xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 19758688)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79 #include <linux/inetdevice.h>
80 #include <linux/btf_ids.h>
81 
82 #include <crypto/hash.h>
83 #include <linux/scatterlist.h>
84 
85 #include <trace/events/tcp.h>
86 
87 #ifdef CONFIG_TCP_MD5SIG
88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
89 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
90 #endif
91 
92 struct inet_hashinfo tcp_hashinfo;
93 EXPORT_SYMBOL(tcp_hashinfo);
94 
95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
96 
97 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
98 {
99 	return secure_tcp_seq(ip_hdr(skb)->daddr,
100 			      ip_hdr(skb)->saddr,
101 			      tcp_hdr(skb)->dest,
102 			      tcp_hdr(skb)->source);
103 }
104 
105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
106 {
107 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
108 }
109 
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 
117 	if (reuse == 2) {
118 		/* Still does not detect *everything* that goes through
119 		 * lo, since we require a loopback src or dst address
120 		 * or direct binding to 'lo' interface.
121 		 */
122 		bool loopback = false;
123 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
124 			loopback = true;
125 #if IS_ENABLED(CONFIG_IPV6)
126 		if (tw->tw_family == AF_INET6) {
127 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
129 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
130 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
131 				loopback = true;
132 		} else
133 #endif
134 		{
135 			if (ipv4_is_loopback(tw->tw_daddr) ||
136 			    ipv4_is_loopback(tw->tw_rcv_saddr))
137 				loopback = true;
138 		}
139 		if (!loopback)
140 			reuse = 0;
141 	}
142 
143 	/* With PAWS, it is safe from the viewpoint
144 	   of data integrity. Even without PAWS it is safe provided sequence
145 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
146 
147 	   Actually, the idea is close to VJ's one, only timestamp cache is
148 	   held not per host, but per port pair and TW bucket is used as state
149 	   holder.
150 
151 	   If TW bucket has been already destroyed we fall back to VJ's scheme
152 	   and use initial timestamp retrieved from peer table.
153 	 */
154 	if (tcptw->tw_ts_recent_stamp &&
155 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
156 					    tcptw->tw_ts_recent_stamp)))) {
157 		/* In case of repair and re-using TIME-WAIT sockets we still
158 		 * want to be sure that it is safe as above but honor the
159 		 * sequence numbers and time stamps set as part of the repair
160 		 * process.
161 		 *
162 		 * Without this check re-using a TIME-WAIT socket with TCP
163 		 * repair would accumulate a -1 on the repair assigned
164 		 * sequence number. The first time it is reused the sequence
165 		 * is -1, the second time -2, etc. This fixes that issue
166 		 * without appearing to create any others.
167 		 */
168 		if (likely(!tp->repair)) {
169 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
170 
171 			if (!seq)
172 				seq = 1;
173 			WRITE_ONCE(tp->write_seq, seq);
174 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
175 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
176 		}
177 		sock_hold(sktw);
178 		return 1;
179 	}
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
184 
185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
186 			      int addr_len)
187 {
188 	/* This check is replicated from tcp_v4_connect() and intended to
189 	 * prevent BPF program called below from accessing bytes that are out
190 	 * of the bound specified by user in addr_len.
191 	 */
192 	if (addr_len < sizeof(struct sockaddr_in))
193 		return -EINVAL;
194 
195 	sock_owned_by_me(sk);
196 
197 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
198 }
199 
200 /* This will initiate an outgoing connection. */
201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
202 {
203 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
204 	struct inet_timewait_death_row *tcp_death_row;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	struct ip_options_rcu *inet_opt;
208 	struct net *net = sock_net(sk);
209 	__be16 orig_sport, orig_dport;
210 	__be32 daddr, nexthop;
211 	struct flowi4 *fl4;
212 	struct rtable *rt;
213 	int err;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
235 			      orig_dport, sk);
236 	if (IS_ERR(rt)) {
237 		err = PTR_ERR(rt);
238 		if (err == -ENETUNREACH)
239 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
240 		return err;
241 	}
242 
243 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
244 		ip_rt_put(rt);
245 		return -ENETUNREACH;
246 	}
247 
248 	if (!inet_opt || !inet_opt->opt.srr)
249 		daddr = fl4->daddr;
250 
251 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252 
253 	if (!inet->inet_saddr) {
254 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
255 		if (err) {
256 			ip_rt_put(rt);
257 			return err;
258 		}
259 	} else {
260 		sk_rcv_saddr_set(sk, inet->inet_saddr);
261 	}
262 
263 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
264 		/* Reset inherited state */
265 		tp->rx_opt.ts_recent	   = 0;
266 		tp->rx_opt.ts_recent_stamp = 0;
267 		if (likely(!tp->repair))
268 			WRITE_ONCE(tp->write_seq, 0);
269 	}
270 
271 	inet->inet_dport = usin->sin_port;
272 	sk_daddr_set(sk, daddr);
273 
274 	inet_csk(sk)->icsk_ext_hdr_len = 0;
275 	if (inet_opt)
276 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
277 
278 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
279 
280 	/* Socket identity is still unknown (sport may be zero).
281 	 * However we set state to SYN-SENT and not releasing socket
282 	 * lock select source port, enter ourselves into the hash tables and
283 	 * complete initialization after this.
284 	 */
285 	tcp_set_state(sk, TCP_SYN_SENT);
286 	err = inet_hash_connect(tcp_death_row, sk);
287 	if (err)
288 		goto failure;
289 
290 	sk_set_txhash(sk);
291 
292 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
293 			       inet->inet_sport, inet->inet_dport, sk);
294 	if (IS_ERR(rt)) {
295 		err = PTR_ERR(rt);
296 		rt = NULL;
297 		goto failure;
298 	}
299 	/* OK, now commit destination to socket.  */
300 	sk->sk_gso_type = SKB_GSO_TCPV4;
301 	sk_setup_caps(sk, &rt->dst);
302 	rt = NULL;
303 
304 	if (likely(!tp->repair)) {
305 		if (!tp->write_seq)
306 			WRITE_ONCE(tp->write_seq,
307 				   secure_tcp_seq(inet->inet_saddr,
308 						  inet->inet_daddr,
309 						  inet->inet_sport,
310 						  usin->sin_port));
311 		WRITE_ONCE(tp->tsoffset,
312 			   secure_tcp_ts_off(net, inet->inet_saddr,
313 					     inet->inet_daddr));
314 	}
315 
316 	atomic_set(&inet->inet_id, get_random_u16());
317 
318 	if (tcp_fastopen_defer_connect(sk, &err))
319 		return err;
320 	if (err)
321 		goto failure;
322 
323 	err = tcp_connect(sk);
324 
325 	if (err)
326 		goto failure;
327 
328 	return 0;
329 
330 failure:
331 	/*
332 	 * This unhashes the socket and releases the local port,
333 	 * if necessary.
334 	 */
335 	tcp_set_state(sk, TCP_CLOSE);
336 	inet_bhash2_reset_saddr(sk);
337 	ip_rt_put(rt);
338 	sk->sk_route_caps = 0;
339 	inet->inet_dport = 0;
340 	return err;
341 }
342 EXPORT_SYMBOL(tcp_v4_connect);
343 
344 /*
345  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
346  * It can be called through tcp_release_cb() if socket was owned by user
347  * at the time tcp_v4_err() was called to handle ICMP message.
348  */
349 void tcp_v4_mtu_reduced(struct sock *sk)
350 {
351 	struct inet_sock *inet = inet_sk(sk);
352 	struct dst_entry *dst;
353 	u32 mtu;
354 
355 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
356 		return;
357 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
358 	dst = inet_csk_update_pmtu(sk, mtu);
359 	if (!dst)
360 		return;
361 
362 	/* Something is about to be wrong... Remember soft error
363 	 * for the case, if this connection will not able to recover.
364 	 */
365 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
366 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
367 
368 	mtu = dst_mtu(dst);
369 
370 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
371 	    ip_sk_accept_pmtu(sk) &&
372 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
373 		tcp_sync_mss(sk, mtu);
374 
375 		/* Resend the TCP packet because it's
376 		 * clear that the old packet has been
377 		 * dropped. This is the new "fast" path mtu
378 		 * discovery.
379 		 */
380 		tcp_simple_retransmit(sk);
381 	} /* else let the usual retransmit timer handle it */
382 }
383 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
384 
385 static void do_redirect(struct sk_buff *skb, struct sock *sk)
386 {
387 	struct dst_entry *dst = __sk_dst_check(sk, 0);
388 
389 	if (dst)
390 		dst->ops->redirect(dst, sk, skb);
391 }
392 
393 
394 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
395 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
396 {
397 	struct request_sock *req = inet_reqsk(sk);
398 	struct net *net = sock_net(sk);
399 
400 	/* ICMPs are not backlogged, hence we cannot get
401 	 * an established socket here.
402 	 */
403 	if (seq != tcp_rsk(req)->snt_isn) {
404 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
405 	} else if (abort) {
406 		/*
407 		 * Still in SYN_RECV, just remove it silently.
408 		 * There is no good way to pass the error to the newly
409 		 * created socket, and POSIX does not want network
410 		 * errors returned from accept().
411 		 */
412 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
413 		tcp_listendrop(req->rsk_listener);
414 	}
415 	reqsk_put(req);
416 }
417 EXPORT_SYMBOL(tcp_req_err);
418 
419 /* TCP-LD (RFC 6069) logic */
420 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
421 {
422 	struct inet_connection_sock *icsk = inet_csk(sk);
423 	struct tcp_sock *tp = tcp_sk(sk);
424 	struct sk_buff *skb;
425 	s32 remaining;
426 	u32 delta_us;
427 
428 	if (sock_owned_by_user(sk))
429 		return;
430 
431 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
432 	    !icsk->icsk_backoff)
433 		return;
434 
435 	skb = tcp_rtx_queue_head(sk);
436 	if (WARN_ON_ONCE(!skb))
437 		return;
438 
439 	icsk->icsk_backoff--;
440 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
441 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
442 
443 	tcp_mstamp_refresh(tp);
444 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
445 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
446 
447 	if (remaining > 0) {
448 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 					  remaining, TCP_RTO_MAX);
450 	} else {
451 		/* RTO revert clocked out retransmission.
452 		 * Will retransmit now.
453 		 */
454 		tcp_retransmit_timer(sk);
455 	}
456 }
457 EXPORT_SYMBOL(tcp_ld_RTO_revert);
458 
459 /*
460  * This routine is called by the ICMP module when it gets some
461  * sort of error condition.  If err < 0 then the socket should
462  * be closed and the error returned to the user.  If err > 0
463  * it's just the icmp type << 8 | icmp code.  After adjustment
464  * header points to the first 8 bytes of the tcp header.  We need
465  * to find the appropriate port.
466  *
467  * The locking strategy used here is very "optimistic". When
468  * someone else accesses the socket the ICMP is just dropped
469  * and for some paths there is no check at all.
470  * A more general error queue to queue errors for later handling
471  * is probably better.
472  *
473  */
474 
475 int tcp_v4_err(struct sk_buff *skb, u32 info)
476 {
477 	const struct iphdr *iph = (const struct iphdr *)skb->data;
478 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
479 	struct tcp_sock *tp;
480 	const int type = icmp_hdr(skb)->type;
481 	const int code = icmp_hdr(skb)->code;
482 	struct sock *sk;
483 	struct request_sock *fastopen;
484 	u32 seq, snd_una;
485 	int err;
486 	struct net *net = dev_net(skb->dev);
487 
488 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
489 				       iph->daddr, th->dest, iph->saddr,
490 				       ntohs(th->source), inet_iif(skb), 0);
491 	if (!sk) {
492 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
493 		return -ENOENT;
494 	}
495 	if (sk->sk_state == TCP_TIME_WAIT) {
496 		inet_twsk_put(inet_twsk(sk));
497 		return 0;
498 	}
499 	seq = ntohl(th->seq);
500 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
501 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
502 				     type == ICMP_TIME_EXCEEDED ||
503 				     (type == ICMP_DEST_UNREACH &&
504 				      (code == ICMP_NET_UNREACH ||
505 				       code == ICMP_HOST_UNREACH)));
506 		return 0;
507 	}
508 
509 	bh_lock_sock(sk);
510 	/* If too many ICMPs get dropped on busy
511 	 * servers this needs to be solved differently.
512 	 * We do take care of PMTU discovery (RFC1191) special case :
513 	 * we can receive locally generated ICMP messages while socket is held.
514 	 */
515 	if (sock_owned_by_user(sk)) {
516 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
517 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
518 	}
519 	if (sk->sk_state == TCP_CLOSE)
520 		goto out;
521 
522 	if (static_branch_unlikely(&ip4_min_ttl)) {
523 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
524 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
525 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
526 			goto out;
527 		}
528 	}
529 
530 	tp = tcp_sk(sk);
531 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
532 	fastopen = rcu_dereference(tp->fastopen_rsk);
533 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
534 	if (sk->sk_state != TCP_LISTEN &&
535 	    !between(seq, snd_una, tp->snd_nxt)) {
536 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
537 		goto out;
538 	}
539 
540 	switch (type) {
541 	case ICMP_REDIRECT:
542 		if (!sock_owned_by_user(sk))
543 			do_redirect(skb, sk);
544 		goto out;
545 	case ICMP_SOURCE_QUENCH:
546 		/* Just silently ignore these. */
547 		goto out;
548 	case ICMP_PARAMETERPROB:
549 		err = EPROTO;
550 		break;
551 	case ICMP_DEST_UNREACH:
552 		if (code > NR_ICMP_UNREACH)
553 			goto out;
554 
555 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
556 			/* We are not interested in TCP_LISTEN and open_requests
557 			 * (SYN-ACKs send out by Linux are always <576bytes so
558 			 * they should go through unfragmented).
559 			 */
560 			if (sk->sk_state == TCP_LISTEN)
561 				goto out;
562 
563 			WRITE_ONCE(tp->mtu_info, info);
564 			if (!sock_owned_by_user(sk)) {
565 				tcp_v4_mtu_reduced(sk);
566 			} else {
567 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
568 					sock_hold(sk);
569 			}
570 			goto out;
571 		}
572 
573 		err = icmp_err_convert[code].errno;
574 		/* check if this ICMP message allows revert of backoff.
575 		 * (see RFC 6069)
576 		 */
577 		if (!fastopen &&
578 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
579 			tcp_ld_RTO_revert(sk, seq);
580 		break;
581 	case ICMP_TIME_EXCEEDED:
582 		err = EHOSTUNREACH;
583 		break;
584 	default:
585 		goto out;
586 	}
587 
588 	switch (sk->sk_state) {
589 	case TCP_SYN_SENT:
590 	case TCP_SYN_RECV:
591 		/* Only in fast or simultaneous open. If a fast open socket is
592 		 * already accepted it is treated as a connected one below.
593 		 */
594 		if (fastopen && !fastopen->sk)
595 			break;
596 
597 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
598 
599 		if (!sock_owned_by_user(sk)) {
600 			WRITE_ONCE(sk->sk_err, err);
601 
602 			sk_error_report(sk);
603 
604 			tcp_done(sk);
605 		} else {
606 			WRITE_ONCE(sk->sk_err_soft, err);
607 		}
608 		goto out;
609 	}
610 
611 	/* If we've already connected we will keep trying
612 	 * until we time out, or the user gives up.
613 	 *
614 	 * rfc1122 4.2.3.9 allows to consider as hard errors
615 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
616 	 * but it is obsoleted by pmtu discovery).
617 	 *
618 	 * Note, that in modern internet, where routing is unreliable
619 	 * and in each dark corner broken firewalls sit, sending random
620 	 * errors ordered by their masters even this two messages finally lose
621 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
622 	 *
623 	 * Now we are in compliance with RFCs.
624 	 *							--ANK (980905)
625 	 */
626 
627 	if (!sock_owned_by_user(sk) &&
628 	    inet_test_bit(RECVERR, sk)) {
629 		WRITE_ONCE(sk->sk_err, err);
630 		sk_error_report(sk);
631 	} else	{ /* Only an error on timeout */
632 		WRITE_ONCE(sk->sk_err_soft, err);
633 	}
634 
635 out:
636 	bh_unlock_sock(sk);
637 	sock_put(sk);
638 	return 0;
639 }
640 
641 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
642 {
643 	struct tcphdr *th = tcp_hdr(skb);
644 
645 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
646 	skb->csum_start = skb_transport_header(skb) - skb->head;
647 	skb->csum_offset = offsetof(struct tcphdr, check);
648 }
649 
650 /* This routine computes an IPv4 TCP checksum. */
651 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
652 {
653 	const struct inet_sock *inet = inet_sk(sk);
654 
655 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
656 }
657 EXPORT_SYMBOL(tcp_v4_send_check);
658 
659 /*
660  *	This routine will send an RST to the other tcp.
661  *
662  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
663  *		      for reset.
664  *	Answer: if a packet caused RST, it is not for a socket
665  *		existing in our system, if it is matched to a socket,
666  *		it is just duplicate segment or bug in other side's TCP.
667  *		So that we build reply only basing on parameters
668  *		arrived with segment.
669  *	Exception: precedence violation. We do not implement it in any case.
670  */
671 
672 #ifdef CONFIG_TCP_MD5SIG
673 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
674 #else
675 #define OPTION_BYTES sizeof(__be32)
676 #endif
677 
678 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
679 {
680 	const struct tcphdr *th = tcp_hdr(skb);
681 	struct {
682 		struct tcphdr th;
683 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
684 	} rep;
685 	struct ip_reply_arg arg;
686 #ifdef CONFIG_TCP_MD5SIG
687 	struct tcp_md5sig_key *key = NULL;
688 	const __u8 *hash_location = NULL;
689 	unsigned char newhash[16];
690 	int genhash;
691 	struct sock *sk1 = NULL;
692 #endif
693 	u64 transmit_time = 0;
694 	struct sock *ctl_sk;
695 	struct net *net;
696 	u32 txhash = 0;
697 
698 	/* Never send a reset in response to a reset. */
699 	if (th->rst)
700 		return;
701 
702 	/* If sk not NULL, it means we did a successful lookup and incoming
703 	 * route had to be correct. prequeue might have dropped our dst.
704 	 */
705 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
706 		return;
707 
708 	/* Swap the send and the receive. */
709 	memset(&rep, 0, sizeof(rep));
710 	rep.th.dest   = th->source;
711 	rep.th.source = th->dest;
712 	rep.th.doff   = sizeof(struct tcphdr) / 4;
713 	rep.th.rst    = 1;
714 
715 	if (th->ack) {
716 		rep.th.seq = th->ack_seq;
717 	} else {
718 		rep.th.ack = 1;
719 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
720 				       skb->len - (th->doff << 2));
721 	}
722 
723 	memset(&arg, 0, sizeof(arg));
724 	arg.iov[0].iov_base = (unsigned char *)&rep;
725 	arg.iov[0].iov_len  = sizeof(rep.th);
726 
727 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
728 #ifdef CONFIG_TCP_MD5SIG
729 	rcu_read_lock();
730 	hash_location = tcp_parse_md5sig_option(th);
731 	if (sk && sk_fullsock(sk)) {
732 		const union tcp_md5_addr *addr;
733 		int l3index;
734 
735 		/* sdif set, means packet ingressed via a device
736 		 * in an L3 domain and inet_iif is set to it.
737 		 */
738 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
739 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
740 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
741 	} else if (hash_location) {
742 		const union tcp_md5_addr *addr;
743 		int sdif = tcp_v4_sdif(skb);
744 		int dif = inet_iif(skb);
745 		int l3index;
746 
747 		/*
748 		 * active side is lost. Try to find listening socket through
749 		 * source port, and then find md5 key through listening socket.
750 		 * we are not loose security here:
751 		 * Incoming packet is checked with md5 hash with finding key,
752 		 * no RST generated if md5 hash doesn't match.
753 		 */
754 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
755 					     NULL, 0, ip_hdr(skb)->saddr,
756 					     th->source, ip_hdr(skb)->daddr,
757 					     ntohs(th->source), dif, sdif);
758 		/* don't send rst if it can't find key */
759 		if (!sk1)
760 			goto out;
761 
762 		/* sdif set, means packet ingressed via a device
763 		 * in an L3 domain and dif is set to it.
764 		 */
765 		l3index = sdif ? dif : 0;
766 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
767 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
768 		if (!key)
769 			goto out;
770 
771 
772 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
773 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
774 			goto out;
775 
776 	}
777 
778 	if (key) {
779 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
780 				   (TCPOPT_NOP << 16) |
781 				   (TCPOPT_MD5SIG << 8) |
782 				   TCPOLEN_MD5SIG);
783 		/* Update length and the length the header thinks exists */
784 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
785 		rep.th.doff = arg.iov[0].iov_len / 4;
786 
787 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
788 				     key, ip_hdr(skb)->saddr,
789 				     ip_hdr(skb)->daddr, &rep.th);
790 	}
791 #endif
792 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
793 	if (rep.opt[0] == 0) {
794 		__be32 mrst = mptcp_reset_option(skb);
795 
796 		if (mrst) {
797 			rep.opt[0] = mrst;
798 			arg.iov[0].iov_len += sizeof(mrst);
799 			rep.th.doff = arg.iov[0].iov_len / 4;
800 		}
801 	}
802 
803 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
804 				      ip_hdr(skb)->saddr, /* XXX */
805 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
806 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
807 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
808 
809 	/* When socket is gone, all binding information is lost.
810 	 * routing might fail in this case. No choice here, if we choose to force
811 	 * input interface, we will misroute in case of asymmetric route.
812 	 */
813 	if (sk) {
814 		arg.bound_dev_if = sk->sk_bound_dev_if;
815 		if (sk_fullsock(sk))
816 			trace_tcp_send_reset(sk, skb);
817 	}
818 
819 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
820 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
821 
822 	arg.tos = ip_hdr(skb)->tos;
823 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
824 	local_bh_disable();
825 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
826 	sock_net_set(ctl_sk, net);
827 	if (sk) {
828 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
829 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
830 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
831 				   inet_twsk(sk)->tw_priority : sk->sk_priority;
832 		transmit_time = tcp_transmit_time(sk);
833 		xfrm_sk_clone_policy(ctl_sk, sk);
834 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
835 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
836 	} else {
837 		ctl_sk->sk_mark = 0;
838 		ctl_sk->sk_priority = 0;
839 	}
840 	ip_send_unicast_reply(ctl_sk,
841 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
842 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
843 			      &arg, arg.iov[0].iov_len,
844 			      transmit_time, txhash);
845 
846 	xfrm_sk_free_policy(ctl_sk);
847 	sock_net_set(ctl_sk, &init_net);
848 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
849 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
850 	local_bh_enable();
851 
852 #ifdef CONFIG_TCP_MD5SIG
853 out:
854 	rcu_read_unlock();
855 #endif
856 }
857 
858 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
859    outside socket context is ugly, certainly. What can I do?
860  */
861 
862 static void tcp_v4_send_ack(const struct sock *sk,
863 			    struct sk_buff *skb, u32 seq, u32 ack,
864 			    u32 win, u32 tsval, u32 tsecr, int oif,
865 			    struct tcp_md5sig_key *key,
866 			    int reply_flags, u8 tos, u32 txhash)
867 {
868 	const struct tcphdr *th = tcp_hdr(skb);
869 	struct {
870 		struct tcphdr th;
871 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
872 #ifdef CONFIG_TCP_MD5SIG
873 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
874 #endif
875 			];
876 	} rep;
877 	struct net *net = sock_net(sk);
878 	struct ip_reply_arg arg;
879 	struct sock *ctl_sk;
880 	u64 transmit_time;
881 
882 	memset(&rep.th, 0, sizeof(struct tcphdr));
883 	memset(&arg, 0, sizeof(arg));
884 
885 	arg.iov[0].iov_base = (unsigned char *)&rep;
886 	arg.iov[0].iov_len  = sizeof(rep.th);
887 	if (tsecr) {
888 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
889 				   (TCPOPT_TIMESTAMP << 8) |
890 				   TCPOLEN_TIMESTAMP);
891 		rep.opt[1] = htonl(tsval);
892 		rep.opt[2] = htonl(tsecr);
893 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
894 	}
895 
896 	/* Swap the send and the receive. */
897 	rep.th.dest    = th->source;
898 	rep.th.source  = th->dest;
899 	rep.th.doff    = arg.iov[0].iov_len / 4;
900 	rep.th.seq     = htonl(seq);
901 	rep.th.ack_seq = htonl(ack);
902 	rep.th.ack     = 1;
903 	rep.th.window  = htons(win);
904 
905 #ifdef CONFIG_TCP_MD5SIG
906 	if (key) {
907 		int offset = (tsecr) ? 3 : 0;
908 
909 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
910 					  (TCPOPT_NOP << 16) |
911 					  (TCPOPT_MD5SIG << 8) |
912 					  TCPOLEN_MD5SIG);
913 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
914 		rep.th.doff = arg.iov[0].iov_len/4;
915 
916 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
917 				    key, ip_hdr(skb)->saddr,
918 				    ip_hdr(skb)->daddr, &rep.th);
919 	}
920 #endif
921 	arg.flags = reply_flags;
922 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
923 				      ip_hdr(skb)->saddr, /* XXX */
924 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
925 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
926 	if (oif)
927 		arg.bound_dev_if = oif;
928 	arg.tos = tos;
929 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
930 	local_bh_disable();
931 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
932 	sock_net_set(ctl_sk, net);
933 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
934 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
935 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
936 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
937 	transmit_time = tcp_transmit_time(sk);
938 	ip_send_unicast_reply(ctl_sk,
939 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
940 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
941 			      &arg, arg.iov[0].iov_len,
942 			      transmit_time, txhash);
943 
944 	sock_net_set(ctl_sk, &init_net);
945 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
946 	local_bh_enable();
947 }
948 
949 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
950 {
951 	struct inet_timewait_sock *tw = inet_twsk(sk);
952 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
953 
954 	tcp_v4_send_ack(sk, skb,
955 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
956 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
957 			tcp_time_stamp_raw() + tcptw->tw_ts_offset,
958 			tcptw->tw_ts_recent,
959 			tw->tw_bound_dev_if,
960 			tcp_twsk_md5_key(tcptw),
961 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
962 			tw->tw_tos,
963 			tw->tw_txhash
964 			);
965 
966 	inet_twsk_put(tw);
967 }
968 
969 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
970 				  struct request_sock *req)
971 {
972 	const union tcp_md5_addr *addr;
973 	int l3index;
974 
975 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
976 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
977 	 */
978 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
979 					     tcp_sk(sk)->snd_nxt;
980 
981 	/* RFC 7323 2.3
982 	 * The window field (SEG.WND) of every outgoing segment, with the
983 	 * exception of <SYN> segments, MUST be right-shifted by
984 	 * Rcv.Wind.Shift bits:
985 	 */
986 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
987 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
988 	tcp_v4_send_ack(sk, skb, seq,
989 			tcp_rsk(req)->rcv_nxt,
990 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
991 			tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
992 			READ_ONCE(req->ts_recent),
993 			0,
994 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
995 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
996 			ip_hdr(skb)->tos,
997 			READ_ONCE(tcp_rsk(req)->txhash));
998 }
999 
1000 /*
1001  *	Send a SYN-ACK after having received a SYN.
1002  *	This still operates on a request_sock only, not on a big
1003  *	socket.
1004  */
1005 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1006 			      struct flowi *fl,
1007 			      struct request_sock *req,
1008 			      struct tcp_fastopen_cookie *foc,
1009 			      enum tcp_synack_type synack_type,
1010 			      struct sk_buff *syn_skb)
1011 {
1012 	const struct inet_request_sock *ireq = inet_rsk(req);
1013 	struct flowi4 fl4;
1014 	int err = -1;
1015 	struct sk_buff *skb;
1016 	u8 tos;
1017 
1018 	/* First, grab a route. */
1019 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1020 		return -1;
1021 
1022 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1023 
1024 	if (skb) {
1025 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1026 
1027 		tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
1028 				(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1029 				(inet_sk(sk)->tos & INET_ECN_MASK) :
1030 				inet_sk(sk)->tos;
1031 
1032 		if (!INET_ECN_is_capable(tos) &&
1033 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1034 			tos |= INET_ECN_ECT_0;
1035 
1036 		rcu_read_lock();
1037 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1038 					    ireq->ir_rmt_addr,
1039 					    rcu_dereference(ireq->ireq_opt),
1040 					    tos);
1041 		rcu_read_unlock();
1042 		err = net_xmit_eval(err);
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /*
1049  *	IPv4 request_sock destructor.
1050  */
1051 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1052 {
1053 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1054 }
1055 
1056 #ifdef CONFIG_TCP_MD5SIG
1057 /*
1058  * RFC2385 MD5 checksumming requires a mapping of
1059  * IP address->MD5 Key.
1060  * We need to maintain these in the sk structure.
1061  */
1062 
1063 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1064 EXPORT_SYMBOL(tcp_md5_needed);
1065 
1066 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1067 {
1068 	if (!old)
1069 		return true;
1070 
1071 	/* l3index always overrides non-l3index */
1072 	if (old->l3index && new->l3index == 0)
1073 		return false;
1074 	if (old->l3index == 0 && new->l3index)
1075 		return true;
1076 
1077 	return old->prefixlen < new->prefixlen;
1078 }
1079 
1080 /* Find the Key structure for an address.  */
1081 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1082 					   const union tcp_md5_addr *addr,
1083 					   int family)
1084 {
1085 	const struct tcp_sock *tp = tcp_sk(sk);
1086 	struct tcp_md5sig_key *key;
1087 	const struct tcp_md5sig_info *md5sig;
1088 	__be32 mask;
1089 	struct tcp_md5sig_key *best_match = NULL;
1090 	bool match;
1091 
1092 	/* caller either holds rcu_read_lock() or socket lock */
1093 	md5sig = rcu_dereference_check(tp->md5sig_info,
1094 				       lockdep_sock_is_held(sk));
1095 	if (!md5sig)
1096 		return NULL;
1097 
1098 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1099 				 lockdep_sock_is_held(sk)) {
1100 		if (key->family != family)
1101 			continue;
1102 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1103 			continue;
1104 		if (family == AF_INET) {
1105 			mask = inet_make_mask(key->prefixlen);
1106 			match = (key->addr.a4.s_addr & mask) ==
1107 				(addr->a4.s_addr & mask);
1108 #if IS_ENABLED(CONFIG_IPV6)
1109 		} else if (family == AF_INET6) {
1110 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1111 						  key->prefixlen);
1112 #endif
1113 		} else {
1114 			match = false;
1115 		}
1116 
1117 		if (match && better_md5_match(best_match, key))
1118 			best_match = key;
1119 	}
1120 	return best_match;
1121 }
1122 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1123 
1124 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1125 						      const union tcp_md5_addr *addr,
1126 						      int family, u8 prefixlen,
1127 						      int l3index, u8 flags)
1128 {
1129 	const struct tcp_sock *tp = tcp_sk(sk);
1130 	struct tcp_md5sig_key *key;
1131 	unsigned int size = sizeof(struct in_addr);
1132 	const struct tcp_md5sig_info *md5sig;
1133 
1134 	/* caller either holds rcu_read_lock() or socket lock */
1135 	md5sig = rcu_dereference_check(tp->md5sig_info,
1136 				       lockdep_sock_is_held(sk));
1137 	if (!md5sig)
1138 		return NULL;
1139 #if IS_ENABLED(CONFIG_IPV6)
1140 	if (family == AF_INET6)
1141 		size = sizeof(struct in6_addr);
1142 #endif
1143 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1144 				 lockdep_sock_is_held(sk)) {
1145 		if (key->family != family)
1146 			continue;
1147 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1148 			continue;
1149 		if (key->l3index != l3index)
1150 			continue;
1151 		if (!memcmp(&key->addr, addr, size) &&
1152 		    key->prefixlen == prefixlen)
1153 			return key;
1154 	}
1155 	return NULL;
1156 }
1157 
1158 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1159 					 const struct sock *addr_sk)
1160 {
1161 	const union tcp_md5_addr *addr;
1162 	int l3index;
1163 
1164 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1165 						 addr_sk->sk_bound_dev_if);
1166 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1167 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1168 }
1169 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1170 
1171 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1172 {
1173 	struct tcp_sock *tp = tcp_sk(sk);
1174 	struct tcp_md5sig_info *md5sig;
1175 
1176 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1177 	if (!md5sig)
1178 		return -ENOMEM;
1179 
1180 	sk_gso_disable(sk);
1181 	INIT_HLIST_HEAD(&md5sig->head);
1182 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1183 	return 0;
1184 }
1185 
1186 /* This can be called on a newly created socket, from other files */
1187 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1188 			    int family, u8 prefixlen, int l3index, u8 flags,
1189 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1190 {
1191 	/* Add Key to the list */
1192 	struct tcp_md5sig_key *key;
1193 	struct tcp_sock *tp = tcp_sk(sk);
1194 	struct tcp_md5sig_info *md5sig;
1195 
1196 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1197 	if (key) {
1198 		/* Pre-existing entry - just update that one.
1199 		 * Note that the key might be used concurrently.
1200 		 * data_race() is telling kcsan that we do not care of
1201 		 * key mismatches, since changing MD5 key on live flows
1202 		 * can lead to packet drops.
1203 		 */
1204 		data_race(memcpy(key->key, newkey, newkeylen));
1205 
1206 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1207 		 * Also note that a reader could catch new key->keylen value
1208 		 * but old key->key[], this is the reason we use __GFP_ZERO
1209 		 * at sock_kmalloc() time below these lines.
1210 		 */
1211 		WRITE_ONCE(key->keylen, newkeylen);
1212 
1213 		return 0;
1214 	}
1215 
1216 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1217 					   lockdep_sock_is_held(sk));
1218 
1219 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1220 	if (!key)
1221 		return -ENOMEM;
1222 	if (!tcp_alloc_md5sig_pool()) {
1223 		sock_kfree_s(sk, key, sizeof(*key));
1224 		return -ENOMEM;
1225 	}
1226 
1227 	memcpy(key->key, newkey, newkeylen);
1228 	key->keylen = newkeylen;
1229 	key->family = family;
1230 	key->prefixlen = prefixlen;
1231 	key->l3index = l3index;
1232 	key->flags = flags;
1233 	memcpy(&key->addr, addr,
1234 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1235 								 sizeof(struct in_addr));
1236 	hlist_add_head_rcu(&key->node, &md5sig->head);
1237 	return 0;
1238 }
1239 
1240 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1241 		   int family, u8 prefixlen, int l3index, u8 flags,
1242 		   const u8 *newkey, u8 newkeylen)
1243 {
1244 	struct tcp_sock *tp = tcp_sk(sk);
1245 
1246 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1247 		if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1248 			return -ENOMEM;
1249 
1250 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1251 			struct tcp_md5sig_info *md5sig;
1252 
1253 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1254 			rcu_assign_pointer(tp->md5sig_info, NULL);
1255 			kfree_rcu(md5sig, rcu);
1256 			return -EUSERS;
1257 		}
1258 	}
1259 
1260 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1261 				newkey, newkeylen, GFP_KERNEL);
1262 }
1263 EXPORT_SYMBOL(tcp_md5_do_add);
1264 
1265 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1266 		     int family, u8 prefixlen, int l3index,
1267 		     struct tcp_md5sig_key *key)
1268 {
1269 	struct tcp_sock *tp = tcp_sk(sk);
1270 
1271 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1272 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1273 			return -ENOMEM;
1274 
1275 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1276 			struct tcp_md5sig_info *md5sig;
1277 
1278 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1279 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1280 			rcu_assign_pointer(tp->md5sig_info, NULL);
1281 			kfree_rcu(md5sig, rcu);
1282 			return -EUSERS;
1283 		}
1284 	}
1285 
1286 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1287 				key->flags, key->key, key->keylen,
1288 				sk_gfp_mask(sk, GFP_ATOMIC));
1289 }
1290 EXPORT_SYMBOL(tcp_md5_key_copy);
1291 
1292 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1293 		   u8 prefixlen, int l3index, u8 flags)
1294 {
1295 	struct tcp_md5sig_key *key;
1296 
1297 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1298 	if (!key)
1299 		return -ENOENT;
1300 	hlist_del_rcu(&key->node);
1301 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1302 	kfree_rcu(key, rcu);
1303 	return 0;
1304 }
1305 EXPORT_SYMBOL(tcp_md5_do_del);
1306 
1307 static void tcp_clear_md5_list(struct sock *sk)
1308 {
1309 	struct tcp_sock *tp = tcp_sk(sk);
1310 	struct tcp_md5sig_key *key;
1311 	struct hlist_node *n;
1312 	struct tcp_md5sig_info *md5sig;
1313 
1314 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1315 
1316 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1317 		hlist_del_rcu(&key->node);
1318 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1319 		kfree_rcu(key, rcu);
1320 	}
1321 }
1322 
1323 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1324 				 sockptr_t optval, int optlen)
1325 {
1326 	struct tcp_md5sig cmd;
1327 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1328 	const union tcp_md5_addr *addr;
1329 	u8 prefixlen = 32;
1330 	int l3index = 0;
1331 	u8 flags;
1332 
1333 	if (optlen < sizeof(cmd))
1334 		return -EINVAL;
1335 
1336 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1337 		return -EFAULT;
1338 
1339 	if (sin->sin_family != AF_INET)
1340 		return -EINVAL;
1341 
1342 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1343 
1344 	if (optname == TCP_MD5SIG_EXT &&
1345 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1346 		prefixlen = cmd.tcpm_prefixlen;
1347 		if (prefixlen > 32)
1348 			return -EINVAL;
1349 	}
1350 
1351 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1352 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1353 		struct net_device *dev;
1354 
1355 		rcu_read_lock();
1356 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1357 		if (dev && netif_is_l3_master(dev))
1358 			l3index = dev->ifindex;
1359 
1360 		rcu_read_unlock();
1361 
1362 		/* ok to reference set/not set outside of rcu;
1363 		 * right now device MUST be an L3 master
1364 		 */
1365 		if (!dev || !l3index)
1366 			return -EINVAL;
1367 	}
1368 
1369 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1370 
1371 	if (!cmd.tcpm_keylen)
1372 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1373 
1374 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1375 		return -EINVAL;
1376 
1377 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1378 			      cmd.tcpm_key, cmd.tcpm_keylen);
1379 }
1380 
1381 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1382 				   __be32 daddr, __be32 saddr,
1383 				   const struct tcphdr *th, int nbytes)
1384 {
1385 	struct tcp4_pseudohdr *bp;
1386 	struct scatterlist sg;
1387 	struct tcphdr *_th;
1388 
1389 	bp = hp->scratch;
1390 	bp->saddr = saddr;
1391 	bp->daddr = daddr;
1392 	bp->pad = 0;
1393 	bp->protocol = IPPROTO_TCP;
1394 	bp->len = cpu_to_be16(nbytes);
1395 
1396 	_th = (struct tcphdr *)(bp + 1);
1397 	memcpy(_th, th, sizeof(*th));
1398 	_th->check = 0;
1399 
1400 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1401 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1402 				sizeof(*bp) + sizeof(*th));
1403 	return crypto_ahash_update(hp->md5_req);
1404 }
1405 
1406 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1407 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1408 {
1409 	struct tcp_md5sig_pool *hp;
1410 	struct ahash_request *req;
1411 
1412 	hp = tcp_get_md5sig_pool();
1413 	if (!hp)
1414 		goto clear_hash_noput;
1415 	req = hp->md5_req;
1416 
1417 	if (crypto_ahash_init(req))
1418 		goto clear_hash;
1419 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1420 		goto clear_hash;
1421 	if (tcp_md5_hash_key(hp, key))
1422 		goto clear_hash;
1423 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1424 	if (crypto_ahash_final(req))
1425 		goto clear_hash;
1426 
1427 	tcp_put_md5sig_pool();
1428 	return 0;
1429 
1430 clear_hash:
1431 	tcp_put_md5sig_pool();
1432 clear_hash_noput:
1433 	memset(md5_hash, 0, 16);
1434 	return 1;
1435 }
1436 
1437 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1438 			const struct sock *sk,
1439 			const struct sk_buff *skb)
1440 {
1441 	struct tcp_md5sig_pool *hp;
1442 	struct ahash_request *req;
1443 	const struct tcphdr *th = tcp_hdr(skb);
1444 	__be32 saddr, daddr;
1445 
1446 	if (sk) { /* valid for establish/request sockets */
1447 		saddr = sk->sk_rcv_saddr;
1448 		daddr = sk->sk_daddr;
1449 	} else {
1450 		const struct iphdr *iph = ip_hdr(skb);
1451 		saddr = iph->saddr;
1452 		daddr = iph->daddr;
1453 	}
1454 
1455 	hp = tcp_get_md5sig_pool();
1456 	if (!hp)
1457 		goto clear_hash_noput;
1458 	req = hp->md5_req;
1459 
1460 	if (crypto_ahash_init(req))
1461 		goto clear_hash;
1462 
1463 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1464 		goto clear_hash;
1465 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1466 		goto clear_hash;
1467 	if (tcp_md5_hash_key(hp, key))
1468 		goto clear_hash;
1469 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1470 	if (crypto_ahash_final(req))
1471 		goto clear_hash;
1472 
1473 	tcp_put_md5sig_pool();
1474 	return 0;
1475 
1476 clear_hash:
1477 	tcp_put_md5sig_pool();
1478 clear_hash_noput:
1479 	memset(md5_hash, 0, 16);
1480 	return 1;
1481 }
1482 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1483 
1484 #endif
1485 
1486 static void tcp_v4_init_req(struct request_sock *req,
1487 			    const struct sock *sk_listener,
1488 			    struct sk_buff *skb)
1489 {
1490 	struct inet_request_sock *ireq = inet_rsk(req);
1491 	struct net *net = sock_net(sk_listener);
1492 
1493 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1494 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1495 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1496 }
1497 
1498 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1499 					  struct sk_buff *skb,
1500 					  struct flowi *fl,
1501 					  struct request_sock *req)
1502 {
1503 	tcp_v4_init_req(req, sk, skb);
1504 
1505 	if (security_inet_conn_request(sk, skb, req))
1506 		return NULL;
1507 
1508 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1509 }
1510 
1511 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1512 	.family		=	PF_INET,
1513 	.obj_size	=	sizeof(struct tcp_request_sock),
1514 	.rtx_syn_ack	=	tcp_rtx_synack,
1515 	.send_ack	=	tcp_v4_reqsk_send_ack,
1516 	.destructor	=	tcp_v4_reqsk_destructor,
1517 	.send_reset	=	tcp_v4_send_reset,
1518 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1519 };
1520 
1521 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1522 	.mss_clamp	=	TCP_MSS_DEFAULT,
1523 #ifdef CONFIG_TCP_MD5SIG
1524 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1525 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1526 #endif
1527 #ifdef CONFIG_SYN_COOKIES
1528 	.cookie_init_seq =	cookie_v4_init_sequence,
1529 #endif
1530 	.route_req	=	tcp_v4_route_req,
1531 	.init_seq	=	tcp_v4_init_seq,
1532 	.init_ts_off	=	tcp_v4_init_ts_off,
1533 	.send_synack	=	tcp_v4_send_synack,
1534 };
1535 
1536 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1537 {
1538 	/* Never answer to SYNs send to broadcast or multicast */
1539 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1540 		goto drop;
1541 
1542 	return tcp_conn_request(&tcp_request_sock_ops,
1543 				&tcp_request_sock_ipv4_ops, sk, skb);
1544 
1545 drop:
1546 	tcp_listendrop(sk);
1547 	return 0;
1548 }
1549 EXPORT_SYMBOL(tcp_v4_conn_request);
1550 
1551 
1552 /*
1553  * The three way handshake has completed - we got a valid synack -
1554  * now create the new socket.
1555  */
1556 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1557 				  struct request_sock *req,
1558 				  struct dst_entry *dst,
1559 				  struct request_sock *req_unhash,
1560 				  bool *own_req)
1561 {
1562 	struct inet_request_sock *ireq;
1563 	bool found_dup_sk = false;
1564 	struct inet_sock *newinet;
1565 	struct tcp_sock *newtp;
1566 	struct sock *newsk;
1567 #ifdef CONFIG_TCP_MD5SIG
1568 	const union tcp_md5_addr *addr;
1569 	struct tcp_md5sig_key *key;
1570 	int l3index;
1571 #endif
1572 	struct ip_options_rcu *inet_opt;
1573 
1574 	if (sk_acceptq_is_full(sk))
1575 		goto exit_overflow;
1576 
1577 	newsk = tcp_create_openreq_child(sk, req, skb);
1578 	if (!newsk)
1579 		goto exit_nonewsk;
1580 
1581 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1582 	inet_sk_rx_dst_set(newsk, skb);
1583 
1584 	newtp		      = tcp_sk(newsk);
1585 	newinet		      = inet_sk(newsk);
1586 	ireq		      = inet_rsk(req);
1587 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1588 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1589 	newsk->sk_bound_dev_if = ireq->ir_iif;
1590 	newinet->inet_saddr   = ireq->ir_loc_addr;
1591 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1592 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1593 	newinet->mc_index     = inet_iif(skb);
1594 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1595 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1596 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1597 	if (inet_opt)
1598 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1599 	atomic_set(&newinet->inet_id, get_random_u16());
1600 
1601 	/* Set ToS of the new socket based upon the value of incoming SYN.
1602 	 * ECT bits are set later in tcp_init_transfer().
1603 	 */
1604 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1605 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1606 
1607 	if (!dst) {
1608 		dst = inet_csk_route_child_sock(sk, newsk, req);
1609 		if (!dst)
1610 			goto put_and_exit;
1611 	} else {
1612 		/* syncookie case : see end of cookie_v4_check() */
1613 	}
1614 	sk_setup_caps(newsk, dst);
1615 
1616 	tcp_ca_openreq_child(newsk, dst);
1617 
1618 	tcp_sync_mss(newsk, dst_mtu(dst));
1619 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1620 
1621 	tcp_initialize_rcv_mss(newsk);
1622 
1623 #ifdef CONFIG_TCP_MD5SIG
1624 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1625 	/* Copy over the MD5 key from the original socket */
1626 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1627 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1628 	if (key) {
1629 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1630 			goto put_and_exit;
1631 		sk_gso_disable(newsk);
1632 	}
1633 #endif
1634 
1635 	if (__inet_inherit_port(sk, newsk) < 0)
1636 		goto put_and_exit;
1637 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1638 				       &found_dup_sk);
1639 	if (likely(*own_req)) {
1640 		tcp_move_syn(newtp, req);
1641 		ireq->ireq_opt = NULL;
1642 	} else {
1643 		newinet->inet_opt = NULL;
1644 
1645 		if (!req_unhash && found_dup_sk) {
1646 			/* This code path should only be executed in the
1647 			 * syncookie case only
1648 			 */
1649 			bh_unlock_sock(newsk);
1650 			sock_put(newsk);
1651 			newsk = NULL;
1652 		}
1653 	}
1654 	return newsk;
1655 
1656 exit_overflow:
1657 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1658 exit_nonewsk:
1659 	dst_release(dst);
1660 exit:
1661 	tcp_listendrop(sk);
1662 	return NULL;
1663 put_and_exit:
1664 	newinet->inet_opt = NULL;
1665 	inet_csk_prepare_forced_close(newsk);
1666 	tcp_done(newsk);
1667 	goto exit;
1668 }
1669 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1670 
1671 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1672 {
1673 #ifdef CONFIG_SYN_COOKIES
1674 	const struct tcphdr *th = tcp_hdr(skb);
1675 
1676 	if (!th->syn)
1677 		sk = cookie_v4_check(sk, skb);
1678 #endif
1679 	return sk;
1680 }
1681 
1682 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1683 			 struct tcphdr *th, u32 *cookie)
1684 {
1685 	u16 mss = 0;
1686 #ifdef CONFIG_SYN_COOKIES
1687 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1688 				    &tcp_request_sock_ipv4_ops, sk, th);
1689 	if (mss) {
1690 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1691 		tcp_synq_overflow(sk);
1692 	}
1693 #endif
1694 	return mss;
1695 }
1696 
1697 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1698 							   u32));
1699 /* The socket must have it's spinlock held when we get
1700  * here, unless it is a TCP_LISTEN socket.
1701  *
1702  * We have a potential double-lock case here, so even when
1703  * doing backlog processing we use the BH locking scheme.
1704  * This is because we cannot sleep with the original spinlock
1705  * held.
1706  */
1707 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1708 {
1709 	enum skb_drop_reason reason;
1710 	struct sock *rsk;
1711 
1712 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1713 		struct dst_entry *dst;
1714 
1715 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1716 						lockdep_sock_is_held(sk));
1717 
1718 		sock_rps_save_rxhash(sk, skb);
1719 		sk_mark_napi_id(sk, skb);
1720 		if (dst) {
1721 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1722 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1723 					     dst, 0)) {
1724 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1725 				dst_release(dst);
1726 			}
1727 		}
1728 		tcp_rcv_established(sk, skb);
1729 		return 0;
1730 	}
1731 
1732 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1733 	if (tcp_checksum_complete(skb))
1734 		goto csum_err;
1735 
1736 	if (sk->sk_state == TCP_LISTEN) {
1737 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1738 
1739 		if (!nsk)
1740 			goto discard;
1741 		if (nsk != sk) {
1742 			if (tcp_child_process(sk, nsk, skb)) {
1743 				rsk = nsk;
1744 				goto reset;
1745 			}
1746 			return 0;
1747 		}
1748 	} else
1749 		sock_rps_save_rxhash(sk, skb);
1750 
1751 	if (tcp_rcv_state_process(sk, skb)) {
1752 		rsk = sk;
1753 		goto reset;
1754 	}
1755 	return 0;
1756 
1757 reset:
1758 	tcp_v4_send_reset(rsk, skb);
1759 discard:
1760 	kfree_skb_reason(skb, reason);
1761 	/* Be careful here. If this function gets more complicated and
1762 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1763 	 * might be destroyed here. This current version compiles correctly,
1764 	 * but you have been warned.
1765 	 */
1766 	return 0;
1767 
1768 csum_err:
1769 	reason = SKB_DROP_REASON_TCP_CSUM;
1770 	trace_tcp_bad_csum(skb);
1771 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1772 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1773 	goto discard;
1774 }
1775 EXPORT_SYMBOL(tcp_v4_do_rcv);
1776 
1777 int tcp_v4_early_demux(struct sk_buff *skb)
1778 {
1779 	struct net *net = dev_net(skb->dev);
1780 	const struct iphdr *iph;
1781 	const struct tcphdr *th;
1782 	struct sock *sk;
1783 
1784 	if (skb->pkt_type != PACKET_HOST)
1785 		return 0;
1786 
1787 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1788 		return 0;
1789 
1790 	iph = ip_hdr(skb);
1791 	th = tcp_hdr(skb);
1792 
1793 	if (th->doff < sizeof(struct tcphdr) / 4)
1794 		return 0;
1795 
1796 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1797 				       iph->saddr, th->source,
1798 				       iph->daddr, ntohs(th->dest),
1799 				       skb->skb_iif, inet_sdif(skb));
1800 	if (sk) {
1801 		skb->sk = sk;
1802 		skb->destructor = sock_edemux;
1803 		if (sk_fullsock(sk)) {
1804 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1805 
1806 			if (dst)
1807 				dst = dst_check(dst, 0);
1808 			if (dst &&
1809 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1810 				skb_dst_set_noref(skb, dst);
1811 		}
1812 	}
1813 	return 0;
1814 }
1815 
1816 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1817 		     enum skb_drop_reason *reason)
1818 {
1819 	u32 limit, tail_gso_size, tail_gso_segs;
1820 	struct skb_shared_info *shinfo;
1821 	const struct tcphdr *th;
1822 	struct tcphdr *thtail;
1823 	struct sk_buff *tail;
1824 	unsigned int hdrlen;
1825 	bool fragstolen;
1826 	u32 gso_segs;
1827 	u32 gso_size;
1828 	int delta;
1829 
1830 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1831 	 * we can fix skb->truesize to its real value to avoid future drops.
1832 	 * This is valid because skb is not yet charged to the socket.
1833 	 * It has been noticed pure SACK packets were sometimes dropped
1834 	 * (if cooked by drivers without copybreak feature).
1835 	 */
1836 	skb_condense(skb);
1837 
1838 	skb_dst_drop(skb);
1839 
1840 	if (unlikely(tcp_checksum_complete(skb))) {
1841 		bh_unlock_sock(sk);
1842 		trace_tcp_bad_csum(skb);
1843 		*reason = SKB_DROP_REASON_TCP_CSUM;
1844 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1845 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1846 		return true;
1847 	}
1848 
1849 	/* Attempt coalescing to last skb in backlog, even if we are
1850 	 * above the limits.
1851 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1852 	 */
1853 	th = (const struct tcphdr *)skb->data;
1854 	hdrlen = th->doff * 4;
1855 
1856 	tail = sk->sk_backlog.tail;
1857 	if (!tail)
1858 		goto no_coalesce;
1859 	thtail = (struct tcphdr *)tail->data;
1860 
1861 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1862 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1863 	    ((TCP_SKB_CB(tail)->tcp_flags |
1864 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1865 	    !((TCP_SKB_CB(tail)->tcp_flags &
1866 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1867 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1868 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1869 #ifdef CONFIG_TLS_DEVICE
1870 	    tail->decrypted != skb->decrypted ||
1871 #endif
1872 	    !mptcp_skb_can_collapse(tail, skb) ||
1873 	    thtail->doff != th->doff ||
1874 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1875 		goto no_coalesce;
1876 
1877 	__skb_pull(skb, hdrlen);
1878 
1879 	shinfo = skb_shinfo(skb);
1880 	gso_size = shinfo->gso_size ?: skb->len;
1881 	gso_segs = shinfo->gso_segs ?: 1;
1882 
1883 	shinfo = skb_shinfo(tail);
1884 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1885 	tail_gso_segs = shinfo->gso_segs ?: 1;
1886 
1887 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1888 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1889 
1890 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1891 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1892 			thtail->window = th->window;
1893 		}
1894 
1895 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1896 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1897 		 * is not entered if we append a packet with a FIN.
1898 		 * SYN, RST, URG are not present.
1899 		 * ACK is set on both packets.
1900 		 * PSH : we do not really care in TCP stack,
1901 		 *       at least for 'GRO' packets.
1902 		 */
1903 		thtail->fin |= th->fin;
1904 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1905 
1906 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1907 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1908 			tail->tstamp = skb->tstamp;
1909 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1910 		}
1911 
1912 		/* Not as strict as GRO. We only need to carry mss max value */
1913 		shinfo->gso_size = max(gso_size, tail_gso_size);
1914 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1915 
1916 		sk->sk_backlog.len += delta;
1917 		__NET_INC_STATS(sock_net(sk),
1918 				LINUX_MIB_TCPBACKLOGCOALESCE);
1919 		kfree_skb_partial(skb, fragstolen);
1920 		return false;
1921 	}
1922 	__skb_push(skb, hdrlen);
1923 
1924 no_coalesce:
1925 	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1926 
1927 	/* Only socket owner can try to collapse/prune rx queues
1928 	 * to reduce memory overhead, so add a little headroom here.
1929 	 * Few sockets backlog are possibly concurrently non empty.
1930 	 */
1931 	limit += 64 * 1024;
1932 
1933 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1934 		bh_unlock_sock(sk);
1935 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1936 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1937 		return true;
1938 	}
1939 	return false;
1940 }
1941 EXPORT_SYMBOL(tcp_add_backlog);
1942 
1943 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1944 {
1945 	struct tcphdr *th = (struct tcphdr *)skb->data;
1946 
1947 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1948 }
1949 EXPORT_SYMBOL(tcp_filter);
1950 
1951 static void tcp_v4_restore_cb(struct sk_buff *skb)
1952 {
1953 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1954 		sizeof(struct inet_skb_parm));
1955 }
1956 
1957 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1958 			   const struct tcphdr *th)
1959 {
1960 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1961 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1962 	 */
1963 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1964 		sizeof(struct inet_skb_parm));
1965 	barrier();
1966 
1967 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1968 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1969 				    skb->len - th->doff * 4);
1970 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1971 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1972 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1973 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974 	TCP_SKB_CB(skb)->sacked	 = 0;
1975 	TCP_SKB_CB(skb)->has_rxtstamp =
1976 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1977 }
1978 
1979 /*
1980  *	From tcp_input.c
1981  */
1982 
1983 int tcp_v4_rcv(struct sk_buff *skb)
1984 {
1985 	struct net *net = dev_net(skb->dev);
1986 	enum skb_drop_reason drop_reason;
1987 	int sdif = inet_sdif(skb);
1988 	int dif = inet_iif(skb);
1989 	const struct iphdr *iph;
1990 	const struct tcphdr *th;
1991 	bool refcounted;
1992 	struct sock *sk;
1993 	int ret;
1994 
1995 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1996 	if (skb->pkt_type != PACKET_HOST)
1997 		goto discard_it;
1998 
1999 	/* Count it even if it's bad */
2000 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2001 
2002 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2003 		goto discard_it;
2004 
2005 	th = (const struct tcphdr *)skb->data;
2006 
2007 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2008 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2009 		goto bad_packet;
2010 	}
2011 	if (!pskb_may_pull(skb, th->doff * 4))
2012 		goto discard_it;
2013 
2014 	/* An explanation is required here, I think.
2015 	 * Packet length and doff are validated by header prediction,
2016 	 * provided case of th->doff==0 is eliminated.
2017 	 * So, we defer the checks. */
2018 
2019 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2020 		goto csum_error;
2021 
2022 	th = (const struct tcphdr *)skb->data;
2023 	iph = ip_hdr(skb);
2024 lookup:
2025 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2026 			       skb, __tcp_hdrlen(th), th->source,
2027 			       th->dest, sdif, &refcounted);
2028 	if (!sk)
2029 		goto no_tcp_socket;
2030 
2031 process:
2032 	if (sk->sk_state == TCP_TIME_WAIT)
2033 		goto do_time_wait;
2034 
2035 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2036 		struct request_sock *req = inet_reqsk(sk);
2037 		bool req_stolen = false;
2038 		struct sock *nsk;
2039 
2040 		sk = req->rsk_listener;
2041 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2042 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2043 		else
2044 			drop_reason = tcp_inbound_md5_hash(sk, skb,
2045 						   &iph->saddr, &iph->daddr,
2046 						   AF_INET, dif, sdif);
2047 		if (unlikely(drop_reason)) {
2048 			sk_drops_add(sk, skb);
2049 			reqsk_put(req);
2050 			goto discard_it;
2051 		}
2052 		if (tcp_checksum_complete(skb)) {
2053 			reqsk_put(req);
2054 			goto csum_error;
2055 		}
2056 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2057 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2058 			if (!nsk) {
2059 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2060 				goto lookup;
2061 			}
2062 			sk = nsk;
2063 			/* reuseport_migrate_sock() has already held one sk_refcnt
2064 			 * before returning.
2065 			 */
2066 		} else {
2067 			/* We own a reference on the listener, increase it again
2068 			 * as we might lose it too soon.
2069 			 */
2070 			sock_hold(sk);
2071 		}
2072 		refcounted = true;
2073 		nsk = NULL;
2074 		if (!tcp_filter(sk, skb)) {
2075 			th = (const struct tcphdr *)skb->data;
2076 			iph = ip_hdr(skb);
2077 			tcp_v4_fill_cb(skb, iph, th);
2078 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2079 		} else {
2080 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2081 		}
2082 		if (!nsk) {
2083 			reqsk_put(req);
2084 			if (req_stolen) {
2085 				/* Another cpu got exclusive access to req
2086 				 * and created a full blown socket.
2087 				 * Try to feed this packet to this socket
2088 				 * instead of discarding it.
2089 				 */
2090 				tcp_v4_restore_cb(skb);
2091 				sock_put(sk);
2092 				goto lookup;
2093 			}
2094 			goto discard_and_relse;
2095 		}
2096 		nf_reset_ct(skb);
2097 		if (nsk == sk) {
2098 			reqsk_put(req);
2099 			tcp_v4_restore_cb(skb);
2100 		} else if (tcp_child_process(sk, nsk, skb)) {
2101 			tcp_v4_send_reset(nsk, skb);
2102 			goto discard_and_relse;
2103 		} else {
2104 			sock_put(sk);
2105 			return 0;
2106 		}
2107 	}
2108 
2109 	if (static_branch_unlikely(&ip4_min_ttl)) {
2110 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2111 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2112 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2113 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2114 			goto discard_and_relse;
2115 		}
2116 	}
2117 
2118 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2119 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2120 		goto discard_and_relse;
2121 	}
2122 
2123 	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2124 					   &iph->daddr, AF_INET, dif, sdif);
2125 	if (drop_reason)
2126 		goto discard_and_relse;
2127 
2128 	nf_reset_ct(skb);
2129 
2130 	if (tcp_filter(sk, skb)) {
2131 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2132 		goto discard_and_relse;
2133 	}
2134 	th = (const struct tcphdr *)skb->data;
2135 	iph = ip_hdr(skb);
2136 	tcp_v4_fill_cb(skb, iph, th);
2137 
2138 	skb->dev = NULL;
2139 
2140 	if (sk->sk_state == TCP_LISTEN) {
2141 		ret = tcp_v4_do_rcv(sk, skb);
2142 		goto put_and_return;
2143 	}
2144 
2145 	sk_incoming_cpu_update(sk);
2146 
2147 	bh_lock_sock_nested(sk);
2148 	tcp_segs_in(tcp_sk(sk), skb);
2149 	ret = 0;
2150 	if (!sock_owned_by_user(sk)) {
2151 		ret = tcp_v4_do_rcv(sk, skb);
2152 	} else {
2153 		if (tcp_add_backlog(sk, skb, &drop_reason))
2154 			goto discard_and_relse;
2155 	}
2156 	bh_unlock_sock(sk);
2157 
2158 put_and_return:
2159 	if (refcounted)
2160 		sock_put(sk);
2161 
2162 	return ret;
2163 
2164 no_tcp_socket:
2165 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2166 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2167 		goto discard_it;
2168 
2169 	tcp_v4_fill_cb(skb, iph, th);
2170 
2171 	if (tcp_checksum_complete(skb)) {
2172 csum_error:
2173 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2174 		trace_tcp_bad_csum(skb);
2175 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2176 bad_packet:
2177 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2178 	} else {
2179 		tcp_v4_send_reset(NULL, skb);
2180 	}
2181 
2182 discard_it:
2183 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2184 	/* Discard frame. */
2185 	kfree_skb_reason(skb, drop_reason);
2186 	return 0;
2187 
2188 discard_and_relse:
2189 	sk_drops_add(sk, skb);
2190 	if (refcounted)
2191 		sock_put(sk);
2192 	goto discard_it;
2193 
2194 do_time_wait:
2195 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2196 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2197 		inet_twsk_put(inet_twsk(sk));
2198 		goto discard_it;
2199 	}
2200 
2201 	tcp_v4_fill_cb(skb, iph, th);
2202 
2203 	if (tcp_checksum_complete(skb)) {
2204 		inet_twsk_put(inet_twsk(sk));
2205 		goto csum_error;
2206 	}
2207 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2208 	case TCP_TW_SYN: {
2209 		struct sock *sk2 = inet_lookup_listener(net,
2210 							net->ipv4.tcp_death_row.hashinfo,
2211 							skb, __tcp_hdrlen(th),
2212 							iph->saddr, th->source,
2213 							iph->daddr, th->dest,
2214 							inet_iif(skb),
2215 							sdif);
2216 		if (sk2) {
2217 			inet_twsk_deschedule_put(inet_twsk(sk));
2218 			sk = sk2;
2219 			tcp_v4_restore_cb(skb);
2220 			refcounted = false;
2221 			goto process;
2222 		}
2223 	}
2224 		/* to ACK */
2225 		fallthrough;
2226 	case TCP_TW_ACK:
2227 		tcp_v4_timewait_ack(sk, skb);
2228 		break;
2229 	case TCP_TW_RST:
2230 		tcp_v4_send_reset(sk, skb);
2231 		inet_twsk_deschedule_put(inet_twsk(sk));
2232 		goto discard_it;
2233 	case TCP_TW_SUCCESS:;
2234 	}
2235 	goto discard_it;
2236 }
2237 
2238 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2239 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2240 	.twsk_unique	= tcp_twsk_unique,
2241 	.twsk_destructor= tcp_twsk_destructor,
2242 };
2243 
2244 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2245 {
2246 	struct dst_entry *dst = skb_dst(skb);
2247 
2248 	if (dst && dst_hold_safe(dst)) {
2249 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2250 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2251 	}
2252 }
2253 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2254 
2255 const struct inet_connection_sock_af_ops ipv4_specific = {
2256 	.queue_xmit	   = ip_queue_xmit,
2257 	.send_check	   = tcp_v4_send_check,
2258 	.rebuild_header	   = inet_sk_rebuild_header,
2259 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2260 	.conn_request	   = tcp_v4_conn_request,
2261 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2262 	.net_header_len	   = sizeof(struct iphdr),
2263 	.setsockopt	   = ip_setsockopt,
2264 	.getsockopt	   = ip_getsockopt,
2265 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2266 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2267 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2268 };
2269 EXPORT_SYMBOL(ipv4_specific);
2270 
2271 #ifdef CONFIG_TCP_MD5SIG
2272 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2273 	.md5_lookup		= tcp_v4_md5_lookup,
2274 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2275 	.md5_parse		= tcp_v4_parse_md5_keys,
2276 };
2277 #endif
2278 
2279 /* NOTE: A lot of things set to zero explicitly by call to
2280  *       sk_alloc() so need not be done here.
2281  */
2282 static int tcp_v4_init_sock(struct sock *sk)
2283 {
2284 	struct inet_connection_sock *icsk = inet_csk(sk);
2285 
2286 	tcp_init_sock(sk);
2287 
2288 	icsk->icsk_af_ops = &ipv4_specific;
2289 
2290 #ifdef CONFIG_TCP_MD5SIG
2291 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2292 #endif
2293 
2294 	return 0;
2295 }
2296 
2297 void tcp_v4_destroy_sock(struct sock *sk)
2298 {
2299 	struct tcp_sock *tp = tcp_sk(sk);
2300 
2301 	trace_tcp_destroy_sock(sk);
2302 
2303 	tcp_clear_xmit_timers(sk);
2304 
2305 	tcp_cleanup_congestion_control(sk);
2306 
2307 	tcp_cleanup_ulp(sk);
2308 
2309 	/* Cleanup up the write buffer. */
2310 	tcp_write_queue_purge(sk);
2311 
2312 	/* Check if we want to disable active TFO */
2313 	tcp_fastopen_active_disable_ofo_check(sk);
2314 
2315 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2316 	skb_rbtree_purge(&tp->out_of_order_queue);
2317 
2318 #ifdef CONFIG_TCP_MD5SIG
2319 	/* Clean up the MD5 key list, if any */
2320 	if (tp->md5sig_info) {
2321 		tcp_clear_md5_list(sk);
2322 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2323 		tp->md5sig_info = NULL;
2324 		static_branch_slow_dec_deferred(&tcp_md5_needed);
2325 	}
2326 #endif
2327 
2328 	/* Clean up a referenced TCP bind bucket. */
2329 	if (inet_csk(sk)->icsk_bind_hash)
2330 		inet_put_port(sk);
2331 
2332 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2333 
2334 	/* If socket is aborted during connect operation */
2335 	tcp_free_fastopen_req(tp);
2336 	tcp_fastopen_destroy_cipher(sk);
2337 	tcp_saved_syn_free(tp);
2338 
2339 	sk_sockets_allocated_dec(sk);
2340 }
2341 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2342 
2343 #ifdef CONFIG_PROC_FS
2344 /* Proc filesystem TCP sock list dumping. */
2345 
2346 static unsigned short seq_file_family(const struct seq_file *seq);
2347 
2348 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2349 {
2350 	unsigned short family = seq_file_family(seq);
2351 
2352 	/* AF_UNSPEC is used as a match all */
2353 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2354 		net_eq(sock_net(sk), seq_file_net(seq)));
2355 }
2356 
2357 /* Find a non empty bucket (starting from st->bucket)
2358  * and return the first sk from it.
2359  */
2360 static void *listening_get_first(struct seq_file *seq)
2361 {
2362 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2363 	struct tcp_iter_state *st = seq->private;
2364 
2365 	st->offset = 0;
2366 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2367 		struct inet_listen_hashbucket *ilb2;
2368 		struct hlist_nulls_node *node;
2369 		struct sock *sk;
2370 
2371 		ilb2 = &hinfo->lhash2[st->bucket];
2372 		if (hlist_nulls_empty(&ilb2->nulls_head))
2373 			continue;
2374 
2375 		spin_lock(&ilb2->lock);
2376 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2377 			if (seq_sk_match(seq, sk))
2378 				return sk;
2379 		}
2380 		spin_unlock(&ilb2->lock);
2381 	}
2382 
2383 	return NULL;
2384 }
2385 
2386 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2387  * If "cur" is the last one in the st->bucket,
2388  * call listening_get_first() to return the first sk of the next
2389  * non empty bucket.
2390  */
2391 static void *listening_get_next(struct seq_file *seq, void *cur)
2392 {
2393 	struct tcp_iter_state *st = seq->private;
2394 	struct inet_listen_hashbucket *ilb2;
2395 	struct hlist_nulls_node *node;
2396 	struct inet_hashinfo *hinfo;
2397 	struct sock *sk = cur;
2398 
2399 	++st->num;
2400 	++st->offset;
2401 
2402 	sk = sk_nulls_next(sk);
2403 	sk_nulls_for_each_from(sk, node) {
2404 		if (seq_sk_match(seq, sk))
2405 			return sk;
2406 	}
2407 
2408 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2409 	ilb2 = &hinfo->lhash2[st->bucket];
2410 	spin_unlock(&ilb2->lock);
2411 	++st->bucket;
2412 	return listening_get_first(seq);
2413 }
2414 
2415 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2416 {
2417 	struct tcp_iter_state *st = seq->private;
2418 	void *rc;
2419 
2420 	st->bucket = 0;
2421 	st->offset = 0;
2422 	rc = listening_get_first(seq);
2423 
2424 	while (rc && *pos) {
2425 		rc = listening_get_next(seq, rc);
2426 		--*pos;
2427 	}
2428 	return rc;
2429 }
2430 
2431 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2432 				const struct tcp_iter_state *st)
2433 {
2434 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2435 }
2436 
2437 /*
2438  * Get first established socket starting from bucket given in st->bucket.
2439  * If st->bucket is zero, the very first socket in the hash is returned.
2440  */
2441 static void *established_get_first(struct seq_file *seq)
2442 {
2443 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2444 	struct tcp_iter_state *st = seq->private;
2445 
2446 	st->offset = 0;
2447 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2448 		struct sock *sk;
2449 		struct hlist_nulls_node *node;
2450 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2451 
2452 		cond_resched();
2453 
2454 		/* Lockless fast path for the common case of empty buckets */
2455 		if (empty_bucket(hinfo, st))
2456 			continue;
2457 
2458 		spin_lock_bh(lock);
2459 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2460 			if (seq_sk_match(seq, sk))
2461 				return sk;
2462 		}
2463 		spin_unlock_bh(lock);
2464 	}
2465 
2466 	return NULL;
2467 }
2468 
2469 static void *established_get_next(struct seq_file *seq, void *cur)
2470 {
2471 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2472 	struct tcp_iter_state *st = seq->private;
2473 	struct hlist_nulls_node *node;
2474 	struct sock *sk = cur;
2475 
2476 	++st->num;
2477 	++st->offset;
2478 
2479 	sk = sk_nulls_next(sk);
2480 
2481 	sk_nulls_for_each_from(sk, node) {
2482 		if (seq_sk_match(seq, sk))
2483 			return sk;
2484 	}
2485 
2486 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2487 	++st->bucket;
2488 	return established_get_first(seq);
2489 }
2490 
2491 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2492 {
2493 	struct tcp_iter_state *st = seq->private;
2494 	void *rc;
2495 
2496 	st->bucket = 0;
2497 	rc = established_get_first(seq);
2498 
2499 	while (rc && pos) {
2500 		rc = established_get_next(seq, rc);
2501 		--pos;
2502 	}
2503 	return rc;
2504 }
2505 
2506 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2507 {
2508 	void *rc;
2509 	struct tcp_iter_state *st = seq->private;
2510 
2511 	st->state = TCP_SEQ_STATE_LISTENING;
2512 	rc	  = listening_get_idx(seq, &pos);
2513 
2514 	if (!rc) {
2515 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2516 		rc	  = established_get_idx(seq, pos);
2517 	}
2518 
2519 	return rc;
2520 }
2521 
2522 static void *tcp_seek_last_pos(struct seq_file *seq)
2523 {
2524 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2525 	struct tcp_iter_state *st = seq->private;
2526 	int bucket = st->bucket;
2527 	int offset = st->offset;
2528 	int orig_num = st->num;
2529 	void *rc = NULL;
2530 
2531 	switch (st->state) {
2532 	case TCP_SEQ_STATE_LISTENING:
2533 		if (st->bucket > hinfo->lhash2_mask)
2534 			break;
2535 		rc = listening_get_first(seq);
2536 		while (offset-- && rc && bucket == st->bucket)
2537 			rc = listening_get_next(seq, rc);
2538 		if (rc)
2539 			break;
2540 		st->bucket = 0;
2541 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2542 		fallthrough;
2543 	case TCP_SEQ_STATE_ESTABLISHED:
2544 		if (st->bucket > hinfo->ehash_mask)
2545 			break;
2546 		rc = established_get_first(seq);
2547 		while (offset-- && rc && bucket == st->bucket)
2548 			rc = established_get_next(seq, rc);
2549 	}
2550 
2551 	st->num = orig_num;
2552 
2553 	return rc;
2554 }
2555 
2556 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2557 {
2558 	struct tcp_iter_state *st = seq->private;
2559 	void *rc;
2560 
2561 	if (*pos && *pos == st->last_pos) {
2562 		rc = tcp_seek_last_pos(seq);
2563 		if (rc)
2564 			goto out;
2565 	}
2566 
2567 	st->state = TCP_SEQ_STATE_LISTENING;
2568 	st->num = 0;
2569 	st->bucket = 0;
2570 	st->offset = 0;
2571 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2572 
2573 out:
2574 	st->last_pos = *pos;
2575 	return rc;
2576 }
2577 EXPORT_SYMBOL(tcp_seq_start);
2578 
2579 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2580 {
2581 	struct tcp_iter_state *st = seq->private;
2582 	void *rc = NULL;
2583 
2584 	if (v == SEQ_START_TOKEN) {
2585 		rc = tcp_get_idx(seq, 0);
2586 		goto out;
2587 	}
2588 
2589 	switch (st->state) {
2590 	case TCP_SEQ_STATE_LISTENING:
2591 		rc = listening_get_next(seq, v);
2592 		if (!rc) {
2593 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2594 			st->bucket = 0;
2595 			st->offset = 0;
2596 			rc	  = established_get_first(seq);
2597 		}
2598 		break;
2599 	case TCP_SEQ_STATE_ESTABLISHED:
2600 		rc = established_get_next(seq, v);
2601 		break;
2602 	}
2603 out:
2604 	++*pos;
2605 	st->last_pos = *pos;
2606 	return rc;
2607 }
2608 EXPORT_SYMBOL(tcp_seq_next);
2609 
2610 void tcp_seq_stop(struct seq_file *seq, void *v)
2611 {
2612 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2613 	struct tcp_iter_state *st = seq->private;
2614 
2615 	switch (st->state) {
2616 	case TCP_SEQ_STATE_LISTENING:
2617 		if (v != SEQ_START_TOKEN)
2618 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2619 		break;
2620 	case TCP_SEQ_STATE_ESTABLISHED:
2621 		if (v)
2622 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2623 		break;
2624 	}
2625 }
2626 EXPORT_SYMBOL(tcp_seq_stop);
2627 
2628 static void get_openreq4(const struct request_sock *req,
2629 			 struct seq_file *f, int i)
2630 {
2631 	const struct inet_request_sock *ireq = inet_rsk(req);
2632 	long delta = req->rsk_timer.expires - jiffies;
2633 
2634 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2635 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2636 		i,
2637 		ireq->ir_loc_addr,
2638 		ireq->ir_num,
2639 		ireq->ir_rmt_addr,
2640 		ntohs(ireq->ir_rmt_port),
2641 		TCP_SYN_RECV,
2642 		0, 0, /* could print option size, but that is af dependent. */
2643 		1,    /* timers active (only the expire timer) */
2644 		jiffies_delta_to_clock_t(delta),
2645 		req->num_timeout,
2646 		from_kuid_munged(seq_user_ns(f),
2647 				 sock_i_uid(req->rsk_listener)),
2648 		0,  /* non standard timer */
2649 		0, /* open_requests have no inode */
2650 		0,
2651 		req);
2652 }
2653 
2654 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2655 {
2656 	int timer_active;
2657 	unsigned long timer_expires;
2658 	const struct tcp_sock *tp = tcp_sk(sk);
2659 	const struct inet_connection_sock *icsk = inet_csk(sk);
2660 	const struct inet_sock *inet = inet_sk(sk);
2661 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2662 	__be32 dest = inet->inet_daddr;
2663 	__be32 src = inet->inet_rcv_saddr;
2664 	__u16 destp = ntohs(inet->inet_dport);
2665 	__u16 srcp = ntohs(inet->inet_sport);
2666 	int rx_queue;
2667 	int state;
2668 
2669 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2670 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2671 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2672 		timer_active	= 1;
2673 		timer_expires	= icsk->icsk_timeout;
2674 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2675 		timer_active	= 4;
2676 		timer_expires	= icsk->icsk_timeout;
2677 	} else if (timer_pending(&sk->sk_timer)) {
2678 		timer_active	= 2;
2679 		timer_expires	= sk->sk_timer.expires;
2680 	} else {
2681 		timer_active	= 0;
2682 		timer_expires = jiffies;
2683 	}
2684 
2685 	state = inet_sk_state_load(sk);
2686 	if (state == TCP_LISTEN)
2687 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2688 	else
2689 		/* Because we don't lock the socket,
2690 		 * we might find a transient negative value.
2691 		 */
2692 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2693 				      READ_ONCE(tp->copied_seq), 0);
2694 
2695 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2696 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2697 		i, src, srcp, dest, destp, state,
2698 		READ_ONCE(tp->write_seq) - tp->snd_una,
2699 		rx_queue,
2700 		timer_active,
2701 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2702 		icsk->icsk_retransmits,
2703 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2704 		icsk->icsk_probes_out,
2705 		sock_i_ino(sk),
2706 		refcount_read(&sk->sk_refcnt), sk,
2707 		jiffies_to_clock_t(icsk->icsk_rto),
2708 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2709 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2710 		tcp_snd_cwnd(tp),
2711 		state == TCP_LISTEN ?
2712 		    fastopenq->max_qlen :
2713 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2714 }
2715 
2716 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2717 			       struct seq_file *f, int i)
2718 {
2719 	long delta = tw->tw_timer.expires - jiffies;
2720 	__be32 dest, src;
2721 	__u16 destp, srcp;
2722 
2723 	dest  = tw->tw_daddr;
2724 	src   = tw->tw_rcv_saddr;
2725 	destp = ntohs(tw->tw_dport);
2726 	srcp  = ntohs(tw->tw_sport);
2727 
2728 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2729 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2730 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2731 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2732 		refcount_read(&tw->tw_refcnt), tw);
2733 }
2734 
2735 #define TMPSZ 150
2736 
2737 static int tcp4_seq_show(struct seq_file *seq, void *v)
2738 {
2739 	struct tcp_iter_state *st;
2740 	struct sock *sk = v;
2741 
2742 	seq_setwidth(seq, TMPSZ - 1);
2743 	if (v == SEQ_START_TOKEN) {
2744 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2745 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2746 			   "inode");
2747 		goto out;
2748 	}
2749 	st = seq->private;
2750 
2751 	if (sk->sk_state == TCP_TIME_WAIT)
2752 		get_timewait4_sock(v, seq, st->num);
2753 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2754 		get_openreq4(v, seq, st->num);
2755 	else
2756 		get_tcp4_sock(v, seq, st->num);
2757 out:
2758 	seq_pad(seq, '\n');
2759 	return 0;
2760 }
2761 
2762 #ifdef CONFIG_BPF_SYSCALL
2763 struct bpf_tcp_iter_state {
2764 	struct tcp_iter_state state;
2765 	unsigned int cur_sk;
2766 	unsigned int end_sk;
2767 	unsigned int max_sk;
2768 	struct sock **batch;
2769 	bool st_bucket_done;
2770 };
2771 
2772 struct bpf_iter__tcp {
2773 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2774 	__bpf_md_ptr(struct sock_common *, sk_common);
2775 	uid_t uid __aligned(8);
2776 };
2777 
2778 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2779 			     struct sock_common *sk_common, uid_t uid)
2780 {
2781 	struct bpf_iter__tcp ctx;
2782 
2783 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2784 	ctx.meta = meta;
2785 	ctx.sk_common = sk_common;
2786 	ctx.uid = uid;
2787 	return bpf_iter_run_prog(prog, &ctx);
2788 }
2789 
2790 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2791 {
2792 	while (iter->cur_sk < iter->end_sk)
2793 		sock_gen_put(iter->batch[iter->cur_sk++]);
2794 }
2795 
2796 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2797 				      unsigned int new_batch_sz)
2798 {
2799 	struct sock **new_batch;
2800 
2801 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2802 			     GFP_USER | __GFP_NOWARN);
2803 	if (!new_batch)
2804 		return -ENOMEM;
2805 
2806 	bpf_iter_tcp_put_batch(iter);
2807 	kvfree(iter->batch);
2808 	iter->batch = new_batch;
2809 	iter->max_sk = new_batch_sz;
2810 
2811 	return 0;
2812 }
2813 
2814 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2815 						 struct sock *start_sk)
2816 {
2817 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2818 	struct bpf_tcp_iter_state *iter = seq->private;
2819 	struct tcp_iter_state *st = &iter->state;
2820 	struct hlist_nulls_node *node;
2821 	unsigned int expected = 1;
2822 	struct sock *sk;
2823 
2824 	sock_hold(start_sk);
2825 	iter->batch[iter->end_sk++] = start_sk;
2826 
2827 	sk = sk_nulls_next(start_sk);
2828 	sk_nulls_for_each_from(sk, node) {
2829 		if (seq_sk_match(seq, sk)) {
2830 			if (iter->end_sk < iter->max_sk) {
2831 				sock_hold(sk);
2832 				iter->batch[iter->end_sk++] = sk;
2833 			}
2834 			expected++;
2835 		}
2836 	}
2837 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2838 
2839 	return expected;
2840 }
2841 
2842 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2843 						   struct sock *start_sk)
2844 {
2845 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2846 	struct bpf_tcp_iter_state *iter = seq->private;
2847 	struct tcp_iter_state *st = &iter->state;
2848 	struct hlist_nulls_node *node;
2849 	unsigned int expected = 1;
2850 	struct sock *sk;
2851 
2852 	sock_hold(start_sk);
2853 	iter->batch[iter->end_sk++] = start_sk;
2854 
2855 	sk = sk_nulls_next(start_sk);
2856 	sk_nulls_for_each_from(sk, node) {
2857 		if (seq_sk_match(seq, sk)) {
2858 			if (iter->end_sk < iter->max_sk) {
2859 				sock_hold(sk);
2860 				iter->batch[iter->end_sk++] = sk;
2861 			}
2862 			expected++;
2863 		}
2864 	}
2865 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2866 
2867 	return expected;
2868 }
2869 
2870 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2871 {
2872 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2873 	struct bpf_tcp_iter_state *iter = seq->private;
2874 	struct tcp_iter_state *st = &iter->state;
2875 	unsigned int expected;
2876 	bool resized = false;
2877 	struct sock *sk;
2878 
2879 	/* The st->bucket is done.  Directly advance to the next
2880 	 * bucket instead of having the tcp_seek_last_pos() to skip
2881 	 * one by one in the current bucket and eventually find out
2882 	 * it has to advance to the next bucket.
2883 	 */
2884 	if (iter->st_bucket_done) {
2885 		st->offset = 0;
2886 		st->bucket++;
2887 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2888 		    st->bucket > hinfo->lhash2_mask) {
2889 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2890 			st->bucket = 0;
2891 		}
2892 	}
2893 
2894 again:
2895 	/* Get a new batch */
2896 	iter->cur_sk = 0;
2897 	iter->end_sk = 0;
2898 	iter->st_bucket_done = false;
2899 
2900 	sk = tcp_seek_last_pos(seq);
2901 	if (!sk)
2902 		return NULL; /* Done */
2903 
2904 	if (st->state == TCP_SEQ_STATE_LISTENING)
2905 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2906 	else
2907 		expected = bpf_iter_tcp_established_batch(seq, sk);
2908 
2909 	if (iter->end_sk == expected) {
2910 		iter->st_bucket_done = true;
2911 		return sk;
2912 	}
2913 
2914 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2915 		resized = true;
2916 		goto again;
2917 	}
2918 
2919 	return sk;
2920 }
2921 
2922 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2923 {
2924 	/* bpf iter does not support lseek, so it always
2925 	 * continue from where it was stop()-ped.
2926 	 */
2927 	if (*pos)
2928 		return bpf_iter_tcp_batch(seq);
2929 
2930 	return SEQ_START_TOKEN;
2931 }
2932 
2933 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2934 {
2935 	struct bpf_tcp_iter_state *iter = seq->private;
2936 	struct tcp_iter_state *st = &iter->state;
2937 	struct sock *sk;
2938 
2939 	/* Whenever seq_next() is called, the iter->cur_sk is
2940 	 * done with seq_show(), so advance to the next sk in
2941 	 * the batch.
2942 	 */
2943 	if (iter->cur_sk < iter->end_sk) {
2944 		/* Keeping st->num consistent in tcp_iter_state.
2945 		 * bpf_iter_tcp does not use st->num.
2946 		 * meta.seq_num is used instead.
2947 		 */
2948 		st->num++;
2949 		/* Move st->offset to the next sk in the bucket such that
2950 		 * the future start() will resume at st->offset in
2951 		 * st->bucket.  See tcp_seek_last_pos().
2952 		 */
2953 		st->offset++;
2954 		sock_gen_put(iter->batch[iter->cur_sk++]);
2955 	}
2956 
2957 	if (iter->cur_sk < iter->end_sk)
2958 		sk = iter->batch[iter->cur_sk];
2959 	else
2960 		sk = bpf_iter_tcp_batch(seq);
2961 
2962 	++*pos;
2963 	/* Keeping st->last_pos consistent in tcp_iter_state.
2964 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2965 	 */
2966 	st->last_pos = *pos;
2967 	return sk;
2968 }
2969 
2970 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2971 {
2972 	struct bpf_iter_meta meta;
2973 	struct bpf_prog *prog;
2974 	struct sock *sk = v;
2975 	uid_t uid;
2976 	int ret;
2977 
2978 	if (v == SEQ_START_TOKEN)
2979 		return 0;
2980 
2981 	if (sk_fullsock(sk))
2982 		lock_sock(sk);
2983 
2984 	if (unlikely(sk_unhashed(sk))) {
2985 		ret = SEQ_SKIP;
2986 		goto unlock;
2987 	}
2988 
2989 	if (sk->sk_state == TCP_TIME_WAIT) {
2990 		uid = 0;
2991 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2992 		const struct request_sock *req = v;
2993 
2994 		uid = from_kuid_munged(seq_user_ns(seq),
2995 				       sock_i_uid(req->rsk_listener));
2996 	} else {
2997 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
2998 	}
2999 
3000 	meta.seq = seq;
3001 	prog = bpf_iter_get_info(&meta, false);
3002 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3003 
3004 unlock:
3005 	if (sk_fullsock(sk))
3006 		release_sock(sk);
3007 	return ret;
3008 
3009 }
3010 
3011 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3012 {
3013 	struct bpf_tcp_iter_state *iter = seq->private;
3014 	struct bpf_iter_meta meta;
3015 	struct bpf_prog *prog;
3016 
3017 	if (!v) {
3018 		meta.seq = seq;
3019 		prog = bpf_iter_get_info(&meta, true);
3020 		if (prog)
3021 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3022 	}
3023 
3024 	if (iter->cur_sk < iter->end_sk) {
3025 		bpf_iter_tcp_put_batch(iter);
3026 		iter->st_bucket_done = false;
3027 	}
3028 }
3029 
3030 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3031 	.show		= bpf_iter_tcp_seq_show,
3032 	.start		= bpf_iter_tcp_seq_start,
3033 	.next		= bpf_iter_tcp_seq_next,
3034 	.stop		= bpf_iter_tcp_seq_stop,
3035 };
3036 #endif
3037 static unsigned short seq_file_family(const struct seq_file *seq)
3038 {
3039 	const struct tcp_seq_afinfo *afinfo;
3040 
3041 #ifdef CONFIG_BPF_SYSCALL
3042 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3043 	if (seq->op == &bpf_iter_tcp_seq_ops)
3044 		return AF_UNSPEC;
3045 #endif
3046 
3047 	/* Iterated from proc fs */
3048 	afinfo = pde_data(file_inode(seq->file));
3049 	return afinfo->family;
3050 }
3051 
3052 static const struct seq_operations tcp4_seq_ops = {
3053 	.show		= tcp4_seq_show,
3054 	.start		= tcp_seq_start,
3055 	.next		= tcp_seq_next,
3056 	.stop		= tcp_seq_stop,
3057 };
3058 
3059 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3060 	.family		= AF_INET,
3061 };
3062 
3063 static int __net_init tcp4_proc_init_net(struct net *net)
3064 {
3065 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3066 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3067 		return -ENOMEM;
3068 	return 0;
3069 }
3070 
3071 static void __net_exit tcp4_proc_exit_net(struct net *net)
3072 {
3073 	remove_proc_entry("tcp", net->proc_net);
3074 }
3075 
3076 static struct pernet_operations tcp4_net_ops = {
3077 	.init = tcp4_proc_init_net,
3078 	.exit = tcp4_proc_exit_net,
3079 };
3080 
3081 int __init tcp4_proc_init(void)
3082 {
3083 	return register_pernet_subsys(&tcp4_net_ops);
3084 }
3085 
3086 void tcp4_proc_exit(void)
3087 {
3088 	unregister_pernet_subsys(&tcp4_net_ops);
3089 }
3090 #endif /* CONFIG_PROC_FS */
3091 
3092 /* @wake is one when sk_stream_write_space() calls us.
3093  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3094  * This mimics the strategy used in sock_def_write_space().
3095  */
3096 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3097 {
3098 	const struct tcp_sock *tp = tcp_sk(sk);
3099 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3100 			    READ_ONCE(tp->snd_nxt);
3101 
3102 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3103 }
3104 EXPORT_SYMBOL(tcp_stream_memory_free);
3105 
3106 struct proto tcp_prot = {
3107 	.name			= "TCP",
3108 	.owner			= THIS_MODULE,
3109 	.close			= tcp_close,
3110 	.pre_connect		= tcp_v4_pre_connect,
3111 	.connect		= tcp_v4_connect,
3112 	.disconnect		= tcp_disconnect,
3113 	.accept			= inet_csk_accept,
3114 	.ioctl			= tcp_ioctl,
3115 	.init			= tcp_v4_init_sock,
3116 	.destroy		= tcp_v4_destroy_sock,
3117 	.shutdown		= tcp_shutdown,
3118 	.setsockopt		= tcp_setsockopt,
3119 	.getsockopt		= tcp_getsockopt,
3120 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3121 	.keepalive		= tcp_set_keepalive,
3122 	.recvmsg		= tcp_recvmsg,
3123 	.sendmsg		= tcp_sendmsg,
3124 	.splice_eof		= tcp_splice_eof,
3125 	.backlog_rcv		= tcp_v4_do_rcv,
3126 	.release_cb		= tcp_release_cb,
3127 	.hash			= inet_hash,
3128 	.unhash			= inet_unhash,
3129 	.get_port		= inet_csk_get_port,
3130 	.put_port		= inet_put_port,
3131 #ifdef CONFIG_BPF_SYSCALL
3132 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3133 #endif
3134 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3135 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3136 	.stream_memory_free	= tcp_stream_memory_free,
3137 	.sockets_allocated	= &tcp_sockets_allocated,
3138 	.orphan_count		= &tcp_orphan_count,
3139 
3140 	.memory_allocated	= &tcp_memory_allocated,
3141 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3142 
3143 	.memory_pressure	= &tcp_memory_pressure,
3144 	.sysctl_mem		= sysctl_tcp_mem,
3145 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3146 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3147 	.max_header		= MAX_TCP_HEADER,
3148 	.obj_size		= sizeof(struct tcp_sock),
3149 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3150 	.twsk_prot		= &tcp_timewait_sock_ops,
3151 	.rsk_prot		= &tcp_request_sock_ops,
3152 	.h.hashinfo		= NULL,
3153 	.no_autobind		= true,
3154 	.diag_destroy		= tcp_abort,
3155 };
3156 EXPORT_SYMBOL(tcp_prot);
3157 
3158 static void __net_exit tcp_sk_exit(struct net *net)
3159 {
3160 	if (net->ipv4.tcp_congestion_control)
3161 		bpf_module_put(net->ipv4.tcp_congestion_control,
3162 			       net->ipv4.tcp_congestion_control->owner);
3163 }
3164 
3165 static void __net_init tcp_set_hashinfo(struct net *net)
3166 {
3167 	struct inet_hashinfo *hinfo;
3168 	unsigned int ehash_entries;
3169 	struct net *old_net;
3170 
3171 	if (net_eq(net, &init_net))
3172 		goto fallback;
3173 
3174 	old_net = current->nsproxy->net_ns;
3175 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3176 	if (!ehash_entries)
3177 		goto fallback;
3178 
3179 	ehash_entries = roundup_pow_of_two(ehash_entries);
3180 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3181 	if (!hinfo) {
3182 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3183 			"for a netns, fallback to the global one\n",
3184 			ehash_entries);
3185 fallback:
3186 		hinfo = &tcp_hashinfo;
3187 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3188 	}
3189 
3190 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3191 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3192 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3193 }
3194 
3195 static int __net_init tcp_sk_init(struct net *net)
3196 {
3197 	net->ipv4.sysctl_tcp_ecn = 2;
3198 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3199 
3200 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3201 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3202 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3203 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3204 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3205 
3206 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3207 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3208 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3209 
3210 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3211 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3212 	net->ipv4.sysctl_tcp_syncookies = 1;
3213 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3214 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3215 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3216 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3217 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3218 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3219 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3220 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3221 
3222 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3223 	tcp_set_hashinfo(net);
3224 
3225 	net->ipv4.sysctl_tcp_sack = 1;
3226 	net->ipv4.sysctl_tcp_window_scaling = 1;
3227 	net->ipv4.sysctl_tcp_timestamps = 1;
3228 	net->ipv4.sysctl_tcp_early_retrans = 3;
3229 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3230 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3231 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3232 	net->ipv4.sysctl_tcp_max_reordering = 300;
3233 	net->ipv4.sysctl_tcp_dsack = 1;
3234 	net->ipv4.sysctl_tcp_app_win = 31;
3235 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3236 	net->ipv4.sysctl_tcp_frto = 2;
3237 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3238 	/* This limits the percentage of the congestion window which we
3239 	 * will allow a single TSO frame to consume.  Building TSO frames
3240 	 * which are too large can cause TCP streams to be bursty.
3241 	 */
3242 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3243 	/* Default TSQ limit of 16 TSO segments */
3244 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3245 
3246 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3247 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3248 
3249 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3250 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3251 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3252 	net->ipv4.sysctl_tcp_autocorking = 1;
3253 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3254 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3255 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3256 	if (net != &init_net) {
3257 		memcpy(net->ipv4.sysctl_tcp_rmem,
3258 		       init_net.ipv4.sysctl_tcp_rmem,
3259 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3260 		memcpy(net->ipv4.sysctl_tcp_wmem,
3261 		       init_net.ipv4.sysctl_tcp_wmem,
3262 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3263 	}
3264 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3265 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3266 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3267 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3268 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3269 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3270 
3271 	/* Set default values for PLB */
3272 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3273 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3274 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3275 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3276 	/* Default congestion threshold for PLB to mark a round is 50% */
3277 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3278 
3279 	/* Reno is always built in */
3280 	if (!net_eq(net, &init_net) &&
3281 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3282 			       init_net.ipv4.tcp_congestion_control->owner))
3283 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3284 	else
3285 		net->ipv4.tcp_congestion_control = &tcp_reno;
3286 
3287 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3288 	net->ipv4.sysctl_tcp_shrink_window = 0;
3289 
3290 	return 0;
3291 }
3292 
3293 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3294 {
3295 	struct net *net;
3296 
3297 	tcp_twsk_purge(net_exit_list, AF_INET);
3298 
3299 	list_for_each_entry(net, net_exit_list, exit_list) {
3300 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3301 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3302 		tcp_fastopen_ctx_destroy(net);
3303 	}
3304 }
3305 
3306 static struct pernet_operations __net_initdata tcp_sk_ops = {
3307        .init	   = tcp_sk_init,
3308        .exit	   = tcp_sk_exit,
3309        .exit_batch = tcp_sk_exit_batch,
3310 };
3311 
3312 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3313 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3314 		     struct sock_common *sk_common, uid_t uid)
3315 
3316 #define INIT_BATCH_SZ 16
3317 
3318 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3319 {
3320 	struct bpf_tcp_iter_state *iter = priv_data;
3321 	int err;
3322 
3323 	err = bpf_iter_init_seq_net(priv_data, aux);
3324 	if (err)
3325 		return err;
3326 
3327 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3328 	if (err) {
3329 		bpf_iter_fini_seq_net(priv_data);
3330 		return err;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 static void bpf_iter_fini_tcp(void *priv_data)
3337 {
3338 	struct bpf_tcp_iter_state *iter = priv_data;
3339 
3340 	bpf_iter_fini_seq_net(priv_data);
3341 	kvfree(iter->batch);
3342 }
3343 
3344 static const struct bpf_iter_seq_info tcp_seq_info = {
3345 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3346 	.init_seq_private	= bpf_iter_init_tcp,
3347 	.fini_seq_private	= bpf_iter_fini_tcp,
3348 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3349 };
3350 
3351 static const struct bpf_func_proto *
3352 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3353 			    const struct bpf_prog *prog)
3354 {
3355 	switch (func_id) {
3356 	case BPF_FUNC_setsockopt:
3357 		return &bpf_sk_setsockopt_proto;
3358 	case BPF_FUNC_getsockopt:
3359 		return &bpf_sk_getsockopt_proto;
3360 	default:
3361 		return NULL;
3362 	}
3363 }
3364 
3365 static struct bpf_iter_reg tcp_reg_info = {
3366 	.target			= "tcp",
3367 	.ctx_arg_info_size	= 1,
3368 	.ctx_arg_info		= {
3369 		{ offsetof(struct bpf_iter__tcp, sk_common),
3370 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3371 	},
3372 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3373 	.seq_info		= &tcp_seq_info,
3374 };
3375 
3376 static void __init bpf_iter_register(void)
3377 {
3378 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3379 	if (bpf_iter_reg_target(&tcp_reg_info))
3380 		pr_warn("Warning: could not register bpf iterator tcp\n");
3381 }
3382 
3383 #endif
3384 
3385 void __init tcp_v4_init(void)
3386 {
3387 	int cpu, res;
3388 
3389 	for_each_possible_cpu(cpu) {
3390 		struct sock *sk;
3391 
3392 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3393 					   IPPROTO_TCP, &init_net);
3394 		if (res)
3395 			panic("Failed to create the TCP control socket.\n");
3396 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3397 
3398 		/* Please enforce IP_DF and IPID==0 for RST and
3399 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3400 		 */
3401 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3402 
3403 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3404 	}
3405 	if (register_pernet_subsys(&tcp_sk_ops))
3406 		panic("Failed to create the TCP control socket.\n");
3407 
3408 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3409 	bpf_iter_register();
3410 #endif
3411 }
3412