1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 61 #include <net/net_namespace.h> 62 #include <net/icmp.h> 63 #include <net/inet_hashtables.h> 64 #include <net/tcp.h> 65 #include <net/transp_v6.h> 66 #include <net/ipv6.h> 67 #include <net/inet_common.h> 68 #include <net/timewait_sock.h> 69 #include <net/xfrm.h> 70 #include <net/secure_seq.h> 71 #include <net/busy_poll.h> 72 73 #include <linux/inet.h> 74 #include <linux/ipv6.h> 75 #include <linux/stddef.h> 76 #include <linux/proc_fs.h> 77 #include <linux/seq_file.h> 78 #include <linux/inetdevice.h> 79 80 #include <crypto/hash.h> 81 #include <linux/scatterlist.h> 82 83 #include <trace/events/tcp.h> 84 85 #ifdef CONFIG_TCP_MD5SIG 86 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 87 __be32 daddr, __be32 saddr, const struct tcphdr *th); 88 #endif 89 90 struct inet_hashinfo tcp_hashinfo; 91 EXPORT_SYMBOL(tcp_hashinfo); 92 93 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 94 { 95 return secure_tcp_seq(ip_hdr(skb)->daddr, 96 ip_hdr(skb)->saddr, 97 tcp_hdr(skb)->dest, 98 tcp_hdr(skb)->source); 99 } 100 101 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 102 { 103 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 104 } 105 106 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 107 { 108 const struct inet_timewait_sock *tw = inet_twsk(sktw); 109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 110 struct tcp_sock *tp = tcp_sk(sk); 111 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; 112 113 if (reuse == 2) { 114 /* Still does not detect *everything* that goes through 115 * lo, since we require a loopback src or dst address 116 * or direct binding to 'lo' interface. 117 */ 118 bool loopback = false; 119 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 120 loopback = true; 121 #if IS_ENABLED(CONFIG_IPV6) 122 if (tw->tw_family == AF_INET6) { 123 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 124 (ipv6_addr_v4mapped(&tw->tw_v6_daddr) && 125 (tw->tw_v6_daddr.s6_addr[12] == 127)) || 126 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 127 (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) && 128 (tw->tw_v6_rcv_saddr.s6_addr[12] == 127))) 129 loopback = true; 130 } else 131 #endif 132 { 133 if (ipv4_is_loopback(tw->tw_daddr) || 134 ipv4_is_loopback(tw->tw_rcv_saddr)) 135 loopback = true; 136 } 137 if (!loopback) 138 reuse = 0; 139 } 140 141 /* With PAWS, it is safe from the viewpoint 142 of data integrity. Even without PAWS it is safe provided sequence 143 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 144 145 Actually, the idea is close to VJ's one, only timestamp cache is 146 held not per host, but per port pair and TW bucket is used as state 147 holder. 148 149 If TW bucket has been already destroyed we fall back to VJ's scheme 150 and use initial timestamp retrieved from peer table. 151 */ 152 if (tcptw->tw_ts_recent_stamp && 153 (!twp || (reuse && time_after32(ktime_get_seconds(), 154 tcptw->tw_ts_recent_stamp)))) { 155 /* In case of repair and re-using TIME-WAIT sockets we still 156 * want to be sure that it is safe as above but honor the 157 * sequence numbers and time stamps set as part of the repair 158 * process. 159 * 160 * Without this check re-using a TIME-WAIT socket with TCP 161 * repair would accumulate a -1 on the repair assigned 162 * sequence number. The first time it is reused the sequence 163 * is -1, the second time -2, etc. This fixes that issue 164 * without appearing to create any others. 165 */ 166 if (likely(!tp->repair)) { 167 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 168 if (tp->write_seq == 0) 169 tp->write_seq = 1; 170 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 171 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 172 } 173 sock_hold(sktw); 174 return 1; 175 } 176 177 return 0; 178 } 179 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 180 181 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 182 int addr_len) 183 { 184 /* This check is replicated from tcp_v4_connect() and intended to 185 * prevent BPF program called below from accessing bytes that are out 186 * of the bound specified by user in addr_len. 187 */ 188 if (addr_len < sizeof(struct sockaddr_in)) 189 return -EINVAL; 190 191 sock_owned_by_me(sk); 192 193 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 194 } 195 196 /* This will initiate an outgoing connection. */ 197 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 198 { 199 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 200 struct inet_sock *inet = inet_sk(sk); 201 struct tcp_sock *tp = tcp_sk(sk); 202 __be16 orig_sport, orig_dport; 203 __be32 daddr, nexthop; 204 struct flowi4 *fl4; 205 struct rtable *rt; 206 int err; 207 struct ip_options_rcu *inet_opt; 208 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 209 210 if (addr_len < sizeof(struct sockaddr_in)) 211 return -EINVAL; 212 213 if (usin->sin_family != AF_INET) 214 return -EAFNOSUPPORT; 215 216 nexthop = daddr = usin->sin_addr.s_addr; 217 inet_opt = rcu_dereference_protected(inet->inet_opt, 218 lockdep_sock_is_held(sk)); 219 if (inet_opt && inet_opt->opt.srr) { 220 if (!daddr) 221 return -EINVAL; 222 nexthop = inet_opt->opt.faddr; 223 } 224 225 orig_sport = inet->inet_sport; 226 orig_dport = usin->sin_port; 227 fl4 = &inet->cork.fl.u.ip4; 228 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 229 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 230 IPPROTO_TCP, 231 orig_sport, orig_dport, sk); 232 if (IS_ERR(rt)) { 233 err = PTR_ERR(rt); 234 if (err == -ENETUNREACH) 235 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 236 return err; 237 } 238 239 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 240 ip_rt_put(rt); 241 return -ENETUNREACH; 242 } 243 244 if (!inet_opt || !inet_opt->opt.srr) 245 daddr = fl4->daddr; 246 247 if (!inet->inet_saddr) 248 inet->inet_saddr = fl4->saddr; 249 sk_rcv_saddr_set(sk, inet->inet_saddr); 250 251 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 252 /* Reset inherited state */ 253 tp->rx_opt.ts_recent = 0; 254 tp->rx_opt.ts_recent_stamp = 0; 255 if (likely(!tp->repair)) 256 tp->write_seq = 0; 257 } 258 259 inet->inet_dport = usin->sin_port; 260 sk_daddr_set(sk, daddr); 261 262 inet_csk(sk)->icsk_ext_hdr_len = 0; 263 if (inet_opt) 264 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 265 266 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 267 268 /* Socket identity is still unknown (sport may be zero). 269 * However we set state to SYN-SENT and not releasing socket 270 * lock select source port, enter ourselves into the hash tables and 271 * complete initialization after this. 272 */ 273 tcp_set_state(sk, TCP_SYN_SENT); 274 err = inet_hash_connect(tcp_death_row, sk); 275 if (err) 276 goto failure; 277 278 sk_set_txhash(sk); 279 280 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 281 inet->inet_sport, inet->inet_dport, sk); 282 if (IS_ERR(rt)) { 283 err = PTR_ERR(rt); 284 rt = NULL; 285 goto failure; 286 } 287 /* OK, now commit destination to socket. */ 288 sk->sk_gso_type = SKB_GSO_TCPV4; 289 sk_setup_caps(sk, &rt->dst); 290 rt = NULL; 291 292 if (likely(!tp->repair)) { 293 if (!tp->write_seq) 294 tp->write_seq = secure_tcp_seq(inet->inet_saddr, 295 inet->inet_daddr, 296 inet->inet_sport, 297 usin->sin_port); 298 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 299 inet->inet_saddr, 300 inet->inet_daddr); 301 } 302 303 inet->inet_id = tp->write_seq ^ jiffies; 304 305 if (tcp_fastopen_defer_connect(sk, &err)) 306 return err; 307 if (err) 308 goto failure; 309 310 err = tcp_connect(sk); 311 312 if (err) 313 goto failure; 314 315 return 0; 316 317 failure: 318 /* 319 * This unhashes the socket and releases the local port, 320 * if necessary. 321 */ 322 tcp_set_state(sk, TCP_CLOSE); 323 ip_rt_put(rt); 324 sk->sk_route_caps = 0; 325 inet->inet_dport = 0; 326 return err; 327 } 328 EXPORT_SYMBOL(tcp_v4_connect); 329 330 /* 331 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 332 * It can be called through tcp_release_cb() if socket was owned by user 333 * at the time tcp_v4_err() was called to handle ICMP message. 334 */ 335 void tcp_v4_mtu_reduced(struct sock *sk) 336 { 337 struct inet_sock *inet = inet_sk(sk); 338 struct dst_entry *dst; 339 u32 mtu; 340 341 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 342 return; 343 mtu = tcp_sk(sk)->mtu_info; 344 dst = inet_csk_update_pmtu(sk, mtu); 345 if (!dst) 346 return; 347 348 /* Something is about to be wrong... Remember soft error 349 * for the case, if this connection will not able to recover. 350 */ 351 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 352 sk->sk_err_soft = EMSGSIZE; 353 354 mtu = dst_mtu(dst); 355 356 if (inet->pmtudisc != IP_PMTUDISC_DONT && 357 ip_sk_accept_pmtu(sk) && 358 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 359 tcp_sync_mss(sk, mtu); 360 361 /* Resend the TCP packet because it's 362 * clear that the old packet has been 363 * dropped. This is the new "fast" path mtu 364 * discovery. 365 */ 366 tcp_simple_retransmit(sk); 367 } /* else let the usual retransmit timer handle it */ 368 } 369 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 370 371 static void do_redirect(struct sk_buff *skb, struct sock *sk) 372 { 373 struct dst_entry *dst = __sk_dst_check(sk, 0); 374 375 if (dst) 376 dst->ops->redirect(dst, sk, skb); 377 } 378 379 380 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 381 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 382 { 383 struct request_sock *req = inet_reqsk(sk); 384 struct net *net = sock_net(sk); 385 386 /* ICMPs are not backlogged, hence we cannot get 387 * an established socket here. 388 */ 389 if (seq != tcp_rsk(req)->snt_isn) { 390 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 391 } else if (abort) { 392 /* 393 * Still in SYN_RECV, just remove it silently. 394 * There is no good way to pass the error to the newly 395 * created socket, and POSIX does not want network 396 * errors returned from accept(). 397 */ 398 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 399 tcp_listendrop(req->rsk_listener); 400 } 401 reqsk_put(req); 402 } 403 EXPORT_SYMBOL(tcp_req_err); 404 405 /* 406 * This routine is called by the ICMP module when it gets some 407 * sort of error condition. If err < 0 then the socket should 408 * be closed and the error returned to the user. If err > 0 409 * it's just the icmp type << 8 | icmp code. After adjustment 410 * header points to the first 8 bytes of the tcp header. We need 411 * to find the appropriate port. 412 * 413 * The locking strategy used here is very "optimistic". When 414 * someone else accesses the socket the ICMP is just dropped 415 * and for some paths there is no check at all. 416 * A more general error queue to queue errors for later handling 417 * is probably better. 418 * 419 */ 420 421 int tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 422 { 423 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 424 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 425 struct inet_connection_sock *icsk; 426 struct tcp_sock *tp; 427 struct inet_sock *inet; 428 const int type = icmp_hdr(icmp_skb)->type; 429 const int code = icmp_hdr(icmp_skb)->code; 430 struct sock *sk; 431 struct sk_buff *skb; 432 struct request_sock *fastopen; 433 u32 seq, snd_una; 434 s32 remaining; 435 u32 delta_us; 436 int err; 437 struct net *net = dev_net(icmp_skb->dev); 438 439 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 440 th->dest, iph->saddr, ntohs(th->source), 441 inet_iif(icmp_skb), 0); 442 if (!sk) { 443 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 444 return -ENOENT; 445 } 446 if (sk->sk_state == TCP_TIME_WAIT) { 447 inet_twsk_put(inet_twsk(sk)); 448 return 0; 449 } 450 seq = ntohl(th->seq); 451 if (sk->sk_state == TCP_NEW_SYN_RECV) { 452 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 453 type == ICMP_TIME_EXCEEDED || 454 (type == ICMP_DEST_UNREACH && 455 (code == ICMP_NET_UNREACH || 456 code == ICMP_HOST_UNREACH))); 457 return 0; 458 } 459 460 bh_lock_sock(sk); 461 /* If too many ICMPs get dropped on busy 462 * servers this needs to be solved differently. 463 * We do take care of PMTU discovery (RFC1191) special case : 464 * we can receive locally generated ICMP messages while socket is held. 465 */ 466 if (sock_owned_by_user(sk)) { 467 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 468 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 469 } 470 if (sk->sk_state == TCP_CLOSE) 471 goto out; 472 473 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 474 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 475 goto out; 476 } 477 478 icsk = inet_csk(sk); 479 tp = tcp_sk(sk); 480 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 481 fastopen = tp->fastopen_rsk; 482 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 483 if (sk->sk_state != TCP_LISTEN && 484 !between(seq, snd_una, tp->snd_nxt)) { 485 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 486 goto out; 487 } 488 489 switch (type) { 490 case ICMP_REDIRECT: 491 if (!sock_owned_by_user(sk)) 492 do_redirect(icmp_skb, sk); 493 goto out; 494 case ICMP_SOURCE_QUENCH: 495 /* Just silently ignore these. */ 496 goto out; 497 case ICMP_PARAMETERPROB: 498 err = EPROTO; 499 break; 500 case ICMP_DEST_UNREACH: 501 if (code > NR_ICMP_UNREACH) 502 goto out; 503 504 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 505 /* We are not interested in TCP_LISTEN and open_requests 506 * (SYN-ACKs send out by Linux are always <576bytes so 507 * they should go through unfragmented). 508 */ 509 if (sk->sk_state == TCP_LISTEN) 510 goto out; 511 512 tp->mtu_info = info; 513 if (!sock_owned_by_user(sk)) { 514 tcp_v4_mtu_reduced(sk); 515 } else { 516 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 517 sock_hold(sk); 518 } 519 goto out; 520 } 521 522 err = icmp_err_convert[code].errno; 523 /* check if icmp_skb allows revert of backoff 524 * (see draft-zimmermann-tcp-lcd) */ 525 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 526 break; 527 if (seq != tp->snd_una || !icsk->icsk_retransmits || 528 !icsk->icsk_backoff || fastopen) 529 break; 530 531 if (sock_owned_by_user(sk)) 532 break; 533 534 skb = tcp_rtx_queue_head(sk); 535 if (WARN_ON_ONCE(!skb)) 536 break; 537 538 icsk->icsk_backoff--; 539 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 540 TCP_TIMEOUT_INIT; 541 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 542 543 544 tcp_mstamp_refresh(tp); 545 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 546 remaining = icsk->icsk_rto - 547 usecs_to_jiffies(delta_us); 548 549 if (remaining > 0) { 550 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 551 remaining, TCP_RTO_MAX); 552 } else { 553 /* RTO revert clocked out retransmission. 554 * Will retransmit now */ 555 tcp_retransmit_timer(sk); 556 } 557 558 break; 559 case ICMP_TIME_EXCEEDED: 560 err = EHOSTUNREACH; 561 break; 562 default: 563 goto out; 564 } 565 566 switch (sk->sk_state) { 567 case TCP_SYN_SENT: 568 case TCP_SYN_RECV: 569 /* Only in fast or simultaneous open. If a fast open socket is 570 * is already accepted it is treated as a connected one below. 571 */ 572 if (fastopen && !fastopen->sk) 573 break; 574 575 if (!sock_owned_by_user(sk)) { 576 sk->sk_err = err; 577 578 sk->sk_error_report(sk); 579 580 tcp_done(sk); 581 } else { 582 sk->sk_err_soft = err; 583 } 584 goto out; 585 } 586 587 /* If we've already connected we will keep trying 588 * until we time out, or the user gives up. 589 * 590 * rfc1122 4.2.3.9 allows to consider as hard errors 591 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 592 * but it is obsoleted by pmtu discovery). 593 * 594 * Note, that in modern internet, where routing is unreliable 595 * and in each dark corner broken firewalls sit, sending random 596 * errors ordered by their masters even this two messages finally lose 597 * their original sense (even Linux sends invalid PORT_UNREACHs) 598 * 599 * Now we are in compliance with RFCs. 600 * --ANK (980905) 601 */ 602 603 inet = inet_sk(sk); 604 if (!sock_owned_by_user(sk) && inet->recverr) { 605 sk->sk_err = err; 606 sk->sk_error_report(sk); 607 } else { /* Only an error on timeout */ 608 sk->sk_err_soft = err; 609 } 610 611 out: 612 bh_unlock_sock(sk); 613 sock_put(sk); 614 return 0; 615 } 616 617 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 618 { 619 struct tcphdr *th = tcp_hdr(skb); 620 621 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 622 skb->csum_start = skb_transport_header(skb) - skb->head; 623 skb->csum_offset = offsetof(struct tcphdr, check); 624 } 625 626 /* This routine computes an IPv4 TCP checksum. */ 627 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 628 { 629 const struct inet_sock *inet = inet_sk(sk); 630 631 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 632 } 633 EXPORT_SYMBOL(tcp_v4_send_check); 634 635 /* 636 * This routine will send an RST to the other tcp. 637 * 638 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 639 * for reset. 640 * Answer: if a packet caused RST, it is not for a socket 641 * existing in our system, if it is matched to a socket, 642 * it is just duplicate segment or bug in other side's TCP. 643 * So that we build reply only basing on parameters 644 * arrived with segment. 645 * Exception: precedence violation. We do not implement it in any case. 646 */ 647 648 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 649 { 650 const struct tcphdr *th = tcp_hdr(skb); 651 struct { 652 struct tcphdr th; 653 #ifdef CONFIG_TCP_MD5SIG 654 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 655 #endif 656 } rep; 657 struct ip_reply_arg arg; 658 #ifdef CONFIG_TCP_MD5SIG 659 struct tcp_md5sig_key *key = NULL; 660 const __u8 *hash_location = NULL; 661 unsigned char newhash[16]; 662 int genhash; 663 struct sock *sk1 = NULL; 664 #endif 665 u64 transmit_time = 0; 666 struct sock *ctl_sk; 667 struct net *net; 668 669 /* Never send a reset in response to a reset. */ 670 if (th->rst) 671 return; 672 673 /* If sk not NULL, it means we did a successful lookup and incoming 674 * route had to be correct. prequeue might have dropped our dst. 675 */ 676 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 677 return; 678 679 /* Swap the send and the receive. */ 680 memset(&rep, 0, sizeof(rep)); 681 rep.th.dest = th->source; 682 rep.th.source = th->dest; 683 rep.th.doff = sizeof(struct tcphdr) / 4; 684 rep.th.rst = 1; 685 686 if (th->ack) { 687 rep.th.seq = th->ack_seq; 688 } else { 689 rep.th.ack = 1; 690 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 691 skb->len - (th->doff << 2)); 692 } 693 694 memset(&arg, 0, sizeof(arg)); 695 arg.iov[0].iov_base = (unsigned char *)&rep; 696 arg.iov[0].iov_len = sizeof(rep.th); 697 698 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 699 #ifdef CONFIG_TCP_MD5SIG 700 rcu_read_lock(); 701 hash_location = tcp_parse_md5sig_option(th); 702 if (sk && sk_fullsock(sk)) { 703 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 704 &ip_hdr(skb)->saddr, AF_INET); 705 } else if (hash_location) { 706 /* 707 * active side is lost. Try to find listening socket through 708 * source port, and then find md5 key through listening socket. 709 * we are not loose security here: 710 * Incoming packet is checked with md5 hash with finding key, 711 * no RST generated if md5 hash doesn't match. 712 */ 713 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 714 ip_hdr(skb)->saddr, 715 th->source, ip_hdr(skb)->daddr, 716 ntohs(th->source), inet_iif(skb), 717 tcp_v4_sdif(skb)); 718 /* don't send rst if it can't find key */ 719 if (!sk1) 720 goto out; 721 722 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 723 &ip_hdr(skb)->saddr, AF_INET); 724 if (!key) 725 goto out; 726 727 728 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 729 if (genhash || memcmp(hash_location, newhash, 16) != 0) 730 goto out; 731 732 } 733 734 if (key) { 735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 736 (TCPOPT_NOP << 16) | 737 (TCPOPT_MD5SIG << 8) | 738 TCPOLEN_MD5SIG); 739 /* Update length and the length the header thinks exists */ 740 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 741 rep.th.doff = arg.iov[0].iov_len / 4; 742 743 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 744 key, ip_hdr(skb)->saddr, 745 ip_hdr(skb)->daddr, &rep.th); 746 } 747 #endif 748 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 749 ip_hdr(skb)->saddr, /* XXX */ 750 arg.iov[0].iov_len, IPPROTO_TCP, 0); 751 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 752 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 753 754 /* When socket is gone, all binding information is lost. 755 * routing might fail in this case. No choice here, if we choose to force 756 * input interface, we will misroute in case of asymmetric route. 757 */ 758 if (sk) { 759 arg.bound_dev_if = sk->sk_bound_dev_if; 760 if (sk_fullsock(sk)) 761 trace_tcp_send_reset(sk, skb); 762 } 763 764 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 765 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 766 767 arg.tos = ip_hdr(skb)->tos; 768 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 769 local_bh_disable(); 770 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); 771 if (sk) { 772 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 773 inet_twsk(sk)->tw_mark : sk->sk_mark; 774 transmit_time = tcp_transmit_time(sk); 775 } 776 ip_send_unicast_reply(ctl_sk, 777 skb, &TCP_SKB_CB(skb)->header.h4.opt, 778 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 779 &arg, arg.iov[0].iov_len, 780 transmit_time); 781 782 ctl_sk->sk_mark = 0; 783 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 784 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 785 local_bh_enable(); 786 787 #ifdef CONFIG_TCP_MD5SIG 788 out: 789 rcu_read_unlock(); 790 #endif 791 } 792 793 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 794 outside socket context is ugly, certainly. What can I do? 795 */ 796 797 static void tcp_v4_send_ack(const struct sock *sk, 798 struct sk_buff *skb, u32 seq, u32 ack, 799 u32 win, u32 tsval, u32 tsecr, int oif, 800 struct tcp_md5sig_key *key, 801 int reply_flags, u8 tos) 802 { 803 const struct tcphdr *th = tcp_hdr(skb); 804 struct { 805 struct tcphdr th; 806 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 807 #ifdef CONFIG_TCP_MD5SIG 808 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 809 #endif 810 ]; 811 } rep; 812 struct net *net = sock_net(sk); 813 struct ip_reply_arg arg; 814 struct sock *ctl_sk; 815 u64 transmit_time; 816 817 memset(&rep.th, 0, sizeof(struct tcphdr)); 818 memset(&arg, 0, sizeof(arg)); 819 820 arg.iov[0].iov_base = (unsigned char *)&rep; 821 arg.iov[0].iov_len = sizeof(rep.th); 822 if (tsecr) { 823 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 824 (TCPOPT_TIMESTAMP << 8) | 825 TCPOLEN_TIMESTAMP); 826 rep.opt[1] = htonl(tsval); 827 rep.opt[2] = htonl(tsecr); 828 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 829 } 830 831 /* Swap the send and the receive. */ 832 rep.th.dest = th->source; 833 rep.th.source = th->dest; 834 rep.th.doff = arg.iov[0].iov_len / 4; 835 rep.th.seq = htonl(seq); 836 rep.th.ack_seq = htonl(ack); 837 rep.th.ack = 1; 838 rep.th.window = htons(win); 839 840 #ifdef CONFIG_TCP_MD5SIG 841 if (key) { 842 int offset = (tsecr) ? 3 : 0; 843 844 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 845 (TCPOPT_NOP << 16) | 846 (TCPOPT_MD5SIG << 8) | 847 TCPOLEN_MD5SIG); 848 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 849 rep.th.doff = arg.iov[0].iov_len/4; 850 851 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 852 key, ip_hdr(skb)->saddr, 853 ip_hdr(skb)->daddr, &rep.th); 854 } 855 #endif 856 arg.flags = reply_flags; 857 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 858 ip_hdr(skb)->saddr, /* XXX */ 859 arg.iov[0].iov_len, IPPROTO_TCP, 0); 860 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 861 if (oif) 862 arg.bound_dev_if = oif; 863 arg.tos = tos; 864 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 865 local_bh_disable(); 866 ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); 867 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 868 inet_twsk(sk)->tw_mark : sk->sk_mark; 869 transmit_time = tcp_transmit_time(sk); 870 ip_send_unicast_reply(ctl_sk, 871 skb, &TCP_SKB_CB(skb)->header.h4.opt, 872 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 873 &arg, arg.iov[0].iov_len, 874 transmit_time); 875 876 ctl_sk->sk_mark = 0; 877 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 878 local_bh_enable(); 879 } 880 881 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 882 { 883 struct inet_timewait_sock *tw = inet_twsk(sk); 884 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 885 886 tcp_v4_send_ack(sk, skb, 887 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 888 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 889 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 890 tcptw->tw_ts_recent, 891 tw->tw_bound_dev_if, 892 tcp_twsk_md5_key(tcptw), 893 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 894 tw->tw_tos 895 ); 896 897 inet_twsk_put(tw); 898 } 899 900 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 901 struct request_sock *req) 902 { 903 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 904 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 905 */ 906 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 907 tcp_sk(sk)->snd_nxt; 908 909 /* RFC 7323 2.3 910 * The window field (SEG.WND) of every outgoing segment, with the 911 * exception of <SYN> segments, MUST be right-shifted by 912 * Rcv.Wind.Shift bits: 913 */ 914 tcp_v4_send_ack(sk, skb, seq, 915 tcp_rsk(req)->rcv_nxt, 916 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 917 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 918 req->ts_recent, 919 0, 920 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr, 921 AF_INET), 922 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 923 ip_hdr(skb)->tos); 924 } 925 926 /* 927 * Send a SYN-ACK after having received a SYN. 928 * This still operates on a request_sock only, not on a big 929 * socket. 930 */ 931 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 932 struct flowi *fl, 933 struct request_sock *req, 934 struct tcp_fastopen_cookie *foc, 935 enum tcp_synack_type synack_type) 936 { 937 const struct inet_request_sock *ireq = inet_rsk(req); 938 struct flowi4 fl4; 939 int err = -1; 940 struct sk_buff *skb; 941 942 /* First, grab a route. */ 943 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 944 return -1; 945 946 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 947 948 if (skb) { 949 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 950 951 rcu_read_lock(); 952 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 953 ireq->ir_rmt_addr, 954 rcu_dereference(ireq->ireq_opt)); 955 rcu_read_unlock(); 956 err = net_xmit_eval(err); 957 } 958 959 return err; 960 } 961 962 /* 963 * IPv4 request_sock destructor. 964 */ 965 static void tcp_v4_reqsk_destructor(struct request_sock *req) 966 { 967 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 968 } 969 970 #ifdef CONFIG_TCP_MD5SIG 971 /* 972 * RFC2385 MD5 checksumming requires a mapping of 973 * IP address->MD5 Key. 974 * We need to maintain these in the sk structure. 975 */ 976 977 DEFINE_STATIC_KEY_FALSE(tcp_md5_needed); 978 EXPORT_SYMBOL(tcp_md5_needed); 979 980 /* Find the Key structure for an address. */ 981 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, 982 const union tcp_md5_addr *addr, 983 int family) 984 { 985 const struct tcp_sock *tp = tcp_sk(sk); 986 struct tcp_md5sig_key *key; 987 const struct tcp_md5sig_info *md5sig; 988 __be32 mask; 989 struct tcp_md5sig_key *best_match = NULL; 990 bool match; 991 992 /* caller either holds rcu_read_lock() or socket lock */ 993 md5sig = rcu_dereference_check(tp->md5sig_info, 994 lockdep_sock_is_held(sk)); 995 if (!md5sig) 996 return NULL; 997 998 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 999 if (key->family != family) 1000 continue; 1001 1002 if (family == AF_INET) { 1003 mask = inet_make_mask(key->prefixlen); 1004 match = (key->addr.a4.s_addr & mask) == 1005 (addr->a4.s_addr & mask); 1006 #if IS_ENABLED(CONFIG_IPV6) 1007 } else if (family == AF_INET6) { 1008 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1009 key->prefixlen); 1010 #endif 1011 } else { 1012 match = false; 1013 } 1014 1015 if (match && (!best_match || 1016 key->prefixlen > best_match->prefixlen)) 1017 best_match = key; 1018 } 1019 return best_match; 1020 } 1021 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1022 1023 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1024 const union tcp_md5_addr *addr, 1025 int family, u8 prefixlen) 1026 { 1027 const struct tcp_sock *tp = tcp_sk(sk); 1028 struct tcp_md5sig_key *key; 1029 unsigned int size = sizeof(struct in_addr); 1030 const struct tcp_md5sig_info *md5sig; 1031 1032 /* caller either holds rcu_read_lock() or socket lock */ 1033 md5sig = rcu_dereference_check(tp->md5sig_info, 1034 lockdep_sock_is_held(sk)); 1035 if (!md5sig) 1036 return NULL; 1037 #if IS_ENABLED(CONFIG_IPV6) 1038 if (family == AF_INET6) 1039 size = sizeof(struct in6_addr); 1040 #endif 1041 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 1042 if (key->family != family) 1043 continue; 1044 if (!memcmp(&key->addr, addr, size) && 1045 key->prefixlen == prefixlen) 1046 return key; 1047 } 1048 return NULL; 1049 } 1050 1051 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1052 const struct sock *addr_sk) 1053 { 1054 const union tcp_md5_addr *addr; 1055 1056 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1057 return tcp_md5_do_lookup(sk, addr, AF_INET); 1058 } 1059 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1060 1061 /* This can be called on a newly created socket, from other files */ 1062 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1063 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen, 1064 gfp_t gfp) 1065 { 1066 /* Add Key to the list */ 1067 struct tcp_md5sig_key *key; 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 struct tcp_md5sig_info *md5sig; 1070 1071 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1072 if (key) { 1073 /* Pre-existing entry - just update that one. */ 1074 memcpy(key->key, newkey, newkeylen); 1075 key->keylen = newkeylen; 1076 return 0; 1077 } 1078 1079 md5sig = rcu_dereference_protected(tp->md5sig_info, 1080 lockdep_sock_is_held(sk)); 1081 if (!md5sig) { 1082 md5sig = kmalloc(sizeof(*md5sig), gfp); 1083 if (!md5sig) 1084 return -ENOMEM; 1085 1086 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1087 INIT_HLIST_HEAD(&md5sig->head); 1088 rcu_assign_pointer(tp->md5sig_info, md5sig); 1089 } 1090 1091 key = sock_kmalloc(sk, sizeof(*key), gfp); 1092 if (!key) 1093 return -ENOMEM; 1094 if (!tcp_alloc_md5sig_pool()) { 1095 sock_kfree_s(sk, key, sizeof(*key)); 1096 return -ENOMEM; 1097 } 1098 1099 memcpy(key->key, newkey, newkeylen); 1100 key->keylen = newkeylen; 1101 key->family = family; 1102 key->prefixlen = prefixlen; 1103 memcpy(&key->addr, addr, 1104 (family == AF_INET6) ? sizeof(struct in6_addr) : 1105 sizeof(struct in_addr)); 1106 hlist_add_head_rcu(&key->node, &md5sig->head); 1107 return 0; 1108 } 1109 EXPORT_SYMBOL(tcp_md5_do_add); 1110 1111 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1112 u8 prefixlen) 1113 { 1114 struct tcp_md5sig_key *key; 1115 1116 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1117 if (!key) 1118 return -ENOENT; 1119 hlist_del_rcu(&key->node); 1120 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1121 kfree_rcu(key, rcu); 1122 return 0; 1123 } 1124 EXPORT_SYMBOL(tcp_md5_do_del); 1125 1126 static void tcp_clear_md5_list(struct sock *sk) 1127 { 1128 struct tcp_sock *tp = tcp_sk(sk); 1129 struct tcp_md5sig_key *key; 1130 struct hlist_node *n; 1131 struct tcp_md5sig_info *md5sig; 1132 1133 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1134 1135 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1136 hlist_del_rcu(&key->node); 1137 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1138 kfree_rcu(key, rcu); 1139 } 1140 } 1141 1142 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1143 char __user *optval, int optlen) 1144 { 1145 struct tcp_md5sig cmd; 1146 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1147 u8 prefixlen = 32; 1148 1149 if (optlen < sizeof(cmd)) 1150 return -EINVAL; 1151 1152 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1153 return -EFAULT; 1154 1155 if (sin->sin_family != AF_INET) 1156 return -EINVAL; 1157 1158 if (optname == TCP_MD5SIG_EXT && 1159 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1160 prefixlen = cmd.tcpm_prefixlen; 1161 if (prefixlen > 32) 1162 return -EINVAL; 1163 } 1164 1165 if (!cmd.tcpm_keylen) 1166 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1167 AF_INET, prefixlen); 1168 1169 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1170 return -EINVAL; 1171 1172 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1173 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen, 1174 GFP_KERNEL); 1175 } 1176 1177 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1178 __be32 daddr, __be32 saddr, 1179 const struct tcphdr *th, int nbytes) 1180 { 1181 struct tcp4_pseudohdr *bp; 1182 struct scatterlist sg; 1183 struct tcphdr *_th; 1184 1185 bp = hp->scratch; 1186 bp->saddr = saddr; 1187 bp->daddr = daddr; 1188 bp->pad = 0; 1189 bp->protocol = IPPROTO_TCP; 1190 bp->len = cpu_to_be16(nbytes); 1191 1192 _th = (struct tcphdr *)(bp + 1); 1193 memcpy(_th, th, sizeof(*th)); 1194 _th->check = 0; 1195 1196 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1197 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1198 sizeof(*bp) + sizeof(*th)); 1199 return crypto_ahash_update(hp->md5_req); 1200 } 1201 1202 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1203 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1204 { 1205 struct tcp_md5sig_pool *hp; 1206 struct ahash_request *req; 1207 1208 hp = tcp_get_md5sig_pool(); 1209 if (!hp) 1210 goto clear_hash_noput; 1211 req = hp->md5_req; 1212 1213 if (crypto_ahash_init(req)) 1214 goto clear_hash; 1215 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1216 goto clear_hash; 1217 if (tcp_md5_hash_key(hp, key)) 1218 goto clear_hash; 1219 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1220 if (crypto_ahash_final(req)) 1221 goto clear_hash; 1222 1223 tcp_put_md5sig_pool(); 1224 return 0; 1225 1226 clear_hash: 1227 tcp_put_md5sig_pool(); 1228 clear_hash_noput: 1229 memset(md5_hash, 0, 16); 1230 return 1; 1231 } 1232 1233 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1234 const struct sock *sk, 1235 const struct sk_buff *skb) 1236 { 1237 struct tcp_md5sig_pool *hp; 1238 struct ahash_request *req; 1239 const struct tcphdr *th = tcp_hdr(skb); 1240 __be32 saddr, daddr; 1241 1242 if (sk) { /* valid for establish/request sockets */ 1243 saddr = sk->sk_rcv_saddr; 1244 daddr = sk->sk_daddr; 1245 } else { 1246 const struct iphdr *iph = ip_hdr(skb); 1247 saddr = iph->saddr; 1248 daddr = iph->daddr; 1249 } 1250 1251 hp = tcp_get_md5sig_pool(); 1252 if (!hp) 1253 goto clear_hash_noput; 1254 req = hp->md5_req; 1255 1256 if (crypto_ahash_init(req)) 1257 goto clear_hash; 1258 1259 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1260 goto clear_hash; 1261 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1262 goto clear_hash; 1263 if (tcp_md5_hash_key(hp, key)) 1264 goto clear_hash; 1265 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1266 if (crypto_ahash_final(req)) 1267 goto clear_hash; 1268 1269 tcp_put_md5sig_pool(); 1270 return 0; 1271 1272 clear_hash: 1273 tcp_put_md5sig_pool(); 1274 clear_hash_noput: 1275 memset(md5_hash, 0, 16); 1276 return 1; 1277 } 1278 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1279 1280 #endif 1281 1282 /* Called with rcu_read_lock() */ 1283 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1284 const struct sk_buff *skb) 1285 { 1286 #ifdef CONFIG_TCP_MD5SIG 1287 /* 1288 * This gets called for each TCP segment that arrives 1289 * so we want to be efficient. 1290 * We have 3 drop cases: 1291 * o No MD5 hash and one expected. 1292 * o MD5 hash and we're not expecting one. 1293 * o MD5 hash and its wrong. 1294 */ 1295 const __u8 *hash_location = NULL; 1296 struct tcp_md5sig_key *hash_expected; 1297 const struct iphdr *iph = ip_hdr(skb); 1298 const struct tcphdr *th = tcp_hdr(skb); 1299 int genhash; 1300 unsigned char newhash[16]; 1301 1302 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1303 AF_INET); 1304 hash_location = tcp_parse_md5sig_option(th); 1305 1306 /* We've parsed the options - do we have a hash? */ 1307 if (!hash_expected && !hash_location) 1308 return false; 1309 1310 if (hash_expected && !hash_location) { 1311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1312 return true; 1313 } 1314 1315 if (!hash_expected && hash_location) { 1316 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1317 return true; 1318 } 1319 1320 /* Okay, so this is hash_expected and hash_location - 1321 * so we need to calculate the checksum. 1322 */ 1323 genhash = tcp_v4_md5_hash_skb(newhash, 1324 hash_expected, 1325 NULL, skb); 1326 1327 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1328 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1329 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1330 &iph->saddr, ntohs(th->source), 1331 &iph->daddr, ntohs(th->dest), 1332 genhash ? " tcp_v4_calc_md5_hash failed" 1333 : ""); 1334 return true; 1335 } 1336 return false; 1337 #endif 1338 return false; 1339 } 1340 1341 static void tcp_v4_init_req(struct request_sock *req, 1342 const struct sock *sk_listener, 1343 struct sk_buff *skb) 1344 { 1345 struct inet_request_sock *ireq = inet_rsk(req); 1346 struct net *net = sock_net(sk_listener); 1347 1348 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1349 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1350 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1351 } 1352 1353 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1354 struct flowi *fl, 1355 const struct request_sock *req) 1356 { 1357 return inet_csk_route_req(sk, &fl->u.ip4, req); 1358 } 1359 1360 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1361 .family = PF_INET, 1362 .obj_size = sizeof(struct tcp_request_sock), 1363 .rtx_syn_ack = tcp_rtx_synack, 1364 .send_ack = tcp_v4_reqsk_send_ack, 1365 .destructor = tcp_v4_reqsk_destructor, 1366 .send_reset = tcp_v4_send_reset, 1367 .syn_ack_timeout = tcp_syn_ack_timeout, 1368 }; 1369 1370 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1371 .mss_clamp = TCP_MSS_DEFAULT, 1372 #ifdef CONFIG_TCP_MD5SIG 1373 .req_md5_lookup = tcp_v4_md5_lookup, 1374 .calc_md5_hash = tcp_v4_md5_hash_skb, 1375 #endif 1376 .init_req = tcp_v4_init_req, 1377 #ifdef CONFIG_SYN_COOKIES 1378 .cookie_init_seq = cookie_v4_init_sequence, 1379 #endif 1380 .route_req = tcp_v4_route_req, 1381 .init_seq = tcp_v4_init_seq, 1382 .init_ts_off = tcp_v4_init_ts_off, 1383 .send_synack = tcp_v4_send_synack, 1384 }; 1385 1386 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1387 { 1388 /* Never answer to SYNs send to broadcast or multicast */ 1389 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1390 goto drop; 1391 1392 return tcp_conn_request(&tcp_request_sock_ops, 1393 &tcp_request_sock_ipv4_ops, sk, skb); 1394 1395 drop: 1396 tcp_listendrop(sk); 1397 return 0; 1398 } 1399 EXPORT_SYMBOL(tcp_v4_conn_request); 1400 1401 1402 /* 1403 * The three way handshake has completed - we got a valid synack - 1404 * now create the new socket. 1405 */ 1406 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1407 struct request_sock *req, 1408 struct dst_entry *dst, 1409 struct request_sock *req_unhash, 1410 bool *own_req) 1411 { 1412 struct inet_request_sock *ireq; 1413 struct inet_sock *newinet; 1414 struct tcp_sock *newtp; 1415 struct sock *newsk; 1416 #ifdef CONFIG_TCP_MD5SIG 1417 struct tcp_md5sig_key *key; 1418 #endif 1419 struct ip_options_rcu *inet_opt; 1420 1421 if (sk_acceptq_is_full(sk)) 1422 goto exit_overflow; 1423 1424 newsk = tcp_create_openreq_child(sk, req, skb); 1425 if (!newsk) 1426 goto exit_nonewsk; 1427 1428 newsk->sk_gso_type = SKB_GSO_TCPV4; 1429 inet_sk_rx_dst_set(newsk, skb); 1430 1431 newtp = tcp_sk(newsk); 1432 newinet = inet_sk(newsk); 1433 ireq = inet_rsk(req); 1434 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1435 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1436 newsk->sk_bound_dev_if = ireq->ir_iif; 1437 newinet->inet_saddr = ireq->ir_loc_addr; 1438 inet_opt = rcu_dereference(ireq->ireq_opt); 1439 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1440 newinet->mc_index = inet_iif(skb); 1441 newinet->mc_ttl = ip_hdr(skb)->ttl; 1442 newinet->rcv_tos = ip_hdr(skb)->tos; 1443 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1444 if (inet_opt) 1445 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1446 newinet->inet_id = newtp->write_seq ^ jiffies; 1447 1448 if (!dst) { 1449 dst = inet_csk_route_child_sock(sk, newsk, req); 1450 if (!dst) 1451 goto put_and_exit; 1452 } else { 1453 /* syncookie case : see end of cookie_v4_check() */ 1454 } 1455 sk_setup_caps(newsk, dst); 1456 1457 tcp_ca_openreq_child(newsk, dst); 1458 1459 tcp_sync_mss(newsk, dst_mtu(dst)); 1460 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1461 1462 tcp_initialize_rcv_mss(newsk); 1463 1464 #ifdef CONFIG_TCP_MD5SIG 1465 /* Copy over the MD5 key from the original socket */ 1466 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1467 AF_INET); 1468 if (key) { 1469 /* 1470 * We're using one, so create a matching key 1471 * on the newsk structure. If we fail to get 1472 * memory, then we end up not copying the key 1473 * across. Shucks. 1474 */ 1475 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1476 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC); 1477 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1478 } 1479 #endif 1480 1481 if (__inet_inherit_port(sk, newsk) < 0) 1482 goto put_and_exit; 1483 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1484 if (likely(*own_req)) { 1485 tcp_move_syn(newtp, req); 1486 ireq->ireq_opt = NULL; 1487 } else { 1488 newinet->inet_opt = NULL; 1489 } 1490 return newsk; 1491 1492 exit_overflow: 1493 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1494 exit_nonewsk: 1495 dst_release(dst); 1496 exit: 1497 tcp_listendrop(sk); 1498 return NULL; 1499 put_and_exit: 1500 newinet->inet_opt = NULL; 1501 inet_csk_prepare_forced_close(newsk); 1502 tcp_done(newsk); 1503 goto exit; 1504 } 1505 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1506 1507 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1508 { 1509 #ifdef CONFIG_SYN_COOKIES 1510 const struct tcphdr *th = tcp_hdr(skb); 1511 1512 if (!th->syn) 1513 sk = cookie_v4_check(sk, skb); 1514 #endif 1515 return sk; 1516 } 1517 1518 /* The socket must have it's spinlock held when we get 1519 * here, unless it is a TCP_LISTEN socket. 1520 * 1521 * We have a potential double-lock case here, so even when 1522 * doing backlog processing we use the BH locking scheme. 1523 * This is because we cannot sleep with the original spinlock 1524 * held. 1525 */ 1526 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1527 { 1528 struct sock *rsk; 1529 1530 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1531 struct dst_entry *dst = sk->sk_rx_dst; 1532 1533 sock_rps_save_rxhash(sk, skb); 1534 sk_mark_napi_id(sk, skb); 1535 if (dst) { 1536 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1537 !dst->ops->check(dst, 0)) { 1538 dst_release(dst); 1539 sk->sk_rx_dst = NULL; 1540 } 1541 } 1542 tcp_rcv_established(sk, skb); 1543 return 0; 1544 } 1545 1546 if (tcp_checksum_complete(skb)) 1547 goto csum_err; 1548 1549 if (sk->sk_state == TCP_LISTEN) { 1550 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1551 1552 if (!nsk) 1553 goto discard; 1554 if (nsk != sk) { 1555 if (tcp_child_process(sk, nsk, skb)) { 1556 rsk = nsk; 1557 goto reset; 1558 } 1559 return 0; 1560 } 1561 } else 1562 sock_rps_save_rxhash(sk, skb); 1563 1564 if (tcp_rcv_state_process(sk, skb)) { 1565 rsk = sk; 1566 goto reset; 1567 } 1568 return 0; 1569 1570 reset: 1571 tcp_v4_send_reset(rsk, skb); 1572 discard: 1573 kfree_skb(skb); 1574 /* Be careful here. If this function gets more complicated and 1575 * gcc suffers from register pressure on the x86, sk (in %ebx) 1576 * might be destroyed here. This current version compiles correctly, 1577 * but you have been warned. 1578 */ 1579 return 0; 1580 1581 csum_err: 1582 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1583 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1584 goto discard; 1585 } 1586 EXPORT_SYMBOL(tcp_v4_do_rcv); 1587 1588 int tcp_v4_early_demux(struct sk_buff *skb) 1589 { 1590 const struct iphdr *iph; 1591 const struct tcphdr *th; 1592 struct sock *sk; 1593 1594 if (skb->pkt_type != PACKET_HOST) 1595 return 0; 1596 1597 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1598 return 0; 1599 1600 iph = ip_hdr(skb); 1601 th = tcp_hdr(skb); 1602 1603 if (th->doff < sizeof(struct tcphdr) / 4) 1604 return 0; 1605 1606 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1607 iph->saddr, th->source, 1608 iph->daddr, ntohs(th->dest), 1609 skb->skb_iif, inet_sdif(skb)); 1610 if (sk) { 1611 skb->sk = sk; 1612 skb->destructor = sock_edemux; 1613 if (sk_fullsock(sk)) { 1614 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1615 1616 if (dst) 1617 dst = dst_check(dst, 0); 1618 if (dst && 1619 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1620 skb_dst_set_noref(skb, dst); 1621 } 1622 } 1623 return 0; 1624 } 1625 1626 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1627 { 1628 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1629 struct skb_shared_info *shinfo; 1630 const struct tcphdr *th; 1631 struct tcphdr *thtail; 1632 struct sk_buff *tail; 1633 unsigned int hdrlen; 1634 bool fragstolen; 1635 u32 gso_segs; 1636 int delta; 1637 1638 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1639 * we can fix skb->truesize to its real value to avoid future drops. 1640 * This is valid because skb is not yet charged to the socket. 1641 * It has been noticed pure SACK packets were sometimes dropped 1642 * (if cooked by drivers without copybreak feature). 1643 */ 1644 skb_condense(skb); 1645 1646 skb_dst_drop(skb); 1647 1648 if (unlikely(tcp_checksum_complete(skb))) { 1649 bh_unlock_sock(sk); 1650 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1651 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1652 return true; 1653 } 1654 1655 /* Attempt coalescing to last skb in backlog, even if we are 1656 * above the limits. 1657 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 1658 */ 1659 th = (const struct tcphdr *)skb->data; 1660 hdrlen = th->doff * 4; 1661 shinfo = skb_shinfo(skb); 1662 1663 if (!shinfo->gso_size) 1664 shinfo->gso_size = skb->len - hdrlen; 1665 1666 if (!shinfo->gso_segs) 1667 shinfo->gso_segs = 1; 1668 1669 tail = sk->sk_backlog.tail; 1670 if (!tail) 1671 goto no_coalesce; 1672 thtail = (struct tcphdr *)tail->data; 1673 1674 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 1675 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 1676 ((TCP_SKB_CB(tail)->tcp_flags | 1677 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 1678 !((TCP_SKB_CB(tail)->tcp_flags & 1679 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 1680 ((TCP_SKB_CB(tail)->tcp_flags ^ 1681 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 1682 #ifdef CONFIG_TLS_DEVICE 1683 tail->decrypted != skb->decrypted || 1684 #endif 1685 thtail->doff != th->doff || 1686 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 1687 goto no_coalesce; 1688 1689 __skb_pull(skb, hdrlen); 1690 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 1691 thtail->window = th->window; 1692 1693 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 1694 1695 if (after(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq)) 1696 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 1697 1698 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 1699 * thtail->fin, so that the fast path in tcp_rcv_established() 1700 * is not entered if we append a packet with a FIN. 1701 * SYN, RST, URG are not present. 1702 * ACK is set on both packets. 1703 * PSH : we do not really care in TCP stack, 1704 * at least for 'GRO' packets. 1705 */ 1706 thtail->fin |= th->fin; 1707 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1708 1709 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1710 TCP_SKB_CB(tail)->has_rxtstamp = true; 1711 tail->tstamp = skb->tstamp; 1712 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 1713 } 1714 1715 /* Not as strict as GRO. We only need to carry mss max value */ 1716 skb_shinfo(tail)->gso_size = max(shinfo->gso_size, 1717 skb_shinfo(tail)->gso_size); 1718 1719 gso_segs = skb_shinfo(tail)->gso_segs + shinfo->gso_segs; 1720 skb_shinfo(tail)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 1721 1722 sk->sk_backlog.len += delta; 1723 __NET_INC_STATS(sock_net(sk), 1724 LINUX_MIB_TCPBACKLOGCOALESCE); 1725 kfree_skb_partial(skb, fragstolen); 1726 return false; 1727 } 1728 __skb_push(skb, hdrlen); 1729 1730 no_coalesce: 1731 /* Only socket owner can try to collapse/prune rx queues 1732 * to reduce memory overhead, so add a little headroom here. 1733 * Few sockets backlog are possibly concurrently non empty. 1734 */ 1735 limit += 64*1024; 1736 1737 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1738 bh_unlock_sock(sk); 1739 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1740 return true; 1741 } 1742 return false; 1743 } 1744 EXPORT_SYMBOL(tcp_add_backlog); 1745 1746 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1747 { 1748 struct tcphdr *th = (struct tcphdr *)skb->data; 1749 1750 return sk_filter_trim_cap(sk, skb, th->doff * 4); 1751 } 1752 EXPORT_SYMBOL(tcp_filter); 1753 1754 static void tcp_v4_restore_cb(struct sk_buff *skb) 1755 { 1756 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1757 sizeof(struct inet_skb_parm)); 1758 } 1759 1760 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1761 const struct tcphdr *th) 1762 { 1763 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1764 * barrier() makes sure compiler wont play fool^Waliasing games. 1765 */ 1766 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1767 sizeof(struct inet_skb_parm)); 1768 barrier(); 1769 1770 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1771 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1772 skb->len - th->doff * 4); 1773 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1774 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1775 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1776 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1777 TCP_SKB_CB(skb)->sacked = 0; 1778 TCP_SKB_CB(skb)->has_rxtstamp = 1779 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1780 } 1781 1782 /* 1783 * From tcp_input.c 1784 */ 1785 1786 int tcp_v4_rcv(struct sk_buff *skb) 1787 { 1788 struct net *net = dev_net(skb->dev); 1789 struct sk_buff *skb_to_free; 1790 int sdif = inet_sdif(skb); 1791 const struct iphdr *iph; 1792 const struct tcphdr *th; 1793 bool refcounted; 1794 struct sock *sk; 1795 int ret; 1796 1797 if (skb->pkt_type != PACKET_HOST) 1798 goto discard_it; 1799 1800 /* Count it even if it's bad */ 1801 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1802 1803 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1804 goto discard_it; 1805 1806 th = (const struct tcphdr *)skb->data; 1807 1808 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1809 goto bad_packet; 1810 if (!pskb_may_pull(skb, th->doff * 4)) 1811 goto discard_it; 1812 1813 /* An explanation is required here, I think. 1814 * Packet length and doff are validated by header prediction, 1815 * provided case of th->doff==0 is eliminated. 1816 * So, we defer the checks. */ 1817 1818 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1819 goto csum_error; 1820 1821 th = (const struct tcphdr *)skb->data; 1822 iph = ip_hdr(skb); 1823 lookup: 1824 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1825 th->dest, sdif, &refcounted); 1826 if (!sk) 1827 goto no_tcp_socket; 1828 1829 process: 1830 if (sk->sk_state == TCP_TIME_WAIT) 1831 goto do_time_wait; 1832 1833 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1834 struct request_sock *req = inet_reqsk(sk); 1835 bool req_stolen = false; 1836 struct sock *nsk; 1837 1838 sk = req->rsk_listener; 1839 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1840 sk_drops_add(sk, skb); 1841 reqsk_put(req); 1842 goto discard_it; 1843 } 1844 if (tcp_checksum_complete(skb)) { 1845 reqsk_put(req); 1846 goto csum_error; 1847 } 1848 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1849 inet_csk_reqsk_queue_drop_and_put(sk, req); 1850 goto lookup; 1851 } 1852 /* We own a reference on the listener, increase it again 1853 * as we might lose it too soon. 1854 */ 1855 sock_hold(sk); 1856 refcounted = true; 1857 nsk = NULL; 1858 if (!tcp_filter(sk, skb)) { 1859 th = (const struct tcphdr *)skb->data; 1860 iph = ip_hdr(skb); 1861 tcp_v4_fill_cb(skb, iph, th); 1862 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 1863 } 1864 if (!nsk) { 1865 reqsk_put(req); 1866 if (req_stolen) { 1867 /* Another cpu got exclusive access to req 1868 * and created a full blown socket. 1869 * Try to feed this packet to this socket 1870 * instead of discarding it. 1871 */ 1872 tcp_v4_restore_cb(skb); 1873 sock_put(sk); 1874 goto lookup; 1875 } 1876 goto discard_and_relse; 1877 } 1878 if (nsk == sk) { 1879 reqsk_put(req); 1880 tcp_v4_restore_cb(skb); 1881 } else if (tcp_child_process(sk, nsk, skb)) { 1882 tcp_v4_send_reset(nsk, skb); 1883 goto discard_and_relse; 1884 } else { 1885 sock_put(sk); 1886 return 0; 1887 } 1888 } 1889 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1890 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1891 goto discard_and_relse; 1892 } 1893 1894 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1895 goto discard_and_relse; 1896 1897 if (tcp_v4_inbound_md5_hash(sk, skb)) 1898 goto discard_and_relse; 1899 1900 nf_reset(skb); 1901 1902 if (tcp_filter(sk, skb)) 1903 goto discard_and_relse; 1904 th = (const struct tcphdr *)skb->data; 1905 iph = ip_hdr(skb); 1906 tcp_v4_fill_cb(skb, iph, th); 1907 1908 skb->dev = NULL; 1909 1910 if (sk->sk_state == TCP_LISTEN) { 1911 ret = tcp_v4_do_rcv(sk, skb); 1912 goto put_and_return; 1913 } 1914 1915 sk_incoming_cpu_update(sk); 1916 1917 bh_lock_sock_nested(sk); 1918 tcp_segs_in(tcp_sk(sk), skb); 1919 ret = 0; 1920 if (!sock_owned_by_user(sk)) { 1921 skb_to_free = sk->sk_rx_skb_cache; 1922 sk->sk_rx_skb_cache = NULL; 1923 ret = tcp_v4_do_rcv(sk, skb); 1924 } else { 1925 if (tcp_add_backlog(sk, skb)) 1926 goto discard_and_relse; 1927 skb_to_free = NULL; 1928 } 1929 bh_unlock_sock(sk); 1930 if (skb_to_free) 1931 __kfree_skb(skb_to_free); 1932 1933 put_and_return: 1934 if (refcounted) 1935 sock_put(sk); 1936 1937 return ret; 1938 1939 no_tcp_socket: 1940 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1941 goto discard_it; 1942 1943 tcp_v4_fill_cb(skb, iph, th); 1944 1945 if (tcp_checksum_complete(skb)) { 1946 csum_error: 1947 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1948 bad_packet: 1949 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1950 } else { 1951 tcp_v4_send_reset(NULL, skb); 1952 } 1953 1954 discard_it: 1955 /* Discard frame. */ 1956 kfree_skb(skb); 1957 return 0; 1958 1959 discard_and_relse: 1960 sk_drops_add(sk, skb); 1961 if (refcounted) 1962 sock_put(sk); 1963 goto discard_it; 1964 1965 do_time_wait: 1966 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1967 inet_twsk_put(inet_twsk(sk)); 1968 goto discard_it; 1969 } 1970 1971 tcp_v4_fill_cb(skb, iph, th); 1972 1973 if (tcp_checksum_complete(skb)) { 1974 inet_twsk_put(inet_twsk(sk)); 1975 goto csum_error; 1976 } 1977 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1978 case TCP_TW_SYN: { 1979 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1980 &tcp_hashinfo, skb, 1981 __tcp_hdrlen(th), 1982 iph->saddr, th->source, 1983 iph->daddr, th->dest, 1984 inet_iif(skb), 1985 sdif); 1986 if (sk2) { 1987 inet_twsk_deschedule_put(inet_twsk(sk)); 1988 sk = sk2; 1989 tcp_v4_restore_cb(skb); 1990 refcounted = false; 1991 goto process; 1992 } 1993 } 1994 /* to ACK */ 1995 /* fall through */ 1996 case TCP_TW_ACK: 1997 tcp_v4_timewait_ack(sk, skb); 1998 break; 1999 case TCP_TW_RST: 2000 tcp_v4_send_reset(sk, skb); 2001 inet_twsk_deschedule_put(inet_twsk(sk)); 2002 goto discard_it; 2003 case TCP_TW_SUCCESS:; 2004 } 2005 goto discard_it; 2006 } 2007 2008 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2009 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2010 .twsk_unique = tcp_twsk_unique, 2011 .twsk_destructor= tcp_twsk_destructor, 2012 }; 2013 2014 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2015 { 2016 struct dst_entry *dst = skb_dst(skb); 2017 2018 if (dst && dst_hold_safe(dst)) { 2019 sk->sk_rx_dst = dst; 2020 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 2021 } 2022 } 2023 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2024 2025 const struct inet_connection_sock_af_ops ipv4_specific = { 2026 .queue_xmit = ip_queue_xmit, 2027 .send_check = tcp_v4_send_check, 2028 .rebuild_header = inet_sk_rebuild_header, 2029 .sk_rx_dst_set = inet_sk_rx_dst_set, 2030 .conn_request = tcp_v4_conn_request, 2031 .syn_recv_sock = tcp_v4_syn_recv_sock, 2032 .net_header_len = sizeof(struct iphdr), 2033 .setsockopt = ip_setsockopt, 2034 .getsockopt = ip_getsockopt, 2035 .addr2sockaddr = inet_csk_addr2sockaddr, 2036 .sockaddr_len = sizeof(struct sockaddr_in), 2037 #ifdef CONFIG_COMPAT 2038 .compat_setsockopt = compat_ip_setsockopt, 2039 .compat_getsockopt = compat_ip_getsockopt, 2040 #endif 2041 .mtu_reduced = tcp_v4_mtu_reduced, 2042 }; 2043 EXPORT_SYMBOL(ipv4_specific); 2044 2045 #ifdef CONFIG_TCP_MD5SIG 2046 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2047 .md5_lookup = tcp_v4_md5_lookup, 2048 .calc_md5_hash = tcp_v4_md5_hash_skb, 2049 .md5_parse = tcp_v4_parse_md5_keys, 2050 }; 2051 #endif 2052 2053 /* NOTE: A lot of things set to zero explicitly by call to 2054 * sk_alloc() so need not be done here. 2055 */ 2056 static int tcp_v4_init_sock(struct sock *sk) 2057 { 2058 struct inet_connection_sock *icsk = inet_csk(sk); 2059 2060 tcp_init_sock(sk); 2061 2062 icsk->icsk_af_ops = &ipv4_specific; 2063 2064 #ifdef CONFIG_TCP_MD5SIG 2065 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2066 #endif 2067 2068 return 0; 2069 } 2070 2071 void tcp_v4_destroy_sock(struct sock *sk) 2072 { 2073 struct tcp_sock *tp = tcp_sk(sk); 2074 2075 trace_tcp_destroy_sock(sk); 2076 2077 tcp_clear_xmit_timers(sk); 2078 2079 tcp_cleanup_congestion_control(sk); 2080 2081 tcp_cleanup_ulp(sk); 2082 2083 /* Cleanup up the write buffer. */ 2084 tcp_write_queue_purge(sk); 2085 2086 /* Check if we want to disable active TFO */ 2087 tcp_fastopen_active_disable_ofo_check(sk); 2088 2089 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2090 skb_rbtree_purge(&tp->out_of_order_queue); 2091 2092 #ifdef CONFIG_TCP_MD5SIG 2093 /* Clean up the MD5 key list, if any */ 2094 if (tp->md5sig_info) { 2095 tcp_clear_md5_list(sk); 2096 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 2097 tp->md5sig_info = NULL; 2098 } 2099 #endif 2100 2101 /* Clean up a referenced TCP bind bucket. */ 2102 if (inet_csk(sk)->icsk_bind_hash) 2103 inet_put_port(sk); 2104 2105 BUG_ON(tp->fastopen_rsk); 2106 2107 /* If socket is aborted during connect operation */ 2108 tcp_free_fastopen_req(tp); 2109 tcp_fastopen_destroy_cipher(sk); 2110 tcp_saved_syn_free(tp); 2111 2112 sk_sockets_allocated_dec(sk); 2113 } 2114 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2115 2116 #ifdef CONFIG_PROC_FS 2117 /* Proc filesystem TCP sock list dumping. */ 2118 2119 /* 2120 * Get next listener socket follow cur. If cur is NULL, get first socket 2121 * starting from bucket given in st->bucket; when st->bucket is zero the 2122 * very first socket in the hash table is returned. 2123 */ 2124 static void *listening_get_next(struct seq_file *seq, void *cur) 2125 { 2126 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2127 struct tcp_iter_state *st = seq->private; 2128 struct net *net = seq_file_net(seq); 2129 struct inet_listen_hashbucket *ilb; 2130 struct sock *sk = cur; 2131 2132 if (!sk) { 2133 get_head: 2134 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2135 spin_lock(&ilb->lock); 2136 sk = sk_head(&ilb->head); 2137 st->offset = 0; 2138 goto get_sk; 2139 } 2140 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2141 ++st->num; 2142 ++st->offset; 2143 2144 sk = sk_next(sk); 2145 get_sk: 2146 sk_for_each_from(sk) { 2147 if (!net_eq(sock_net(sk), net)) 2148 continue; 2149 if (sk->sk_family == afinfo->family) 2150 return sk; 2151 } 2152 spin_unlock(&ilb->lock); 2153 st->offset = 0; 2154 if (++st->bucket < INET_LHTABLE_SIZE) 2155 goto get_head; 2156 return NULL; 2157 } 2158 2159 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2160 { 2161 struct tcp_iter_state *st = seq->private; 2162 void *rc; 2163 2164 st->bucket = 0; 2165 st->offset = 0; 2166 rc = listening_get_next(seq, NULL); 2167 2168 while (rc && *pos) { 2169 rc = listening_get_next(seq, rc); 2170 --*pos; 2171 } 2172 return rc; 2173 } 2174 2175 static inline bool empty_bucket(const struct tcp_iter_state *st) 2176 { 2177 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2178 } 2179 2180 /* 2181 * Get first established socket starting from bucket given in st->bucket. 2182 * If st->bucket is zero, the very first socket in the hash is returned. 2183 */ 2184 static void *established_get_first(struct seq_file *seq) 2185 { 2186 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2187 struct tcp_iter_state *st = seq->private; 2188 struct net *net = seq_file_net(seq); 2189 void *rc = NULL; 2190 2191 st->offset = 0; 2192 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2193 struct sock *sk; 2194 struct hlist_nulls_node *node; 2195 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2196 2197 /* Lockless fast path for the common case of empty buckets */ 2198 if (empty_bucket(st)) 2199 continue; 2200 2201 spin_lock_bh(lock); 2202 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2203 if (sk->sk_family != afinfo->family || 2204 !net_eq(sock_net(sk), net)) { 2205 continue; 2206 } 2207 rc = sk; 2208 goto out; 2209 } 2210 spin_unlock_bh(lock); 2211 } 2212 out: 2213 return rc; 2214 } 2215 2216 static void *established_get_next(struct seq_file *seq, void *cur) 2217 { 2218 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2219 struct sock *sk = cur; 2220 struct hlist_nulls_node *node; 2221 struct tcp_iter_state *st = seq->private; 2222 struct net *net = seq_file_net(seq); 2223 2224 ++st->num; 2225 ++st->offset; 2226 2227 sk = sk_nulls_next(sk); 2228 2229 sk_nulls_for_each_from(sk, node) { 2230 if (sk->sk_family == afinfo->family && 2231 net_eq(sock_net(sk), net)) 2232 return sk; 2233 } 2234 2235 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2236 ++st->bucket; 2237 return established_get_first(seq); 2238 } 2239 2240 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2241 { 2242 struct tcp_iter_state *st = seq->private; 2243 void *rc; 2244 2245 st->bucket = 0; 2246 rc = established_get_first(seq); 2247 2248 while (rc && pos) { 2249 rc = established_get_next(seq, rc); 2250 --pos; 2251 } 2252 return rc; 2253 } 2254 2255 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2256 { 2257 void *rc; 2258 struct tcp_iter_state *st = seq->private; 2259 2260 st->state = TCP_SEQ_STATE_LISTENING; 2261 rc = listening_get_idx(seq, &pos); 2262 2263 if (!rc) { 2264 st->state = TCP_SEQ_STATE_ESTABLISHED; 2265 rc = established_get_idx(seq, pos); 2266 } 2267 2268 return rc; 2269 } 2270 2271 static void *tcp_seek_last_pos(struct seq_file *seq) 2272 { 2273 struct tcp_iter_state *st = seq->private; 2274 int offset = st->offset; 2275 int orig_num = st->num; 2276 void *rc = NULL; 2277 2278 switch (st->state) { 2279 case TCP_SEQ_STATE_LISTENING: 2280 if (st->bucket >= INET_LHTABLE_SIZE) 2281 break; 2282 st->state = TCP_SEQ_STATE_LISTENING; 2283 rc = listening_get_next(seq, NULL); 2284 while (offset-- && rc) 2285 rc = listening_get_next(seq, rc); 2286 if (rc) 2287 break; 2288 st->bucket = 0; 2289 st->state = TCP_SEQ_STATE_ESTABLISHED; 2290 /* Fallthrough */ 2291 case TCP_SEQ_STATE_ESTABLISHED: 2292 if (st->bucket > tcp_hashinfo.ehash_mask) 2293 break; 2294 rc = established_get_first(seq); 2295 while (offset-- && rc) 2296 rc = established_get_next(seq, rc); 2297 } 2298 2299 st->num = orig_num; 2300 2301 return rc; 2302 } 2303 2304 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2305 { 2306 struct tcp_iter_state *st = seq->private; 2307 void *rc; 2308 2309 if (*pos && *pos == st->last_pos) { 2310 rc = tcp_seek_last_pos(seq); 2311 if (rc) 2312 goto out; 2313 } 2314 2315 st->state = TCP_SEQ_STATE_LISTENING; 2316 st->num = 0; 2317 st->bucket = 0; 2318 st->offset = 0; 2319 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2320 2321 out: 2322 st->last_pos = *pos; 2323 return rc; 2324 } 2325 EXPORT_SYMBOL(tcp_seq_start); 2326 2327 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2328 { 2329 struct tcp_iter_state *st = seq->private; 2330 void *rc = NULL; 2331 2332 if (v == SEQ_START_TOKEN) { 2333 rc = tcp_get_idx(seq, 0); 2334 goto out; 2335 } 2336 2337 switch (st->state) { 2338 case TCP_SEQ_STATE_LISTENING: 2339 rc = listening_get_next(seq, v); 2340 if (!rc) { 2341 st->state = TCP_SEQ_STATE_ESTABLISHED; 2342 st->bucket = 0; 2343 st->offset = 0; 2344 rc = established_get_first(seq); 2345 } 2346 break; 2347 case TCP_SEQ_STATE_ESTABLISHED: 2348 rc = established_get_next(seq, v); 2349 break; 2350 } 2351 out: 2352 ++*pos; 2353 st->last_pos = *pos; 2354 return rc; 2355 } 2356 EXPORT_SYMBOL(tcp_seq_next); 2357 2358 void tcp_seq_stop(struct seq_file *seq, void *v) 2359 { 2360 struct tcp_iter_state *st = seq->private; 2361 2362 switch (st->state) { 2363 case TCP_SEQ_STATE_LISTENING: 2364 if (v != SEQ_START_TOKEN) 2365 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2366 break; 2367 case TCP_SEQ_STATE_ESTABLISHED: 2368 if (v) 2369 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2370 break; 2371 } 2372 } 2373 EXPORT_SYMBOL(tcp_seq_stop); 2374 2375 static void get_openreq4(const struct request_sock *req, 2376 struct seq_file *f, int i) 2377 { 2378 const struct inet_request_sock *ireq = inet_rsk(req); 2379 long delta = req->rsk_timer.expires - jiffies; 2380 2381 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2382 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2383 i, 2384 ireq->ir_loc_addr, 2385 ireq->ir_num, 2386 ireq->ir_rmt_addr, 2387 ntohs(ireq->ir_rmt_port), 2388 TCP_SYN_RECV, 2389 0, 0, /* could print option size, but that is af dependent. */ 2390 1, /* timers active (only the expire timer) */ 2391 jiffies_delta_to_clock_t(delta), 2392 req->num_timeout, 2393 from_kuid_munged(seq_user_ns(f), 2394 sock_i_uid(req->rsk_listener)), 2395 0, /* non standard timer */ 2396 0, /* open_requests have no inode */ 2397 0, 2398 req); 2399 } 2400 2401 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2402 { 2403 int timer_active; 2404 unsigned long timer_expires; 2405 const struct tcp_sock *tp = tcp_sk(sk); 2406 const struct inet_connection_sock *icsk = inet_csk(sk); 2407 const struct inet_sock *inet = inet_sk(sk); 2408 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2409 __be32 dest = inet->inet_daddr; 2410 __be32 src = inet->inet_rcv_saddr; 2411 __u16 destp = ntohs(inet->inet_dport); 2412 __u16 srcp = ntohs(inet->inet_sport); 2413 int rx_queue; 2414 int state; 2415 2416 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2417 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2418 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2419 timer_active = 1; 2420 timer_expires = icsk->icsk_timeout; 2421 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2422 timer_active = 4; 2423 timer_expires = icsk->icsk_timeout; 2424 } else if (timer_pending(&sk->sk_timer)) { 2425 timer_active = 2; 2426 timer_expires = sk->sk_timer.expires; 2427 } else { 2428 timer_active = 0; 2429 timer_expires = jiffies; 2430 } 2431 2432 state = inet_sk_state_load(sk); 2433 if (state == TCP_LISTEN) 2434 rx_queue = sk->sk_ack_backlog; 2435 else 2436 /* Because we don't lock the socket, 2437 * we might find a transient negative value. 2438 */ 2439 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2440 2441 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2442 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2443 i, src, srcp, dest, destp, state, 2444 tp->write_seq - tp->snd_una, 2445 rx_queue, 2446 timer_active, 2447 jiffies_delta_to_clock_t(timer_expires - jiffies), 2448 icsk->icsk_retransmits, 2449 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2450 icsk->icsk_probes_out, 2451 sock_i_ino(sk), 2452 refcount_read(&sk->sk_refcnt), sk, 2453 jiffies_to_clock_t(icsk->icsk_rto), 2454 jiffies_to_clock_t(icsk->icsk_ack.ato), 2455 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2456 tp->snd_cwnd, 2457 state == TCP_LISTEN ? 2458 fastopenq->max_qlen : 2459 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2460 } 2461 2462 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2463 struct seq_file *f, int i) 2464 { 2465 long delta = tw->tw_timer.expires - jiffies; 2466 __be32 dest, src; 2467 __u16 destp, srcp; 2468 2469 dest = tw->tw_daddr; 2470 src = tw->tw_rcv_saddr; 2471 destp = ntohs(tw->tw_dport); 2472 srcp = ntohs(tw->tw_sport); 2473 2474 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2475 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2476 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2477 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2478 refcount_read(&tw->tw_refcnt), tw); 2479 } 2480 2481 #define TMPSZ 150 2482 2483 static int tcp4_seq_show(struct seq_file *seq, void *v) 2484 { 2485 struct tcp_iter_state *st; 2486 struct sock *sk = v; 2487 2488 seq_setwidth(seq, TMPSZ - 1); 2489 if (v == SEQ_START_TOKEN) { 2490 seq_puts(seq, " sl local_address rem_address st tx_queue " 2491 "rx_queue tr tm->when retrnsmt uid timeout " 2492 "inode"); 2493 goto out; 2494 } 2495 st = seq->private; 2496 2497 if (sk->sk_state == TCP_TIME_WAIT) 2498 get_timewait4_sock(v, seq, st->num); 2499 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2500 get_openreq4(v, seq, st->num); 2501 else 2502 get_tcp4_sock(v, seq, st->num); 2503 out: 2504 seq_pad(seq, '\n'); 2505 return 0; 2506 } 2507 2508 static const struct seq_operations tcp4_seq_ops = { 2509 .show = tcp4_seq_show, 2510 .start = tcp_seq_start, 2511 .next = tcp_seq_next, 2512 .stop = tcp_seq_stop, 2513 }; 2514 2515 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2516 .family = AF_INET, 2517 }; 2518 2519 static int __net_init tcp4_proc_init_net(struct net *net) 2520 { 2521 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 2522 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 2523 return -ENOMEM; 2524 return 0; 2525 } 2526 2527 static void __net_exit tcp4_proc_exit_net(struct net *net) 2528 { 2529 remove_proc_entry("tcp", net->proc_net); 2530 } 2531 2532 static struct pernet_operations tcp4_net_ops = { 2533 .init = tcp4_proc_init_net, 2534 .exit = tcp4_proc_exit_net, 2535 }; 2536 2537 int __init tcp4_proc_init(void) 2538 { 2539 return register_pernet_subsys(&tcp4_net_ops); 2540 } 2541 2542 void tcp4_proc_exit(void) 2543 { 2544 unregister_pernet_subsys(&tcp4_net_ops); 2545 } 2546 #endif /* CONFIG_PROC_FS */ 2547 2548 struct proto tcp_prot = { 2549 .name = "TCP", 2550 .owner = THIS_MODULE, 2551 .close = tcp_close, 2552 .pre_connect = tcp_v4_pre_connect, 2553 .connect = tcp_v4_connect, 2554 .disconnect = tcp_disconnect, 2555 .accept = inet_csk_accept, 2556 .ioctl = tcp_ioctl, 2557 .init = tcp_v4_init_sock, 2558 .destroy = tcp_v4_destroy_sock, 2559 .shutdown = tcp_shutdown, 2560 .setsockopt = tcp_setsockopt, 2561 .getsockopt = tcp_getsockopt, 2562 .keepalive = tcp_set_keepalive, 2563 .recvmsg = tcp_recvmsg, 2564 .sendmsg = tcp_sendmsg, 2565 .sendpage = tcp_sendpage, 2566 .backlog_rcv = tcp_v4_do_rcv, 2567 .release_cb = tcp_release_cb, 2568 .hash = inet_hash, 2569 .unhash = inet_unhash, 2570 .get_port = inet_csk_get_port, 2571 .enter_memory_pressure = tcp_enter_memory_pressure, 2572 .leave_memory_pressure = tcp_leave_memory_pressure, 2573 .stream_memory_free = tcp_stream_memory_free, 2574 .sockets_allocated = &tcp_sockets_allocated, 2575 .orphan_count = &tcp_orphan_count, 2576 .memory_allocated = &tcp_memory_allocated, 2577 .memory_pressure = &tcp_memory_pressure, 2578 .sysctl_mem = sysctl_tcp_mem, 2579 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2580 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 2581 .max_header = MAX_TCP_HEADER, 2582 .obj_size = sizeof(struct tcp_sock), 2583 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2584 .twsk_prot = &tcp_timewait_sock_ops, 2585 .rsk_prot = &tcp_request_sock_ops, 2586 .h.hashinfo = &tcp_hashinfo, 2587 .no_autobind = true, 2588 #ifdef CONFIG_COMPAT 2589 .compat_setsockopt = compat_tcp_setsockopt, 2590 .compat_getsockopt = compat_tcp_getsockopt, 2591 #endif 2592 .diag_destroy = tcp_abort, 2593 }; 2594 EXPORT_SYMBOL(tcp_prot); 2595 2596 static void __net_exit tcp_sk_exit(struct net *net) 2597 { 2598 int cpu; 2599 2600 if (net->ipv4.tcp_congestion_control) 2601 module_put(net->ipv4.tcp_congestion_control->owner); 2602 2603 for_each_possible_cpu(cpu) 2604 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2605 free_percpu(net->ipv4.tcp_sk); 2606 } 2607 2608 static int __net_init tcp_sk_init(struct net *net) 2609 { 2610 int res, cpu, cnt; 2611 2612 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2613 if (!net->ipv4.tcp_sk) 2614 return -ENOMEM; 2615 2616 for_each_possible_cpu(cpu) { 2617 struct sock *sk; 2618 2619 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2620 IPPROTO_TCP, net); 2621 if (res) 2622 goto fail; 2623 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2624 2625 /* Please enforce IP_DF and IPID==0 for RST and 2626 * ACK sent in SYN-RECV and TIME-WAIT state. 2627 */ 2628 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 2629 2630 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2631 } 2632 2633 net->ipv4.sysctl_tcp_ecn = 2; 2634 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2635 2636 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2637 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 2638 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2639 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2640 2641 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2642 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2643 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2644 2645 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2646 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2647 net->ipv4.sysctl_tcp_syncookies = 1; 2648 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2649 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2650 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2651 net->ipv4.sysctl_tcp_orphan_retries = 0; 2652 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2653 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2654 net->ipv4.sysctl_tcp_tw_reuse = 2; 2655 2656 cnt = tcp_hashinfo.ehash_mask + 1; 2657 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 2658 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; 2659 2660 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256); 2661 net->ipv4.sysctl_tcp_sack = 1; 2662 net->ipv4.sysctl_tcp_window_scaling = 1; 2663 net->ipv4.sysctl_tcp_timestamps = 1; 2664 net->ipv4.sysctl_tcp_early_retrans = 3; 2665 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 2666 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 2667 net->ipv4.sysctl_tcp_retrans_collapse = 1; 2668 net->ipv4.sysctl_tcp_max_reordering = 300; 2669 net->ipv4.sysctl_tcp_dsack = 1; 2670 net->ipv4.sysctl_tcp_app_win = 31; 2671 net->ipv4.sysctl_tcp_adv_win_scale = 1; 2672 net->ipv4.sysctl_tcp_frto = 2; 2673 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 2674 /* This limits the percentage of the congestion window which we 2675 * will allow a single TSO frame to consume. Building TSO frames 2676 * which are too large can cause TCP streams to be bursty. 2677 */ 2678 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 2679 /* Default TSQ limit of 16 TSO segments */ 2680 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 2681 /* rfc5961 challenge ack rate limiting */ 2682 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 2683 net->ipv4.sysctl_tcp_min_tso_segs = 2; 2684 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 2685 net->ipv4.sysctl_tcp_autocorking = 1; 2686 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 2687 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 2688 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 2689 if (net != &init_net) { 2690 memcpy(net->ipv4.sysctl_tcp_rmem, 2691 init_net.ipv4.sysctl_tcp_rmem, 2692 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 2693 memcpy(net->ipv4.sysctl_tcp_wmem, 2694 init_net.ipv4.sysctl_tcp_wmem, 2695 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 2696 } 2697 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 2698 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 2699 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 2700 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); 2701 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60; 2702 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 2703 2704 /* Reno is always built in */ 2705 if (!net_eq(net, &init_net) && 2706 try_module_get(init_net.ipv4.tcp_congestion_control->owner)) 2707 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 2708 else 2709 net->ipv4.tcp_congestion_control = &tcp_reno; 2710 2711 return 0; 2712 fail: 2713 tcp_sk_exit(net); 2714 2715 return res; 2716 } 2717 2718 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2719 { 2720 struct net *net; 2721 2722 inet_twsk_purge(&tcp_hashinfo, AF_INET); 2723 2724 list_for_each_entry(net, net_exit_list, exit_list) 2725 tcp_fastopen_ctx_destroy(net); 2726 } 2727 2728 static struct pernet_operations __net_initdata tcp_sk_ops = { 2729 .init = tcp_sk_init, 2730 .exit = tcp_sk_exit, 2731 .exit_batch = tcp_sk_exit_batch, 2732 }; 2733 2734 void __init tcp_v4_init(void) 2735 { 2736 if (register_pernet_subsys(&tcp_sk_ops)) 2737 panic("Failed to create the TCP control socket.\n"); 2738 } 2739