (optname == TCP_MD5SIG_EXT &&
1228 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1229 		prefixlen = cmd.tcpm_prefixlen;
1230 		if (prefixlen > 32)
1231 			return -EINVAL;
1232 	}
1233 
1234 	if (optname == TCP_MD5SIG_EXT &&
1235 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1236 		struct net_device *dev;
1237 
1238 		rcu_read_lock();
1239 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1240 		if (dev && netif_is_l3_master(dev))
1241 			l3index = dev->ifindex;
1242 
1243 		rcu_read_unlock();
1244 
1245 		/* ok to reference set/not set outside of rcu;
1246 		 * right now device MUST be an L3 master
1247 		 */
1248 		if (!dev || !l3index)
1249 			return -EINVAL;
1250 	}
1251 
1252 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1253 
1254 	if (!cmd.tcpm_keylen)
1255 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index);
1256 
1257 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1258 		return -EINVAL;
1259 
1260 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index,
1261 			      cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1262 }
1263 
1264 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1265 				   __be32 daddr, __be32 saddr,
1266 				   const struct tcphdr *th, int nbytes)
1267 {
1268 	struct tcp4_pseudohdr *bp;
1269 	struct scatterlist sg;
1270 	struct tcphdr *_th;
1271 
1272 	bp = hp->scratch;
1273 	bp->saddr = saddr;
1274 	bp->daddr = daddr;
1275 	bp->pad = 0;
1276 	bp->protocol = IPPROTO_TCP;
1277 	bp->len = cpu_to_be16(nbytes);
1278 
1279 	_th = (struct tcphdr *)(bp + 1);
1280 	memcpy(_th, th, sizeof(*th));
1281 	_th->check = 0;
1282 
1283 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1284 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1285 				sizeof(*bp) + sizeof(*th));
1286 	return crypto_ahash_update(hp->md5_req);
1287 }
1288 
1289 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1290 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1291 {
1292 	struct tcp_md5sig_pool *hp;
1293 	struct ahash_request *req;
1294 
1295 	hp = tcp_get_md5sig_pool();
1296 	if (!hp)
1297 		goto clear_hash_noput;
1298 	req = hp->md5_req;
1299 
1300 	if (crypto_ahash_init(req))
1301 		goto clear_hash;
1302 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1303 		goto clear_hash;
1304 	if (tcp_md5_hash_key(hp, key))
1305 		goto clear_hash;
1306 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1307 	if (crypto_ahash_final(req))
1308 		goto clear_hash;
1309 
1310 	tcp_put_md5sig_pool();
1311 	return 0;
1312 
1313 clear_hash:
1314 	tcp_put_md5sig_pool();
1315 clear_hash_noput:
1316 	memset(md5_hash, 0, 16);
1317 	return 1;
1318 }
1319 
1320 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1321 			const struct sock *sk,
1322 			const struct sk_buff *skb)
1323 {
1324 	struct tcp_md5sig_pool *hp;
1325 	struct ahash_request *req;
1326 	const struct tcphdr *th = tcp_hdr(skb);
1327 	__be32 saddr, daddr;
1328 
1329 	if (sk) { /* valid for establish/request sockets */
1330 		saddr = sk->sk_rcv_saddr;
1331 		daddr = sk->sk_daddr;
1332 	} else {
1333 		const struct iphdr *iph = ip_hdr(skb);
1334 		saddr = iph->saddr;
1335 		daddr = iph->daddr;
1336 	}
1337 
1338 	hp = tcp_get_md5sig_pool();
1339 	if (!hp)
1340 		goto clear_hash_noput;
1341 	req = hp->md5_req;
1342 
1343 	if (crypto_ahash_init(req))
1344 		goto clear_hash;
1345 
1346 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1347 		goto clear_hash;
1348 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1349 		goto clear_hash;
1350 	if (tcp_md5_hash_key(hp, key))
1351 		goto clear_hash;
1352 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1353 	if (crypto_ahash_final(req))
1354 		goto clear_hash;
1355 
1356 	tcp_put_md5sig_pool();
1357 	return 0;
1358 
1359 clear_hash:
1360 	tcp_put_md5sig_pool();
1361 clear_hash_noput:
1362 	memset(md5_hash, 0, 16);
1363 	return 1;
1364 }
1365 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1366 
1367 #endif
1368 
1369 /* Called with rcu_read_lock() */
1370 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1371 				    const struct sk_buff *skb,
1372 				    int dif, int sdif)
1373 {
1374 #ifdef CONFIG_TCP_MD5SIG
1375 	/*
1376 	 * This gets called for each TCP segment that arrives
1377 	 * so we want to be efficient.
1378 	 * We have 3 drop cases:
1379 	 * o No MD5 hash and one expected.
1380 	 * o MD5 hash and we're not expecting one.
1381 	 * o MD5 hash and its wrong.
1382 	 */
1383 	const __u8 *hash_location = NULL;
1384 	struct tcp_md5sig_key *hash_expected;
1385 	const struct iphdr *iph = ip_hdr(skb);
1386 	const struct tcphdr *th = tcp_hdr(skb);
1387 	const union tcp_md5_addr *addr;
1388 	unsigned char newhash[16];
1389 	int genhash, l3index;
1390 
1391 	/* sdif set, means packet ingressed via a device
1392 	 * in an L3 domain and dif is set to the l3mdev
1393 	 */
1394 	l3index = sdif ? dif : 0;
1395 
1396 	addr = (union tcp_md5_addr *)&iph->saddr;
1397 	hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1398 	hash_location = tcp_parse_md5sig_option(th);
1399 
1400 	/* We've parsed the options - do we have a hash? */
1401 	if (!hash_expected && !hash_location)
1402 		return false;
1403 
1404 	if (hash_expected && !hash_location) {
1405 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1406 		return true;
1407 	}
1408 
1409 	if (!hash_expected && hash_location) {
1410 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1411 		return true;
1412 	}
1413 
1414 	/* Okay, so this is hash_expected and hash_location -
1415 	 * so we need to calculate the checksum.
1416 	 */
1417 	genhash = tcp_v4_md5_hash_skb(newhash,
1418 				      hash_expected,
1419 				      NULL, skb);
1420 
1421 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1422 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1423 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
1424 				     &iph->saddr, ntohs(th->source),
1425 				     &iph->daddr, ntohs(th->dest),
1426 				     genhash ? " tcp_v4_calc_md5_hash failed"
1427 				     : "", l3index);
1428 		return true;
1429 	}
1430 	return false;
1431 #endif
1432 	return false;
1433 }
1434 
1435 static void tcp_v4_init_req(struct request_sock *req,
1436 			    const struct sock *sk_listener,
1437 			    struct sk_buff *skb)
1438 {
1439 	struct inet_request_sock *ireq = inet_rsk(req);
1440 	struct net *net = sock_net(sk_listener);
1441 
1442 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1443 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1444 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1445 }
1446 
1447 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1448 					  struct sk_buff *skb,
1449 					  struct flowi *fl,
1450 					  struct request_sock *req)
1451 {
1452 	tcp_v4_init_req(req, sk, skb);
1453 
1454 	if (security_inet_conn_request(sk, skb, req))
1455 		return NULL;
1456 
1457 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1458 }
1459 
1460 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1461 	.family		=	PF_INET,
1462 	.obj_size	=	sizeof(struct tcp_request_sock),
1463 	.rtx_syn_ack	=	tcp_rtx_synack,
1464 	.send_ack	=	tcp_v4_reqsk_send_ack,
1465 	.destructor	=	tcp_v4_reqsk_destructor,
1466 	.send_reset	=	tcp_v4_send_reset,
1467 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1468 };
1469 
1470 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1471 	.mss_clamp	=	TCP_MSS_DEFAULT,
1472 #ifdef CONFIG_TCP_MD5SIG
1473 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1474 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1475 #endif
1476 #ifdef CONFIG_SYN_COOKIES
1477 	.cookie_init_seq =	cookie_v4_init_sequence,
1478 #endif
1479 	.route_req	=	tcp_v4_route_req,
1480 	.init_seq	=	tcp_v4_init_seq,
1481 	.init_ts_off	=	tcp_v4_init_ts_off,
1482 	.send_synack	=	tcp_v4_send_synack,
1483 };
1484 
1485 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1486 {
1487 	/* Never answer to SYNs send to broadcast or multicast */
1488 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1489 		goto drop;
1490 
1491 	return tcp_conn_request(&tcp_request_sock_ops,
1492 				&tcp_request_sock_ipv4_ops, sk, skb);
1493 
1494 drop:
1495 	tcp_listendrop(sk);
1496 	return 0;
1497 }
1498 EXPORT_SYMBOL(tcp_v4_conn_request);
1499 
1500 
1501 /*
1502  * The three way handshake has completed - we got a valid synack -
1503  * now create the new socket.
1504  */
1505 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1506 				  struct request_sock *req,
1507 				  struct dst_entry *dst,
1508 				  struct request_sock *req_unhash,
1509 				  bool *own_req)
1510 {
1511 	struct inet_request_sock *ireq;
1512 	bool found_dup_sk = false;
1513 	struct inet_sock *newinet;
1514 	struct tcp_sock *newtp;
1515 	struct sock *newsk;
1516 #ifdef CONFIG_TCP_MD5SIG
1517 	const union tcp_md5_addr *addr;
1518 	struct tcp_md5sig_key *key;
1519 	int l3index;
1520 #endif
1521 	struct ip_options_rcu *inet_opt;
1522 
1523 	if (sk_acceptq_is_full(sk))
1524 		goto exit_overflow;
1525 
1526 	newsk = tcp_create_openreq_child(sk, req, skb);
1527 	if (!newsk)
1528 		goto exit_nonewsk;
1529 
1530 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1531 	inet_sk_rx_dst_set(newsk, skb);
1532 
1533 	newtp		      = tcp_sk(newsk);
1534 	newinet		      = inet_sk(newsk);
1535 	ireq		      = inet_rsk(req);
1536 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1537 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1538 	newsk->sk_bound_dev_if = ireq->ir_iif;
1539 	newinet->inet_saddr   = ireq->ir_loc_addr;
1540 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1541 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1542 	newinet->mc_index     = inet_iif(skb);
1543 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1544 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1545 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1546 	if (inet_opt)
1547 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1548 	newinet->inet_id = prandom_u32();
1549 
1550 	/* Set ToS of the new socket based upon the value of incoming SYN.
1551 	 * ECT bits are set later in tcp_init_transfer().
1552 	 */
1553 	if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)
1554 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1555 
1556 	if (!dst) {
1557 		dst = inet_csk_route_child_sock(sk, newsk, req);
1558 		if (!dst)
1559 			goto put_and_exit;
1560 	} else {
1561 		/* syncookie case : see end of cookie_v4_check() */
1562 	}
1563 	sk_setup_caps(newsk, dst);
1564 
1565 	tcp_ca_openreq_child(newsk, dst);
1566 
1567 	tcp_sync_mss(newsk, dst_mtu(dst));
1568 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1569 
1570 	tcp_initialize_rcv_mss(newsk);
1571 
1572 #ifdef CONFIG_TCP_MD5SIG
1573 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1574 	/* Copy over the MD5 key from the original socket */
1575 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1576 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1577 	if (key) {
1578 		/*
1579 		 * We're using one, so create a matching key
1580 		 * on the newsk structure. If we fail to get
1581 		 * memory, then we end up not copying the key
1582 		 * across. Shucks.
1583 		 */
1584 		tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index,
1585 			       key->key, key->keylen, GFP_ATOMIC);
1586 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1587 	}
1588 #endif
1589 
1590 	if (__inet_inherit_port(sk, newsk) < 0)
1591 		goto put_and_exit;
1592 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1593 				       &found_dup_sk);
1594 	if (likely(*own_req)) {
1595 		tcp_move_syn(newtp, req);
1596 		ireq->ireq_opt = NULL;
1597 	} else {
1598 		newinet->inet_opt = NULL;
1599 
1600 		if (!req_unhash && found_dup_sk) {
1601 			/* This code path should only be executed in the
1602 			 * syncookie case only
1603 			 */
1604 			bh_unlock_sock(newsk);
1605 			sock_put(newsk);
1606 			newsk = NULL;
1607 		}
1608 	}
1609 	return newsk;
1610 
1611 exit_overflow:
1612 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1613 exit_nonewsk:
1614 	dst_release(dst);
1615 exit:
1616 	tcp_listendrop(sk);
1617 	return NULL;
1618 put_and_exit:
1619 	newinet->inet_opt = NULL;
1620 	inet_csk_prepare_forced_close(newsk);
1621 	tcp_done(newsk);
1622 	goto exit;
1623 }
1624 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1625 
1626 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1627 {
1628 #ifdef CONFIG_SYN_COOKIES
1629 	const struct tcphdr *th = tcp_hdr(skb);
1630 
1631 	if (!th->syn)
1632 		sk = cookie_v4_check(sk, skb);
1633 #endif
1634 	return sk;
1635 }
1636 
1637 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1638 			 struct tcphdr *th, u32 *cookie)
1639 {
1640 	u16 mss = 0;
1641 #ifdef CONFIG_SYN_COOKIES
1642 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1643 				    &tcp_request_sock_ipv4_ops, sk, th);
1644 	if (mss) {
1645 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1646 		tcp_synq_overflow(sk);
1647 	}
1648 #endif
1649 	return mss;
1650 }
1651 
1652 /* The socket must have it's spinlock held when we get
1653  * here, unless it is a TCP_LISTEN socket.
1654  *
1655  * We have a potential double-lock case here, so even when
1656  * doing backlog processing we use the BH locking scheme.
1657  * This is because we cannot sleep with the original spinlock
1658  * held.
1659  */
1660 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1661 {
1662 	struct sock *rsk;
1663 
1664 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1665 		struct dst_entry *dst = sk->sk_rx_dst;
1666 
1667 		sock_rps_save_rxhash(sk, skb);
1668 		sk_mark_napi_id(sk, skb);
1669 		if (dst) {
1670 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1671 			    !dst->ops->check(dst, 0)) {
1672 				dst_release(dst);
1673 				sk->sk_rx_dst = NULL;
1674 			}
1675 		}
1676 		tcp_rcv_established(sk, skb);
1677 		return 0;
1678 	}
1679 
1680 	if (tcp_checksum_complete(skb))
1681 		goto csum_err;
1682 
1683 	if (sk->sk_state == TCP_LISTEN) {
1684 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1685 
1686 		if (!nsk)
1687 			goto discard;
1688 		if (nsk != sk) {
1689 			if (tcp_child_process(sk, nsk, skb)) {
1690 				rsk = nsk;
1691 				goto reset;
1692 			}
1693 			return 0;
1694 		}
1695 	} else
1696 		sock_rps_save_rxhash(sk, skb);
1697 
1698 	if (tcp_rcv_state_process(sk, skb)) {
1699 		rsk = sk;
1700 		goto reset;
1701 	}
1702 	return 0;
1703 
1704 reset:
1705 	tcp_v4_send_reset(rsk, skb);
1706 discard:
1707 	kfree_skb(skb);
1708 	/* Be careful here. If this function gets more complicated and
1709 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1710 	 * might be destroyed here. This current version compiles correctly,
1711 	 * but you have been warned.
1712 	 */
1713 	return 0;
1714 
1715 csum_err:
1716 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1717 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1718 	goto discard;
1719 }
1720 EXPORT_SYMBOL(tcp_v4_do_rcv);
1721 
1722 int tcp_v4_early_demux(struct sk_buff *skb)
1723 {
1724 	const struct iphdr *iph;
1725 	const struct tcphdr *th;
1726 	struct sock *sk;
1727 
1728 	if (skb->pkt_type != PACKET_HOST)
1729 		return 0;
1730 
1731 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1732 		return 0;
1733 
1734 	iph = ip_hdr(skb);
1735 	th = tcp_hdr(skb);
1736 
1737 	if (th->doff < sizeof(struct tcphdr) / 4)
1738 		return 0;
1739 
1740 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1741 				       iph->saddr, th->source,
1742 				       iph->daddr, ntohs(th->dest),
1743 				       skb->skb_iif, inet_sdif(skb));
1744 	if (sk) {
1745 		skb->sk = sk;
1746 		skb->destructor = sock_edemux;
1747 		if (sk_fullsock(sk)) {
1748 			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1749 
1750 			if (dst)
1751 				dst = dst_check(dst, 0);
1752 			if (dst &&
1753 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1754 				skb_dst_set_noref(skb, dst);
1755 		}
1756 	}
1757 	return 0;
1758 }
1759 
1760 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1761 {
1762 	u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf);
1763 	u32 tail_gso_size, tail_gso_segs;
1764 	struct skb_shared_info *shinfo;
1765 	const struct tcphdr *th;
1766 	struct tcphdr *thtail;
1767 	struct sk_buff *tail;
1768 	unsigned int hdrlen;
1769 	bool fragstolen;
1770 	u32 gso_segs;
1771 	u32 gso_size;
1772 	int delta;
1773 
1774 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1775 	 * we can fix skb->truesize to its real value to avoid future drops.
1776 	 * This is valid because skb is not yet charged to the socket.
1777 	 * It has been noticed pure SACK packets were sometimes dropped
1778 	 * (if cooked by drivers without copybreak feature).
1779 	 */
1780 	skb_condense(skb);
1781 
1782 	skb_dst_drop(skb);
1783 
1784 	if (unlikely(tcp_checksum_complete(skb))) {
1785 		bh_unlock_sock(sk);
1786 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1787 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1788 		return true;
1789 	}
1790 
1791 	/* Attempt coalescing to last skb in backlog, even if we are
1792 	 * above the limits.
1793 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1794 	 */
1795 	th = (const struct tcphdr *)skb->data;
1796 	hdrlen = th->doff * 4;
1797 
1798 	tail = sk->sk_backlog.tail;
1799 	if (!tail)
1800 		goto no_coalesce;
1801 	thtail = (struct tcphdr *)tail->data;
1802 
1803 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1804 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1805 	    ((TCP_SKB_CB(tail)->tcp_flags |
1806 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1807 	    !((TCP_SKB_CB(tail)->tcp_flags &
1808 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1809 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1810 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1811 #ifdef CONFIG_TLS_DEVICE
1812 	    tail->decrypted != skb->decrypted ||
1813 #endif
1814 	    thtail->doff != th->doff ||
1815 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1816 		goto no_coalesce;
1817 
1818 	__skb_pull(skb, hdrlen);
1819 
1820 	shinfo = skb_shinfo(skb);
1821 	gso_size = shinfo->gso_size ?: skb->len;
1822 	gso_segs = shinfo->gso_segs ?: 1;
1823 
1824 	shinfo = skb_shinfo(tail);
1825 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1826 	tail_gso_segs = shinfo->gso_segs ?: 1;
1827 
1828 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1829 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1830 
1831 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1832 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1833 			thtail->window = th->window;
1834 		}
1835 
1836 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1837 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1838 		 * is not entered if we append a packet with a FIN.
1839 		 * SYN, RST, URG are not present.
1840 		 * ACK is set on both packets.
1841 		 * PSH : we do not really care in TCP stack,
1842 		 *       at least for 'GRO' packets.
1843 		 */
1844 		thtail->fin |= th->fin;
1845 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1846 
1847 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1848 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1849 			tail->tstamp = skb->tstamp;
1850 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1851 		}
1852 
1853 		/* Not as strict as GRO. We only need to carry mss max value */
1854 		shinfo->gso_size = max(gso_size, tail_gso_size);
1855 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1856 
1857 		sk->sk_backlog.len += delta;
1858 		__NET_INC_STATS(sock_net(sk),
1859 				LINUX_MIB_TCPBACKLOGCOALESCE);
1860 		kfree_skb_partial(skb, fragstolen);
1861 		return false;
1862 	}
1863 	__skb_push(skb, hdrlen);
1864 
1865 no_coalesce:
1866 	/* Only socket owner can try to collapse/prune rx queues
1867 	 * to reduce memory overhead, so add a little headroom here.
1868 	 * Few sockets backlog are possibly concurrently non empty.
1869 	 */
1870 	limit += 64*1024;
1871 
1872 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1873 		bh_unlock_sock(sk);
1874 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1875 		return true;
1876 	}
1877 	return false;
1878 }
1879 EXPORT_SYMBOL(tcp_add_backlog);
1880 
1881 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1882 {
1883 	struct tcphdr *th = (struct tcphdr *)skb->data;
1884 
1885 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1886 }
1887 EXPORT_SYMBOL(tcp_filter);
1888 
1889 static void tcp_v4_restore_cb(struct sk_buff *skb)
1890 {
1891 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1892 		sizeof(struct inet_skb_parm));
1893 }
1894 
1895 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1896 			   const struct tcphdr *th)
1897 {
1898 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1899 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1900 	 */
1901 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1902 		sizeof(struct inet_skb_parm));
1903 	barrier();
1904 
1905 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1906 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1907 				    skb->len - th->doff * 4);
1908 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1909 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1910 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1911 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1912 	TCP_SKB_CB(skb)->sacked	 = 0;
1913 	TCP_SKB_CB(skb)->has_rxtstamp =
1914 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1915 }
1916 
1917 /*
1918  *	From tcp_input.c
1919  */
1920 
1921 int tcp_v4_rcv(struct sk_buff *skb)
1922 {
1923 	struct net *net = dev_net(skb->dev);
1924 	struct sk_buff *skb_to_free;
1925 	int sdif = inet_sdif(skb);
1926 	int dif = inet_iif(skb);
1927 	const struct iphdr *iph;
1928 	const struct tcphdr *th;
1929 	bool refcounted;
1930 	struct sock *sk;
1931 	int ret;
1932 
1933 	if (skb->pkt_type != PACKET_HOST)
1934 		goto discard_it;
1935 
1936 	/* Count it even if it's bad */
1937 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
1938 
1939 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1940 		goto discard_it;
1941 
1942 	th = (const struct tcphdr *)skb->data;
1943 
1944 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1945 		goto bad_packet;
1946 	if (!pskb_may_pull(skb, th->doff * 4))
1947 		goto discard_it;
1948 
1949 	/* An explanation is required here, I think.
1950 	 * Packet length and doff are validated by header prediction,
1951 	 * provided case of th->doff==0 is eliminated.
1952 	 * So, we defer the checks. */
1953 
1954 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1955 		goto csum_error;
1956 
1957 	th = (const struct tcphdr *)skb->data;
1958 	iph = ip_hdr(skb);
1959 lookup:
1960 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1961 			       th->dest, sdif, &refcounted);
1962 	if (!sk)
1963 		goto no_tcp_socket;
1964 
1965 process:
1966 	if (sk->sk_state == TCP_TIME_WAIT)
1967 		goto do_time_wait;
1968 
1969 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1970 		struct request_sock *req = inet_reqsk(sk);
1971 		bool req_stolen = false;
1972 		struct sock *nsk;
1973 
1974 		sk = req->rsk_listener;
1975 		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) {
1976 			sk_drops_add(sk, skb);
1977 			reqsk_put(req);
1978 			goto discard_it;
1979 		}
1980 		if (tcp_checksum_complete(skb)) {
1981 			reqsk_put(req);
1982 			goto csum_error;
1983 		}
1984 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1985 			inet_csk_reqsk_queue_drop_and_put(sk, req);
1986 			goto lookup;
1987 		}
1988 		/* We own a reference on the listener, increase it again
1989 		 * as we might lose it too soon.
1990 		 */
1991 		sock_hold(sk);
1992 		refcounted = true;
1993 		nsk = NULL;
1994 		if (!tcp_filter(sk, skb)) {
1995 			th = (const struct tcphdr *)skb->data;
1996 			iph = ip_hdr(skb);
1997 			tcp_v4_fill_cb(skb, iph, th);
1998 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
1999 		}
2000 		if (!nsk) {
2001 			reqsk_put(req);
2002 			if (req_stolen) {
2003 				/* Another cpu got exclusive access to req
2004 				 * and created a full blown socket.
2005 				 * Try to feed this packet to this socket
2006 				 * instead of discarding it.
2007 				 */
2008 				tcp_v4_restore_cb(skb);
2009 				sock_put(sk);
2010 				goto lookup;
2011 			}
2012 			goto discard_and_relse;
2013 		}
2014 		if (nsk == sk) {
2015 			reqsk_put(req);
2016 			tcp_v4_restore_cb(skb);
2017 		} else if (tcp_child_process(sk, nsk, skb)) {
2018 			tcp_v4_send_reset(nsk, skb);
2019 			goto discard_and_relse;
2020 		} else {
2021 			sock_put(sk);
2022 			return 0;
2023 		}
2024 	}
2025 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2026 		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2027 		goto discard_and_relse;
2028 	}
2029 
2030 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2031 		goto discard_and_relse;
2032 
2033 	if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))
2034 		goto discard_and_relse;
2035 
2036 	nf_reset_ct(skb);
2037 
2038 	if (tcp_filter(sk, skb))
2039 		goto discard_and_relse;
2040 	th = (const struct tcphdr *)skb->data;
2041 	iph = ip_hdr(skb);
2042 	tcp_v4_fill_cb(skb, iph, th);
2043 
2044 	skb->dev = NULL;
2045 
2046 	if (sk->sk_state == TCP_LISTEN) {
2047 		ret = tcp_v4_do_rcv(sk, skb);
2048 		goto put_and_return;
2049 	}
2050 
2051 	sk_incoming_cpu_update(sk);
2052 
2053 	bh_lock_sock_nested(sk);
2054 	tcp_segs_in(tcp_sk(sk), skb);
2055 	ret = 0;
2056 	if (!sock_owned_by_user(sk)) {
2057 		skb_to_free = sk->sk_rx_skb_cache;
2058 		sk->sk_rx_skb_cache = NULL;
2059 		ret = tcp_v4_do_rcv(sk, skb);
2060 	} else {
2061 		if (tcp_add_backlog(sk, skb))
2062 			goto discard_and_relse;
2063 		skb_to_free = NULL;
2064 	}
2065 	bh_unlock_sock(sk);
2066 	if (skb_to_free)
2067 		__kfree_skb(skb_to_free);
2068 
2069 put_and_return:
2070 	if (refcounted)
2071 		sock_put(sk);
2072 
2073 	return ret;
2074 
2075 no_tcp_socket:
2076 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2077 		goto discard_it;
2078 
2079 	tcp_v4_fill_cb(skb, iph, th);
2080 
2081 	if (tcp_checksum_complete(skb)) {
2082 csum_error:
2083 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2084 bad_packet:
2085 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2086 	} else {
2087 		tcp_v4_send_reset(NULL, skb);
2088 	}
2089 
2090 discard_it:
2091 	/* Discard frame. */
2092 	kfree_skb(skb);
2093 	return 0;
2094 
2095 discard_and_relse:
2096 	sk_drops_add(sk, skb);
2097 	if (refcounted)
2098 		sock_put(sk);
2099 	goto discard_it;
2100 
2101 do_time_wait:
2102 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2103 		inet_twsk_put(inet_twsk(sk));
2104 		goto discard_it;
2105 	}
2106 
2107 	tcp_v4_fill_cb(skb, iph, th);
2108 
2109 	if (tcp_checksum_complete(skb)) {
2110 		inet_twsk_put(inet_twsk(sk));
2111 		goto csum_error;
2112 	}
2113 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2114 	case TCP_TW_SYN: {
2115 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2116 							&tcp_hashinfo, skb,
2117 							__tcp_hdrlen(th),
2118 							iph->saddr, th->source,
2119 							iph->daddr, th->dest,
2120 							inet_iif(skb),
2121 							sdif);
2122 		if (sk2) {
2123 			inet_twsk_deschedule_put(inet_twsk(sk));
2124 			sk = sk2;
2125 			tcp_v4_restore_cb(skb);
2126 			refcounted = false;
2127 			goto process;
2128 		}
2129 	}
2130 		/* to ACK */
2131 		fallthrough;
2132 	case TCP_TW_ACK:
2133 		tcp_v4_timewait_ack(sk, skb);
2134 		break;
2135 	case TCP_TW_RST:
2136 		tcp_v4_send_reset(sk, skb);
2137 		inet_twsk_deschedule_put(inet_twsk(sk));
2138 		goto discard_it;
2139 	case TCP_TW_SUCCESS:;
2140 	}
2141 	goto discard_it;
2142 }
2143 
2144 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2145 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2146 	.twsk_unique	= tcp_twsk_unique,
2147 	.twsk_destructor= tcp_twsk_destructor,
2148 };
2149 
2150 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2151 {
2152 	struct dst_entry *dst = skb_dst(skb);
2153 
2154 	if (dst && dst_hold_safe(dst)) {
2155 		sk->sk_rx_dst = dst;
2156 		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2157 	}
2158 }
2159 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2160 
2161 const struct inet_connection_sock_af_ops ipv4_specific = {
2162 	.queue_xmit	   = ip_queue_xmit,
2163 	.send_check	   = tcp_v4_send_check,
2164 	.rebuild_header	   = inet_sk_rebuild_header,
2165 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2166 	.conn_request	   = tcp_v4_conn_request,
2167 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2168 	.net_header_len	   = sizeof(struct iphdr),
2169 	.setsockopt	   = ip_setsockopt,
2170 	.getsockopt	   = ip_getsockopt,
2171 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2172 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2173 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2174 };
2175 EXPORT_SYMBOL(ipv4_specific);
2176 
2177 #ifdef CONFIG_TCP_MD5SIG
2178 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2179 	.md5_lookup		= tcp_v4_md5_lookup,
2180 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2181 	.md5_parse		= tcp_v4_parse_md5_keys,
2182 };
2183 #endif
2184 
2185 /* NOTE: A lot of things set to zero explicitly by call to
2186  *       sk_alloc() so need not be done here.
2187  */
2188 static int tcp_v4_init_sock(struct sock *sk)
2189 {
2190 	struct inet_connection_sock *icsk = inet_csk(sk);
2191 
2192 	tcp_init_sock(sk);
2193 
2194 	icsk->icsk_af_ops = &ipv4_specific;
2195 
2196 #ifdef CONFIG_TCP_MD5SIG
2197 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2198 #endif
2199 
2200 	return 0;
2201 }
2202 
2203 void tcp_v4_destroy_sock(struct sock *sk)
2204 {
2205 	struct tcp_sock *tp = tcp_sk(sk);
2206 
2207 	trace_tcp_destroy_sock(sk);
2208 
2209 	tcp_clear_xmit_timers(sk);
2210 
2211 	tcp_cleanup_congestion_control(sk);
2212 
2213 	tcp_cleanup_ulp(sk);
2214 
2215 	/* Cleanup up the write buffer. */
2216 	tcp_write_queue_purge(sk);
2217 
2218 	/* Check if we want to disable active TFO */
2219 	tcp_fastopen_active_disable_ofo_check(sk);
2220 
2221 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2222 	skb_rbtree_purge(&tp->out_of_order_queue);
2223 
2224 #ifdef CONFIG_TCP_MD5SIG
2225 	/* Clean up the MD5 key list, if any */
2226 	if (tp->md5sig_info) {
2227 		tcp_clear_md5_list(sk);
2228 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2229 		tp->md5sig_info = NULL;
2230 	}
2231 #endif
2232 
2233 	/* Clean up a referenced TCP bind bucket. */
2234 	if (inet_csk(sk)->icsk_bind_hash)
2235 		inet_put_port(sk);
2236 
2237 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2238 
2239 	/* If socket is aborted during connect operation */
2240 	tcp_free_fastopen_req(tp);
2241 	tcp_fastopen_destroy_cipher(sk);
2242 	tcp_saved_syn_free(tp);
2243 
2244 	sk_sockets_allocated_dec(sk);
2245 }
2246 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2247 
2248 #ifdef CONFIG_PROC_FS
2249 /* Proc filesystem TCP sock list dumping. */
2250 
2251 /*
2252  * Get next listener socket follow cur.  If cur is NULL, get first socket
2253  * starting from bucket given in st->bucket; when st->bucket is zero the
2254  * very first socket in the hash table is returned.
2255  */
2256 static void *listening_get_next(struct seq_file *seq, void *cur)
2257 {
2258 	struct tcp_seq_afinfo *afinfo;
2259 	struct tcp_iter_state *st = seq->private;
2260 	struct net *net = seq_file_net(seq);
2261 	struct inet_listen_hashbucket *ilb;
2262 	struct hlist_nulls_node *node;
2263 	struct sock *sk = cur;
2264 
2265 	if (st->bpf_seq_afinfo)
2266 		afinfo = st->bpf_seq_afinfo;
2267 	else
2268 		afinfo = PDE_DATA(file_inode(seq->file));
2269 
2270 	if (!sk) {
2271 get_head:
2272 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2273 		spin_lock(&ilb->lock);
2274 		sk = sk_nulls_head(&ilb->nulls_head);
2275 		st->offset = 0;
2276 		goto get_sk;
2277 	}
2278 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2279 	++st->num;
2280 	++st->offset;
2281 
2282 	sk = sk_nulls_next(sk);
2283 get_sk:
2284 	sk_nulls_for_each_from(sk, node) {
2285 		if (!net_eq(sock_net(sk), net))
2286 			continue;
2287 		if (afinfo->family == AF_UNSPEC ||
2288 		    sk->sk_family == afinfo->family)
2289 			return sk;
2290 	}
2291 	spin_unlock(&ilb->lock);
2292 	st->offset = 0;
2293 	if (++st->bucket < INET_LHTABLE_SIZE)
2294 		goto get_head;
2295 	return NULL;
2296 }
2297 
2298 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2299 {
2300 	struct tcp_iter_state *st = seq->private;
2301 	void *rc;
2302 
2303 	st->bucket = 0;
2304 	st->offset = 0;
2305 	rc = listening_get_next(seq, NULL);
2306 
2307 	while (rc && *pos) {
2308 		rc = listening_get_next(seq, rc);
2309 		--*pos;
2310 	}
2311 	return rc;
2312 }
2313 
2314 static inline bool empty_bucket(const struct tcp_iter_state *st)
2315 {
2316 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2317 }
2318 
2319 /*
2320  * Get first established socket starting from bucket given in st->bucket.
2321  * If st->bucket is zero, the very first socket in the hash is returned.
2322  */
2323 static void *established_get_first(struct seq_file *seq)
2324 {
2325 	struct tcp_seq_afinfo *afinfo;
2326 	struct tcp_iter_state *st = seq->private;
2327 	struct net *net = seq_file_net(seq);
2328 	void *rc = NULL;
2329 
2330 	if (st->bpf_seq_afinfo)
2331 		afinfo = st->bpf_seq_afinfo;
2332 	else
2333 		afinfo = PDE_DATA(file_inode(seq->file));
2334 
2335 	st->offset = 0;
2336 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2337 		struct sock *sk;
2338 		struct hlist_nulls_node *node;
2339 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2340 
2341 		/* Lockless fast path for the common case of empty buckets */
2342 		if (empty_bucket(st))
2343 			continue;
2344 
2345 		spin_lock_bh(lock);
2346 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2347 			if ((afinfo->family != AF_UNSPEC &&
2348 			     sk->sk_family != afinfo->family) ||
2349 			    !net_eq(sock_net(sk), net)) {
2350 				continue;
2351 			}
2352 			rc = sk;
2353 			goto out;
2354 		}
2355 		spin_unlock_bh(lock);
2356 	}
2357 out:
2358 	return rc;
2359 }
2360 
2361 static void *established_get_next(struct seq_file *seq, void *cur)
2362 {
2363 	struct tcp_seq_afinfo *afinfo;
2364 	struct sock *sk = cur;
2365 	struct hlist_nulls_node *node;
2366 	struct tcp_iter_state *st = seq->private;
2367 	struct net *net = seq_file_net(seq);
2368 
2369 	if (st->bpf_seq_afinfo)
2370 		afinfo = st->bpf_seq_afinfo;
2371 	else
2372 		afinfo = PDE_DATA(file_inode(seq->file));
2373 
2374 	++st->num;
2375 	++st->offset;
2376 
2377 	sk = sk_nulls_next(sk);
2378 
2379 	sk_nulls_for_each_from(sk, node) {
2380 		if ((afinfo->family == AF_UNSPEC ||
2381 		     sk->sk_family == afinfo->family) &&
2382 		    net_eq(sock_net(sk), net))
2383 			return sk;
2384 	}
2385 
2386 	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2387 	++st->bucket;
2388 	return established_get_first(seq);
2389 }
2390 
2391 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2392 {
2393 	struct tcp_iter_state *st = seq->private;
2394 	void *rc;
2395 
2396 	st->bucket = 0;
2397 	rc = established_get_first(seq);
2398 
2399 	while (rc && pos) {
2400 		rc = established_get_next(seq, rc);
2401 		--pos;
2402 	}
2403 	return rc;
2404 }
2405 
2406 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2407 {
2408 	void *rc;
2409 	struct tcp_iter_state *st = seq->private;
2410 
2411 	st->state = TCP_SEQ_STATE_LISTENING;
2412 	rc	  = listening_get_idx(seq, &pos);
2413 
2414 	if (!rc) {
2415 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2416 		rc	  = established_get_idx(seq, pos);
2417 	}
2418 
2419 	return rc;
2420 }
2421 
2422 static void *tcp_seek_last_pos(struct seq_file *seq)
2423 {
2424 	struct tcp_iter_state *st = seq->private;
2425 	int offset = st->offset;
2426 	int orig_num = st->num;
2427 	void *rc = NULL;
2428 
2429 	switch (st->state) {
2430 	case TCP_SEQ_STATE_LISTENING:
2431 		if (st->bucket >= INET_LHTABLE_SIZE)
2432 			break;
2433 		st->state = TCP_SEQ_STATE_LISTENING;
2434 		rc = listening_get_next(seq, NULL);
2435 		while (offset-- && rc)
2436 			rc = listening_get_next(seq, rc);
2437 		if (rc)
2438 			break;
2439 		st->bucket = 0;
2440 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2441 		fallthrough;
2442 	case TCP_SEQ_STATE_ESTABLISHED:
2443 		if (st->bucket > tcp_hashinfo.ehash_mask)
2444 			break;
2445 		rc = established_get_first(seq);
2446 		while (offset-- && rc)
2447 			rc = established_get_next(seq, rc);
2448 	}
2449 
2450 	st->num = orig_num;
2451 
2452 	return rc;
2453 }
2454 
2455 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2456 {
2457 	struct tcp_iter_state *st = seq->private;
2458 	void *rc;
2459 
2460 	if (*pos && *pos == st->last_pos) {
2461 		rc = tcp_seek_last_pos(seq);
2462 		if (rc)
2463 			goto out;
2464 	}
2465 
2466 	st->state = TCP_SEQ_STATE_LISTENING;
2467 	st->num = 0;
2468 	st->bucket = 0;
2469 	st->offset = 0;
2470 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2471 
2472 out:
2473 	st->last_pos = *pos;
2474 	return rc;
2475 }
2476 EXPORT_SYMBOL(tcp_seq_start);
2477 
2478 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2479 {
2480 	struct tcp_iter_state *st = seq->private;
2481 	void *rc = NULL;
2482 
2483 	if (v == SEQ_START_TOKEN) {
2484 		rc = tcp_get_idx(seq, 0);
2485 		goto out;
2486 	}
2487 
2488 	switch (st->state) {
2489 	case TCP_SEQ_STATE_LISTENING:
2490 		rc = listening_get_next(seq, v);
2491 		if (!rc) {
2492 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2493 			st->bucket = 0;
2494 			st->offset = 0;
2495 			rc	  = established_get_first(seq);
2496 		}
2497 		break;
2498 	case TCP_SEQ_STATE_ESTABLISHED:
2499 		rc = established_get_next(seq, v);
2500 		break;
2501 	}
2502 out:
2503 	++*pos;
2504 	st->last_pos = *pos;
2505 	return rc;
2506 }
2507 EXPORT_SYMBOL(tcp_seq_next);
2508 
2509 void tcp_seq_stop(struct seq_file *seq, void *v)
2510 {
2511 	struct tcp_iter_state *st = seq->private;
2512 
2513 	switch (st->state) {
2514 	case TCP_SEQ_STATE_LISTENING:
2515 		if (v != SEQ_START_TOKEN)
2516 			spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2517 		break;
2518 	case TCP_SEQ_STATE_ESTABLISHED:
2519 		if (v)
2520 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2521 		break;
2522 	}
2523 }
2524 EXPORT_SYMBOL(tcp_seq_stop);
2525 
2526 static void get_openreq4(const struct request_sock *req,
2527 			 struct seq_file *f, int i)
2528 {
2529 	const struct inet_request_sock *ireq = inet_rsk(req);
2530 	long delta = req->rsk_timer.expires - jiffies;
2531 
2532 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2533 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2534 		i,
2535 		ireq->ir_loc_addr,
2536 		ireq->ir_num,
2537 		ireq->ir_rmt_addr,
2538 		ntohs(ireq->ir_rmt_port),
2539 		TCP_SYN_RECV,
2540 		0, 0, /* could print option size, but that is af dependent. */
2541 		1,    /* timers active (only the expire timer) */
2542 		jiffies_delta_to_clock_t(delta),
2543 		req->num_timeout,
2544 		from_kuid_munged(seq_user_ns(f),
2545 				 sock_i_uid(req->rsk_listener)),
2546 		0,  /* non standard timer */
2547 		0, /* open_requests have no inode */
2548 		0,
2549 		req);
2550 }
2551 
2552 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2553 {
2554 	int timer_active;
2555 	unsigned long timer_expires;
2556 	const struct tcp_sock *tp = tcp_sk(sk);
2557 	const struct inet_connection_sock *icsk = inet_csk(sk);
2558 	const struct inet_sock *inet = inet_sk(sk);
2559 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2560 	__be32 dest = inet->inet_daddr;
2561 	__be32 src = inet->inet_rcv_saddr;
2562 	__u16 destp = ntohs(inet->inet_dport);
2563 	__u16 srcp = ntohs(inet->inet_sport);
2564 	int rx_queue;
2565 	int state;
2566 
2567 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2568 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2569 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2570 		timer_active	= 1;
2571 		timer_expires	= icsk->icsk_timeout;
2572 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2573 		timer_active	= 4;
2574 		timer_expires	= icsk->icsk_timeout;
2575 	} else if (timer_pending(&sk->sk_timer)) {
2576 		timer_active	= 2;
2577 		timer_expires	= sk->sk_timer.expires;
2578 	} else {
2579 		timer_active	= 0;
2580 		timer_expires = jiffies;
2581 	}
2582 
2583 	state = inet_sk_state_load(sk);
2584 	if (state == TCP_LISTEN)
2585 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2586 	else
2587 		/* Because we don't lock the socket,
2588 		 * we might find a transient negative value.
2589 		 */
2590 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2591 				      READ_ONCE(tp->copied_seq), 0);
2592 
2593 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2594 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2595 		i, src, srcp, dest, destp, state,
2596 		READ_ONCE(tp->write_seq) - tp->snd_una,
2597 		rx_queue,
2598 		timer_active,
2599 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2600 		icsk->icsk_retransmits,
2601 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2602 		icsk->icsk_probes_out,
2603 		sock_i_ino(sk),
2604 		refcount_read(&sk->sk_refcnt), sk,
2605 		jiffies_to_clock_t(icsk->icsk_rto),
2606 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2607 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2608 		tp->snd_cwnd,
2609 		state == TCP_LISTEN ?
2610 		    fastopenq->max_qlen :
2611 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2612 }
2613 
2614 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2615 			       struct seq_file *f, int i)
2616 {
2617 	long delta = tw->tw_timer.expires - jiffies;
2618 	__be32 dest, src;
2619 	__u16 destp, srcp;
2620 
2621 	dest  = tw->tw_daddr;
2622 	src   = tw->tw_rcv_saddr;
2623 	destp = ntohs(tw->tw_dport);
2624 	srcp  = ntohs(tw->tw_sport);
2625 
2626 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2627 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2628 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2629 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2630 		refcount_read(&tw->tw_refcnt), tw);
2631 }
2632 
2633 #define TMPSZ 150
2634 
2635 static int tcp4_seq_show(struct seq_file *seq, void *v)
2636 {
2637 	struct tcp_iter_state *st;
2638 	struct sock *sk = v;
2639 
2640 	seq_setwidth(seq, TMPSZ - 1);
2641 	if (v == SEQ_START_TOKEN) {
2642 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2643 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2644 			   "inode");
2645 		goto out;
2646 	}
2647 	st = seq->private;
2648 
2649 	if (sk->sk_state == TCP_TIME_WAIT)
2650 		get_timewait4_sock(v, seq, st->num);
2651 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2652 		get_openreq4(v, seq, st->num);
2653 	else
2654 		get_tcp4_sock(v, seq, st->num);
2655 out:
2656 	seq_pad(seq, '\n');
2657 	return 0;
2658 }
2659 
2660 #ifdef CONFIG_BPF_SYSCALL
2661 struct bpf_iter__tcp {
2662 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2663 	__bpf_md_ptr(struct sock_common *, sk_common);
2664 	uid_t uid __aligned(8);
2665 };
2666 
2667 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2668 			     struct sock_common *sk_common, uid_t uid)
2669 {
2670 	struct bpf_iter__tcp ctx;
2671 
2672 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2673 	ctx.meta = meta;
2674 	ctx.sk_common = sk_common;
2675 	ctx.uid = uid;
2676 	return bpf_iter_run_prog(prog, &ctx);
2677 }
2678 
2679 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2680 {
2681 	struct bpf_iter_meta meta;
2682 	struct bpf_prog *prog;
2683 	struct sock *sk = v;
2684 	uid_t uid;
2685 
2686 	if (v == SEQ_START_TOKEN)
2687 		return 0;
2688 
2689 	if (sk->sk_state == TCP_TIME_WAIT) {
2690 		uid = 0;
2691 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2692 		const struct request_sock *req = v;
2693 
2694 		uid = from_kuid_munged(seq_user_ns(seq),
2695 				       sock_i_uid(req->rsk_listener));
2696 	} else {
2697 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2698 	}
2699 
2700 	meta.seq = seq;
2701 	prog = bpf_iter_get_info(&meta, false);
2702 	return tcp_prog_seq_show(prog, &meta, v, uid);
2703 }
2704 
2705 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
2706 {
2707 	struct bpf_iter_meta meta;
2708 	struct bpf_prog *prog;
2709 
2710 	if (!v) {
2711 		meta.seq = seq;
2712 		prog = bpf_iter_get_info(&meta, true);
2713 		if (prog)
2714 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
2715 	}
2716 
2717 	tcp_seq_stop(seq, v);
2718 }
2719 
2720 static const struct seq_operations bpf_iter_tcp_seq_ops = {
2721 	.show		= bpf_iter_tcp_seq_show,
2722 	.start		= tcp_seq_start,
2723 	.next		= tcp_seq_next,
2724 	.stop		= bpf_iter_tcp_seq_stop,
2725 };
2726 #endif
2727 
2728 static const struct seq_operations tcp4_seq_ops = {
2729 	.show		= tcp4_seq_show,
2730 	.start		= tcp_seq_start,
2731 	.next		= tcp_seq_next,
2732 	.stop		= tcp_seq_stop,
2733 };
2734 
2735 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2736 	.family		= AF_INET,
2737 };
2738 
2739 static int __net_init tcp4_proc_init_net(struct net *net)
2740 {
2741 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
2742 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
2743 		return -ENOMEM;
2744 	return 0;
2745 }
2746 
2747 static void __net_exit tcp4_proc_exit_net(struct net *net)
2748 {
2749 	remove_proc_entry("tcp", net->proc_net);
2750 }
2751 
2752 static struct pernet_operations tcp4_net_ops = {
2753 	.init = tcp4_proc_init_net,
2754 	.exit = tcp4_proc_exit_net,
2755 };
2756 
2757 int __init tcp4_proc_init(void)
2758 {
2759 	return register_pernet_subsys(&tcp4_net_ops);
2760 }
2761 
2762 void tcp4_proc_exit(void)
2763 {
2764 	unregister_pernet_subsys(&tcp4_net_ops);
2765 }
2766 #endif /* CONFIG_PROC_FS */
2767 
2768 /* @wake is one when sk_stream_write_space() calls us.
2769  * This sends EPOLLOUT only if notsent_bytes is half the limit.
2770  * This mimics the strategy used in sock_def_write_space().
2771  */
2772 bool tcp_stream_memory_free(const struct sock *sk, int wake)
2773 {
2774 	const struct tcp_sock *tp = tcp_sk(sk);
2775 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
2776 			    READ_ONCE(tp->snd_nxt);
2777 
2778 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
2779 }
2780 EXPORT_SYMBOL(tcp_stream_memory_free);
2781 
2782 struct proto tcp_prot = {
2783 	.name			= "TCP",
2784 	.owner			= THIS_MODULE,
2785 	.close			= tcp_close,
2786 	.pre_connect		= tcp_v4_pre_connect,
2787 	.connect		= tcp_v4_connect,
2788 	.disconnect		= tcp_disconnect,
2789 	.accept			= inet_csk_accept,
2790 	.ioctl			= tcp_ioctl,
2791 	.init			= tcp_v4_init_sock,
2792 	.destroy		= tcp_v4_destroy_sock,
2793 	.shutdown		= tcp_shutdown,
2794 	.setsockopt		= tcp_setsockopt,
2795 	.getsockopt		= tcp_getsockopt,
2796 	.keepalive		= tcp_set_keepalive,
2797 	.recvmsg		= tcp_recvmsg,
2798 	.sendmsg		= tcp_sendmsg,
2799 	.sendpage		= tcp_sendpage,
2800 	.backlog_rcv		= tcp_v4_do_rcv,
2801 	.release_cb		= tcp_release_cb,
2802 	.hash			= inet_hash,
2803 	.unhash			= inet_unhash,
2804 	.get_port		= inet_csk_get_port,
2805 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2806 	.leave_memory_pressure	= tcp_leave_memory_pressure,
2807 	.stream_memory_free	= tcp_stream_memory_free,
2808 	.sockets_allocated	= &tcp_sockets_allocated,
2809 	.orphan_count		= &tcp_orphan_count,
2810 	.memory_allocated	= &tcp_memory_allocated,
2811 	.memory_pressure	= &tcp_memory_pressure,
2812 	.sysctl_mem		= sysctl_tcp_mem,
2813 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
2814 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
2815 	.max_header		= MAX_TCP_HEADER,
2816 	.obj_size		= sizeof(struct tcp_sock),
2817 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
2818 	.twsk_prot		= &tcp_timewait_sock_ops,
2819 	.rsk_prot		= &tcp_request_sock_ops,
2820 	.h.hashinfo		= &tcp_hashinfo,
2821 	.no_autobind		= true,
2822 	.diag_destroy		= tcp_abort,
2823 };
2824 EXPORT_SYMBOL(tcp_prot);
2825 
2826 static void __net_exit tcp_sk_exit(struct net *net)
2827 {
2828 	int cpu;
2829 
2830 	if (net->ipv4.tcp_congestion_control)
2831 		bpf_module_put(net->ipv4.tcp_congestion_control,
2832 			       net->ipv4.tcp_congestion_control->owner);
2833 
2834 	for_each_possible_cpu(cpu)
2835 		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2836 	free_percpu(net->ipv4.tcp_sk);
2837 }
2838 
2839 static int __net_init tcp_sk_init(struct net *net)
2840 {
2841 	int res, cpu, cnt;
2842 
2843 	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2844 	if (!net->ipv4.tcp_sk)
2845 		return -ENOMEM;
2846 
2847 	for_each_possible_cpu(cpu) {
2848 		struct sock *sk;
2849 
2850 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2851 					   IPPROTO_TCP, net);
2852 		if (res)
2853 			goto fail;
2854 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2855 
2856 		/* Please enforce IP_DF and IPID==0 for RST and
2857 		 * ACK sent in SYN-RECV and TIME-WAIT state.
2858 		 */
2859 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
2860 
2861 		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2862 	}
2863 
2864 	net->ipv4.sysctl_tcp_ecn = 2;
2865 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2866 
2867 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2868 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
2869 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2870 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2871 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
2872 
2873 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2874 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2875 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2876 
2877 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2878 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2879 	net->ipv4.sysctl_tcp_syncookies = 1;
2880 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2881 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2882 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2883 	net->ipv4.sysctl_tcp_orphan_retries = 0;
2884 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2885 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2886 	net->ipv4.sysctl_tcp_tw_reuse = 2;
2887 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
2888 
2889 	cnt = tcp_hashinfo.ehash_mask + 1;
2890 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
2891 	net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2892 
2893 	net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128);
2894 	net->ipv4.sysctl_tcp_sack = 1;
2895 	net->ipv4.sysctl_tcp_window_scaling = 1;
2896 	net->ipv4.sysctl_tcp_timestamps = 1;
2897 	net->ipv4.sysctl_tcp_early_retrans = 3;
2898 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
2899 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
2900 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
2901 	net->ipv4.sysctl_tcp_max_reordering = 300;
2902 	net->ipv4.sysctl_tcp_dsack = 1;
2903 	net->ipv4.sysctl_tcp_app_win = 31;
2904 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
2905 	net->ipv4.sysctl_tcp_frto = 2;
2906 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
2907 	/* This limits the percentage of the congestion window which we
2908 	 * will allow a single TSO frame to consume.  Building TSO frames
2909 	 * which are too large can cause TCP streams to be bursty.
2910 	 */
2911 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
2912 	/* Default TSQ limit of 16 TSO segments */
2913 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
2914 	/* rfc5961 challenge ack rate limiting */
2915 	net->ipv4.sysctl_tcp_challenge_ack_limit = 1000;
2916 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
2917 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
2918 	net->ipv4.sysctl_tcp_autocorking = 1;
2919 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
2920 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
2921 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
2922 	if (net != &init_net) {
2923 		memcpy(net->ipv4.sysctl_tcp_rmem,
2924 		       init_net.ipv4.sysctl_tcp_rmem,
2925 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
2926 		memcpy(net->ipv4.sysctl_tcp_wmem,
2927 		       init_net.ipv4.sysctl_tcp_wmem,
2928 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
2929 	}
2930 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
2931 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
2932 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
2933 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
2934 	spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock);
2935 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60;
2936 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
2937 
2938 	/* Reno is always built in */
2939 	if (!net_eq(net, &init_net) &&
2940 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
2941 			       init_net.ipv4.tcp_congestion_control->owner))
2942 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
2943 	else
2944 		net->ipv4.tcp_congestion_control = &tcp_reno;
2945 
2946 	return 0;
2947 fail:
2948 	tcp_sk_exit(net);
2949 
2950 	return res;
2951 }
2952 
2953 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2954 {
2955 	struct net *net;
2956 
2957 	inet_twsk_purge(&tcp_hashinfo, AF_INET);
2958 
2959 	list_for_each_entry(net, net_exit_list, exit_list)
2960 		tcp_fastopen_ctx_destroy(net);
2961 }
2962 
2963 static struct pernet_operations __net_initdata tcp_sk_ops = {
2964        .init	   = tcp_sk_init,
2965        .exit	   = tcp_sk_exit,
2966        .exit_batch = tcp_sk_exit_batch,
2967 };
2968 
2969 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
2970 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
2971 		     struct sock_common *sk_common, uid_t uid)
2972 
2973 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
2974 {
2975 	struct tcp_iter_state *st = priv_data;
2976 	struct tcp_seq_afinfo *afinfo;
2977 	int ret;
2978 
2979 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
2980 	if (!afinfo)
2981 		return -ENOMEM;
2982 
2983 	afinfo->family = AF_UNSPEC;
2984 	st->bpf_seq_afinfo = afinfo;
2985 	ret = bpf_iter_init_seq_net(priv_data, aux);
2986 	if (ret)
2987 		kfree(afinfo);
2988 	return ret;
2989 }
2990 
2991 static void bpf_iter_fini_tcp(void *priv_data)
2992 {
2993 	struct tcp_iter_state *st = priv_data;
2994 
2995 	kfree(st->bpf_seq_afinfo);
2996 	bpf_iter_fini_seq_net(priv_data);
2997 }
2998 
2999 static const struct bpf_iter_seq_info tcp_seq_info = {
3000 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3001 	.init_seq_private	= bpf_iter_init_tcp,
3002 	.fini_seq_private	= bpf_iter_fini_tcp,
3003 	.seq_priv_size		= sizeof(struct tcp_iter_state),
3004 };
3005 
3006 static struct bpf_iter_reg tcp_reg_info = {
3007 	.target			= "tcp",
3008 	.ctx_arg_info_size	= 1,
3009 	.ctx_arg_info		= {
3010 		{ offsetof(struct bpf_iter__tcp, sk_common),
3011 		  PTR_TO_BTF_ID_OR_NULL },
3012 	},
3013 	.seq_info		= &tcp_seq_info,
3014 };
3015 
3016 static void __init bpf_iter_register(void)
3017 {
3018 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3019 	if (bpf_iter_reg_target(&tcp_reg_info))
3020 		pr_warn("Warning: could not register bpf iterator tcp\n");
3021 }
3022 
3023 #endif
3024 
3025 void __init tcp_v4_init(void)
3026 {
3027 	if (register_pernet_subsys(&tcp_sk_ops))
3028 		panic("Failed to create the TCP control socket.\n");
3029 
3030 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3031 	bpf_iter_register();
3032 #endif
3033 }
3034