1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 #include <linux/sched.h> 61 62 #include <net/net_namespace.h> 63 #include <net/icmp.h> 64 #include <net/inet_hashtables.h> 65 #include <net/tcp.h> 66 #include <net/transp_v6.h> 67 #include <net/ipv6.h> 68 #include <net/inet_common.h> 69 #include <net/timewait_sock.h> 70 #include <net/xfrm.h> 71 #include <net/secure_seq.h> 72 #include <net/busy_poll.h> 73 74 #include <linux/inet.h> 75 #include <linux/ipv6.h> 76 #include <linux/stddef.h> 77 #include <linux/proc_fs.h> 78 #include <linux/seq_file.h> 79 #include <linux/inetdevice.h> 80 #include <linux/btf_ids.h> 81 82 #include <crypto/hash.h> 83 #include <linux/scatterlist.h> 84 85 #include <trace/events/tcp.h> 86 87 #ifdef CONFIG_TCP_MD5SIG 88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 89 __be32 daddr, __be32 saddr, const struct tcphdr *th); 90 #endif 91 92 struct inet_hashinfo tcp_hashinfo; 93 EXPORT_SYMBOL(tcp_hashinfo); 94 95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk); 96 97 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 98 { 99 return secure_tcp_seq(ip_hdr(skb)->daddr, 100 ip_hdr(skb)->saddr, 101 tcp_hdr(skb)->dest, 102 tcp_hdr(skb)->source); 103 } 104 105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 106 { 107 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 108 } 109 110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 111 { 112 int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse); 113 const struct inet_timewait_sock *tw = inet_twsk(sktw); 114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 115 struct tcp_sock *tp = tcp_sk(sk); 116 117 if (reuse == 2) { 118 /* Still does not detect *everything* that goes through 119 * lo, since we require a loopback src or dst address 120 * or direct binding to 'lo' interface. 121 */ 122 bool loopback = false; 123 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 124 loopback = true; 125 #if IS_ENABLED(CONFIG_IPV6) 126 if (tw->tw_family == AF_INET6) { 127 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 128 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || 129 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 130 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) 131 loopback = true; 132 } else 133 #endif 134 { 135 if (ipv4_is_loopback(tw->tw_daddr) || 136 ipv4_is_loopback(tw->tw_rcv_saddr)) 137 loopback = true; 138 } 139 if (!loopback) 140 reuse = 0; 141 } 142 143 /* With PAWS, it is safe from the viewpoint 144 of data integrity. Even without PAWS it is safe provided sequence 145 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 146 147 Actually, the idea is close to VJ's one, only timestamp cache is 148 held not per host, but per port pair and TW bucket is used as state 149 holder. 150 151 If TW bucket has been already destroyed we fall back to VJ's scheme 152 and use initial timestamp retrieved from peer table. 153 */ 154 if (tcptw->tw_ts_recent_stamp && 155 (!twp || (reuse && time_after32(ktime_get_seconds(), 156 tcptw->tw_ts_recent_stamp)))) { 157 /* In case of repair and re-using TIME-WAIT sockets we still 158 * want to be sure that it is safe as above but honor the 159 * sequence numbers and time stamps set as part of the repair 160 * process. 161 * 162 * Without this check re-using a TIME-WAIT socket with TCP 163 * repair would accumulate a -1 on the repair assigned 164 * sequence number. The first time it is reused the sequence 165 * is -1, the second time -2, etc. This fixes that issue 166 * without appearing to create any others. 167 */ 168 if (likely(!tp->repair)) { 169 u32 seq = tcptw->tw_snd_nxt + 65535 + 2; 170 171 if (!seq) 172 seq = 1; 173 WRITE_ONCE(tp->write_seq, seq); 174 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 175 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 176 } 177 sock_hold(sktw); 178 return 1; 179 } 180 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 184 185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 186 int addr_len) 187 { 188 /* This check is replicated from tcp_v4_connect() and intended to 189 * prevent BPF program called below from accessing bytes that are out 190 * of the bound specified by user in addr_len. 191 */ 192 if (addr_len < sizeof(struct sockaddr_in)) 193 return -EINVAL; 194 195 sock_owned_by_me(sk); 196 197 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 198 } 199 200 /* This will initiate an outgoing connection. */ 201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 202 { 203 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 204 struct inet_timewait_death_row *tcp_death_row; 205 struct inet_sock *inet = inet_sk(sk); 206 struct tcp_sock *tp = tcp_sk(sk); 207 struct ip_options_rcu *inet_opt; 208 struct net *net = sock_net(sk); 209 __be16 orig_sport, orig_dport; 210 __be32 daddr, nexthop; 211 struct flowi4 *fl4; 212 struct rtable *rt; 213 int err; 214 215 if (addr_len < sizeof(struct sockaddr_in)) 216 return -EINVAL; 217 218 if (usin->sin_family != AF_INET) 219 return -EAFNOSUPPORT; 220 221 nexthop = daddr = usin->sin_addr.s_addr; 222 inet_opt = rcu_dereference_protected(inet->inet_opt, 223 lockdep_sock_is_held(sk)); 224 if (inet_opt && inet_opt->opt.srr) { 225 if (!daddr) 226 return -EINVAL; 227 nexthop = inet_opt->opt.faddr; 228 } 229 230 orig_sport = inet->inet_sport; 231 orig_dport = usin->sin_port; 232 fl4 = &inet->cork.fl.u.ip4; 233 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 234 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, 235 orig_dport, sk); 236 if (IS_ERR(rt)) { 237 err = PTR_ERR(rt); 238 if (err == -ENETUNREACH) 239 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 240 return err; 241 } 242 243 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 244 ip_rt_put(rt); 245 return -ENETUNREACH; 246 } 247 248 if (!inet_opt || !inet_opt->opt.srr) 249 daddr = fl4->daddr; 250 251 tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 252 253 if (!inet->inet_saddr) { 254 err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET); 255 if (err) { 256 ip_rt_put(rt); 257 return err; 258 } 259 } else { 260 sk_rcv_saddr_set(sk, inet->inet_saddr); 261 } 262 263 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 264 /* Reset inherited state */ 265 tp->rx_opt.ts_recent = 0; 266 tp->rx_opt.ts_recent_stamp = 0; 267 if (likely(!tp->repair)) 268 WRITE_ONCE(tp->write_seq, 0); 269 } 270 271 inet->inet_dport = usin->sin_port; 272 sk_daddr_set(sk, daddr); 273 274 inet_csk(sk)->icsk_ext_hdr_len = 0; 275 if (inet_opt) 276 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 277 278 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 279 280 /* Socket identity is still unknown (sport may be zero). 281 * However we set state to SYN-SENT and not releasing socket 282 * lock select source port, enter ourselves into the hash tables and 283 * complete initialization after this. 284 */ 285 tcp_set_state(sk, TCP_SYN_SENT); 286 err = inet_hash_connect(tcp_death_row, sk); 287 if (err) 288 goto failure; 289 290 sk_set_txhash(sk); 291 292 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 293 inet->inet_sport, inet->inet_dport, sk); 294 if (IS_ERR(rt)) { 295 err = PTR_ERR(rt); 296 rt = NULL; 297 goto failure; 298 } 299 /* OK, now commit destination to socket. */ 300 sk->sk_gso_type = SKB_GSO_TCPV4; 301 sk_setup_caps(sk, &rt->dst); 302 rt = NULL; 303 304 if (likely(!tp->repair)) { 305 if (!tp->write_seq) 306 WRITE_ONCE(tp->write_seq, 307 secure_tcp_seq(inet->inet_saddr, 308 inet->inet_daddr, 309 inet->inet_sport, 310 usin->sin_port)); 311 WRITE_ONCE(tp->tsoffset, 312 secure_tcp_ts_off(net, inet->inet_saddr, 313 inet->inet_daddr)); 314 } 315 316 atomic_set(&inet->inet_id, get_random_u16()); 317 318 if (tcp_fastopen_defer_connect(sk, &err)) 319 return err; 320 if (err) 321 goto failure; 322 323 err = tcp_connect(sk); 324 325 if (err) 326 goto failure; 327 328 return 0; 329 330 failure: 331 /* 332 * This unhashes the socket and releases the local port, 333 * if necessary. 334 */ 335 tcp_set_state(sk, TCP_CLOSE); 336 inet_bhash2_reset_saddr(sk); 337 ip_rt_put(rt); 338 sk->sk_route_caps = 0; 339 inet->inet_dport = 0; 340 return err; 341 } 342 EXPORT_SYMBOL(tcp_v4_connect); 343 344 /* 345 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 346 * It can be called through tcp_release_cb() if socket was owned by user 347 * at the time tcp_v4_err() was called to handle ICMP message. 348 */ 349 void tcp_v4_mtu_reduced(struct sock *sk) 350 { 351 struct inet_sock *inet = inet_sk(sk); 352 struct dst_entry *dst; 353 u32 mtu; 354 355 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 356 return; 357 mtu = READ_ONCE(tcp_sk(sk)->mtu_info); 358 dst = inet_csk_update_pmtu(sk, mtu); 359 if (!dst) 360 return; 361 362 /* Something is about to be wrong... Remember soft error 363 * for the case, if this connection will not able to recover. 364 */ 365 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 366 WRITE_ONCE(sk->sk_err_soft, EMSGSIZE); 367 368 mtu = dst_mtu(dst); 369 370 if (inet->pmtudisc != IP_PMTUDISC_DONT && 371 ip_sk_accept_pmtu(sk) && 372 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 373 tcp_sync_mss(sk, mtu); 374 375 /* Resend the TCP packet because it's 376 * clear that the old packet has been 377 * dropped. This is the new "fast" path mtu 378 * discovery. 379 */ 380 tcp_simple_retransmit(sk); 381 } /* else let the usual retransmit timer handle it */ 382 } 383 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 384 385 static void do_redirect(struct sk_buff *skb, struct sock *sk) 386 { 387 struct dst_entry *dst = __sk_dst_check(sk, 0); 388 389 if (dst) 390 dst->ops->redirect(dst, sk, skb); 391 } 392 393 394 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 395 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 396 { 397 struct request_sock *req = inet_reqsk(sk); 398 struct net *net = sock_net(sk); 399 400 /* ICMPs are not backlogged, hence we cannot get 401 * an established socket here. 402 */ 403 if (seq != tcp_rsk(req)->snt_isn) { 404 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 405 } else if (abort) { 406 /* 407 * Still in SYN_RECV, just remove it silently. 408 * There is no good way to pass the error to the newly 409 * created socket, and POSIX does not want network 410 * errors returned from accept(). 411 */ 412 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 413 tcp_listendrop(req->rsk_listener); 414 } 415 reqsk_put(req); 416 } 417 EXPORT_SYMBOL(tcp_req_err); 418 419 /* TCP-LD (RFC 6069) logic */ 420 void tcp_ld_RTO_revert(struct sock *sk, u32 seq) 421 { 422 struct inet_connection_sock *icsk = inet_csk(sk); 423 struct tcp_sock *tp = tcp_sk(sk); 424 struct sk_buff *skb; 425 s32 remaining; 426 u32 delta_us; 427 428 if (sock_owned_by_user(sk)) 429 return; 430 431 if (seq != tp->snd_una || !icsk->icsk_retransmits || 432 !icsk->icsk_backoff) 433 return; 434 435 skb = tcp_rtx_queue_head(sk); 436 if (WARN_ON_ONCE(!skb)) 437 return; 438 439 icsk->icsk_backoff--; 440 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; 441 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 442 443 tcp_mstamp_refresh(tp); 444 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 445 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); 446 447 if (remaining > 0) { 448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 449 remaining, TCP_RTO_MAX); 450 } else { 451 /* RTO revert clocked out retransmission. 452 * Will retransmit now. 453 */ 454 tcp_retransmit_timer(sk); 455 } 456 } 457 EXPORT_SYMBOL(tcp_ld_RTO_revert); 458 459 /* 460 * This routine is called by the ICMP module when it gets some 461 * sort of error condition. If err < 0 then the socket should 462 * be closed and the error returned to the user. If err > 0 463 * it's just the icmp type << 8 | icmp code. After adjustment 464 * header points to the first 8 bytes of the tcp header. We need 465 * to find the appropriate port. 466 * 467 * The locking strategy used here is very "optimistic". When 468 * someone else accesses the socket the ICMP is just dropped 469 * and for some paths there is no check at all. 470 * A more general error queue to queue errors for later handling 471 * is probably better. 472 * 473 */ 474 475 int tcp_v4_err(struct sk_buff *skb, u32 info) 476 { 477 const struct iphdr *iph = (const struct iphdr *)skb->data; 478 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); 479 struct tcp_sock *tp; 480 const int type = icmp_hdr(skb)->type; 481 const int code = icmp_hdr(skb)->code; 482 struct sock *sk; 483 struct request_sock *fastopen; 484 u32 seq, snd_una; 485 int err; 486 struct net *net = dev_net(skb->dev); 487 488 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 489 iph->daddr, th->dest, iph->saddr, 490 ntohs(th->source), inet_iif(skb), 0); 491 if (!sk) { 492 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 493 return -ENOENT; 494 } 495 if (sk->sk_state == TCP_TIME_WAIT) { 496 inet_twsk_put(inet_twsk(sk)); 497 return 0; 498 } 499 seq = ntohl(th->seq); 500 if (sk->sk_state == TCP_NEW_SYN_RECV) { 501 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 502 type == ICMP_TIME_EXCEEDED || 503 (type == ICMP_DEST_UNREACH && 504 (code == ICMP_NET_UNREACH || 505 code == ICMP_HOST_UNREACH))); 506 return 0; 507 } 508 509 bh_lock_sock(sk); 510 /* If too many ICMPs get dropped on busy 511 * servers this needs to be solved differently. 512 * We do take care of PMTU discovery (RFC1191) special case : 513 * we can receive locally generated ICMP messages while socket is held. 514 */ 515 if (sock_owned_by_user(sk)) { 516 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 517 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 518 } 519 if (sk->sk_state == TCP_CLOSE) 520 goto out; 521 522 if (static_branch_unlikely(&ip4_min_ttl)) { 523 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 524 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 525 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 526 goto out; 527 } 528 } 529 530 tp = tcp_sk(sk); 531 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 532 fastopen = rcu_dereference(tp->fastopen_rsk); 533 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 534 if (sk->sk_state != TCP_LISTEN && 535 !between(seq, snd_una, tp->snd_nxt)) { 536 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 537 goto out; 538 } 539 540 switch (type) { 541 case ICMP_REDIRECT: 542 if (!sock_owned_by_user(sk)) 543 do_redirect(skb, sk); 544 goto out; 545 case ICMP_SOURCE_QUENCH: 546 /* Just silently ignore these. */ 547 goto out; 548 case ICMP_PARAMETERPROB: 549 err = EPROTO; 550 break; 551 case ICMP_DEST_UNREACH: 552 if (code > NR_ICMP_UNREACH) 553 goto out; 554 555 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 556 /* We are not interested in TCP_LISTEN and open_requests 557 * (SYN-ACKs send out by Linux are always <576bytes so 558 * they should go through unfragmented). 559 */ 560 if (sk->sk_state == TCP_LISTEN) 561 goto out; 562 563 WRITE_ONCE(tp->mtu_info, info); 564 if (!sock_owned_by_user(sk)) { 565 tcp_v4_mtu_reduced(sk); 566 } else { 567 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 568 sock_hold(sk); 569 } 570 goto out; 571 } 572 573 err = icmp_err_convert[code].errno; 574 /* check if this ICMP message allows revert of backoff. 575 * (see RFC 6069) 576 */ 577 if (!fastopen && 578 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) 579 tcp_ld_RTO_revert(sk, seq); 580 break; 581 case ICMP_TIME_EXCEEDED: 582 err = EHOSTUNREACH; 583 break; 584 default: 585 goto out; 586 } 587 588 switch (sk->sk_state) { 589 case TCP_SYN_SENT: 590 case TCP_SYN_RECV: 591 /* Only in fast or simultaneous open. If a fast open socket is 592 * already accepted it is treated as a connected one below. 593 */ 594 if (fastopen && !fastopen->sk) 595 break; 596 597 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); 598 599 if (!sock_owned_by_user(sk)) { 600 WRITE_ONCE(sk->sk_err, err); 601 602 sk_error_report(sk); 603 604 tcp_done(sk); 605 } else { 606 WRITE_ONCE(sk->sk_err_soft, err); 607 } 608 goto out; 609 } 610 611 /* If we've already connected we will keep trying 612 * until we time out, or the user gives up. 613 * 614 * rfc1122 4.2.3.9 allows to consider as hard errors 615 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 616 * but it is obsoleted by pmtu discovery). 617 * 618 * Note, that in modern internet, where routing is unreliable 619 * and in each dark corner broken firewalls sit, sending random 620 * errors ordered by their masters even this two messages finally lose 621 * their original sense (even Linux sends invalid PORT_UNREACHs) 622 * 623 * Now we are in compliance with RFCs. 624 * --ANK (980905) 625 */ 626 627 if (!sock_owned_by_user(sk) && 628 inet_test_bit(RECVERR, sk)) { 629 WRITE_ONCE(sk->sk_err, err); 630 sk_error_report(sk); 631 } else { /* Only an error on timeout */ 632 WRITE_ONCE(sk->sk_err_soft, err); 633 } 634 635 out: 636 bh_unlock_sock(sk); 637 sock_put(sk); 638 return 0; 639 } 640 641 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 642 { 643 struct tcphdr *th = tcp_hdr(skb); 644 645 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 646 skb->csum_start = skb_transport_header(skb) - skb->head; 647 skb->csum_offset = offsetof(struct tcphdr, check); 648 } 649 650 /* This routine computes an IPv4 TCP checksum. */ 651 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 652 { 653 const struct inet_sock *inet = inet_sk(sk); 654 655 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 656 } 657 EXPORT_SYMBOL(tcp_v4_send_check); 658 659 /* 660 * This routine will send an RST to the other tcp. 661 * 662 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 663 * for reset. 664 * Answer: if a packet caused RST, it is not for a socket 665 * existing in our system, if it is matched to a socket, 666 * it is just duplicate segment or bug in other side's TCP. 667 * So that we build reply only basing on parameters 668 * arrived with segment. 669 * Exception: precedence violation. We do not implement it in any case. 670 */ 671 672 #ifdef CONFIG_TCP_MD5SIG 673 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED 674 #else 675 #define OPTION_BYTES sizeof(__be32) 676 #endif 677 678 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 679 { 680 const struct tcphdr *th = tcp_hdr(skb); 681 struct { 682 struct tcphdr th; 683 __be32 opt[OPTION_BYTES / sizeof(__be32)]; 684 } rep; 685 struct ip_reply_arg arg; 686 #ifdef CONFIG_TCP_MD5SIG 687 struct tcp_md5sig_key *key = NULL; 688 const __u8 *hash_location = NULL; 689 unsigned char newhash[16]; 690 int genhash; 691 struct sock *sk1 = NULL; 692 #endif 693 u64 transmit_time = 0; 694 struct sock *ctl_sk; 695 struct net *net; 696 u32 txhash = 0; 697 698 /* Never send a reset in response to a reset. */ 699 if (th->rst) 700 return; 701 702 /* If sk not NULL, it means we did a successful lookup and incoming 703 * route had to be correct. prequeue might have dropped our dst. 704 */ 705 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 706 return; 707 708 /* Swap the send and the receive. */ 709 memset(&rep, 0, sizeof(rep)); 710 rep.th.dest = th->source; 711 rep.th.source = th->dest; 712 rep.th.doff = sizeof(struct tcphdr) / 4; 713 rep.th.rst = 1; 714 715 if (th->ack) { 716 rep.th.seq = th->ack_seq; 717 } else { 718 rep.th.ack = 1; 719 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 720 skb->len - (th->doff << 2)); 721 } 722 723 memset(&arg, 0, sizeof(arg)); 724 arg.iov[0].iov_base = (unsigned char *)&rep; 725 arg.iov[0].iov_len = sizeof(rep.th); 726 727 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 728 #ifdef CONFIG_TCP_MD5SIG 729 rcu_read_lock(); 730 hash_location = tcp_parse_md5sig_option(th); 731 if (sk && sk_fullsock(sk)) { 732 const union tcp_md5_addr *addr; 733 int l3index; 734 735 /* sdif set, means packet ingressed via a device 736 * in an L3 domain and inet_iif is set to it. 737 */ 738 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 739 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 740 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 741 } else if (hash_location) { 742 const union tcp_md5_addr *addr; 743 int sdif = tcp_v4_sdif(skb); 744 int dif = inet_iif(skb); 745 int l3index; 746 747 /* 748 * active side is lost. Try to find listening socket through 749 * source port, and then find md5 key through listening socket. 750 * we are not loose security here: 751 * Incoming packet is checked with md5 hash with finding key, 752 * no RST generated if md5 hash doesn't match. 753 */ 754 sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, 755 NULL, 0, ip_hdr(skb)->saddr, 756 th->source, ip_hdr(skb)->daddr, 757 ntohs(th->source), dif, sdif); 758 /* don't send rst if it can't find key */ 759 if (!sk1) 760 goto out; 761 762 /* sdif set, means packet ingressed via a device 763 * in an L3 domain and dif is set to it. 764 */ 765 l3index = sdif ? dif : 0; 766 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 767 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); 768 if (!key) 769 goto out; 770 771 772 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 773 if (genhash || memcmp(hash_location, newhash, 16) != 0) 774 goto out; 775 776 } 777 778 if (key) { 779 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 780 (TCPOPT_NOP << 16) | 781 (TCPOPT_MD5SIG << 8) | 782 TCPOLEN_MD5SIG); 783 /* Update length and the length the header thinks exists */ 784 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 785 rep.th.doff = arg.iov[0].iov_len / 4; 786 787 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 788 key, ip_hdr(skb)->saddr, 789 ip_hdr(skb)->daddr, &rep.th); 790 } 791 #endif 792 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */ 793 if (rep.opt[0] == 0) { 794 __be32 mrst = mptcp_reset_option(skb); 795 796 if (mrst) { 797 rep.opt[0] = mrst; 798 arg.iov[0].iov_len += sizeof(mrst); 799 rep.th.doff = arg.iov[0].iov_len / 4; 800 } 801 } 802 803 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 804 ip_hdr(skb)->saddr, /* XXX */ 805 arg.iov[0].iov_len, IPPROTO_TCP, 0); 806 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 807 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 808 809 /* When socket is gone, all binding information is lost. 810 * routing might fail in this case. No choice here, if we choose to force 811 * input interface, we will misroute in case of asymmetric route. 812 */ 813 if (sk) { 814 arg.bound_dev_if = sk->sk_bound_dev_if; 815 if (sk_fullsock(sk)) 816 trace_tcp_send_reset(sk, skb); 817 } 818 819 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 820 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 821 822 arg.tos = ip_hdr(skb)->tos; 823 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 824 local_bh_disable(); 825 ctl_sk = this_cpu_read(ipv4_tcp_sk); 826 sock_net_set(ctl_sk, net); 827 if (sk) { 828 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 829 inet_twsk(sk)->tw_mark : sk->sk_mark; 830 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 831 inet_twsk(sk)->tw_priority : sk->sk_priority; 832 transmit_time = tcp_transmit_time(sk); 833 xfrm_sk_clone_policy(ctl_sk, sk); 834 txhash = (sk->sk_state == TCP_TIME_WAIT) ? 835 inet_twsk(sk)->tw_txhash : sk->sk_txhash; 836 } else { 837 ctl_sk->sk_mark = 0; 838 ctl_sk->sk_priority = 0; 839 } 840 ip_send_unicast_reply(ctl_sk, 841 skb, &TCP_SKB_CB(skb)->header.h4.opt, 842 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 843 &arg, arg.iov[0].iov_len, 844 transmit_time, txhash); 845 846 xfrm_sk_free_policy(ctl_sk); 847 sock_net_set(ctl_sk, &init_net); 848 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 849 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 850 local_bh_enable(); 851 852 #ifdef CONFIG_TCP_MD5SIG 853 out: 854 rcu_read_unlock(); 855 #endif 856 } 857 858 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 859 outside socket context is ugly, certainly. What can I do? 860 */ 861 862 static void tcp_v4_send_ack(const struct sock *sk, 863 struct sk_buff *skb, u32 seq, u32 ack, 864 u32 win, u32 tsval, u32 tsecr, int oif, 865 struct tcp_md5sig_key *key, 866 int reply_flags, u8 tos, u32 txhash) 867 { 868 const struct tcphdr *th = tcp_hdr(skb); 869 struct { 870 struct tcphdr th; 871 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 872 #ifdef CONFIG_TCP_MD5SIG 873 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 874 #endif 875 ]; 876 } rep; 877 struct net *net = sock_net(sk); 878 struct ip_reply_arg arg; 879 struct sock *ctl_sk; 880 u64 transmit_time; 881 882 memset(&rep.th, 0, sizeof(struct tcphdr)); 883 memset(&arg, 0, sizeof(arg)); 884 885 arg.iov[0].iov_base = (unsigned char *)&rep; 886 arg.iov[0].iov_len = sizeof(rep.th); 887 if (tsecr) { 888 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 889 (TCPOPT_TIMESTAMP << 8) | 890 TCPOLEN_TIMESTAMP); 891 rep.opt[1] = htonl(tsval); 892 rep.opt[2] = htonl(tsecr); 893 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 894 } 895 896 /* Swap the send and the receive. */ 897 rep.th.dest = th->source; 898 rep.th.source = th->dest; 899 rep.th.doff = arg.iov[0].iov_len / 4; 900 rep.th.seq = htonl(seq); 901 rep.th.ack_seq = htonl(ack); 902 rep.th.ack = 1; 903 rep.th.window = htons(win); 904 905 #ifdef CONFIG_TCP_MD5SIG 906 if (key) { 907 int offset = (tsecr) ? 3 : 0; 908 909 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 910 (TCPOPT_NOP << 16) | 911 (TCPOPT_MD5SIG << 8) | 912 TCPOLEN_MD5SIG); 913 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 914 rep.th.doff = arg.iov[0].iov_len/4; 915 916 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 917 key, ip_hdr(skb)->saddr, 918 ip_hdr(skb)->daddr, &rep.th); 919 } 920 #endif 921 arg.flags = reply_flags; 922 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 923 ip_hdr(skb)->saddr, /* XXX */ 924 arg.iov[0].iov_len, IPPROTO_TCP, 0); 925 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 926 if (oif) 927 arg.bound_dev_if = oif; 928 arg.tos = tos; 929 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 930 local_bh_disable(); 931 ctl_sk = this_cpu_read(ipv4_tcp_sk); 932 sock_net_set(ctl_sk, net); 933 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 934 inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark); 935 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 936 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); 937 transmit_time = tcp_transmit_time(sk); 938 ip_send_unicast_reply(ctl_sk, 939 skb, &TCP_SKB_CB(skb)->header.h4.opt, 940 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 941 &arg, arg.iov[0].iov_len, 942 transmit_time, txhash); 943 944 sock_net_set(ctl_sk, &init_net); 945 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 946 local_bh_enable(); 947 } 948 949 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 950 { 951 struct inet_timewait_sock *tw = inet_twsk(sk); 952 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 953 954 tcp_v4_send_ack(sk, skb, 955 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 956 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 957 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 958 tcptw->tw_ts_recent, 959 tw->tw_bound_dev_if, 960 tcp_twsk_md5_key(tcptw), 961 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 962 tw->tw_tos, 963 tw->tw_txhash 964 ); 965 966 inet_twsk_put(tw); 967 } 968 969 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 970 struct request_sock *req) 971 { 972 const union tcp_md5_addr *addr; 973 int l3index; 974 975 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 976 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 977 */ 978 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 979 tcp_sk(sk)->snd_nxt; 980 981 /* RFC 7323 2.3 982 * The window field (SEG.WND) of every outgoing segment, with the 983 * exception of <SYN> segments, MUST be right-shifted by 984 * Rcv.Wind.Shift bits: 985 */ 986 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 987 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 988 tcp_v4_send_ack(sk, skb, seq, 989 tcp_rsk(req)->rcv_nxt, 990 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 991 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 992 READ_ONCE(req->ts_recent), 993 0, 994 tcp_md5_do_lookup(sk, l3index, addr, AF_INET), 995 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 996 ip_hdr(skb)->tos, 997 READ_ONCE(tcp_rsk(req)->txhash)); 998 } 999 1000 /* 1001 * Send a SYN-ACK after having received a SYN. 1002 * This still operates on a request_sock only, not on a big 1003 * socket. 1004 */ 1005 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 1006 struct flowi *fl, 1007 struct request_sock *req, 1008 struct tcp_fastopen_cookie *foc, 1009 enum tcp_synack_type synack_type, 1010 struct sk_buff *syn_skb) 1011 { 1012 const struct inet_request_sock *ireq = inet_rsk(req); 1013 struct flowi4 fl4; 1014 int err = -1; 1015 struct sk_buff *skb; 1016 u8 tos; 1017 1018 /* First, grab a route. */ 1019 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 1020 return -1; 1021 1022 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); 1023 1024 if (skb) { 1025 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 1026 1027 tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ? 1028 (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | 1029 (inet_sk(sk)->tos & INET_ECN_MASK) : 1030 inet_sk(sk)->tos; 1031 1032 if (!INET_ECN_is_capable(tos) && 1033 tcp_bpf_ca_needs_ecn((struct sock *)req)) 1034 tos |= INET_ECN_ECT_0; 1035 1036 rcu_read_lock(); 1037 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 1038 ireq->ir_rmt_addr, 1039 rcu_dereference(ireq->ireq_opt), 1040 tos); 1041 rcu_read_unlock(); 1042 err = net_xmit_eval(err); 1043 } 1044 1045 return err; 1046 } 1047 1048 /* 1049 * IPv4 request_sock destructor. 1050 */ 1051 static void tcp_v4_reqsk_destructor(struct request_sock *req) 1052 { 1053 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 1054 } 1055 1056 #ifdef CONFIG_TCP_MD5SIG 1057 /* 1058 * RFC2385 MD5 checksumming requires a mapping of 1059 * IP address->MD5 Key. 1060 * We need to maintain these in the sk structure. 1061 */ 1062 1063 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ); 1064 EXPORT_SYMBOL(tcp_md5_needed); 1065 1066 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) 1067 { 1068 if (!old) 1069 return true; 1070 1071 /* l3index always overrides non-l3index */ 1072 if (old->l3index && new->l3index == 0) 1073 return false; 1074 if (old->l3index == 0 && new->l3index) 1075 return true; 1076 1077 return old->prefixlen < new->prefixlen; 1078 } 1079 1080 /* Find the Key structure for an address. */ 1081 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1082 const union tcp_md5_addr *addr, 1083 int family) 1084 { 1085 const struct tcp_sock *tp = tcp_sk(sk); 1086 struct tcp_md5sig_key *key; 1087 const struct tcp_md5sig_info *md5sig; 1088 __be32 mask; 1089 struct tcp_md5sig_key *best_match = NULL; 1090 bool match; 1091 1092 /* caller either holds rcu_read_lock() or socket lock */ 1093 md5sig = rcu_dereference_check(tp->md5sig_info, 1094 lockdep_sock_is_held(sk)); 1095 if (!md5sig) 1096 return NULL; 1097 1098 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1099 lockdep_sock_is_held(sk)) { 1100 if (key->family != family) 1101 continue; 1102 if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index) 1103 continue; 1104 if (family == AF_INET) { 1105 mask = inet_make_mask(key->prefixlen); 1106 match = (key->addr.a4.s_addr & mask) == 1107 (addr->a4.s_addr & mask); 1108 #if IS_ENABLED(CONFIG_IPV6) 1109 } else if (family == AF_INET6) { 1110 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1111 key->prefixlen); 1112 #endif 1113 } else { 1114 match = false; 1115 } 1116 1117 if (match && better_md5_match(best_match, key)) 1118 best_match = key; 1119 } 1120 return best_match; 1121 } 1122 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1123 1124 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1125 const union tcp_md5_addr *addr, 1126 int family, u8 prefixlen, 1127 int l3index, u8 flags) 1128 { 1129 const struct tcp_sock *tp = tcp_sk(sk); 1130 struct tcp_md5sig_key *key; 1131 unsigned int size = sizeof(struct in_addr); 1132 const struct tcp_md5sig_info *md5sig; 1133 1134 /* caller either holds rcu_read_lock() or socket lock */ 1135 md5sig = rcu_dereference_check(tp->md5sig_info, 1136 lockdep_sock_is_held(sk)); 1137 if (!md5sig) 1138 return NULL; 1139 #if IS_ENABLED(CONFIG_IPV6) 1140 if (family == AF_INET6) 1141 size = sizeof(struct in6_addr); 1142 #endif 1143 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1144 lockdep_sock_is_held(sk)) { 1145 if (key->family != family) 1146 continue; 1147 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX)) 1148 continue; 1149 if (key->l3index != l3index) 1150 continue; 1151 if (!memcmp(&key->addr, addr, size) && 1152 key->prefixlen == prefixlen) 1153 return key; 1154 } 1155 return NULL; 1156 } 1157 1158 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1159 const struct sock *addr_sk) 1160 { 1161 const union tcp_md5_addr *addr; 1162 int l3index; 1163 1164 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1165 addr_sk->sk_bound_dev_if); 1166 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1167 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1168 } 1169 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1170 1171 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp) 1172 { 1173 struct tcp_sock *tp = tcp_sk(sk); 1174 struct tcp_md5sig_info *md5sig; 1175 1176 md5sig = kmalloc(sizeof(*md5sig), gfp); 1177 if (!md5sig) 1178 return -ENOMEM; 1179 1180 sk_gso_disable(sk); 1181 INIT_HLIST_HEAD(&md5sig->head); 1182 rcu_assign_pointer(tp->md5sig_info, md5sig); 1183 return 0; 1184 } 1185 1186 /* This can be called on a newly created socket, from other files */ 1187 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1188 int family, u8 prefixlen, int l3index, u8 flags, 1189 const u8 *newkey, u8 newkeylen, gfp_t gfp) 1190 { 1191 /* Add Key to the list */ 1192 struct tcp_md5sig_key *key; 1193 struct tcp_sock *tp = tcp_sk(sk); 1194 struct tcp_md5sig_info *md5sig; 1195 1196 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1197 if (key) { 1198 /* Pre-existing entry - just update that one. 1199 * Note that the key might be used concurrently. 1200 * data_race() is telling kcsan that we do not care of 1201 * key mismatches, since changing MD5 key on live flows 1202 * can lead to packet drops. 1203 */ 1204 data_race(memcpy(key->key, newkey, newkeylen)); 1205 1206 /* Pairs with READ_ONCE() in tcp_md5_hash_key(). 1207 * Also note that a reader could catch new key->keylen value 1208 * but old key->key[], this is the reason we use __GFP_ZERO 1209 * at sock_kmalloc() time below these lines. 1210 */ 1211 WRITE_ONCE(key->keylen, newkeylen); 1212 1213 return 0; 1214 } 1215 1216 md5sig = rcu_dereference_protected(tp->md5sig_info, 1217 lockdep_sock_is_held(sk)); 1218 1219 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); 1220 if (!key) 1221 return -ENOMEM; 1222 if (!tcp_alloc_md5sig_pool()) { 1223 sock_kfree_s(sk, key, sizeof(*key)); 1224 return -ENOMEM; 1225 } 1226 1227 memcpy(key->key, newkey, newkeylen); 1228 key->keylen = newkeylen; 1229 key->family = family; 1230 key->prefixlen = prefixlen; 1231 key->l3index = l3index; 1232 key->flags = flags; 1233 memcpy(&key->addr, addr, 1234 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) : 1235 sizeof(struct in_addr)); 1236 hlist_add_head_rcu(&key->node, &md5sig->head); 1237 return 0; 1238 } 1239 1240 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1241 int family, u8 prefixlen, int l3index, u8 flags, 1242 const u8 *newkey, u8 newkeylen) 1243 { 1244 struct tcp_sock *tp = tcp_sk(sk); 1245 1246 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1247 if (tcp_md5sig_info_add(sk, GFP_KERNEL)) 1248 return -ENOMEM; 1249 1250 if (!static_branch_inc(&tcp_md5_needed.key)) { 1251 struct tcp_md5sig_info *md5sig; 1252 1253 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1254 rcu_assign_pointer(tp->md5sig_info, NULL); 1255 kfree_rcu(md5sig, rcu); 1256 return -EUSERS; 1257 } 1258 } 1259 1260 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags, 1261 newkey, newkeylen, GFP_KERNEL); 1262 } 1263 EXPORT_SYMBOL(tcp_md5_do_add); 1264 1265 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1266 int family, u8 prefixlen, int l3index, 1267 struct tcp_md5sig_key *key) 1268 { 1269 struct tcp_sock *tp = tcp_sk(sk); 1270 1271 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1272 if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) 1273 return -ENOMEM; 1274 1275 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) { 1276 struct tcp_md5sig_info *md5sig; 1277 1278 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1279 net_warn_ratelimited("Too many TCP-MD5 keys in the system\n"); 1280 rcu_assign_pointer(tp->md5sig_info, NULL); 1281 kfree_rcu(md5sig, rcu); 1282 return -EUSERS; 1283 } 1284 } 1285 1286 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, 1287 key->flags, key->key, key->keylen, 1288 sk_gfp_mask(sk, GFP_ATOMIC)); 1289 } 1290 EXPORT_SYMBOL(tcp_md5_key_copy); 1291 1292 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1293 u8 prefixlen, int l3index, u8 flags) 1294 { 1295 struct tcp_md5sig_key *key; 1296 1297 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1298 if (!key) 1299 return -ENOENT; 1300 hlist_del_rcu(&key->node); 1301 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1302 kfree_rcu(key, rcu); 1303 return 0; 1304 } 1305 EXPORT_SYMBOL(tcp_md5_do_del); 1306 1307 static void tcp_clear_md5_list(struct sock *sk) 1308 { 1309 struct tcp_sock *tp = tcp_sk(sk); 1310 struct tcp_md5sig_key *key; 1311 struct hlist_node *n; 1312 struct tcp_md5sig_info *md5sig; 1313 1314 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1315 1316 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1317 hlist_del_rcu(&key->node); 1318 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1319 kfree_rcu(key, rcu); 1320 } 1321 } 1322 1323 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1324 sockptr_t optval, int optlen) 1325 { 1326 struct tcp_md5sig cmd; 1327 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1328 const union tcp_md5_addr *addr; 1329 u8 prefixlen = 32; 1330 int l3index = 0; 1331 u8 flags; 1332 1333 if (optlen < sizeof(cmd)) 1334 return -EINVAL; 1335 1336 if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) 1337 return -EFAULT; 1338 1339 if (sin->sin_family != AF_INET) 1340 return -EINVAL; 1341 1342 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1343 1344 if (optname == TCP_MD5SIG_EXT && 1345 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1346 prefixlen = cmd.tcpm_prefixlen; 1347 if (prefixlen > 32) 1348 return -EINVAL; 1349 } 1350 1351 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && 1352 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { 1353 struct net_device *dev; 1354 1355 rcu_read_lock(); 1356 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); 1357 if (dev && netif_is_l3_master(dev)) 1358 l3index = dev->ifindex; 1359 1360 rcu_read_unlock(); 1361 1362 /* ok to reference set/not set outside of rcu; 1363 * right now device MUST be an L3 master 1364 */ 1365 if (!dev || !l3index) 1366 return -EINVAL; 1367 } 1368 1369 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; 1370 1371 if (!cmd.tcpm_keylen) 1372 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags); 1373 1374 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1375 return -EINVAL; 1376 1377 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, 1378 cmd.tcpm_key, cmd.tcpm_keylen); 1379 } 1380 1381 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1382 __be32 daddr, __be32 saddr, 1383 const struct tcphdr *th, int nbytes) 1384 { 1385 struct tcp4_pseudohdr *bp; 1386 struct scatterlist sg; 1387 struct tcphdr *_th; 1388 1389 bp = hp->scratch; 1390 bp->saddr = saddr; 1391 bp->daddr = daddr; 1392 bp->pad = 0; 1393 bp->protocol = IPPROTO_TCP; 1394 bp->len = cpu_to_be16(nbytes); 1395 1396 _th = (struct tcphdr *)(bp + 1); 1397 memcpy(_th, th, sizeof(*th)); 1398 _th->check = 0; 1399 1400 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1401 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1402 sizeof(*bp) + sizeof(*th)); 1403 return crypto_ahash_update(hp->md5_req); 1404 } 1405 1406 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1407 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1408 { 1409 struct tcp_md5sig_pool *hp; 1410 struct ahash_request *req; 1411 1412 hp = tcp_get_md5sig_pool(); 1413 if (!hp) 1414 goto clear_hash_noput; 1415 req = hp->md5_req; 1416 1417 if (crypto_ahash_init(req)) 1418 goto clear_hash; 1419 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1420 goto clear_hash; 1421 if (tcp_md5_hash_key(hp, key)) 1422 goto clear_hash; 1423 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1424 if (crypto_ahash_final(req)) 1425 goto clear_hash; 1426 1427 tcp_put_md5sig_pool(); 1428 return 0; 1429 1430 clear_hash: 1431 tcp_put_md5sig_pool(); 1432 clear_hash_noput: 1433 memset(md5_hash, 0, 16); 1434 return 1; 1435 } 1436 1437 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1438 const struct sock *sk, 1439 const struct sk_buff *skb) 1440 { 1441 struct tcp_md5sig_pool *hp; 1442 struct ahash_request *req; 1443 const struct tcphdr *th = tcp_hdr(skb); 1444 __be32 saddr, daddr; 1445 1446 if (sk) { /* valid for establish/request sockets */ 1447 saddr = sk->sk_rcv_saddr; 1448 daddr = sk->sk_daddr; 1449 } else { 1450 const struct iphdr *iph = ip_hdr(skb); 1451 saddr = iph->saddr; 1452 daddr = iph->daddr; 1453 } 1454 1455 hp = tcp_get_md5sig_pool(); 1456 if (!hp) 1457 goto clear_hash_noput; 1458 req = hp->md5_req; 1459 1460 if (crypto_ahash_init(req)) 1461 goto clear_hash; 1462 1463 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1464 goto clear_hash; 1465 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1466 goto clear_hash; 1467 if (tcp_md5_hash_key(hp, key)) 1468 goto clear_hash; 1469 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1470 if (crypto_ahash_final(req)) 1471 goto clear_hash; 1472 1473 tcp_put_md5sig_pool(); 1474 return 0; 1475 1476 clear_hash: 1477 tcp_put_md5sig_pool(); 1478 clear_hash_noput: 1479 memset(md5_hash, 0, 16); 1480 return 1; 1481 } 1482 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1483 1484 #endif 1485 1486 static void tcp_v4_init_req(struct request_sock *req, 1487 const struct sock *sk_listener, 1488 struct sk_buff *skb) 1489 { 1490 struct inet_request_sock *ireq = inet_rsk(req); 1491 struct net *net = sock_net(sk_listener); 1492 1493 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1494 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1495 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1496 } 1497 1498 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1499 struct sk_buff *skb, 1500 struct flowi *fl, 1501 struct request_sock *req) 1502 { 1503 tcp_v4_init_req(req, sk, skb); 1504 1505 if (security_inet_conn_request(sk, skb, req)) 1506 return NULL; 1507 1508 return inet_csk_route_req(sk, &fl->u.ip4, req); 1509 } 1510 1511 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1512 .family = PF_INET, 1513 .obj_size = sizeof(struct tcp_request_sock), 1514 .rtx_syn_ack = tcp_rtx_synack, 1515 .send_ack = tcp_v4_reqsk_send_ack, 1516 .destructor = tcp_v4_reqsk_destructor, 1517 .send_reset = tcp_v4_send_reset, 1518 .syn_ack_timeout = tcp_syn_ack_timeout, 1519 }; 1520 1521 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1522 .mss_clamp = TCP_MSS_DEFAULT, 1523 #ifdef CONFIG_TCP_MD5SIG 1524 .req_md5_lookup = tcp_v4_md5_lookup, 1525 .calc_md5_hash = tcp_v4_md5_hash_skb, 1526 #endif 1527 #ifdef CONFIG_SYN_COOKIES 1528 .cookie_init_seq = cookie_v4_init_sequence, 1529 #endif 1530 .route_req = tcp_v4_route_req, 1531 .init_seq = tcp_v4_init_seq, 1532 .init_ts_off = tcp_v4_init_ts_off, 1533 .send_synack = tcp_v4_send_synack, 1534 }; 1535 1536 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1537 { 1538 /* Never answer to SYNs send to broadcast or multicast */ 1539 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1540 goto drop; 1541 1542 return tcp_conn_request(&tcp_request_sock_ops, 1543 &tcp_request_sock_ipv4_ops, sk, skb); 1544 1545 drop: 1546 tcp_listendrop(sk); 1547 return 0; 1548 } 1549 EXPORT_SYMBOL(tcp_v4_conn_request); 1550 1551 1552 /* 1553 * The three way handshake has completed - we got a valid synack - 1554 * now create the new socket. 1555 */ 1556 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1557 struct request_sock *req, 1558 struct dst_entry *dst, 1559 struct request_sock *req_unhash, 1560 bool *own_req) 1561 { 1562 struct inet_request_sock *ireq; 1563 bool found_dup_sk = false; 1564 struct inet_sock *newinet; 1565 struct tcp_sock *newtp; 1566 struct sock *newsk; 1567 #ifdef CONFIG_TCP_MD5SIG 1568 const union tcp_md5_addr *addr; 1569 struct tcp_md5sig_key *key; 1570 int l3index; 1571 #endif 1572 struct ip_options_rcu *inet_opt; 1573 1574 if (sk_acceptq_is_full(sk)) 1575 goto exit_overflow; 1576 1577 newsk = tcp_create_openreq_child(sk, req, skb); 1578 if (!newsk) 1579 goto exit_nonewsk; 1580 1581 newsk->sk_gso_type = SKB_GSO_TCPV4; 1582 inet_sk_rx_dst_set(newsk, skb); 1583 1584 newtp = tcp_sk(newsk); 1585 newinet = inet_sk(newsk); 1586 ireq = inet_rsk(req); 1587 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1588 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1589 newsk->sk_bound_dev_if = ireq->ir_iif; 1590 newinet->inet_saddr = ireq->ir_loc_addr; 1591 inet_opt = rcu_dereference(ireq->ireq_opt); 1592 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1593 newinet->mc_index = inet_iif(skb); 1594 newinet->mc_ttl = ip_hdr(skb)->ttl; 1595 newinet->rcv_tos = ip_hdr(skb)->tos; 1596 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1597 if (inet_opt) 1598 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1599 atomic_set(&newinet->inet_id, get_random_u16()); 1600 1601 /* Set ToS of the new socket based upon the value of incoming SYN. 1602 * ECT bits are set later in tcp_init_transfer(). 1603 */ 1604 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1605 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; 1606 1607 if (!dst) { 1608 dst = inet_csk_route_child_sock(sk, newsk, req); 1609 if (!dst) 1610 goto put_and_exit; 1611 } else { 1612 /* syncookie case : see end of cookie_v4_check() */ 1613 } 1614 sk_setup_caps(newsk, dst); 1615 1616 tcp_ca_openreq_child(newsk, dst); 1617 1618 tcp_sync_mss(newsk, dst_mtu(dst)); 1619 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1620 1621 tcp_initialize_rcv_mss(newsk); 1622 1623 #ifdef CONFIG_TCP_MD5SIG 1624 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 1625 /* Copy over the MD5 key from the original socket */ 1626 addr = (union tcp_md5_addr *)&newinet->inet_daddr; 1627 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1628 if (key) { 1629 if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key)) 1630 goto put_and_exit; 1631 sk_gso_disable(newsk); 1632 } 1633 #endif 1634 1635 if (__inet_inherit_port(sk, newsk) < 0) 1636 goto put_and_exit; 1637 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), 1638 &found_dup_sk); 1639 if (likely(*own_req)) { 1640 tcp_move_syn(newtp, req); 1641 ireq->ireq_opt = NULL; 1642 } else { 1643 newinet->inet_opt = NULL; 1644 1645 if (!req_unhash && found_dup_sk) { 1646 /* This code path should only be executed in the 1647 * syncookie case only 1648 */ 1649 bh_unlock_sock(newsk); 1650 sock_put(newsk); 1651 newsk = NULL; 1652 } 1653 } 1654 return newsk; 1655 1656 exit_overflow: 1657 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1658 exit_nonewsk: 1659 dst_release(dst); 1660 exit: 1661 tcp_listendrop(sk); 1662 return NULL; 1663 put_and_exit: 1664 newinet->inet_opt = NULL; 1665 inet_csk_prepare_forced_close(newsk); 1666 tcp_done(newsk); 1667 goto exit; 1668 } 1669 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1670 1671 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1672 { 1673 #ifdef CONFIG_SYN_COOKIES 1674 const struct tcphdr *th = tcp_hdr(skb); 1675 1676 if (!th->syn) 1677 sk = cookie_v4_check(sk, skb); 1678 #endif 1679 return sk; 1680 } 1681 1682 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1683 struct tcphdr *th, u32 *cookie) 1684 { 1685 u16 mss = 0; 1686 #ifdef CONFIG_SYN_COOKIES 1687 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1688 &tcp_request_sock_ipv4_ops, sk, th); 1689 if (mss) { 1690 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1691 tcp_synq_overflow(sk); 1692 } 1693 #endif 1694 return mss; 1695 } 1696 1697 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 1698 u32)); 1699 /* The socket must have it's spinlock held when we get 1700 * here, unless it is a TCP_LISTEN socket. 1701 * 1702 * We have a potential double-lock case here, so even when 1703 * doing backlog processing we use the BH locking scheme. 1704 * This is because we cannot sleep with the original spinlock 1705 * held. 1706 */ 1707 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1708 { 1709 enum skb_drop_reason reason; 1710 struct sock *rsk; 1711 1712 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1713 struct dst_entry *dst; 1714 1715 dst = rcu_dereference_protected(sk->sk_rx_dst, 1716 lockdep_sock_is_held(sk)); 1717 1718 sock_rps_save_rxhash(sk, skb); 1719 sk_mark_napi_id(sk, skb); 1720 if (dst) { 1721 if (sk->sk_rx_dst_ifindex != skb->skb_iif || 1722 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check, 1723 dst, 0)) { 1724 RCU_INIT_POINTER(sk->sk_rx_dst, NULL); 1725 dst_release(dst); 1726 } 1727 } 1728 tcp_rcv_established(sk, skb); 1729 return 0; 1730 } 1731 1732 reason = SKB_DROP_REASON_NOT_SPECIFIED; 1733 if (tcp_checksum_complete(skb)) 1734 goto csum_err; 1735 1736 if (sk->sk_state == TCP_LISTEN) { 1737 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1738 1739 if (!nsk) 1740 goto discard; 1741 if (nsk != sk) { 1742 if (tcp_child_process(sk, nsk, skb)) { 1743 rsk = nsk; 1744 goto reset; 1745 } 1746 return 0; 1747 } 1748 } else 1749 sock_rps_save_rxhash(sk, skb); 1750 1751 if (tcp_rcv_state_process(sk, skb)) { 1752 rsk = sk; 1753 goto reset; 1754 } 1755 return 0; 1756 1757 reset: 1758 tcp_v4_send_reset(rsk, skb); 1759 discard: 1760 kfree_skb_reason(skb, reason); 1761 /* Be careful here. If this function gets more complicated and 1762 * gcc suffers from register pressure on the x86, sk (in %ebx) 1763 * might be destroyed here. This current version compiles correctly, 1764 * but you have been warned. 1765 */ 1766 return 0; 1767 1768 csum_err: 1769 reason = SKB_DROP_REASON_TCP_CSUM; 1770 trace_tcp_bad_csum(skb); 1771 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1772 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1773 goto discard; 1774 } 1775 EXPORT_SYMBOL(tcp_v4_do_rcv); 1776 1777 int tcp_v4_early_demux(struct sk_buff *skb) 1778 { 1779 struct net *net = dev_net(skb->dev); 1780 const struct iphdr *iph; 1781 const struct tcphdr *th; 1782 struct sock *sk; 1783 1784 if (skb->pkt_type != PACKET_HOST) 1785 return 0; 1786 1787 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1788 return 0; 1789 1790 iph = ip_hdr(skb); 1791 th = tcp_hdr(skb); 1792 1793 if (th->doff < sizeof(struct tcphdr) / 4) 1794 return 0; 1795 1796 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 1797 iph->saddr, th->source, 1798 iph->daddr, ntohs(th->dest), 1799 skb->skb_iif, inet_sdif(skb)); 1800 if (sk) { 1801 skb->sk = sk; 1802 skb->destructor = sock_edemux; 1803 if (sk_fullsock(sk)) { 1804 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); 1805 1806 if (dst) 1807 dst = dst_check(dst, 0); 1808 if (dst && 1809 sk->sk_rx_dst_ifindex == skb->skb_iif) 1810 skb_dst_set_noref(skb, dst); 1811 } 1812 } 1813 return 0; 1814 } 1815 1816 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1817 enum skb_drop_reason *reason) 1818 { 1819 u32 limit, tail_gso_size, tail_gso_segs; 1820 struct skb_shared_info *shinfo; 1821 const struct tcphdr *th; 1822 struct tcphdr *thtail; 1823 struct sk_buff *tail; 1824 unsigned int hdrlen; 1825 bool fragstolen; 1826 u32 gso_segs; 1827 u32 gso_size; 1828 int delta; 1829 1830 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1831 * we can fix skb->truesize to its real value to avoid future drops. 1832 * This is valid because skb is not yet charged to the socket. 1833 * It has been noticed pure SACK packets were sometimes dropped 1834 * (if cooked by drivers without copybreak feature). 1835 */ 1836 skb_condense(skb); 1837 1838 skb_dst_drop(skb); 1839 1840 if (unlikely(tcp_checksum_complete(skb))) { 1841 bh_unlock_sock(sk); 1842 trace_tcp_bad_csum(skb); 1843 *reason = SKB_DROP_REASON_TCP_CSUM; 1844 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1845 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1846 return true; 1847 } 1848 1849 /* Attempt coalescing to last skb in backlog, even if we are 1850 * above the limits. 1851 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 1852 */ 1853 th = (const struct tcphdr *)skb->data; 1854 hdrlen = th->doff * 4; 1855 1856 tail = sk->sk_backlog.tail; 1857 if (!tail) 1858 goto no_coalesce; 1859 thtail = (struct tcphdr *)tail->data; 1860 1861 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 1862 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 1863 ((TCP_SKB_CB(tail)->tcp_flags | 1864 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 1865 !((TCP_SKB_CB(tail)->tcp_flags & 1866 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 1867 ((TCP_SKB_CB(tail)->tcp_flags ^ 1868 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 1869 #ifdef CONFIG_TLS_DEVICE 1870 tail->decrypted != skb->decrypted || 1871 #endif 1872 !mptcp_skb_can_collapse(tail, skb) || 1873 thtail->doff != th->doff || 1874 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 1875 goto no_coalesce; 1876 1877 __skb_pull(skb, hdrlen); 1878 1879 shinfo = skb_shinfo(skb); 1880 gso_size = shinfo->gso_size ?: skb->len; 1881 gso_segs = shinfo->gso_segs ?: 1; 1882 1883 shinfo = skb_shinfo(tail); 1884 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); 1885 tail_gso_segs = shinfo->gso_segs ?: 1; 1886 1887 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 1888 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 1889 1890 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { 1891 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 1892 thtail->window = th->window; 1893 } 1894 1895 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 1896 * thtail->fin, so that the fast path in tcp_rcv_established() 1897 * is not entered if we append a packet with a FIN. 1898 * SYN, RST, URG are not present. 1899 * ACK is set on both packets. 1900 * PSH : we do not really care in TCP stack, 1901 * at least for 'GRO' packets. 1902 */ 1903 thtail->fin |= th->fin; 1904 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1905 1906 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1907 TCP_SKB_CB(tail)->has_rxtstamp = true; 1908 tail->tstamp = skb->tstamp; 1909 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 1910 } 1911 1912 /* Not as strict as GRO. We only need to carry mss max value */ 1913 shinfo->gso_size = max(gso_size, tail_gso_size); 1914 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); 1915 1916 sk->sk_backlog.len += delta; 1917 __NET_INC_STATS(sock_net(sk), 1918 LINUX_MIB_TCPBACKLOGCOALESCE); 1919 kfree_skb_partial(skb, fragstolen); 1920 return false; 1921 } 1922 __skb_push(skb, hdrlen); 1923 1924 no_coalesce: 1925 limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1); 1926 1927 /* Only socket owner can try to collapse/prune rx queues 1928 * to reduce memory overhead, so add a little headroom here. 1929 * Few sockets backlog are possibly concurrently non empty. 1930 */ 1931 limit += 64 * 1024; 1932 1933 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1934 bh_unlock_sock(sk); 1935 *reason = SKB_DROP_REASON_SOCKET_BACKLOG; 1936 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1937 return true; 1938 } 1939 return false; 1940 } 1941 EXPORT_SYMBOL(tcp_add_backlog); 1942 1943 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1944 { 1945 struct tcphdr *th = (struct tcphdr *)skb->data; 1946 1947 return sk_filter_trim_cap(sk, skb, th->doff * 4); 1948 } 1949 EXPORT_SYMBOL(tcp_filter); 1950 1951 static void tcp_v4_restore_cb(struct sk_buff *skb) 1952 { 1953 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1954 sizeof(struct inet_skb_parm)); 1955 } 1956 1957 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1958 const struct tcphdr *th) 1959 { 1960 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1961 * barrier() makes sure compiler wont play fool^Waliasing games. 1962 */ 1963 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1964 sizeof(struct inet_skb_parm)); 1965 barrier(); 1966 1967 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1968 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1969 skb->len - th->doff * 4); 1970 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1971 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1972 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1973 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1974 TCP_SKB_CB(skb)->sacked = 0; 1975 TCP_SKB_CB(skb)->has_rxtstamp = 1976 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1977 } 1978 1979 /* 1980 * From tcp_input.c 1981 */ 1982 1983 int tcp_v4_rcv(struct sk_buff *skb) 1984 { 1985 struct net *net = dev_net(skb->dev); 1986 enum skb_drop_reason drop_reason; 1987 int sdif = inet_sdif(skb); 1988 int dif = inet_iif(skb); 1989 const struct iphdr *iph; 1990 const struct tcphdr *th; 1991 bool refcounted; 1992 struct sock *sk; 1993 int ret; 1994 1995 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 1996 if (skb->pkt_type != PACKET_HOST) 1997 goto discard_it; 1998 1999 /* Count it even if it's bad */ 2000 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 2001 2002 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 2003 goto discard_it; 2004 2005 th = (const struct tcphdr *)skb->data; 2006 2007 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { 2008 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2009 goto bad_packet; 2010 } 2011 if (!pskb_may_pull(skb, th->doff * 4)) 2012 goto discard_it; 2013 2014 /* An explanation is required here, I think. 2015 * Packet length and doff are validated by header prediction, 2016 * provided case of th->doff==0 is eliminated. 2017 * So, we defer the checks. */ 2018 2019 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 2020 goto csum_error; 2021 2022 th = (const struct tcphdr *)skb->data; 2023 iph = ip_hdr(skb); 2024 lookup: 2025 sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo, 2026 skb, __tcp_hdrlen(th), th->source, 2027 th->dest, sdif, &refcounted); 2028 if (!sk) 2029 goto no_tcp_socket; 2030 2031 process: 2032 if (sk->sk_state == TCP_TIME_WAIT) 2033 goto do_time_wait; 2034 2035 if (sk->sk_state == TCP_NEW_SYN_RECV) { 2036 struct request_sock *req = inet_reqsk(sk); 2037 bool req_stolen = false; 2038 struct sock *nsk; 2039 2040 sk = req->rsk_listener; 2041 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2042 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2043 else 2044 drop_reason = tcp_inbound_md5_hash(sk, skb, 2045 &iph->saddr, &iph->daddr, 2046 AF_INET, dif, sdif); 2047 if (unlikely(drop_reason)) { 2048 sk_drops_add(sk, skb); 2049 reqsk_put(req); 2050 goto discard_it; 2051 } 2052 if (tcp_checksum_complete(skb)) { 2053 reqsk_put(req); 2054 goto csum_error; 2055 } 2056 if (unlikely(sk->sk_state != TCP_LISTEN)) { 2057 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); 2058 if (!nsk) { 2059 inet_csk_reqsk_queue_drop_and_put(sk, req); 2060 goto lookup; 2061 } 2062 sk = nsk; 2063 /* reuseport_migrate_sock() has already held one sk_refcnt 2064 * before returning. 2065 */ 2066 } else { 2067 /* We own a reference on the listener, increase it again 2068 * as we might lose it too soon. 2069 */ 2070 sock_hold(sk); 2071 } 2072 refcounted = true; 2073 nsk = NULL; 2074 if (!tcp_filter(sk, skb)) { 2075 th = (const struct tcphdr *)skb->data; 2076 iph = ip_hdr(skb); 2077 tcp_v4_fill_cb(skb, iph, th); 2078 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 2079 } else { 2080 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2081 } 2082 if (!nsk) { 2083 reqsk_put(req); 2084 if (req_stolen) { 2085 /* Another cpu got exclusive access to req 2086 * and created a full blown socket. 2087 * Try to feed this packet to this socket 2088 * instead of discarding it. 2089 */ 2090 tcp_v4_restore_cb(skb); 2091 sock_put(sk); 2092 goto lookup; 2093 } 2094 goto discard_and_relse; 2095 } 2096 nf_reset_ct(skb); 2097 if (nsk == sk) { 2098 reqsk_put(req); 2099 tcp_v4_restore_cb(skb); 2100 } else if (tcp_child_process(sk, nsk, skb)) { 2101 tcp_v4_send_reset(nsk, skb); 2102 goto discard_and_relse; 2103 } else { 2104 sock_put(sk); 2105 return 0; 2106 } 2107 } 2108 2109 if (static_branch_unlikely(&ip4_min_ttl)) { 2110 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 2111 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 2112 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 2113 drop_reason = SKB_DROP_REASON_TCP_MINTTL; 2114 goto discard_and_relse; 2115 } 2116 } 2117 2118 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2119 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2120 goto discard_and_relse; 2121 } 2122 2123 drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr, 2124 &iph->daddr, AF_INET, dif, sdif); 2125 if (drop_reason) 2126 goto discard_and_relse; 2127 2128 nf_reset_ct(skb); 2129 2130 if (tcp_filter(sk, skb)) { 2131 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2132 goto discard_and_relse; 2133 } 2134 th = (const struct tcphdr *)skb->data; 2135 iph = ip_hdr(skb); 2136 tcp_v4_fill_cb(skb, iph, th); 2137 2138 skb->dev = NULL; 2139 2140 if (sk->sk_state == TCP_LISTEN) { 2141 ret = tcp_v4_do_rcv(sk, skb); 2142 goto put_and_return; 2143 } 2144 2145 sk_incoming_cpu_update(sk); 2146 2147 bh_lock_sock_nested(sk); 2148 tcp_segs_in(tcp_sk(sk), skb); 2149 ret = 0; 2150 if (!sock_owned_by_user(sk)) { 2151 ret = tcp_v4_do_rcv(sk, skb); 2152 } else { 2153 if (tcp_add_backlog(sk, skb, &drop_reason)) 2154 goto discard_and_relse; 2155 } 2156 bh_unlock_sock(sk); 2157 2158 put_and_return: 2159 if (refcounted) 2160 sock_put(sk); 2161 2162 return ret; 2163 2164 no_tcp_socket: 2165 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2166 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2167 goto discard_it; 2168 2169 tcp_v4_fill_cb(skb, iph, th); 2170 2171 if (tcp_checksum_complete(skb)) { 2172 csum_error: 2173 drop_reason = SKB_DROP_REASON_TCP_CSUM; 2174 trace_tcp_bad_csum(skb); 2175 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 2176 bad_packet: 2177 __TCP_INC_STATS(net, TCP_MIB_INERRS); 2178 } else { 2179 tcp_v4_send_reset(NULL, skb); 2180 } 2181 2182 discard_it: 2183 SKB_DR_OR(drop_reason, NOT_SPECIFIED); 2184 /* Discard frame. */ 2185 kfree_skb_reason(skb, drop_reason); 2186 return 0; 2187 2188 discard_and_relse: 2189 sk_drops_add(sk, skb); 2190 if (refcounted) 2191 sock_put(sk); 2192 goto discard_it; 2193 2194 do_time_wait: 2195 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2196 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2197 inet_twsk_put(inet_twsk(sk)); 2198 goto discard_it; 2199 } 2200 2201 tcp_v4_fill_cb(skb, iph, th); 2202 2203 if (tcp_checksum_complete(skb)) { 2204 inet_twsk_put(inet_twsk(sk)); 2205 goto csum_error; 2206 } 2207 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2208 case TCP_TW_SYN: { 2209 struct sock *sk2 = inet_lookup_listener(net, 2210 net->ipv4.tcp_death_row.hashinfo, 2211 skb, __tcp_hdrlen(th), 2212 iph->saddr, th->source, 2213 iph->daddr, th->dest, 2214 inet_iif(skb), 2215 sdif); 2216 if (sk2) { 2217 inet_twsk_deschedule_put(inet_twsk(sk)); 2218 sk = sk2; 2219 tcp_v4_restore_cb(skb); 2220 refcounted = false; 2221 goto process; 2222 } 2223 } 2224 /* to ACK */ 2225 fallthrough; 2226 case TCP_TW_ACK: 2227 tcp_v4_timewait_ack(sk, skb); 2228 break; 2229 case TCP_TW_RST: 2230 tcp_v4_send_reset(sk, skb); 2231 inet_twsk_deschedule_put(inet_twsk(sk)); 2232 goto discard_it; 2233 case TCP_TW_SUCCESS:; 2234 } 2235 goto discard_it; 2236 } 2237 2238 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2239 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2240 .twsk_unique = tcp_twsk_unique, 2241 .twsk_destructor= tcp_twsk_destructor, 2242 }; 2243 2244 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2245 { 2246 struct dst_entry *dst = skb_dst(skb); 2247 2248 if (dst && dst_hold_safe(dst)) { 2249 rcu_assign_pointer(sk->sk_rx_dst, dst); 2250 sk->sk_rx_dst_ifindex = skb->skb_iif; 2251 } 2252 } 2253 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2254 2255 const struct inet_connection_sock_af_ops ipv4_specific = { 2256 .queue_xmit = ip_queue_xmit, 2257 .send_check = tcp_v4_send_check, 2258 .rebuild_header = inet_sk_rebuild_header, 2259 .sk_rx_dst_set = inet_sk_rx_dst_set, 2260 .conn_request = tcp_v4_conn_request, 2261 .syn_recv_sock = tcp_v4_syn_recv_sock, 2262 .net_header_len = sizeof(struct iphdr), 2263 .setsockopt = ip_setsockopt, 2264 .getsockopt = ip_getsockopt, 2265 .addr2sockaddr = inet_csk_addr2sockaddr, 2266 .sockaddr_len = sizeof(struct sockaddr_in), 2267 .mtu_reduced = tcp_v4_mtu_reduced, 2268 }; 2269 EXPORT_SYMBOL(ipv4_specific); 2270 2271 #ifdef CONFIG_TCP_MD5SIG 2272 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2273 .md5_lookup = tcp_v4_md5_lookup, 2274 .calc_md5_hash = tcp_v4_md5_hash_skb, 2275 .md5_parse = tcp_v4_parse_md5_keys, 2276 }; 2277 #endif 2278 2279 /* NOTE: A lot of things set to zero explicitly by call to 2280 * sk_alloc() so need not be done here. 2281 */ 2282 static int tcp_v4_init_sock(struct sock *sk) 2283 { 2284 struct inet_connection_sock *icsk = inet_csk(sk); 2285 2286 tcp_init_sock(sk); 2287 2288 icsk->icsk_af_ops = &ipv4_specific; 2289 2290 #ifdef CONFIG_TCP_MD5SIG 2291 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2292 #endif 2293 2294 return 0; 2295 } 2296 2297 void tcp_v4_destroy_sock(struct sock *sk) 2298 { 2299 struct tcp_sock *tp = tcp_sk(sk); 2300 2301 trace_tcp_destroy_sock(sk); 2302 2303 tcp_clear_xmit_timers(sk); 2304 2305 tcp_cleanup_congestion_control(sk); 2306 2307 tcp_cleanup_ulp(sk); 2308 2309 /* Cleanup up the write buffer. */ 2310 tcp_write_queue_purge(sk); 2311 2312 /* Check if we want to disable active TFO */ 2313 tcp_fastopen_active_disable_ofo_check(sk); 2314 2315 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2316 skb_rbtree_purge(&tp->out_of_order_queue); 2317 2318 #ifdef CONFIG_TCP_MD5SIG 2319 /* Clean up the MD5 key list, if any */ 2320 if (tp->md5sig_info) { 2321 tcp_clear_md5_list(sk); 2322 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 2323 tp->md5sig_info = NULL; 2324 static_branch_slow_dec_deferred(&tcp_md5_needed); 2325 } 2326 #endif 2327 2328 /* Clean up a referenced TCP bind bucket. */ 2329 if (inet_csk(sk)->icsk_bind_hash) 2330 inet_put_port(sk); 2331 2332 BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); 2333 2334 /* If socket is aborted during connect operation */ 2335 tcp_free_fastopen_req(tp); 2336 tcp_fastopen_destroy_cipher(sk); 2337 tcp_saved_syn_free(tp); 2338 2339 sk_sockets_allocated_dec(sk); 2340 } 2341 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2342 2343 #ifdef CONFIG_PROC_FS 2344 /* Proc filesystem TCP sock list dumping. */ 2345 2346 static unsigned short seq_file_family(const struct seq_file *seq); 2347 2348 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2349 { 2350 unsigned short family = seq_file_family(seq); 2351 2352 /* AF_UNSPEC is used as a match all */ 2353 return ((family == AF_UNSPEC || family == sk->sk_family) && 2354 net_eq(sock_net(sk), seq_file_net(seq))); 2355 } 2356 2357 /* Find a non empty bucket (starting from st->bucket) 2358 * and return the first sk from it. 2359 */ 2360 static void *listening_get_first(struct seq_file *seq) 2361 { 2362 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2363 struct tcp_iter_state *st = seq->private; 2364 2365 st->offset = 0; 2366 for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) { 2367 struct inet_listen_hashbucket *ilb2; 2368 struct hlist_nulls_node *node; 2369 struct sock *sk; 2370 2371 ilb2 = &hinfo->lhash2[st->bucket]; 2372 if (hlist_nulls_empty(&ilb2->nulls_head)) 2373 continue; 2374 2375 spin_lock(&ilb2->lock); 2376 sk_nulls_for_each(sk, node, &ilb2->nulls_head) { 2377 if (seq_sk_match(seq, sk)) 2378 return sk; 2379 } 2380 spin_unlock(&ilb2->lock); 2381 } 2382 2383 return NULL; 2384 } 2385 2386 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket). 2387 * If "cur" is the last one in the st->bucket, 2388 * call listening_get_first() to return the first sk of the next 2389 * non empty bucket. 2390 */ 2391 static void *listening_get_next(struct seq_file *seq, void *cur) 2392 { 2393 struct tcp_iter_state *st = seq->private; 2394 struct inet_listen_hashbucket *ilb2; 2395 struct hlist_nulls_node *node; 2396 struct inet_hashinfo *hinfo; 2397 struct sock *sk = cur; 2398 2399 ++st->num; 2400 ++st->offset; 2401 2402 sk = sk_nulls_next(sk); 2403 sk_nulls_for_each_from(sk, node) { 2404 if (seq_sk_match(seq, sk)) 2405 return sk; 2406 } 2407 2408 hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2409 ilb2 = &hinfo->lhash2[st->bucket]; 2410 spin_unlock(&ilb2->lock); 2411 ++st->bucket; 2412 return listening_get_first(seq); 2413 } 2414 2415 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2416 { 2417 struct tcp_iter_state *st = seq->private; 2418 void *rc; 2419 2420 st->bucket = 0; 2421 st->offset = 0; 2422 rc = listening_get_first(seq); 2423 2424 while (rc && *pos) { 2425 rc = listening_get_next(seq, rc); 2426 --*pos; 2427 } 2428 return rc; 2429 } 2430 2431 static inline bool empty_bucket(struct inet_hashinfo *hinfo, 2432 const struct tcp_iter_state *st) 2433 { 2434 return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain); 2435 } 2436 2437 /* 2438 * Get first established socket starting from bucket given in st->bucket. 2439 * If st->bucket is zero, the very first socket in the hash is returned. 2440 */ 2441 static void *established_get_first(struct seq_file *seq) 2442 { 2443 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2444 struct tcp_iter_state *st = seq->private; 2445 2446 st->offset = 0; 2447 for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) { 2448 struct sock *sk; 2449 struct hlist_nulls_node *node; 2450 spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket); 2451 2452 cond_resched(); 2453 2454 /* Lockless fast path for the common case of empty buckets */ 2455 if (empty_bucket(hinfo, st)) 2456 continue; 2457 2458 spin_lock_bh(lock); 2459 sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) { 2460 if (seq_sk_match(seq, sk)) 2461 return sk; 2462 } 2463 spin_unlock_bh(lock); 2464 } 2465 2466 return NULL; 2467 } 2468 2469 static void *established_get_next(struct seq_file *seq, void *cur) 2470 { 2471 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2472 struct tcp_iter_state *st = seq->private; 2473 struct hlist_nulls_node *node; 2474 struct sock *sk = cur; 2475 2476 ++st->num; 2477 ++st->offset; 2478 2479 sk = sk_nulls_next(sk); 2480 2481 sk_nulls_for_each_from(sk, node) { 2482 if (seq_sk_match(seq, sk)) 2483 return sk; 2484 } 2485 2486 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2487 ++st->bucket; 2488 return established_get_first(seq); 2489 } 2490 2491 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2492 { 2493 struct tcp_iter_state *st = seq->private; 2494 void *rc; 2495 2496 st->bucket = 0; 2497 rc = established_get_first(seq); 2498 2499 while (rc && pos) { 2500 rc = established_get_next(seq, rc); 2501 --pos; 2502 } 2503 return rc; 2504 } 2505 2506 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2507 { 2508 void *rc; 2509 struct tcp_iter_state *st = seq->private; 2510 2511 st->state = TCP_SEQ_STATE_LISTENING; 2512 rc = listening_get_idx(seq, &pos); 2513 2514 if (!rc) { 2515 st->state = TCP_SEQ_STATE_ESTABLISHED; 2516 rc = established_get_idx(seq, pos); 2517 } 2518 2519 return rc; 2520 } 2521 2522 static void *tcp_seek_last_pos(struct seq_file *seq) 2523 { 2524 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2525 struct tcp_iter_state *st = seq->private; 2526 int bucket = st->bucket; 2527 int offset = st->offset; 2528 int orig_num = st->num; 2529 void *rc = NULL; 2530 2531 switch (st->state) { 2532 case TCP_SEQ_STATE_LISTENING: 2533 if (st->bucket > hinfo->lhash2_mask) 2534 break; 2535 rc = listening_get_first(seq); 2536 while (offset-- && rc && bucket == st->bucket) 2537 rc = listening_get_next(seq, rc); 2538 if (rc) 2539 break; 2540 st->bucket = 0; 2541 st->state = TCP_SEQ_STATE_ESTABLISHED; 2542 fallthrough; 2543 case TCP_SEQ_STATE_ESTABLISHED: 2544 if (st->bucket > hinfo->ehash_mask) 2545 break; 2546 rc = established_get_first(seq); 2547 while (offset-- && rc && bucket == st->bucket) 2548 rc = established_get_next(seq, rc); 2549 } 2550 2551 st->num = orig_num; 2552 2553 return rc; 2554 } 2555 2556 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2557 { 2558 struct tcp_iter_state *st = seq->private; 2559 void *rc; 2560 2561 if (*pos && *pos == st->last_pos) { 2562 rc = tcp_seek_last_pos(seq); 2563 if (rc) 2564 goto out; 2565 } 2566 2567 st->state = TCP_SEQ_STATE_LISTENING; 2568 st->num = 0; 2569 st->bucket = 0; 2570 st->offset = 0; 2571 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2572 2573 out: 2574 st->last_pos = *pos; 2575 return rc; 2576 } 2577 EXPORT_SYMBOL(tcp_seq_start); 2578 2579 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2580 { 2581 struct tcp_iter_state *st = seq->private; 2582 void *rc = NULL; 2583 2584 if (v == SEQ_START_TOKEN) { 2585 rc = tcp_get_idx(seq, 0); 2586 goto out; 2587 } 2588 2589 switch (st->state) { 2590 case TCP_SEQ_STATE_LISTENING: 2591 rc = listening_get_next(seq, v); 2592 if (!rc) { 2593 st->state = TCP_SEQ_STATE_ESTABLISHED; 2594 st->bucket = 0; 2595 st->offset = 0; 2596 rc = established_get_first(seq); 2597 } 2598 break; 2599 case TCP_SEQ_STATE_ESTABLISHED: 2600 rc = established_get_next(seq, v); 2601 break; 2602 } 2603 out: 2604 ++*pos; 2605 st->last_pos = *pos; 2606 return rc; 2607 } 2608 EXPORT_SYMBOL(tcp_seq_next); 2609 2610 void tcp_seq_stop(struct seq_file *seq, void *v) 2611 { 2612 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2613 struct tcp_iter_state *st = seq->private; 2614 2615 switch (st->state) { 2616 case TCP_SEQ_STATE_LISTENING: 2617 if (v != SEQ_START_TOKEN) 2618 spin_unlock(&hinfo->lhash2[st->bucket].lock); 2619 break; 2620 case TCP_SEQ_STATE_ESTABLISHED: 2621 if (v) 2622 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2623 break; 2624 } 2625 } 2626 EXPORT_SYMBOL(tcp_seq_stop); 2627 2628 static void get_openreq4(const struct request_sock *req, 2629 struct seq_file *f, int i) 2630 { 2631 const struct inet_request_sock *ireq = inet_rsk(req); 2632 long delta = req->rsk_timer.expires - jiffies; 2633 2634 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2635 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2636 i, 2637 ireq->ir_loc_addr, 2638 ireq->ir_num, 2639 ireq->ir_rmt_addr, 2640 ntohs(ireq->ir_rmt_port), 2641 TCP_SYN_RECV, 2642 0, 0, /* could print option size, but that is af dependent. */ 2643 1, /* timers active (only the expire timer) */ 2644 jiffies_delta_to_clock_t(delta), 2645 req->num_timeout, 2646 from_kuid_munged(seq_user_ns(f), 2647 sock_i_uid(req->rsk_listener)), 2648 0, /* non standard timer */ 2649 0, /* open_requests have no inode */ 2650 0, 2651 req); 2652 } 2653 2654 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2655 { 2656 int timer_active; 2657 unsigned long timer_expires; 2658 const struct tcp_sock *tp = tcp_sk(sk); 2659 const struct inet_connection_sock *icsk = inet_csk(sk); 2660 const struct inet_sock *inet = inet_sk(sk); 2661 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2662 __be32 dest = inet->inet_daddr; 2663 __be32 src = inet->inet_rcv_saddr; 2664 __u16 destp = ntohs(inet->inet_dport); 2665 __u16 srcp = ntohs(inet->inet_sport); 2666 int rx_queue; 2667 int state; 2668 2669 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2670 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2671 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2672 timer_active = 1; 2673 timer_expires = icsk->icsk_timeout; 2674 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2675 timer_active = 4; 2676 timer_expires = icsk->icsk_timeout; 2677 } else if (timer_pending(&sk->sk_timer)) { 2678 timer_active = 2; 2679 timer_expires = sk->sk_timer.expires; 2680 } else { 2681 timer_active = 0; 2682 timer_expires = jiffies; 2683 } 2684 2685 state = inet_sk_state_load(sk); 2686 if (state == TCP_LISTEN) 2687 rx_queue = READ_ONCE(sk->sk_ack_backlog); 2688 else 2689 /* Because we don't lock the socket, 2690 * we might find a transient negative value. 2691 */ 2692 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - 2693 READ_ONCE(tp->copied_seq), 0); 2694 2695 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2696 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2697 i, src, srcp, dest, destp, state, 2698 READ_ONCE(tp->write_seq) - tp->snd_una, 2699 rx_queue, 2700 timer_active, 2701 jiffies_delta_to_clock_t(timer_expires - jiffies), 2702 icsk->icsk_retransmits, 2703 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2704 icsk->icsk_probes_out, 2705 sock_i_ino(sk), 2706 refcount_read(&sk->sk_refcnt), sk, 2707 jiffies_to_clock_t(icsk->icsk_rto), 2708 jiffies_to_clock_t(icsk->icsk_ack.ato), 2709 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2710 tcp_snd_cwnd(tp), 2711 state == TCP_LISTEN ? 2712 fastopenq->max_qlen : 2713 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2714 } 2715 2716 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2717 struct seq_file *f, int i) 2718 { 2719 long delta = tw->tw_timer.expires - jiffies; 2720 __be32 dest, src; 2721 __u16 destp, srcp; 2722 2723 dest = tw->tw_daddr; 2724 src = tw->tw_rcv_saddr; 2725 destp = ntohs(tw->tw_dport); 2726 srcp = ntohs(tw->tw_sport); 2727 2728 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2729 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2730 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2731 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2732 refcount_read(&tw->tw_refcnt), tw); 2733 } 2734 2735 #define TMPSZ 150 2736 2737 static int tcp4_seq_show(struct seq_file *seq, void *v) 2738 { 2739 struct tcp_iter_state *st; 2740 struct sock *sk = v; 2741 2742 seq_setwidth(seq, TMPSZ - 1); 2743 if (v == SEQ_START_TOKEN) { 2744 seq_puts(seq, " sl local_address rem_address st tx_queue " 2745 "rx_queue tr tm->when retrnsmt uid timeout " 2746 "inode"); 2747 goto out; 2748 } 2749 st = seq->private; 2750 2751 if (sk->sk_state == TCP_TIME_WAIT) 2752 get_timewait4_sock(v, seq, st->num); 2753 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2754 get_openreq4(v, seq, st->num); 2755 else 2756 get_tcp4_sock(v, seq, st->num); 2757 out: 2758 seq_pad(seq, '\n'); 2759 return 0; 2760 } 2761 2762 #ifdef CONFIG_BPF_SYSCALL 2763 struct bpf_tcp_iter_state { 2764 struct tcp_iter_state state; 2765 unsigned int cur_sk; 2766 unsigned int end_sk; 2767 unsigned int max_sk; 2768 struct sock **batch; 2769 bool st_bucket_done; 2770 }; 2771 2772 struct bpf_iter__tcp { 2773 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2774 __bpf_md_ptr(struct sock_common *, sk_common); 2775 uid_t uid __aligned(8); 2776 }; 2777 2778 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 2779 struct sock_common *sk_common, uid_t uid) 2780 { 2781 struct bpf_iter__tcp ctx; 2782 2783 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2784 ctx.meta = meta; 2785 ctx.sk_common = sk_common; 2786 ctx.uid = uid; 2787 return bpf_iter_run_prog(prog, &ctx); 2788 } 2789 2790 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter) 2791 { 2792 while (iter->cur_sk < iter->end_sk) 2793 sock_gen_put(iter->batch[iter->cur_sk++]); 2794 } 2795 2796 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter, 2797 unsigned int new_batch_sz) 2798 { 2799 struct sock **new_batch; 2800 2801 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 2802 GFP_USER | __GFP_NOWARN); 2803 if (!new_batch) 2804 return -ENOMEM; 2805 2806 bpf_iter_tcp_put_batch(iter); 2807 kvfree(iter->batch); 2808 iter->batch = new_batch; 2809 iter->max_sk = new_batch_sz; 2810 2811 return 0; 2812 } 2813 2814 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq, 2815 struct sock *start_sk) 2816 { 2817 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2818 struct bpf_tcp_iter_state *iter = seq->private; 2819 struct tcp_iter_state *st = &iter->state; 2820 struct hlist_nulls_node *node; 2821 unsigned int expected = 1; 2822 struct sock *sk; 2823 2824 sock_hold(start_sk); 2825 iter->batch[iter->end_sk++] = start_sk; 2826 2827 sk = sk_nulls_next(start_sk); 2828 sk_nulls_for_each_from(sk, node) { 2829 if (seq_sk_match(seq, sk)) { 2830 if (iter->end_sk < iter->max_sk) { 2831 sock_hold(sk); 2832 iter->batch[iter->end_sk++] = sk; 2833 } 2834 expected++; 2835 } 2836 } 2837 spin_unlock(&hinfo->lhash2[st->bucket].lock); 2838 2839 return expected; 2840 } 2841 2842 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq, 2843 struct sock *start_sk) 2844 { 2845 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2846 struct bpf_tcp_iter_state *iter = seq->private; 2847 struct tcp_iter_state *st = &iter->state; 2848 struct hlist_nulls_node *node; 2849 unsigned int expected = 1; 2850 struct sock *sk; 2851 2852 sock_hold(start_sk); 2853 iter->batch[iter->end_sk++] = start_sk; 2854 2855 sk = sk_nulls_next(start_sk); 2856 sk_nulls_for_each_from(sk, node) { 2857 if (seq_sk_match(seq, sk)) { 2858 if (iter->end_sk < iter->max_sk) { 2859 sock_hold(sk); 2860 iter->batch[iter->end_sk++] = sk; 2861 } 2862 expected++; 2863 } 2864 } 2865 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2866 2867 return expected; 2868 } 2869 2870 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq) 2871 { 2872 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2873 struct bpf_tcp_iter_state *iter = seq->private; 2874 struct tcp_iter_state *st = &iter->state; 2875 unsigned int expected; 2876 bool resized = false; 2877 struct sock *sk; 2878 2879 /* The st->bucket is done. Directly advance to the next 2880 * bucket instead of having the tcp_seek_last_pos() to skip 2881 * one by one in the current bucket and eventually find out 2882 * it has to advance to the next bucket. 2883 */ 2884 if (iter->st_bucket_done) { 2885 st->offset = 0; 2886 st->bucket++; 2887 if (st->state == TCP_SEQ_STATE_LISTENING && 2888 st->bucket > hinfo->lhash2_mask) { 2889 st->state = TCP_SEQ_STATE_ESTABLISHED; 2890 st->bucket = 0; 2891 } 2892 } 2893 2894 again: 2895 /* Get a new batch */ 2896 iter->cur_sk = 0; 2897 iter->end_sk = 0; 2898 iter->st_bucket_done = false; 2899 2900 sk = tcp_seek_last_pos(seq); 2901 if (!sk) 2902 return NULL; /* Done */ 2903 2904 if (st->state == TCP_SEQ_STATE_LISTENING) 2905 expected = bpf_iter_tcp_listening_batch(seq, sk); 2906 else 2907 expected = bpf_iter_tcp_established_batch(seq, sk); 2908 2909 if (iter->end_sk == expected) { 2910 iter->st_bucket_done = true; 2911 return sk; 2912 } 2913 2914 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) { 2915 resized = true; 2916 goto again; 2917 } 2918 2919 return sk; 2920 } 2921 2922 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos) 2923 { 2924 /* bpf iter does not support lseek, so it always 2925 * continue from where it was stop()-ped. 2926 */ 2927 if (*pos) 2928 return bpf_iter_tcp_batch(seq); 2929 2930 return SEQ_START_TOKEN; 2931 } 2932 2933 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2934 { 2935 struct bpf_tcp_iter_state *iter = seq->private; 2936 struct tcp_iter_state *st = &iter->state; 2937 struct sock *sk; 2938 2939 /* Whenever seq_next() is called, the iter->cur_sk is 2940 * done with seq_show(), so advance to the next sk in 2941 * the batch. 2942 */ 2943 if (iter->cur_sk < iter->end_sk) { 2944 /* Keeping st->num consistent in tcp_iter_state. 2945 * bpf_iter_tcp does not use st->num. 2946 * meta.seq_num is used instead. 2947 */ 2948 st->num++; 2949 /* Move st->offset to the next sk in the bucket such that 2950 * the future start() will resume at st->offset in 2951 * st->bucket. See tcp_seek_last_pos(). 2952 */ 2953 st->offset++; 2954 sock_gen_put(iter->batch[iter->cur_sk++]); 2955 } 2956 2957 if (iter->cur_sk < iter->end_sk) 2958 sk = iter->batch[iter->cur_sk]; 2959 else 2960 sk = bpf_iter_tcp_batch(seq); 2961 2962 ++*pos; 2963 /* Keeping st->last_pos consistent in tcp_iter_state. 2964 * bpf iter does not do lseek, so st->last_pos always equals to *pos. 2965 */ 2966 st->last_pos = *pos; 2967 return sk; 2968 } 2969 2970 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) 2971 { 2972 struct bpf_iter_meta meta; 2973 struct bpf_prog *prog; 2974 struct sock *sk = v; 2975 uid_t uid; 2976 int ret; 2977 2978 if (v == SEQ_START_TOKEN) 2979 return 0; 2980 2981 if (sk_fullsock(sk)) 2982 lock_sock(sk); 2983 2984 if (unlikely(sk_unhashed(sk))) { 2985 ret = SEQ_SKIP; 2986 goto unlock; 2987 } 2988 2989 if (sk->sk_state == TCP_TIME_WAIT) { 2990 uid = 0; 2991 } else if (sk->sk_state == TCP_NEW_SYN_RECV) { 2992 const struct request_sock *req = v; 2993 2994 uid = from_kuid_munged(seq_user_ns(seq), 2995 sock_i_uid(req->rsk_listener)); 2996 } else { 2997 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 2998 } 2999 3000 meta.seq = seq; 3001 prog = bpf_iter_get_info(&meta, false); 3002 ret = tcp_prog_seq_show(prog, &meta, v, uid); 3003 3004 unlock: 3005 if (sk_fullsock(sk)) 3006 release_sock(sk); 3007 return ret; 3008 3009 } 3010 3011 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) 3012 { 3013 struct bpf_tcp_iter_state *iter = seq->private; 3014 struct bpf_iter_meta meta; 3015 struct bpf_prog *prog; 3016 3017 if (!v) { 3018 meta.seq = seq; 3019 prog = bpf_iter_get_info(&meta, true); 3020 if (prog) 3021 (void)tcp_prog_seq_show(prog, &meta, v, 0); 3022 } 3023 3024 if (iter->cur_sk < iter->end_sk) { 3025 bpf_iter_tcp_put_batch(iter); 3026 iter->st_bucket_done = false; 3027 } 3028 } 3029 3030 static const struct seq_operations bpf_iter_tcp_seq_ops = { 3031 .show = bpf_iter_tcp_seq_show, 3032 .start = bpf_iter_tcp_seq_start, 3033 .next = bpf_iter_tcp_seq_next, 3034 .stop = bpf_iter_tcp_seq_stop, 3035 }; 3036 #endif 3037 static unsigned short seq_file_family(const struct seq_file *seq) 3038 { 3039 const struct tcp_seq_afinfo *afinfo; 3040 3041 #ifdef CONFIG_BPF_SYSCALL 3042 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */ 3043 if (seq->op == &bpf_iter_tcp_seq_ops) 3044 return AF_UNSPEC; 3045 #endif 3046 3047 /* Iterated from proc fs */ 3048 afinfo = pde_data(file_inode(seq->file)); 3049 return afinfo->family; 3050 } 3051 3052 static const struct seq_operations tcp4_seq_ops = { 3053 .show = tcp4_seq_show, 3054 .start = tcp_seq_start, 3055 .next = tcp_seq_next, 3056 .stop = tcp_seq_stop, 3057 }; 3058 3059 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 3060 .family = AF_INET, 3061 }; 3062 3063 static int __net_init tcp4_proc_init_net(struct net *net) 3064 { 3065 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 3066 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 3067 return -ENOMEM; 3068 return 0; 3069 } 3070 3071 static void __net_exit tcp4_proc_exit_net(struct net *net) 3072 { 3073 remove_proc_entry("tcp", net->proc_net); 3074 } 3075 3076 static struct pernet_operations tcp4_net_ops = { 3077 .init = tcp4_proc_init_net, 3078 .exit = tcp4_proc_exit_net, 3079 }; 3080 3081 int __init tcp4_proc_init(void) 3082 { 3083 return register_pernet_subsys(&tcp4_net_ops); 3084 } 3085 3086 void tcp4_proc_exit(void) 3087 { 3088 unregister_pernet_subsys(&tcp4_net_ops); 3089 } 3090 #endif /* CONFIG_PROC_FS */ 3091 3092 /* @wake is one when sk_stream_write_space() calls us. 3093 * This sends EPOLLOUT only if notsent_bytes is half the limit. 3094 * This mimics the strategy used in sock_def_write_space(). 3095 */ 3096 bool tcp_stream_memory_free(const struct sock *sk, int wake) 3097 { 3098 const struct tcp_sock *tp = tcp_sk(sk); 3099 u32 notsent_bytes = READ_ONCE(tp->write_seq) - 3100 READ_ONCE(tp->snd_nxt); 3101 3102 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 3103 } 3104 EXPORT_SYMBOL(tcp_stream_memory_free); 3105 3106 struct proto tcp_prot = { 3107 .name = "TCP", 3108 .owner = THIS_MODULE, 3109 .close = tcp_close, 3110 .pre_connect = tcp_v4_pre_connect, 3111 .connect = tcp_v4_connect, 3112 .disconnect = tcp_disconnect, 3113 .accept = inet_csk_accept, 3114 .ioctl = tcp_ioctl, 3115 .init = tcp_v4_init_sock, 3116 .destroy = tcp_v4_destroy_sock, 3117 .shutdown = tcp_shutdown, 3118 .setsockopt = tcp_setsockopt, 3119 .getsockopt = tcp_getsockopt, 3120 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, 3121 .keepalive = tcp_set_keepalive, 3122 .recvmsg = tcp_recvmsg, 3123 .sendmsg = tcp_sendmsg, 3124 .splice_eof = tcp_splice_eof, 3125 .backlog_rcv = tcp_v4_do_rcv, 3126 .release_cb = tcp_release_cb, 3127 .hash = inet_hash, 3128 .unhash = inet_unhash, 3129 .get_port = inet_csk_get_port, 3130 .put_port = inet_put_port, 3131 #ifdef CONFIG_BPF_SYSCALL 3132 .psock_update_sk_prot = tcp_bpf_update_proto, 3133 #endif 3134 .enter_memory_pressure = tcp_enter_memory_pressure, 3135 .leave_memory_pressure = tcp_leave_memory_pressure, 3136 .stream_memory_free = tcp_stream_memory_free, 3137 .sockets_allocated = &tcp_sockets_allocated, 3138 .orphan_count = &tcp_orphan_count, 3139 3140 .memory_allocated = &tcp_memory_allocated, 3141 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3142 3143 .memory_pressure = &tcp_memory_pressure, 3144 .sysctl_mem = sysctl_tcp_mem, 3145 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3146 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3147 .max_header = MAX_TCP_HEADER, 3148 .obj_size = sizeof(struct tcp_sock), 3149 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3150 .twsk_prot = &tcp_timewait_sock_ops, 3151 .rsk_prot = &tcp_request_sock_ops, 3152 .h.hashinfo = NULL, 3153 .no_autobind = true, 3154 .diag_destroy = tcp_abort, 3155 }; 3156 EXPORT_SYMBOL(tcp_prot); 3157 3158 static void __net_exit tcp_sk_exit(struct net *net) 3159 { 3160 if (net->ipv4.tcp_congestion_control) 3161 bpf_module_put(net->ipv4.tcp_congestion_control, 3162 net->ipv4.tcp_congestion_control->owner); 3163 } 3164 3165 static void __net_init tcp_set_hashinfo(struct net *net) 3166 { 3167 struct inet_hashinfo *hinfo; 3168 unsigned int ehash_entries; 3169 struct net *old_net; 3170 3171 if (net_eq(net, &init_net)) 3172 goto fallback; 3173 3174 old_net = current->nsproxy->net_ns; 3175 ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries); 3176 if (!ehash_entries) 3177 goto fallback; 3178 3179 ehash_entries = roundup_pow_of_two(ehash_entries); 3180 hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries); 3181 if (!hinfo) { 3182 pr_warn("Failed to allocate TCP ehash (entries: %u) " 3183 "for a netns, fallback to the global one\n", 3184 ehash_entries); 3185 fallback: 3186 hinfo = &tcp_hashinfo; 3187 ehash_entries = tcp_hashinfo.ehash_mask + 1; 3188 } 3189 3190 net->ipv4.tcp_death_row.hashinfo = hinfo; 3191 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2; 3192 net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128); 3193 } 3194 3195 static int __net_init tcp_sk_init(struct net *net) 3196 { 3197 net->ipv4.sysctl_tcp_ecn = 2; 3198 net->ipv4.sysctl_tcp_ecn_fallback = 1; 3199 3200 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 3201 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 3202 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 3203 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 3204 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 3205 3206 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 3207 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 3208 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 3209 3210 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 3211 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 3212 net->ipv4.sysctl_tcp_syncookies = 1; 3213 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 3214 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 3215 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 3216 net->ipv4.sysctl_tcp_orphan_retries = 0; 3217 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 3218 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 3219 net->ipv4.sysctl_tcp_tw_reuse = 2; 3220 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; 3221 3222 refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1); 3223 tcp_set_hashinfo(net); 3224 3225 net->ipv4.sysctl_tcp_sack = 1; 3226 net->ipv4.sysctl_tcp_window_scaling = 1; 3227 net->ipv4.sysctl_tcp_timestamps = 1; 3228 net->ipv4.sysctl_tcp_early_retrans = 3; 3229 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 3230 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 3231 net->ipv4.sysctl_tcp_retrans_collapse = 1; 3232 net->ipv4.sysctl_tcp_max_reordering = 300; 3233 net->ipv4.sysctl_tcp_dsack = 1; 3234 net->ipv4.sysctl_tcp_app_win = 31; 3235 net->ipv4.sysctl_tcp_adv_win_scale = 1; 3236 net->ipv4.sysctl_tcp_frto = 2; 3237 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 3238 /* This limits the percentage of the congestion window which we 3239 * will allow a single TSO frame to consume. Building TSO frames 3240 * which are too large can cause TCP streams to be bursty. 3241 */ 3242 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 3243 /* Default TSQ limit of 16 TSO segments */ 3244 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 3245 3246 /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */ 3247 net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX; 3248 3249 net->ipv4.sysctl_tcp_min_tso_segs = 2; 3250 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */ 3251 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 3252 net->ipv4.sysctl_tcp_autocorking = 1; 3253 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 3254 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 3255 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 3256 if (net != &init_net) { 3257 memcpy(net->ipv4.sysctl_tcp_rmem, 3258 init_net.ipv4.sysctl_tcp_rmem, 3259 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 3260 memcpy(net->ipv4.sysctl_tcp_wmem, 3261 init_net.ipv4.sysctl_tcp_wmem, 3262 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 3263 } 3264 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 3265 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; 3266 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 3267 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 3268 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; 3269 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 3270 3271 /* Set default values for PLB */ 3272 net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */ 3273 net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3; 3274 net->ipv4.sysctl_tcp_plb_rehash_rounds = 12; 3275 net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60; 3276 /* Default congestion threshold for PLB to mark a round is 50% */ 3277 net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2; 3278 3279 /* Reno is always built in */ 3280 if (!net_eq(net, &init_net) && 3281 bpf_try_module_get(init_net.ipv4.tcp_congestion_control, 3282 init_net.ipv4.tcp_congestion_control->owner)) 3283 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 3284 else 3285 net->ipv4.tcp_congestion_control = &tcp_reno; 3286 3287 net->ipv4.sysctl_tcp_syn_linear_timeouts = 4; 3288 net->ipv4.sysctl_tcp_shrink_window = 0; 3289 3290 return 0; 3291 } 3292 3293 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 3294 { 3295 struct net *net; 3296 3297 tcp_twsk_purge(net_exit_list, AF_INET); 3298 3299 list_for_each_entry(net, net_exit_list, exit_list) { 3300 inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo); 3301 WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); 3302 tcp_fastopen_ctx_destroy(net); 3303 } 3304 } 3305 3306 static struct pernet_operations __net_initdata tcp_sk_ops = { 3307 .init = tcp_sk_init, 3308 .exit = tcp_sk_exit, 3309 .exit_batch = tcp_sk_exit_batch, 3310 }; 3311 3312 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3313 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, 3314 struct sock_common *sk_common, uid_t uid) 3315 3316 #define INIT_BATCH_SZ 16 3317 3318 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) 3319 { 3320 struct bpf_tcp_iter_state *iter = priv_data; 3321 int err; 3322 3323 err = bpf_iter_init_seq_net(priv_data, aux); 3324 if (err) 3325 return err; 3326 3327 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ); 3328 if (err) { 3329 bpf_iter_fini_seq_net(priv_data); 3330 return err; 3331 } 3332 3333 return 0; 3334 } 3335 3336 static void bpf_iter_fini_tcp(void *priv_data) 3337 { 3338 struct bpf_tcp_iter_state *iter = priv_data; 3339 3340 bpf_iter_fini_seq_net(priv_data); 3341 kvfree(iter->batch); 3342 } 3343 3344 static const struct bpf_iter_seq_info tcp_seq_info = { 3345 .seq_ops = &bpf_iter_tcp_seq_ops, 3346 .init_seq_private = bpf_iter_init_tcp, 3347 .fini_seq_private = bpf_iter_fini_tcp, 3348 .seq_priv_size = sizeof(struct bpf_tcp_iter_state), 3349 }; 3350 3351 static const struct bpf_func_proto * 3352 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id, 3353 const struct bpf_prog *prog) 3354 { 3355 switch (func_id) { 3356 case BPF_FUNC_setsockopt: 3357 return &bpf_sk_setsockopt_proto; 3358 case BPF_FUNC_getsockopt: 3359 return &bpf_sk_getsockopt_proto; 3360 default: 3361 return NULL; 3362 } 3363 } 3364 3365 static struct bpf_iter_reg tcp_reg_info = { 3366 .target = "tcp", 3367 .ctx_arg_info_size = 1, 3368 .ctx_arg_info = { 3369 { offsetof(struct bpf_iter__tcp, sk_common), 3370 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3371 }, 3372 .get_func_proto = bpf_iter_tcp_get_func_proto, 3373 .seq_info = &tcp_seq_info, 3374 }; 3375 3376 static void __init bpf_iter_register(void) 3377 { 3378 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; 3379 if (bpf_iter_reg_target(&tcp_reg_info)) 3380 pr_warn("Warning: could not register bpf iterator tcp\n"); 3381 } 3382 3383 #endif 3384 3385 void __init tcp_v4_init(void) 3386 { 3387 int cpu, res; 3388 3389 for_each_possible_cpu(cpu) { 3390 struct sock *sk; 3391 3392 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 3393 IPPROTO_TCP, &init_net); 3394 if (res) 3395 panic("Failed to create the TCP control socket.\n"); 3396 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 3397 3398 /* Please enforce IP_DF and IPID==0 for RST and 3399 * ACK sent in SYN-RECV and TIME-WAIT state. 3400 */ 3401 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 3402 3403 per_cpu(ipv4_tcp_sk, cpu) = sk; 3404 } 3405 if (register_pernet_subsys(&tcp_sk_ops)) 3406 panic("Failed to create the TCP control socket.\n"); 3407 3408 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3409 bpf_iter_register(); 3410 #endif 3411 } 3412